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Abstract

Reconstructing pathogen dynamics from genetic data as they become available during an outbreak or

epidemic represents an important statistical scenario in which observations arrive sequentially in time

and one is interested in performing inference in an ‘online’ fashion. Widely-used Bayesian phylogenetic

inference packages are not set up for this purpose, generally requiring one to recompute trees and

evolutionary model parameters de novo when new data arrive. To accommodate increasing data flow

in a Bayesian phylogenetic framework, we introduce a methodology to efficiently update the posterior

distribution with newly available genetic data. Our procedure is implemented in the BEAST 1.10

software package, and relies on a distance-based measure to insert new taxa into the current estimate

of the phylogeny and imputes plausible values for new model parameters to accommodate growing

dimensionality. This augmentation creates informed starting values and re-uses optimally tuned transition

kernels for posterior exploration of growing data sets, reducing the time necessary to converge to target

posterior distributions. We apply our framework to data from the recent West African Ebola virus

epidemic and demonstrate a considerable reduction in time required to obtain posterior estimates at

different time points of the outbreak. Beyond epidemic monitoring, this framework easily finds other

applications within the phylogenetics community, where changes in the data – in terms of alignment

changes, sequence addition or removal – present common scenarios that can benefit from online inference.

Key words: BEAST, Markov chain Monte Carlo, real-time analysis, Bayesian phylogenetics, pathogen

phylodynamics, online inference

Introduction

Changes in data during ongoing research

commonly occur in many fields of research,

including phylogenetics. These typically include

the addition of new sequences as they become

available – for example, during a large sequencing

study or through data sharing – and updates

of alignments of existing sequences, possibly

as a result of correcting sequencing errors.

Such changes usually lead to the discarding

of results obtained prior to the revision of the

data, and recommencing statistical analyses

completely from scratch (de novo). Bayesian

phylogenetic inference of large data sets can be

very time consuming, sometimes requiring weeks
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of computing time, even when using state-of-the-

art hardware. A promising avenue to mitigate

this problem is an online phylogenetic inference

framework that can accommodate data changes

in existing analyses and leverage intermediate

results to shorten the run times of updated

inferences.

Existing methods to update phylogenetic

estimates in an online fashion are limited, but

the initial concept dates back to seminal work

by Felsenstein (1981), who proposed sequential

addition of species to a topology as an effective

search strategy in tree space. The stepwise

addition approach inserts a new taxon on the

branch of the tree that yields the highest

likelihood (Felsenstein, 1993), and was among

the first heuristics to search for a maximum

likelihood tree topology. This concept has also

been incorporated into the design of various

tree transition kernels and estimation heuristics.

For example, in searching for the optimal tree

topology in a maximum-likelihood framework,

Whelan (2007) proposed to first pluck a number of

sequences from an existing tree and subsequently

place each sequence onto the tree where it yields

the highest likelihood value.

Initial developments to update phylogenies

with new sequence data focused on methods for

phylogenetic placement, where unknown query

sequences – typically short reads obtained from

next-generation sequencing – are placed onto

a fixed tree pre-computed from a reference

alignment. Employing a likelihood-based

approach, Matsen et al. (2010) proposed a two-

stage search algorithm to accelerate placements

for query sequences, where a quick first evaluation

of the tree is followed by a more detailed search

in high-scoring parts of the tree. An increasing

body of work mainly targets such taxonomic

identification methods, with recent developments

confronting the increasing scalability issues

associated with the high dimensions of modern

data sets (Barbera et al., 2019; Czech et al.,

2018).

Izquierdo-Carrasco et al. (2014) implemented

an online framework to estimate phylogenetic

trees using maximum-likelihood heuristics, which

automatically extends an existing alignment when

sufficiently new data have been generated and

subsequently reconstructs extended phylogenetic

trees by using previously inferred smaller trees

as starting topologies. The authors compared

their methodology to de novo phylogenetic

reconstruction and found a slight but consistent

improvement in computational performance and

a similar topological accuracy.

Recent foundational work towards online

Bayesian phylogenetic inference focuses on

sequential Monte Carlo (SMC) methods to

update the posterior distribution (Dinh et al.,

2018; Everitt et al., 2018; Fourment et al.,

2018). These methods approximate a posterior

distribution using a set of particles that exist

simultaneously, which are updated when new

data arrive and are then resampled with weights

determined by the unnormalized posterior density

(Doucet et al., 2001). While SMC methods are

not new to Bayesian phylogenetics, they have

primarily been explored to increase computational

efficiency in standard inference, for example, to

infer rooted, ultrametric (Bouchard-Côté et al.,

2012) and non-ultrametric phylogenetic trees

(Wang et al., 2015, 2019). Within an SMC

framework, Everitt et al. (2018) introduced the

use of deterministic transformations to move

particles effectively between target distributions

with different dimensions and applied this

methodology to infer an ultrametric phylogeny
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of a bacterial population from DNA sequence

data. A similar methodology was developed

independently and almost simultaneously by

Dinh et al. (2018), who also describe important

theoretical results on the consistency and

stability of SMC for online Bayesian phylogenetic

inference. Building upon the work of Dinh et al.

