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Background 1 

In fly brains the Drosophila Adar (adenosine deaminase acting on RNA) enzyme edits 2 

hundreds of transcripts to generate edited isoforms of encoded proteins. Nearly all 3 

editing events are absent or less efficient in larvae but increase at metamorphosis; the 4 

larger number and higher levels of editing suggest editing is most required when the 5 

brain is most complex, which is consistent with the fact that Adar mutations affect the 6 

adult brain most dramatically. However, it is unknown whether Drosophila Adar RNA 7 

editing events mediate some coherent physiological effect. To address this question, we 8 

performed a genetic screen for suppressors of Adar mutant defects. Adar5G1 null mutant 9 

flies are partially viable, severely locomotion defective, aberrantly accumulate axonal 10 

neurotransmitter pre-synaptic vesicles and associated proteins and develop an age-11 

dependent vacuolar brain neurodegeneration.  12 

Results 13 

The genetic screen revealed suppression of all Adar5G1 mutant phenotypes tested by 14 

reduced dosage of the Tor gene, which encodes a pro-growth kinase that increases 15 

translation and reduces autophagy in well-fed conditions. Suppression of Adar5G1 16 

phenotypes is due to increased autophagy; overexpression of Atg5, which increases 17 

canonical autophagy initiation, reduces aberrant accumulation of synaptic vesicle 18 

proteins and suppresses all Adar mutant phenotypes tested. Endosomal microautophagy 19 

(eMI) is another Tor-inhibited autophagy pathway involved in synaptic homeostasis in 20 

Drosophila. Increased expression of the key eMI protein Hsc70-4 also reduces aberrant 21 

accumulation of synaptic vesicle proteins and suppresses all Adar5G1 mutant phenotypes 22 

tested.  23 

Conclusions 24 



 3 

These findings link Drosophila Adar mutant synaptic and neurotransmission defects to 1 

more general cellular defects in autophagy; presumably, edited isoforms of CNS 2 

proteins are required for optimum synaptic response capabilities in the brain during the 3 

behaviourally complex adult life stage..  4 

 5 

 6 

Background 7 

Drosophila melanogaster has a single Adar (adenosine deaminase acting on 8 

RNA) gene encoding an orthologue of the vertebrate ADAR2 RNA editing enzyme [1]. 9 

In both vertebrates and Drosophila ADAR RNA editing in CNS transcripts is targeted 10 

to pre-mRNA exons that form RNA duplexes with flanking intron sequences. Editing 11 

events are frequently located in coding regions, leading to the generation of alternative 12 

edited and unedited isoforms of CNS proteins (for review [2]). ADAR2 in mammals is 13 

required for editing a glutamine codon to arginine  at the Gria2 Q/R site in the transcript 14 

encoding a key glutamate receptor subunit [3]. This editing event regulates the calcium 15 

permeability of AMPA class glutamate receptors and loss of this editing event leads to 16 

seizures and neuronal cell death. Thus, mice lacking Adar2 die within 3 weeks of birth 17 

however, Adar2; Gria2R  transgenic mice with the chromosomal Gria2 gene mutated 18 

to encode arginine are normal indicating that Gria2 Q/R is the key editing site in 19 

vertebrates [4]. The number of edited transcripts and edited sites is very much greater 20 

in Drosophila than in vertebrates. Editing sites recognition is conserved; uman ADAR2 21 

expressed in Drosophila rescues Adar5G1 null mutant phenotypes [5] and correctly edits 22 

hundreds of Drosophila transcripts encoding ion channels subunits and other CNS 23 

proteins [6-10].  24 



 4 

Our hypothesis is that during the evolutionary increase in site-specific RNA 1 

editing events in advanced insects, there has been selection for editing events that allow 2 

production of alternative edited and unedited isoforms of CNS proteins [11]; edited 3 

isoforms are also more abundant in adult brains than in larval brains  in 4 

Drosophila.RNA editing has also been evolutionarily expanded in cephalopod molluscs 5 

[12], consistent with the idea that more RNA editing may be able to enhance some brain 6 

function(s). Recent results reveal the complexity of RNA editing in Drosophila 7 

neurons, showing that different neuronal populations have distinct editing signatures 8 

[13]. The extreme opposite hypothesis to ours, that editing events are evolutionary 9 

accidents, appears less likely since many editing events are well conserved within 10 

insects or cephalopods respectively and are under positive selection during evolution 11 

