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Autonomous Steering of Concentric Tube Robots for Enhanced
Force/Velocity Manipulability

Mohsen Khadem, John O’Neill, Zisos Mitros, Lyndon da Cruz*, Christos Bergeles*

Abstract—Concentric tube robots (CTR) can traverse tightly
curved paths and offer dexterity in constrained environments,
making them advantageous for minimally invasive surgical sce-
narios that experience strict anatomical and surgical constraints.
Their shape is controlled via rotation and translation of several
concentrically arranged super-elastic precurved tubes that form
the robot backbone. As the elastic energy accumulated in the
backbone due to bending and twist of the tubes increases, robots
can exhibit sudden snapping motions, which can damage the
surrounding tissues. In this paper, we proposed an approach for
closed-loop steering of a redundant CTR that allows for snap-free
motion and enhances its force/velocity manipulability, increasing
the capacity of the robot to move and/or exercise forces along any
direction. First, a controller stabilizes the CTR end-effector on
a desired time-variant trajectory. Next, an online optimizer uses
the robot’s redundant Degrees of Freedom (DoF) to reshape its
manipulability in real-time and steer it away from potentially
snapping configurations or increase its capacity in delivering
force payloads. Simulations and experiments demonstrate the
performance of the proposed control strategy. The controller can
steer a generally unstable CTR along trajectories while avoiding
instabilities with a mean error of 850µm, corresponding to 0.6%
of arclength, and improves robot ability to exercise forces by
55%.

I. INTRODUCTION

Concentric tube robots (CTR) can navigate confined spaces
and conform to curvilinear paths, enabling them to reach and
treat deeply-seated pathologies. Due to modelling uncertainties
and mechanical instabilities associated with the design of a
CTR, however, their stable control in constrained environments
is a challenging task. It is possible that the ideal CTR ar-
chitecture for a surgical scenario exhibits instabilities, termed
“snapping”, prohibiting their use within their entire workspace
[1]. Further, it is possible that certain robot configurations
exhibit suboptimal stiffness, therefore potentially causing dam-
age as the robot traverses the anatomy, or be unable to exercise
the forces required for tissue manipulation. In this paper, we
propose a control strategy for accurate control and positioning
of the tip of a generally unstable CTR by reshaping its unified
force/velocity manipulability ellipsoid [2]. This way, the robot
can follow desired trajectories while avoiding instabilities, and
maximise its force application potential.

A CTR is a continuum robot with a backbone comprised
of precurved elastic tubes. The shape of the backbone can be
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controlled via translation and rotation of the tubes with respect
to each other. The mechanics-based model proposed in [3], [4]
can be used to model the shape of the CTR as a function of
robot’s control inputs, i.e. tube rotations and translations, and
external loading [5], [6].

Dexterity of the CTRs can be enhanced by employing tubes
with higher precurvatures. Increasing tube precurvatures, how-
ever, increases the possibility of robot “snapping”. “Snapping”
is a mechanical instability caused by the rapid release of
the elastic potential energy that is accumulated due to the
bending and twisting of the tubes. Snapping, the unexpected
swift change in the CTR’s configuration, complicates smooth
performance of tasks and can harm sensitive tissues in the
proximity of the robot. In general, researchers have focused
on ways to create CTRs without such instabilities, i.e. snap-
free. Gilbert et al. [7] employed bifurcation theory to derive
snap-free designs for unloaded CTRs. Xu et al. [8] presented
an analytic stability condition for a CTR with several tubes
with constant precurvatures. Till and Rucker improved the
instability criterion to include the effects of dynamics [9]. Ha
et al. [10] proposed two criteria to achieve elastic stability
by employing optimal control theory, which were used to
derive optimal design of a CTR without snapping issues.
Others have focused on planning approaches to use unstable
CTRs in their safe workspace. Bergeles et al., [1] proposed a
methodology for operating CTRs under anatomical constraints
in their stable configuration via preoperative path planning.
Similarly, Leibrandt et al. developed software for open-loop
CTR control that avoids instabilities online [11]. The user
is haptically directed towards precomputed paths that do
not contain instabilities in real-time, but a static anatomy is
assumed. Therefore, there is no opportunity to recover from
user-enforced trajectories that lead to unstable configurations.