(2018), Fourment et al. (2018) showed that

the total time to compute a series of unrooted

phylogenetic trees as new sequence data arrive

can be reduced significantly by proposing new

phylogenies through guided proposals that

attempt to match the proposal density to the

posterior. All of these SMC approaches focus

on the tree inference problem rather than the

estimation of broader phylogenetic models

where the goal is to marginalize these over

plausible trees. They have also not yet led to

implementations in widely-used software packages

for Bayesian phylogenetic inference.

The need for online phylogenetic inference

is especially pressing in the growing field of

phylodynamics (see e.g. Baele et al. (2018, 2016)

for an overview). Phylodynamic inference has

emerged as an invaluable tool to understand

outbreaks and epidemics (Dudas et al., 2017;

Faria et al., 2014; Metsky et al., 2017; Nelson

et al., 2015; Pybus et al., 2012; Worobey

et al., 2014), and has the potential to inform

effective control and intervention strategies (Al-

Qahtani et al., 2017; Dellicour et al., 2018).

Importantly, phylodynamic analyses of pathogen

genome sequences sampled over time reveal events

and processes that shape epidemic dynamics

that are unobserved and not obtainable through

any other methods. The Bayesian Evolutionary

Analysis by Sampling Trees (BEAST) version

1 software package (Suchard et al., 2018) has

become a primary tool for Bayesian phylodynamic

inference from genetic sequence data, offering

a wide range of coalescent, trait evolution and

molecular clock models to study the evolution

and spread of pathogens, as well as potential

predictors for these processes.

Recent advances in portable sequencing

technology have led to a reduction in sequencing

time and costs, enabling in-field sequencing and

real-time genomic surveillance as an outbreak

unfolds. This was demonstrated during the recent

Ebola epidemic in West Africa (Arias et al., 2016;

Quick et al., 2016), as well as the recent Zika

outbreak in the Americas (Faria et al., 2017).

Notably, Quick et al. (2016) were routinely able

to sequence Ebola-positive samples within days

of collection, and in some cases were able to

obtain results within 24 hours. Such a continuous

stream of new sequence data creates the potential

for phylodynamic inference to take up a more

prominent role in the public health response by

providing up-to-date, actionable epidemiological

and evolutionary insights during the course of an

ongoing outbreak. Bayesian modeling naturally

accommodates uncertainty in the phylogeny and

evolutionary model parameters, and therefore

offers a coherent inference framework for relatively

short outbreak timescales for which the phylogeny

may not be well-resolved.

However, the potential of phylodynamic

methods in real-time epidemic response can only

be fully realized if accurate up-to-date inferences

are delivered in a timely manner. Fast maximum

likelihood-based methods, such as those adopted

by Nextstrain (Hadfield et al., 2018), can provide

rapid updates by relying on a pipeline of fast,

but less rigorous heuristic methods (Sagulenko

et al., 2018). Bayesian phylodynamic models rely

on MCMC estimation procedures that can have

very long run times, often requiring days or weeks

3
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to infer the posterior distribution for complex

models. Having to restart these time-consuming

procedures when new data become available thus

represents a significant impediment to providing

regular, updated phylodynamic inferences.

Here we explore an approach that is

conceptually simpler than SMC and consists

of interrupting an ongoing MCMC analysis upon

the arrival of new sequence data and after the

current analysis has converged, placing the new

sequences at plausible locations in the current tree

estimate, and then resuming the analysis with the

expanded data set. We apply this methodology

to data from several time periods throughout the

West African Ebola virus epidemic of 2013-2016

and show that resuming an interrupted analysis

after inserting new sequences into the current tree

estimate, as opposed to restarting from scratch,

reduces the time necessary to converge to the

posterior distribution. Specifically, our approach

virtually eliminates the MCMC burn-in when

computing updated inferences that incorporate

new data sequenced during a subsequent

epidemiological week (epi week, labeled 1 to 52).

This improved efficiency will allow the analysis

and interpretation to more closely maintain a

real-time relationship to the accumulation of

data.