[14]. However, it is still possible that the many different editing events serve many 12 

different and unconnected purposes. We set out to define the key effects of Drosophila 13 

Adar RNA editing by identifying genetic suppressors of Adar null mutant phenotypes 14 

and determining the mechanisms of action of these suppressors. 15 

Adar expression increases strongly at pupation and the number of edited sites 16 

and editing efficiencies at most sites are higher after metamorphosis in the brain of the 17 

adult fly [6, 15]. In Drosophila, transcripts with high and conserved editing include 18 

paralytic (para) [16], shaker, shaker b and cacophony (cac) [17] transcripts which 19 

encode the pore-forming subunits of axonal voltage-gated sodium, potassium or 20 

calcium channels respectively. At the axon terminus presynaptic active zones are 21 

formed above cacophony channels clustered in the presynaptic membrane; in the active 22 

zones  neurotransmitter synaptic vesicles are tethered for rapid neurotransmitter release 23 

followed by rapid endocytosis to recycle and refill the vesicles, [18]. The cacophony 24 

channel triggers calcium entry into presynaptic boutons when it is activated in response 25 
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to an action potential [19]. Other transcripts that are edited, especially in the adult brain, 1 

such as Synapsin [20], Synaptotagmin 1, Endophilin A, Munc [21], encode key proteins 2 

involved in the formation and function of neurotransmitter synaptic vesicles.  3 

The Drosophila Adar5G1 null mutant fly shows reduced viability, lack of 4 

locomotion, ataxia and to age related neurodegeneration [6]. In larval motorneurons 5 

targeted Adar RNAi knockdown, leads to increased motorneuron excitability; 6 

reciprocally, Adar overexpression in motorneurons leads to reduced neuronal 7 

excitability [22]. Adar5G1 mutant larval neuromuscular junctions have defects in 8 

calcium-regulated synaptic transmission and increased numbers of boutons [23] with 9 

increased numbers of synaptic vesicles and increased levels of the pre-synaptic proteins 10 

Synapsin [20], Endophilin A, Synaptotagmin 1 and others [24]. A much weaker 11 

hypomorphic Adarhyp mutant that has a nearly normal capacity for locomotion when 12 

stimulated, exhibits an aberrantly increased sleep pressure associated with the inability 13 

to achieve a normal sleep-mediated reduction of pre-synaptic vesicles and associated 14 

proteins and synaptic signaling [25]. This defective locomotion due to persistent halting 15 

in the hypomorphic Drosophila Adarhyp mutant is similar to what we observe in the 16 

more severely affected Adar5G1 null mutant.  In the Adarhyp adult brain the sleep defect 17 

is due to neuronal excesses of neurotransmitter synaptic vesicles held in a reserve pool 18 

that is not readily releasable and difficult to deplete, and the level of presynaptic 19 

proteins is elevated, consistent with defects in axonal active zones in brain neurons 20 

similar to those observed at larval neuromuscular junctions [25].  21 

To elucidate whether Adar null mutant phenotypes have a coherent underlying 22 

basis, we performed a pilot genetic screen on Chromosome II for suppressors of the 23 

Adar5G1 null mutant reduced viability. We find that reduced dosage of Tor (Target of 24 

rapamycin) is a potent suppressor of Adar mutant phenotypes. Tor is a kinase  is 25 
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essential for several cellular processes including increased translation and reduced 1 

autophagy under well-fed conditions (for review [26, 27]). Electron microscopic 2 

analysis reveals that neurodegeneration in Adar5G1 mutant fly retina is associated with 3 

abnormal, large, intracellular membrane-bounded vacuoles. These vacuoles appear to 4 

contain cellular components and are likely to result from aberrant activity of the 5 

endosome/autophagy/lysosome system. Tor protein levels are increased in the Adar5G1 6 

mutant and reducing Tor gene dosage suppresses these defects by increasing autophagy 7 

and clearing excess pre-synaptic proteins. There is no extensive cell death in the Adar-8 

mutant CNS. The findings are consistent with the hypothesis that Drosophila Adar 9 

function has an evolutionarily selected biological role related to synaptic plasticity and 10 