On-line stable and accurate trajectory-following control of
CTRs remains a challenging task also when force application
is considered. Most developed controllers assume that the
CTR is stable by design and open-loop control strategies are
used to steer the CTR [3], [12]. Closed-loop control strategies
rely on the linear approximation of robot inverse kinematics
near equilibrium [13]–[15] and try to avoid unstable paths via
offline path planning. Further, limited effort has been invested
on control that takes into account force application capabilities.
One of few examples is the work in [16], which investigated
stiffness control of surgical continuum manipulators.

In this paper, we propose a closed loop controller for
autonomous steering of a CTR with real-time reshaping of
the robot’s unified force/velocity manipulability, recently in-
troduced in [2]. We show capability for snapping avoidance

This paper appears in proceedings of 2019 IEEE/RSJ  International Conference on Intelligent Robots and Systems (IROS)
may change prior to publication.   DOI: 10.1109/IROS40897.2019.8967593



Fig. 1. Illustration of a concentric tube robot. Tubes are grasped at their
respective proximal ends. The actuation variables αi(t) and βi(t) denote
the proximal base rotation and translation of the i-th tube, respectively. Each
tube comprises a straight and a curved part. Angular displacement of tube i
at arclength s is denoted by θi(s).

and force-application increase. We consider a CTR with three
tubes and six control inputs (i.e. rotations and translations
of three tubes). The selected robot is purposefully unstable
at certain configurations within its workspace to showcase
the capabilities of the proposed approach. As is normally
considered in path following, the proposed controller uses the
model-based Jacobian of the robot to minimize the Cartesian
difference (3D without loss of generality) between the robot tip
and the desired trajectory. The CTR is redundant, i.e. has more
Degrees of Freedom (DoF) than what is required to track a
3D trajectory in Cartesian space. This enables implementation
of control actions that retain the CTR tip on the desired 3D
trajectory while allowing the orientation to change within the
redundant workspace guided by secondary control tasks that
aim to enhance robot manipulability.

II. REVIEW OF CTR MODEL

We start with a brief summary of the CTR model first
presented in [3], [4]. The following notation is used throughout
the paper: x, x , and x denote a scalar, a vector, and a
matrix, respectively. The prime, and dot, denote derivatives
with respect to spatial coordinate s, and time t, respectively.

The CTR tubes are modelled as a deformable curve and a
frame attached to every point along the curve’s arc-length, with
the z-axis of the frame tangent to the curve. The configuration
of the robot can be defined using a set of 3D centroids along
its arclength s, r(s) : [0, `]→ R3, and a family of orthogonal
transformations, R(s) : [0, `] → SO(3) representing orien-
tation change and twisting along s. Following the approach
introduced in [3], [4], we can derive the constitutive equation
for calculating the instantaneous curvature of the tubes and the
overall robot shape. First, the robot is separated into transition
points at which the continuity of shape and internal moment
must be enforced (red dashed lines in Fig. 1). Each segment
contains up N tubes, where N is the total number of tubes

in the CTR. Next, we consider that the final deformed curve
of all tubes at a given time t must be equal to the curve of
the innermost tube r i(s) = r1(s, t), as this is the one with
the maximum extension (following the guidelines introduced
in [3]). We use θi(s) to parametrize the tubes’ twist around
z axis, i.e., Ri(s) = R1(s)Rzi

θi(s), where Rzi denotes a
rotation around the z axis of the i-th tube. Finally, based
on these assumptions, in the absence of external torques, the
curvature of tubes can be calculated as follows

r1′ = R1e3, (1a)

R1′ = R1û1, (1b)

ui
n
′
= −

( N∑
i=1

Ki
)−1

N∑
i=1

Rθi

[
Ki
(

u i′ − U i′
)
+

ûiKi(u i − U i)]− ( N∑
i=1

Ki
)−1[

e3×R1T
∫ s

0

f (ε, t)dε
]∣∣∣∣∣

n=1,2
(1c)

ui
3
′
=
EiIi

GiJ i
(ui

1U
i
2 − ui

2U
i
1), (1d)