New Approaches

We present an online phylogenetic inference

framework, implemented in the BEAST 1.10

software package, that allows incorporating new

data into an ongoing analysis. Notably, this

methodology efficiently updates the posterior

distribution upon the arrival of new data by using

previous inferences to minimize the burn-in time

(the time necessary for the MCMC algorithm to

converge to the posterior distribution) for analysis

of the expanded data set that includes the new

data (along with the previously available data).

Additionally, our implementation includes a new

feature for BEAST 1.10 that enables resuming an

MCMC analysis from the iteration at which it

was terminated (similar to the “stoppb” feature

in the Bayesian phylogenetics package PhyloBayes

(Lartillot et al., 2009) ).

When new sequence data become available and

the current BEAST analysis has converged to

the target distribution, the BEAST analysis is

interrupted and a draw (featuring estimates of

all model parameters) is taken from its posterior

sample. We insert the new sequences into the

phylogenetic tree estimate obtained from the

draw in a stepwise fashion, where the location

of each insertion is determined by computing the

genetic distance between the new sequence and

the taxa in the tree. Next, we impute plausible

values for new model parameters that are

necessitated by the increased dimensionality of the

enlarged phylogenetic tree, such as branch-specific

evolutionary rates. Parameter values for models

unaffected by the increased data dimensionality

are left unchanged. The BEAST analysis is then

resumed with the simulation of an MCMC sample

with starting parameter values that have been

constructed from the aforementioned imputation

and sequence insertion algorithm. Further, the

resumed analysis employs a stored set of MCMC

transition kernels that have been optimized for

efficient sampling using BEAST’s auto-tuning

functionality.

To determine the performance of this

framework, we carefully assess the reduction in

time required to converge to the target posterior

distribution by using both visual analyses of

MCMC trace plots as well as a scripted sliding

window approach to determine burn-in. The

various steps of this approach are described

in more detail in Materials and Methods. We
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provide BEAST XML input files for the analyses

performed throughout this paper as well as a

tutorial on setting up these analyses at http:

//beast.community/online_inference.html.

The tutorial also describes how to set up an

MCMC analysis so that it can be resumed from

the iteration at which it was terminated. This

new feature in BEAST 1.10 will be useful in

general (beyond an online inference setting), for

example, in the case of a computer crash, or if

an MCMC analysis needs to be run for longer to

generate sufficient samples.

Results

We evaluate the performance of our BEAST 1.10

online inference framework by analyzing complete

genome data from the West African Ebola virus

epidemic of 2013-2016. The data comprise 1610

whole genome sequences collected throughout the

epidemic, from 17 March 2014 to 24 October 2015

(Dudas et al., 2017). Each sequence is associated

with a particular epi week during which the

sample was obtained, allowing us to recreate a

detailed data flow of the actual epidemic. For

the purpose of our performance comparisons,

we assume that the genome data were made

available immediately after the time of sampling,

allowing us to assess potential efficiency gains

in a scenario where a Bayesian phylodynamic

reconstruction would be attempted once per epi

week, incorporating the newly obtained genome

data into the inference up to the previous epi

week.

Although our previous study on these data

was performed towards the end of the epidemic

(Dudas et al., 2017), during this work we were

still confronted with new genome sequences

becoming available, requiring us to frequently

restart our MCMC analyses de novo. Considering

the size of the data set, this required tremendous

computational effort to obtain updated results.

Here, we evaluate our online procedure by

computing updated inferences corresponding to

increases in data during consecutive epi weeks

at different time points during the epidemic. For

each time point we consider two consecutive epi

weeks, which we shall refer to as the first and

second epi weeks in this context. We analyze the

cumulative data available by the end of the second

epi week using two methods: our proposed online

inference framework which augments a previous

analysis with newly obtained data (see Materials

and Methods), and a de novo analysis using

a randomly generated starting tree and default

starting values for the model parameters following

a typical Bayesian phylogenetic analysis. We use a

slightly different phylodynamic model setup than

in our previous study (Dudas et al., 2017), i.e. an

exponential growth coalescent model as the prior

density on trees (Griffiths and Tavaré, 1994), and

an HKY+Γ4 substitution model (Hasegawa et al.,

1985; Yang, 1996) for each of the four nucleotide

partitions (the three codon positions and the non-

coding intergenic regions) with different relative

rates across the partitions. Evolutionary rates

were allowed to vary across branches according

to an uncorrelated relaxed molecular clock

model with an underlying log-normal distribution

(Drummond et al., 2006). The overall evolutionary

rate was given an uninformative continuous-time

Markov chain (CTMC) reference prior (Ferreira

and Suchard, 2008), while the rate multipliers

for each partition were given a joint Dirichlet

prior. The BEAST 1.10 XML files used in

our analyses are available at http://beast.

community/online_inference.html.