CNS protection. 11 

 12 

Results 13 

Reduced Tor gene dosage suppresses Adar mutant reduced viability, open field 14 

locomotion defects and reduced longevity 15 

To elucidate which mechanisms mediate Adar mutant phenotypes we performed 16 

a pilot screen for heterozygous deletions that increase the number of adult male Adar5G1 17 

flies eclosing from pupae in crosses , (Adar is on Chr. X and males have one gene copy). 18 

When virgin female y,Adar5G1,w /FM7, Bar flies are crossed with male w1118 and male 19 

progeny that eclose from pupae are counted, the ratio of male y,Adar5G1,w to male FM7 20 

Bar progeny obtained is only about twenty percent (see w1118 control cross at the bottom 21 

of Figure S1). This reduced viability at eclosion from the pupa reflects the death of 22 

Adar5G1 mutants during embryonic, larval and pupal stages. Therefore, virgin female 23 

y,Adar5G1,w /FM7, Bar flies are crossed with male w, Df(2)/SM5 Cy, suppression of this 24 
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Adar5G1 reduced viability measured by the proportion of live Adar5G1; Df(2)/+ mutant 1 

flies eclosing from pupae can be used for a genome-wide screen of deficiencies.  2 

We performed a trial screen of thirty five DrosDel deficiencies [28] covering 3 

seventy percent of the left arm of chromosome II for deficiencies that when 4 

heterozygous act as suppressors of the reduced viability of male Adar5G1mutant flies 5 

(Figure S1). DrosDel deficiencies are a series of genetically engineered deficiencies 6 

covering most of the Drosophila euchromatin that each delete about thirty genes on 7 

average [28]. The most robustly rescuing deficiency identified by the screen, 8 

Df(2L)ED778, substantially increases (to 80%), and the partially overlapping 9 

Df(2L)ED784 deficiency somewhat increases, Adar5G1 mutant viability. The viability 10 

of Adar5G1 is increased by eight deficiencies and decreased by others. The level of 11 

suppression differ greatly between deficiencies, with many giving slight suppression 12 

that makes the results noisy and not ideal for a larger genome-wide screen. As we 13 

obtained a robust result from two deficiencies in this pilot screen, we decided to study 14 

these further. 15 

We tested mutations in individual genes within the rescuing Df(2L)ED778 16 

deficiency and the partially overlapping Df(2L)ED784 deficiency, and within some 17 

other partially rescuing deficiencies, for rescue of Adar mutant viability. DrosDel 18 

deletions are excellent for rapid genome coverage in genetic screens but, for unknown 19 

reasons, inability to map effects of deletions down to reduced copy numbers of single 20 

genes within the deletions is very common. In this case, single gene mutations in the 21 

Tor gene, but not mutations in other genes within the deleted regions were found to 22 

increase  viability (Figure. 1A) and open field locomotion (Figure 1B) [29, 30] in in 23 

Adar5G1;Tork17004  / +  and Adar5G1;TorMB07988  / + flies; lifespanalso appears to be 24 

increased (Figure 1C), (we are unable to perform the appropriate Kolmogorov–Smirnov 25 



 8 

test for statistical significance with our small sample size in 3 replicates). These Tor 1 

mutants are homozygous lethal P-element insertions at different positions in Tor that 2 

are presumed null mutants. 3 

Open field locomotion was measured by recording crossing of individual flies 4 

over lines in a gridded Petri dish (three 2 min. measurements on each of 10 or more 5 

flies for each line) as previously described [17]. In this assay, even wildtype flies may 6 

stop moving for part of the 2-minute measurement period. However, the Adar mutant 7 

flies tend to stop within a few tens of seconds and to not move again thereafter. The 8 

Adar5G1 mutant flies, also show leg tremors and difficulty in walking straight without 9 

stumbling, (Supplementary Video V1 show Adar5G1 mutant walking defects and 10 

Supplementary Video V2 shows rescue in Adar5G1; TorMB07988 / +).  11 

Reduced Tor gene dosage may directly correct an aberrantly increased activity 12 

of Tor in Adar5G1. Immunoblot analysis of Adar5G1 mutant total head protein extracts 13 

show that Tor protein is present at a significantly increased level in Adar5G1 (Figure 1 14 