θi
′
= ui

3, (1e)

where superscript i = 1, · · · , N denotes the i-th tube, with i =
1 corresponding to the innermost tube; subscript n = 1, 2, 3
denotes the n-th element of a vector; e3 = [0, 0, 1]T is the
unit vector aligned with the z-axis of the global coordinate
frame; u is the curvature vector of the deformed backbone of
the robot; denotes the precurvature of each tube U i denotes
the precurvature of each tube in its reference configuration; θi

denotes the angle of twist about the local z-axis with respect
to global frame; Ki = diag(EiIi, EiIi, GiJ i) is the stiffness
matrix for tube i; E is the tube’s Young’s modulus; I is the
second moment of inertia; G is the shear modulus; J is the
polar moment of inertia; f is any external force applied to the
robot. Please note that we drop the (s) notation for simplicity.

The boundary conditions can be specified in terms of tube
curvature and the actuators’ values as follows

r1
∣∣
s=0

= [0 0 0]T , R1
∣∣
s=0

= Rz1
(α1−β1u1

3),

θi
∣∣
s=0

= αi − βiui3, u i
∣∣
s=`i+βi = U i,

(2)

where the notation (
∣∣
s=ξ

) indicates the value of a variable at
arclength of ξ, and `i is the length of the i-th tube. Solving
(1) and (2) gives the robot backbone curvature and shape.

III. CONTROL ARCHITECTURE

We design a controller to track a time-varying desired
trajectory, x d(t). Without loss of generality, we assume that
the CTR is composed of three tubes and that the end-effector is
the tip of the inner most tube, denoted by x (t) = r1

∣∣
s=`1+β1 .

First, we define the Jacobian matrix, J, that maps the joint
velocities, q ∈ IR6, to the robot end-effector velocity, x ∈ IR3,
as

ẋ = Jq̇ , (3)

where J is the 3×6 Jacobian matrix and q is the actuator value
vector and consists of the rotations and translations of each



tube, i.e., αi(t) and βi(t), as shown in Fig. 1. We numerically
estimate the Jacobian as

J =
∆x

∆q
=


xT (q + ∆q1

2 e1)− xT (q − ∆q1
2 e1)

∆q1

...

xT (q + ∆qn
2 en)− xT (q − ∆qn

2 en)

∆qn


T

(4)

where e i is the ith unit vector of the canonical basis of the 6-
dimensional joint space. From various methods for estimating
the Jacobian, we select the above formulation as it gives
rise to parallelisable computations without sacrifices in the
kinematics model’s accuracy [17].

According to [18], the general inverse kinematics of the
CTR in (3) can be written as

q̇ = J†ẋ + (I− J†J)q̇0, (5)

where J† is the pseudo-inverse of Jacobian, I is the 6 × 6
identity matrix and q̇0 is a 6×1 arbitrary joint velocity vector.
The second term in (5) is the projection operator of q̇0 in the
null-space of the mapping J. Thus, q̇0 produces motions of
the CTR backbone without affecting the tip.

In this section we employ the inverse kinematics of (3) to
design a controller to steer the CTR. Assuming the desired
trajectory, x d(t), is known, desired joint variables, qd(t), to
follow that trajectory can be estimated via the first term in (5).
Solutions of joint variables estimated only using (5), however,
lead to significant errors due to modelling uncertainties and
system nonlinearities affecting the estimation of Jacobian in
(4). Considering that the error between the desired trajectory
and actual trajectory of the robot is e = x d − x , one can use
the following control law to regulate the error to zero [19]:

q̇d = J†[ẋ d + K(x d − x )], (6)

where qd is the desired actuator velocities and the proportional
gain, K, is a symmetric positive definite matrix. Substituting
(3) in (6) one obtains ė + Ke = 0, which asymptotically
stabilizes the error to zero.

Combining (6) and (5) the general inverse solution of CTR
can be obtained as

q̇ = J†[ẋ d + K(x d − x )] + (I− J†J)q̇0. (7)

Figure 2 shows the block diagram of the proposed control
strategy based on (7). In the next Section, we will employ
the robot self motion,q0, to optimize the manipulability of the
CTR with the aim of snapping avoidance.