We consider five different pairs of consecutive

epi weeks from the 2013-2016 Ebola epidemic:

epi weeks 25 and 26 of 2014, epi weeks 30 and

5
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31 of 2014, epi weeks 41 and 42 of 2014, epi

weeks 1 and 2 of 2015, and the final epi weeks

41 and 42 of 2015. These sets of epi weeks

constitute a relatively broad range of possible

sequence addition scenarios, as they occurred

during the actual epidemic. We provide details

on the number of sequences for these scenarios

in Table 1 and Figure 1. As a Markov chain

constitutes a stochastic process, for each time

point we perform five independent replicates of a

standard de novo analysis of the data available

by the end of first epi week, five independent

replicates of a standard de novo analysis of the

data available by the end of the second epi

week, and five independent replicates of an online

analysis of the data available by the end of the

second epi week. Note that each online analysis

proceeds by updating inferences from one of the

de novo analyses of the data available by the end

of the first epi week. We examine split frequencies

for tree samples from independent replicates to

compare replicates and ensure convergence to the

same posterior distribution (see Supplementary

Material). In particular, in all analyses we observe

an average standard deviation of split frequencies

that meets the guideline of being less than 0.01

(see Materials and Methods). The replicates are

independent in that the MCMC simulations start

from different trees. In particular, standard de

novo analyses use randomly-generated starting

trees, and online analyses feature starting trees

that differ because they are constructed by

augmenting different tree estimates from different

de novo analyses of the data available by the end

of the first epi week. For each time period, we

determine a random order for the new sequences

and insert them into the tree estimate in the same

order for each of the five replicates.

For each pair of consecutive epi weeks, we

compare the burn-in for the sample of the log joint

density (which is proportional to the posterior

density) resulting from online and standard de

novo analyses. Figure 1 and Table 1 show the

results, averaged over five replicates. The different

methods of determining the burn-in (see Materials

and Methods) yield very similar estimates. We

assess the sensitivity of sequence insertion order

by performing five additional replicates each for

epi weeks 41 and 42 of 2014 and epi weeks 1 and

2 of 2015. Each of the additional replicates for a

given time period augments the same inferences

through a different, random sequence insertion

order. We find that the estimated burn-in for

each additional replicate is in line with the burn-

in estimate for the corresponding time period in

Table 1, lying within two standard deviations of

the mean.

The results show that our online inference

framework can reduce burn-in by a significant

amount (p-values are less than 0.01 for t-tests

comparing burn-in from online and standard

analyses for the latter three epi weeks). While

the burn-in for epi weeks 26 and 31 of 2014 is

negligible in both online and standard analyses,

the standard approach requires substantial burn-

in in the latter three cases. By reducing the

average burn-in to one million iterations or less

for each of these three epi weeks, the online

approach virtually eliminates the burn-in in these

analyses. The results for epi week 42 of 2015 data

are particularly remarkable (see Figures S1, S2

and S3 for a comparison of posterior trace plots

from five replicates of all test cases), showing

average reductions of burn-in by 50 to 60 million

iterations.

To put these efficiency gains into perspective, it

is useful to translate the reduction of burn-in into
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actual saved computing time using a multi-core

CPU (in our case, a 14-core 2.20 GHz Intel Xeon

Gold 5120 CPU) as well as using a state-of-the-

art hardware setup enhanced by a GPU (e.g., a

Tesla P100 graphics card intended for scientific

computing). We use BEAGLE 2.1.2 (Ayres

et al., 2012) to enable such GPU computation

within BEAST. Figure 2 depicts the savings

in computation time by using online inference

as compared to standard de novo analyses to

update inferences for data from different time

points in the West African Ebola virus epidemic.

Dunn tests (Dunn, 1961) indicate that the savings

under online inference for each time point are

significant (p<0.01). We note that running time

depends on burn-in length as well as data set

size, with larger data sets requiring more time

per iteration. Our online inference approach

leads to higher computation time savings as the

complexity of the data increases, with up to 600

hours being saved on average on a modern multi-

core processor. State-of-the-art graphics cards

targeting the scientific computing market are able

to reduce this number to 120 hours on average

of savings, but such cards may not be readily

available, especially in resource-limited settings.

Discussion

We present a framework for online Bayesian

phylodynamic inference that accommodates a

continuous data flow, as exemplified by an

epidemic scenario where continued sampling

efforts yield a series of genome sequences over

time. This framework has been implemented

in BEAST 1.10, a popular software package

for Bayesian phylogenetic and phylodynamic

inference. Through empirical examples taken from

the 2013-2016 West African Ebola epidemic, we

show that our online approach can significantly

reduce burn-in and, consequently, the time

necessary to generate sufficient samples from

the posterior distribution of a phylodynamic

model being applied to a growing data set.