D). Increased Tor protein is likely to lead to increased levels of activated Tor but 15 

unfortunately, there is no available antibody to detect specifically the active, 16 

phosphorylated form of Drosophila Tor. 17 

 18 

Reduced Tor gene dosage also suppresses Adar mutant age-dependent 19 

neurodegeneration 20 

The Adar5G1 null mutant neurodegeneration has been described previously [5, 21 

6, 8, 31]. The Drosophila ADAR protein is normally present in nuclei of all brain 22 

neurons in wildtype and is entirely absent in the Adar5G1 null mutant, that deletes the 23 

entire Adar transcribed region [6]. Neurodegeneration develops more quickly in certain 24 

brain regions. In brains of 23 day and 30 day Adar5G1 mutant flies the calyces of the 25 



 9 

mushroom bodies (MB) and the retina (Figure 2C, D, S2), show filled vacuoles not 1 

observed in 23 day w1118 flies (Figure 2A, B). Within the retina neurodegeneration is 2 

evident at 23 days as a narrowing of photoreceptors with separations appearing between 3 

ommatidia (Figure 2D, S2). Heterozygous Tor mutations suppress the Adar mutant 4 

neurodegeneration in retina and mushroom body neuropil in Adar5G1;Tork17004 / + 5 

(Figure 2E, F) and Adar5G1;Tor MB07988  / + (Figure 2G, H). Neurodegeneration in the 6 

Adar5G1 null mutant is 100% penetrant and is never observed in the brain of wildtype 7 

flies. We do not quantitate the number of the vacuoles as their size variation is too large, 8 

instead we state whether it occurs or not. 9 

Prominent vacuoles in the brain appear particularly in the mushroom body (MB) 10 

calyces. The mushroom body calyces are neuropil regions composed of olfactory 11 

projection neuron axons and dendrites of mushroom body Kenyon cells; the cell bodies 12 

of the Kenyon cells are located above the calyces and their nuclei stain darkly with 13 

haematoxylin. Vacuoles may develop within the large boutons at the pre-synaptic 14 

termini of olfactory projection neurons which extend axons from the olfactory lobes 15 

beneath the brain reach to the mushroom body calyces  [32]. Large round boutons at 16 

the ends of projection neuron axons are surrounded by many fine Kenyon cell dendrites. 17 

Both olfactory projection neurons and Kenyon cells have now been shown to be 18 

cholinergic [33], consistent with our earlier observations that Adar5G1; ChAT>Adar 3/4 19 

flies expressing active ADAR under choline acetyltransferase ChAT-GAL4 driver 20 

control in cholinergic neurons [34] show rescue of vacuolization in MB calyces and 21 

retinas of 30 day Adar5G1 brains [1, 17, 35]. 22 

 23 

The Adar mutant neurodegeneration involves aberrant membrane processes and 24 

formation of large brain vacuoles  25 
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What is the defect underlying the Adar5G1 mutant neurodegeneration that is 1 

strongly suppressed by reduced Tor dosage? To examine the Adar5G1 mutant 2 

neurodegeneration at higher resolution, we performed an electron microscopic analysis 3 

of retinas and optic laminae of aged Adar5G1 mutant flies. Transmission electron 4 

microscope (TEM) sections parallel to the surface of the eye are particularly suitable 5 

for study because these sections show a highly regular pattern of photoreceptors and 6 

support cells within the repeating ommatidia (Figure 3A, B). TEM images of sections 7 

through the retina of 25 day old Adar5G1 show large membrane-bounded vacuoles 8 

between or within support cells that surround the photoreceptors (R1-R7/8) (Figure 3C, 9 

arrows). Other defects in Adar5G1 resemble those seen with autophagy mutants, such as 10 

autophagic-like vesicles (Figure 3D, E, F), multilamellar vesicles (Figure 3G, H), and 11 

membrane-bounded vesicles budding from the rhabdomeres of photoreceptors in more 12 

advanced stages of degeneration (Figure 3I-L).  13 

This data suggests that the Adar mutant neurodegeneration does not involve 14 

death of neurons in the first instance, but it does reflect development and enlargement 15 

of aberrant intracellular vacuoles like those observed in lysosomal storages diseases 16 

that cause defects in autophagy. It is likely that the aberrant vacuoles between 17 

ommatidia develop within the retinal pigment cells that import red and brown pigment 18 

precursors from the hemolymph and process and store them in membrane-bounded 19 

pigment granules that are a type of lysosome-related organelle. We did not obtain TEM 20 

sections through mushroom body calyces but sections through the optic lamina where 21 

the cellular arrangements are more difficult to interpret in EM also show aberrant 22 