IV. VELOCITY MANIPULABILITY AND SNAPPING
AVOIDANCE

Based on (7), one can exploit the motion of the robot in
its null space by modulating q0 to perform a secondary task
alongside the primary task of trajectory tracking. A typical
approach for null space controller is a gradient function of the
form

q̇0 = −υ∂C(q)

∂q
(8)

Concentric Tube
 Robot

Image registration 
and localization

Null space 
optimizer

Image feedback

Desired 
Trajectory +

-

++
.

.
+

+

Plant Sensor

Controller

Fig. 2. Block diagram of the control loop.

where υ > 0 and C(q) is a scalar cost function that we would
like to minimize.

We propose to optimize a cost function based on the
definition of manipulability. Manipulability describes the char-
acteristics of feasible motions in the task space corresponding
to unit joint velocity vectors. However, the classic definition of
manipulability cannot be used for flexible continuum robots.
Unlike rigid-link robots, where the pose of any point on the
robot can be fully defined by link lengths and joint angles, the
pose of a continuum robot is a function of the manipulator’s
shape and elasticity.

Therefore, we use the measure of manipulability of contin-
uum robots developed in our previous work [2]. It considers
the inherent compliance of the continuum robot, and can be
used to estimate optimal direction for applying velocity and
force when the robot end-effector is under external forces.

The unified force-velocity manipulability ellipsoid is defined
as

UME = {ẋ :‖ q̇ ‖= 1 & Λ = const.}, (9)

where Λ denotes the desired stiffness at the robot end-effector.
The developed force-velocity manipulability considers robot
compliance and adheres to the force-velocity duality generally
associated with rigid-link robots, i.e. a direction along which
good velocity manipulability is obtained, is normal to the
optimal direction with good force manipulability.

Following the approach presented in [2], the unit sphere
in the joint velocity space q̇ can be mapped onto the robot
velocity in the task space via

µ = CTΛTJJTΛC, (10)

where C is the Compliance matrix defined as

C =
∆x

∆f
=


xT (f + ∆f1

2 e1)− xT (f − ∆f1
2 e1)

∆f1

...

xT (f + ∆f3
2 e3)− xT (f − ∆f3

2 e3)

∆f3


T

(11)

In derivation of (10) we assumed that external torques on the
robot are zero. Now, based on (10) the UME ellipsoid denoted
by µ can be spanned by a set of principal axes λiz i where



λi and z i are the singular values and left-singular vectors of
matrix CTΛTJ estimated via singular value decomposition.

Based on the definition of instability for CTRs from [8], the
robot may become unstable as the mapping from joint space to
robot task space (i.e. the Jacobian) becomes rank deficient and
the solution of the forward kinematics becomes non-unique
(sufficient condition). This happens when the singular values
of the Jacobian become very small.

We argue that via reshaping the manipulability ellipsoid
of the CTR toward a sphere during trajectory tracking, we
can ensure the rank efficiency of the CTR Jacobian and
uniqueness of the forward kinematics solution. This will
enable stable snap-free control of the CTR. Also, reshaping
the UME enables the CTR to avoid the limits of its workspace
where its manipulability is minimal. We can also extend
the manipulability ellipsoid perpendicular to the direction of
applied forces to enhance robot ability to apply an external
force to a fixed object.

Based on the above argument, we define the secondary task
cost function, C, as the difference between the manipulability
ellipsoid µ and a desired manipulability denoted by µd. In
(10), µ is a symmetric positive definite (SPD) function of
q . Measuring distances between two SPD matrices is often
nontrivial as the distance function must respect the non-
Euclidean geometry of SPD matrices. Here, we employ the
SPD metric introduced in [20], which respects non-Euclidean
geometry, is computationally efficient, and forms a convex
problem. The cost function can be defined as

C = log|µ+ µd
2
| − 1

2
log|µµd|. (12)

Estimating C requires only computation of determinants,
which can be done rapidly via 3 Cholesky factorizations. The
evaluation of gradient of C with respect to q is required to solve

(8). It can be estimated as
∂µ

∂q
((µ + µd)

−1 − 1
2µ
−1). Based

on (10), estimating
∂µ

∂q
requires calculating the Hessian of x

with respect to f and q . We implemented BFGS algorithm
[21] to estimate the Hessians as a function of the Compliance
and Jacobian matrices iteratively.