The savings in computation time can amount

to days or even weeks, depending on the

computational infrastructure, the complexity of

the data and hence also the accompanying

phylodynamic model.

The improvements in computational efficiency

through minimizing burn-in that we observe are

encouraging, but there is a need to continue

improving efficiency in multiple directions.

First, alternative sequence insertion and branch

rate imputation procedures may yield better

performance in certain situations. Desper and

Gascuel (2002), for instance, employ a minimum

evolution criterion for stepwise addition of taxa.

As another example, an insertion procedure that

allows new sequences to have insertion times

that are deeper than the root of the current

tree estimate may be more suitable in the case

that new sequences are distantly related to the

sequences that already exist in the tree. Under

the current implementation, MCMC transition

kernels enable the insertion point of a new

sequence to eventually be repositioned deeper

than the root of the starting tree. However,

allowing a sequence to be directly inserted deeper

than the root may save computational time.

Second, even if burn-in is minimized, generating

sufficient samples from the Markov chain after

it has converged to the posterior distribution

can still be very time-consuming. A popular

approach to generate samples more quickly is

to run multiple independent chains, starting

from different random locations in search space,

in parallel and combine the posterior samples.

However, the time saved through such a strategy

depends on the burn-in phase, which must
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elapse for each chain before its samples can be

used. From this perspective, the advances of

our online framework are especially important.

Another strategy for more efficient sampling is

to evaluate past MCMC performance during

pauses to incorporate new data and make

informed adjustments prior to resuming the

analysis. For instance, transition kernel weights

can be modified to focus on parameters with

low ESS values. Progress can also be made

through advances in MCMC sampling that

enable more efficient exploration of posterior

distributions. Innovative sampling techniques that

have already shown promise in the context of

phylogenetics and are ripe for further development

include adaptive MCMC (Baele et al., 2017)

and Hamiltonian Monte Carlo (Ji et al., 2019;

Lan et al., 2015; Neal, 2010). Finally, the

computational performance will undoubtedly

benefit from continued development of high-

performance libraries for phylogenetic likelihood

calculation (Ayres et al., 2019).

The implementation we present here differs

from other recent work on online Bayesian

phylogenetic inference, which relies on SMC to

update phylogenies (Dinh et al., 2018; Everitt

et al., 2018; Fourment et al., 2018). While

SMC represents a principled approach to infer

a distribution of growing dimensions, the SMC-

based methods for online Bayesian phylogenetics

are limited to inferring phylogenetic trees. It

would be beneficial to integrate SMC algorithms

for updating phylogenies with MCMC methods

to sample other evolutionary model parameters,

and ultimately to implement a complementary

online inference framework in BEAST. Such an

implementation would enable direct comparison

of the current online framework with SMC-based

approaches, allowing researchers to assess the

benefits and drawbacks of each approach and

helping to streamline future development of online

Bayesian phylogenetic inference.

Our development has been primarily motivated

by epidemic scenarios that entail a continuous

stream of new sequence data becoming available

during the course of an outbreak. In our empirical

assessment of the West African Ebola virus

epidemic, we have assumed that the genome

data were made available close to the time of

sampling, which represents the ideal scenario in an

outbreak response. In reality, during the epidemic,

there was considerable variation in how rapidly

virus genome data were available for analysis.

There were many reasons for this, but even when

genomes were being shared as rapidly as possible,

the batch shipping of samples to high-throughput

sequencing centers resulted in a minimum delay of

many weeks (Gire et al., 2014; Park et al., 2015).

This changed towards the end of the epidemic

as new, portable, sequencing instruments were

installed in Ebola treatment centers in Guinea

and Sierra Leone (Arias et al., 2016; Quick

et al., 2016), producing virus genome sequences

from patients within days or hours of a sample

being taken. We expect that the use of such

instruments at the point of diagnosis will increase

and the resulting stream of sequence data will

mean that the computational analysis will become

the bottleneck in using the data to inform the

response. From this perspective, the reduction

in time necessary to compute updated inferences

on data from the Ebola virus epidemic through

our online inference framework is promising, and

continued efforts to further improve efficiency are

crucial.

Beyond computational efficiency, additional

development is needed in order to maximize

the potential impact of our framework
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as a support tool during outbreaks. The

current implementation must be extended to

accommodate more sophisticated phylodynamic

models, especially methods that integrate

sequence data with other epidemiological data

to elucidate different phylodynamic processes

(Gill et al., 2016, 2013; Lemey et al., 2014, 2009).