As mentioned previously, the desired manipulability can be
maximized along a desired direction to increase the CTR’s
force capability. Based on the force-velocity duality, if a ∈ R3

is the unit vector that indicates the direction of external
forces, we can maximize CTR force capability by minimizing
the UME in the direction of a . By using singular value
decomposition (SVD), a can be decomposed as a = UΣV T ,
where U is 3×3 unitary matrix, Σ is an 3×1 vector in which
non zero value is known as the singular value of a , and V is
a scalar. The desired UME is a circle with small thickness in
the direction of a and can then be defined as

µd = U

[
νΣ,

[
0 1×2

I2×2

]]
U−1 (13)

where I is an identity matrix, 0 1×2 is a vector of zeroes,
and 0 < ν < 1 is a scalar scaling factor that defines

the length of the minor axes of the µd. In theory, an ideal
velocity manipulability µd is a circle (i.e. ν = 0) with zero
length in the direction of a , corresponding to maximum force
manipulability capability in that direction. However, such a
UME is rank deficient and causes the CTR to move toward
a singular configuration and snap. Therefore, the parameter
ν needs to be small but non-zero to avoid singularity in any
direction.

The joint limits also have a major impact on the robot end-
effector workspace. To consider their effect, we use the con-
strained Jacobian Jc [22] that is formed by actively penalizing
the columns of the matrices individually using

Jci = P ci Ji, (14)

where Ji is the ith column of the robot Jacobian, and P ci is
the joint-wise penalization function given by

P ci =
1− exp(−4kc(qi−qi,min)(qi,max−qi)

(qi,max−qi,min)2 )

1− exp(−kc)
(15)

where the coefficient “4” and the denominator “1−exp(−kc)”
in (15) is needed to normalize the penalization term such that
P ci spans the interval [0, 1]. Using this penalty function, the
individual columns of J and C are penalized when the ith
joint value qi approaches the limits qi,min or qi,max. Now,
by substituting the constrained Jacobian Jc in (10) we can
consider the robot’s mechanical constraints and ensure that
the base of the tubes will not collide with each other or pass
the entry point.

In the next section, a simulation study is performed to eval-
uate the performance of the proposed manipulability reshaping
approach.

V. SIMULATION STUDY

Results of a simulation study using the proposed controller
are presented. The initial position of robot tubes, βi, are
−0.2858, −0.2025, and −0.0945 mm. The initial angle of
all tubes, θi, are π/2. The controller parameters used were
K = 5I, and υ = 0.05; λ, in (16) was selected as 0.5.
These values were selected following simulations to achieve
the minimum tracking error. The controllers are tested on a
perturbed CTR model with ±10% uncertainty in the values
of the tubes’ Young and shear moduli with respect to the
nominal ones. The CTR design parameters are shown in
Table I. For consistency, these parameters are identical to
those used in our experimental setup in Sec. VI. The selected
robot is purposefully unstable within its workspace to test the
performance of the controller in avoiding snapping.

The performance of the proposed controller is compared to
two other controllers:

1) A controller given by (6) that uses Jacobian without null-
space optimizer.

2) A controller using damped least-squares inverse kine-
matics.
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Fig. 3. Simulation results for CTR steering on a circular trajectory in
3 scenarios. (a) A comparison between the desired trajectory and actual
trajectory. (b) A comparison of the isotropy index.

The damped least-squares is an effective strategy that allows
Jacobian-based control of robots in the neighborhood of kine-
matic singularities [23]. In this case, the pseudo-inverse of the
robot Jacobian in (6) can be replaced by

(JTJ + λ2I)−1JT (16)

where λ is the damping factor and improves inverse kinematic
when Jacobian is ill-conditioned and close to a singularity.