For many of these models – for example, a

phylogeographic model for which a sequence

from a previously unsampled location is being

added – the addition of novel sequence data will

increase their dimensionality, and methods that

augment the models in an intelligent manner

are essential. Adding sequence data may also

require increasingly complex models to accurately

describe the underlying evolutionary processes

as the data set grows (e.g. transitioning from a

strict to a relaxed clock model), a process that

should ideally not require user interactions. This

could potentially be addressed by developing

nonparametric Bayesian models for evolutionary

heterogeneity that can dynamically accommodate

increasing model complexity. Finally, we have

focused on evaluating the performance of

updating phylogenetic inferences conditional

on pre-aligned sequence data. However, a

comprehensive system for real-time evolutionary

analysis will need to include an alignment step

when new sequence data become available.

Finally, while real-time monitoring of infectious

disease outbreaks has motivated much of our

development, we anticipate that our online

inference framework will be more broadly useful,

allowing researchers to save precious time in

any context in which new data become available

that extend a previously analyzed data set.

Many large-scale sequencing efforts in a wide

range of research fields generate a steady flow

of genomic data sequences, which often involve

a phylogenetic component, and as such online

Bayesian phylogenetic inference will prove useful

beyond the field of pathogen phylodynamics.

Materials and Methods
Online Bayesian phylogenetic inference

Our strategy to increase efficiency through an

online inference framework in BEAST 1.10 builds

on using estimates from a previous MCMC

analysis in order to minimize time to convergence

to the new posterior distribution. In MCMC

simulation, this burn-in period corresponds

to a transient phase of the Markov chain

during which the simulated values reflect the

influence of the starting values of the chain

and are from low-probability regions of the

target posterior distribution (Brooks and Roberts,

1998). The burn-in period ends once the chain

achieves stationary behavior and has converged

to the posterior distribution. Including simulated

values from the burn-in phase of the chain in

approximations of the posterior distribution can

lead to substantial bias and it has therefore

become common practice to discard samples

taken during the burn-in period. Burn-in phases

for standard phylodynamic models on realistic

data sets can be extremely long, and through

minimizing burn-in, we can save a potentially

large proportion of the computational time

usually required to generate a good posterior

sample.

Online inference can be viewed as a series of

steps (or generations) with increasing amounts

of data, with each step consisting of sampling

from the posterior distribution for the model

specified at the given step. The model must be

adjusted when transitioning from one step to the

next in order to accommodate the growth in

data. Consider an ongoing (or completed) analysis

at step i of a data set of Ni sequences with
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a phylodynamic model that includes a choice

of substitution model(s) (Hasegawa et al., 1985;

Jukes and Cantor, 1969; Tavaré, 1986), a strict

or uncorrelated relaxed molecular clock model

(Drummond et al., 2006), and a parametric

coalescent tree prior (Griffiths and Tavaré, 1994).

Assume that at step i, the analysis has achieved

convergence and has generated samples from the

posterior distribution. Upon the arrival of Mi+1

new sequences, we interrupt the step i analysis

(if it has not yet run to completion), augment

the analysis with the new sequences, and proceed

to step i+1, during which we will analyze the

expanded data set of Ni+1 =Ni+Mi+1 sequences.

We take a random draw θi from the posterior

sample (i.e. excluding the burn-in) generated

in step i that consists of estimates of the

phylogenetic tree and all other model parameters.

Further, BEAST automatically optimizes

transition kernel tuning parameters during an

MCMC analysis in order to maximize sampling

efficiency (Suchard et al., 2018), and we extract

the optimized tuning parameter values from step

i. We modify the elements of θi in order to obtain

θ
(0)
i+1, the starting model parameter values for the

MCMC chain simulated in step i+1. The aim in

our construction of θ
(0)
i+1 is to leverage the values

of θi to obtain starting parameter values that are

in, or relatively close to, a high-probability region

of the target posterior in step i+1, and thereby

minimize the step i+1 burn-in phase. This is in

contrast to the typical approach of using default

or randomly generated starting parameter values

(including the phylogenetic tree) that can be

very distant from high-probability regions of the

posterior. Such suboptimal starting values are a

major cause of long burn-in periods.

The algorithm to augment θi to θ
(0)
i+1 starts with

expanding the tree from θi by inserting a new

sequence into it. The sequence insertion process is

illustrated in Figure 3. First we find the observed

sequence already in the tree that is closest to the

new sequence in terms of genetic distance, where

genetic distance is based on a simple nucleotide

substitution model (we refer to this sequence as

the closest sequence). We compute the genetic

distance in all analyses using a JC69 model (Jukes

and Cantor, 1969), but our implementation also

offers an F84 model (Felsenstein and Churchill,

1996).