In the simulation study, a circular trajectory near the limits
of the robot workspace was selected. The simulation results
are shown in Fig. 3.

It can be seen from Fig. 3 that the Jacobian-based controller
and damped least-squares controller are unable to track the
desired trajectory and eventually snap, while Fig. 4 shows
that joint constraints are also violated (the 3rd and 2nd tubes
collide). The controller using manipulability reshaping is able
to follow the desired trajectory while avoiding snapping and
satisfying joint constraints. Figure 3(b) shows a comparison
of isotropy index defined as ε = σmin(J)

σmax(J) between the three
controllers, where σmax and σmin are maximal and minimal
singular values of J. Small values of ε indicate that the
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Fig. 4. Comparison between (a) position of the base of robot’s tubes, and (b)
rotation of the tubes for 3 simulated scenarios.

Jacobian is ill-conditioned. As can be seen, the proposed
controller is able to increase the isotropy index to steer away
from singularities.

In the next section, experiments are performed to assess the
practical performance of the proposed controller.

VI. EXPERIMENTS AND DISCUSSION

The setup used in the experiments is shown in Fig. 5. In
order to measure the CTRs tip location we used two calibrated
Logitech HD Pro C930e Webcams set up orthogonally to
capture the position of the tip of the CTR. The cameras were
running at 1080p resolution and 30 frames per second. The
camera capture and analysis used ROS [24] and OpenCV [25].
Each camera used two threads, one for video capture and one
for video analysis. A 4-core PC was used to allow each major
thread its own core. A spherical coloured marker was placed
at the tip of the CTR and the cameras filtered out its colour by
thresholding in the Hue/Saturation/Value (HSV) colour space.
The centroid of the largest contiguous blob was then found,
giving a vector from each camera’s origin to the marker.

Each camera had an asymmetric circular calibration grid
within the field of view, which gave the pose of the camera
relative to the grid. An average of 30 poses was taken on
startup, after which point the grid was no longer monitored to
allow the fastest possible processing of the marker. A manual
backbone segmentation mode was also used for establishing
the base and shape of the CTR relative to the calibration grid.



(a) (b)

Fig. 5. (a) Experimental setup used to validate the controller. The CTR is
composed of three precurved Nitinol tubes. Two calibrated cameras are used
to measure the position of the CTR. (b) Several springs with the stiffness of
0.154 N/mm are connected to the robot tip to apply external forces to the
robot in various directions.

TABLE I
PHYSICAL PARAMETERS FOR CTR’S TUBES.

Tube 1 Tube 2 Tube 3

Inner Radius [mm] 0.35 0.7 1

Outer Radius [mm] 0.55 0.9 1.2

Straight Length [mm] 431 330 174

Curved Length [mm] 103 113 134

Curvature [m−1] 21.3 13.1 3.5

Young’s Modulus, E [GPa] 10.25 68.6 16.96

Shear Modulus, G [GPa] 18 .79 11.53 14.25

This was done by clicking on backbone points in each image,
and then using triangulation to extract the 3D point cloud.

For the real-time tip tracking, two-view triangulation was
calculated by a dedicated thread and re-evaluated for each new
frame from either camera, since the camera shutters were not
synchronized.

A set of experiments was performed to calibrate the CTR
model parameters, namely, Young’s and shear moduli of the
tubes. The parameters are identified by fitting the kinematic
model given in (1) to the shape of the robot estimated via
the cameras at 25 different configurations. The identified
parameters of the model are given in Table I; recall that this
robot is also used in our simulations for consistency. The
maximum error of the model in predicting the CTR tip position
was 1.74 cm, while the mean error per length of the robot was
9%, in accordance with modelling errors per arclength reported
in the literature [4].