We then insert a common ancestor node for

the new sequence and its closest sequence. To

determine the height at which to insert the

new ancestor node, we first translate the genetic

distance d between the two sequences to a

distance dt in units of time by dividing d by

the evolutionary rate associated with the branch

leading to the closest sequence. Further, let tn

denote the sampling time (in terms of time units

prior to the present time) of the new sequence,

tc the sampling time of the closest sequence, and

tinsert the time at which we will insert the new

ancestor node. Assume, without loss of generality,

that the new sequence has a more recent sampling

time (so that tc>tn). Consider

t∗ = tc+
dt−(tc−tn)

2
=
dt+tc+tn

2
. (1)

We set

tinsert = t∗ (2)

(except in special cases, which we discuss shortly)

because this ensures that the placement of the

new ancestor node is consistent with dt in

that (tinsert−tc)+(tinsert−tn)=dt. Notably, this

method of determining the insertion height allows

the new branch to emanate from an external

branch or internal branch, with the latter case

accommodating realistic insertion of divergent

lineages. In certain cases, however, we use an

alternative insertion time because setting tinsert =
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t∗ results in tinsert<tc, or a new branch of length

0, or tc≥ troot (where troot is the root height of the

tree). In these cases, we let ε denote a scalar in the

interval (0,1), let split-child refer to the child node

of the branch that will be split by the insertion of

the new ancestor node, let lb denote the length of

the aforementioned branch, and let tsc denote the

height of the split-child. We then set

tinsert = tsc+ε∗lb. (3)

Here, if t∗<tc, the split-child is the closest

sequence, and if t∗ is equal to the height of an

ancestral node of the closest sequence, then this

ancestral node’s child is the split-child. Finally, if

t∗≥ troot, the split-child is the child node of the

root that is an ancestor of the closest sequence.

See Algorithm S1 in the Supplementary Material

for further details.

Next, the growth of the tree after a sequence

insertion requires branch-specific aspects of

the evolutionary model to assume a greater

dimension. In particular, our implementation

allows for specification of either a strict or

uncorrelated relaxed molecular clock model.

Under the uncorrelated relaxed clock, each

branch-specific clock rate is drawn independently

from an underlying rate distribution (e.g. an

exponential or log-normal distribution). The

underlying rate distribution is discretized into

a number of categories equal to the number of

branches, and each branch receives a unique clock

rate corresponding to its assigned category. We

impute clock rates on the branches of the enlarged

tree by assigning branches to rate categories

according to a deterministic procedure described

in detail in the Supplementary Material.

The algorithm continues in this fashion: the

remaining new sequences are inserted into the

growing phylogenetic tree one at a time, and

uncorrelated relaxed clock rates associated with

tree branches are updated after each insertion.

The order of insertion can be specified by the

user in the XML (in the Ebola virus example, a

sensitivity analysis detailed in the Results section

suggests that the performance does not depend on

insertion order). Aspects of the model that remain

compatible with an increase in sequence data,

such as substitution model specification, are left

unaltered, and the parameters that characterize

these aspects are identical in both θi and θ
(0)
i+1.

The final part of step i+1 is to simulate a

Markov chain, with starting model parameter

values θ
(0)
i+1 and initial tuning parameter values

taken, pre-optimized, from step i. We note that

there is no hard-encoded stopping rule, and the

termination of the simulated chain at step i+1 is

left to the user’s discretion. The simulation should

continue at least until the chain has achieved

stationarity, and until either new data become

available (and the simulation can be interrupted

to incorporate the new data), or a sufficient

posterior sample for inference has been produced.

However, there is no need to completely terminate

the chain at step i+1 if it is interrupted to

incorporate new data because the step i+1 chain

can be resumed after the interruption, and the

step i+2 simulation for the expanded data set

can be started as an independent process. Indeed,

if step i+1 has yet to produce sufficient posterior

samples it may be optimal to resume its simulation

to obtain provisional inferences (that could go

towards informing the response to an outbreak,

for instance) while waiting for the step i+2 chain

to converge.

Performance

We assess burn-in using two different approaches.

First, we use Tracer (Rambaut et al., 2018),

a popular software package for posterior

summarization in Bayesian phylogenetics, to
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visually examine trace plots of the posterior

distribution. The earliest iteration after which the

plot exhibits stationarity is taken to be the end of

the burn-in period. Second, we use the R (R Core

Team, 2018) package coda (Plummer et al., 2006)

to compute the effective sample size (ESS) of the

log joint (likelihood × prior) density sample after

discarding the first n samples, and we adopt the

value of n that yields the maximal ESS as the

burn-in. The ESS is a statistic that estimates the

number of independent draws from the target

distribution that an MCMC sample corresponds

to by accounting for the autocorrelation in the

sample (Kass et al., 1998), and the joint density

is often, even by us, called the “posterior” in

BEAST. This is inexact because the joint density

is an unnormalized rescaling of the posterior.