The identified mechanics model was implemented in the
controller discussed in Sec. III and Sec. IV to steer the CTR.
An Intel Core i7 (2.93 GHz) machine was used to solve the
optimal problem at sampling time of 50 ms. Using simulations,
parameters of the controller were identified as K = 5I and
υ = 0.05. The active limits on the control inputs that were
used to penalize the Jacobian are

qmin = [−βmin − ε, β1 + ε, β2 + ε]T ,

qmax = [β2 − ε, β3 − ε, 0]T ,
(17)
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Fig. 6. Representative experimental results for CTR tip position in response
to a step input.
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Fig. 7. Experimental results for trajectory tracking. Desired and actual
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where βmin = 300 mm is the maximum possible distance of
the first tube (i.e, inner most tube) from the entry point and
ε = 10 mm is the desired offset between the proximal end of
the tubes. Constraints in (17) ensure the bases of the tubes
will not collide with each other or pass the entry point.

In the first experiment, the CTR was commanded to reach
a given point in 3D space. We evaluated the response of
the control system to 3D step inputs in the range of 10 to
25 mm. Representative results for step response experiments
are shown in Fig. 6. The mean error, defined as the Cartesian
difference between the desired and actual position of CTR end-
effector, for 10 trials was 0.28 mm, corresponding to 0.18%
of arclength.

In the next experiment, we evaluated the performance of
the controller in tracking various trajectories including linear,
sinusoidal, and helical ones. 10 trajectories were selected for
each scenario. Representative results are shown in Fig. 7. The
root mean squared error of the tracking scenario was 850µm.
The root-mean-squared error is calculated as RMSEx =√∑n

i=1(‖x d‖i − ‖x‖i)2

n
, and is used as a measure of the

differences between the desired trajectory, x d, and the actual
trajectory that was experimentally observed, i.e. x , for n
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Fig. 8. Experimental results for CTR steering on a 3D line in 3 scenarios. (a) A comparison between the desired trajectory and actual trajectory for Jacobian-
based control, controller with manipulability reshaping, and controller with least damped-squares inverse kinematics. (b) A comparison of the position of base
of robot’s tubes. (c) A comparison of the angular position of base of robot’s tubes.
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Fig. 9. Representative experimental results with external force applied to the CTR end-effector. Results are presented for controllers with and without
manipulability reshaping. Black line denotes the desired trajectory. Direction of external force applied by the springs along the desired trajectory is shown
with red dashed line.

sampling times. The maximum tracking error was 5.6 mm
throughout all experiments, and occurred when tracking a
helical trajectory.

In the next experiment, we evaluated the performance of
the controller in avoiding snapping. The CTR was steered on
a 3D trajectory near its joints’ limits. Results are shown in
Fig. 8. It can be seen that the controller without snapping
avoidance indeed becomes unstable. The damped least-squares
controller is able to track the desired trajectory but as shown
in Fig. 8(b) the joint constraints defined in (17) are violated
(the 3rd tubes reaches the entry point). However, the pro-
posed control system with snapping avoidance can avoid CTR
snapping by constantly reshaping the robot manipulability via
modulating control inputs in robot null space. The isotropy
index recorded for manipulability reshaping, Jacobian-based,
and damped least-squares controllers were 0.0401, 0.0101, and
0.007, respectively.

In the last experiment, the performance of the controller
in following trajectories under external forces was evaluated.

Several springs with stiffness of 0.154 N/mm were connected
to the robot tip to apply external forces along various direc-
tions (see Fig. 5). The controller parameters for force tracking,
ν in (13) and Λ, in (9) were 0.15 and 0.0015I. Results
presented in Fig. 9 show that the proposed controller can
apply more force than the simple Jacobian-based controller
without manipulability reshaping. Based on 10 experimental
trials performed, the proposed controller improves robot force
capability by 55% compared to the Jacobian-based controller.

VII. CONCLUDING REMARKS

In this paper, we proposed a closed-loop controller for
autonomous steering of CTRs on desired trajectories. The
proposed controller is capable of stable steering of CTR
end-effector via real-time reshaping of the manipulability of
the robot. Experimental results demonstrate the accuracy and
performance of the controller in following desired trajectories
and avoiding CTR snapping. The mean error of the proposed
controller in trajectory tracking was 0.85 mm.



In future work, we will improve the accuracy of the pro-
posed controller by enhancing the computational efficiency of
the controller, which we believe can be achieved by parallel
computation of the manipulability-based cost function without
sacrifices in the controller accuracy.
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