Discarding highly correlated burn-in iterates from

the sample leads to a greater ESS and, in effect,

a more informative sample.

We compare the frequencies of splits (or clades)

across multiple independent Markov chains in

order to ensure that the independent replicates

for a given time point in the Ebola virus epidemic

converge to the same stationary distribution.

In particular, we compare chains generated by

the same method (standard inference or online

inference) and by different methods by considering

all possible pairwise comparisons for chains

corresponding to the same data set. For each pair

of chains, we use the R We There Yet (RWTY)

software package (Warren et al., 2017) to create

a plot of split frequencies as well compute their

correlation and the average standard deviation

of split frequencies (ASDSF) (Lakner et al.,

2008). As the different chains converge to the

same stationary distribution, the ASDSF should

approach 0. We adopt the guideline that an

ASDSF less than 0.05 (ideally, less than 0.01)

supports topological convergence (Ronquist et al.,

2011).

Supplementary Material

Supplementary files, tables, figures and methods

are available at Molecular Biology and Evolution

online (www.mbe.oxfordjournals.org/).
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Sequences Standard analysis Online analysis

Data Total Added Burn-in (G) Burn-in (ESS) Burn-in (G) Burn-in (ESS)

2014, Epi week 26 158 13 0.2 (<0.1) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1)

2014, Epi week 31 240 8 0.8 (0.3) <0.1 (<0.1) <0.1 (<0.1) 0.4 (0.9)

2014, Epi week 42 706 32 8.6 (2.1) 10.2 (10.3) 0.6 (0.9) 1.0 (1.0)

2015, Epi week 2 1072 24 16.4 (7.3) 17.6 (7.1) 0.6 (0.5) 0.4 (0.5)

2015, Epi week 42 1610 2 49.6 (20.6) 60.2 (15.4) <0.1 (<0.1) 0.6 (1.3)

Table 1. Reduced burn-in (in millions of iterations) achieved with online Bayesian phylodynamic inference. Comparison of
burn-in for the log joint density sample resulting from two different analysis methods applied to Ebola virus data taken
from the West African Ebola epidemic of 2013-2016. The standard de novo approach of analyzing the full data set from
scratch is compared to the online inference approach that updates inferences from the previous epi week upon the arrival
of new data. The length of burn-in (in millions of states) is determined through a graphical approach (G) that consists
of analyzing posterior trace plots, as well as by computing the amount of discarded burn-in that maximizes the effective
sample size (ESS). Results are averaged over five replicates for each analysis, with standard deviation in parentheses.
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FIG. 1. Comparison of burn-in resulting from standard de novo analyses versus online Bayesian analyses to compute updated
inferences from data taken from different time points of the West African Ebola virus epidemic. The data flow of the epidemic,
in terms of total sequence available during each epi week, is recreated in the background of the plot in gray bars. Dark
gray bars show the data corresponding to the five time points at which we compute updated inferences. The plots chart
the burn-in required by de novo analyses, represented by circles, and online analyses, represented by diamonds. Solid lines
correspond to burn-in estimates based on visual analyses of trace plots while dotted lines correspond to burn-in estimates
based on maximizing ESS values.
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FIG. 2. Box plots show distribution of savings in computation time by using online inference as compared to standard de
novo analyses to update inferences for data from different time points in the West African Ebola virus epidemic. White
box plots correspond to analyses using a Tesla P100 graphics card for scientific computing and gray boxes correspond to
analyses using a multi-core CPU. Irrespective of the actual hardware used, the time savings are substantial with up to 600
hours on average saved using our online approach on CPU for our most demanding scenario. The axis corresponding to
running time (in hours) is log-transformed to allow for greater visibility of plots for smaller data sets.
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FIG. 3. A new sequence is inserted into an existing phylogenetic tree by determining the closest observed sequence (in terms
of genetic distance) already in the tree, and inserting a new ancestor node for the new sequence and its closest sequence. The
genetic distance between the new sequence and its closest sequence is converted into a distance in units of time, dt, by dividing
by the evolutionary rate associated with the branch leading to the closest sequence. To determine the insertion time tinsert

of the new ancestor node (in terms of time prior to the present time), we require (tinsert−tc)+(tinsert−tn)=dt, where tn is

the sampling time of the new sequence, and tc the sampling time of its closest sequence. This yields tinsert=(dt+tn+tc)/2.
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