multilamellar vesicles and membrane overgrowth  23 

 Aberrant intracellular membrane processes typify the Adar mutant 24 

neurodegeneration, which does not appear to involve extensive neuronal death. TUNEL 25 
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assays did not detect neuronal death in the Adar5G1 mutant brain (Figure S3 A- D), and 1 

few Lysotracker-positive nuclei are seen in brain (Figure S3 B), although cell death 2 

does occur outside the brain in head fat cells (Figure S3 A-D). Adar5G1;ChAT>p35 flies 3 

expressing the viral anti-apoptotic protein p35, which inhibits most Drosophila 4 

caspases [36, 37] still show vacuolization in the MB calyces and retina at 30 days 5 

(Figure S2 E, F), indicating that vacuolization is not prevented by blocking apoptosis. 6 

 7 

Suppression of Adar mutant phenotypes by reduced Tor or by increased 8 

expression of Atg5 9 

 We next focused on understanding the mechanism of suppression of Adar 10 

mutant phenotypes by reduced Tor gene dosage. Tor is a key gene controlling growth 11 

and autophagy [27]; suppression of Adar mutant phenotypes by reduced Tor gene 12 

dosage may be due to decreased translation or to increased autophagy in the Adar5G1; 13 

Tor / + flies.  14 

Tor is a protein kinase that, when active, increases translation by 15 

phosphorylation of the ribosomal protein S6 kinase (S6K) protein that increases its 16 

activity and by phosphorylation of the eIF 4E BP translation inhibitor that reduces its 17 

inhibitory activity  [38, 39]. Reduced Tor gene dosage should reduce translation in the 18 

Adar5G1; Tor/+ double mutants.  However, mimicking translation-decreasing effects of 19 

reduced Tor gene dosage by decreasing S6 kinase activity in cholinergic neurons in 20 

Adar5G1; ChAT>S6KKQ flies expressing a dominant negative S6K [40], or Adar5G1; 21 

ChAT>Thor flies with increased expression of translation-inhibiting eIF 4E-BP (Thor), 22 

did not show suppression of Adar5G1 mutant open-field locomotion (Figure 4A). This 23 

indicates that reduced translation is not the primary mechanism by which reduced Tor 24 

suppresses the Adar mutant phenotypes.  25 
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Since suppression of the Adar mutant phenotypes by reduced Tor does not 1 

appear to be due to reduced translation, the suppression may instead be due to increases 2 

in some type of autophagy. Increased autophagy could be consistent with the clearing 3 

of the large vacuoles in aged Adar mutant brains and retinas by reduced Tor dosage. 4 

Activated Tor suppresses autophagy by phosphorylating Atg1, the key protein for 5 

activation of canonical autophagy. Increased expression of key autophagy proteins is 6 

able to increase canonical autophagy [27]; Adar5G1; ChAT>Atg5 flies [41], show 7 

increased viability and rescue of Adar5G1 mutant locomotion defects (Figure 4A), and 8 

neurodegeneration (Figure 4B, C). Therefore, suppression of Adar5G1 mutant 9 

phenotypes appears to be due to increased autophagy caused by the reduced Tor gene 10 

dosage.  11 

Tor is activated by growth-promoting extracellular signals such as insulin as 12 

well as by intracellular signals; Tor locates to the surface of the lysosome and is 13 

activated there by amino acids being returned from the lysosome to the cytoplasm. The 14 

insulin receptor acts through PI3 kinase (PI3K) and the serine-threonine protein kinase 15 

AKT to phosphorylate the Tuberous Sclerosis Complex (TSC), releasing it from the 16 

Rheb (Ras homolog enriched in brain) protein in the lysosomal Tor protein complex 17 

and activating Tor [42]. If reduced Tor gene dosage suppresses Adar mutant phenotypes 18 

because it reduces effects of growth-promoting signals such as insulin then the effect 19 

of reduced Tor gene dosage should be mimicked by increasing TSC protein dosage. 20 

Surprisingly, Adar5G1; ChAT>TSC1, TSC2 (Figure 4A), with reduced signaling to Tor 21 

through the insulin pathway do not show strong rescue of Adar5G1mutant locomotion 22 

defects. This suggests that any aberrant axonal growth signal in the Adar5G1mutant is 23 

not due to alteration in an upstream signal through the insulin receptor, nor through the 24 

anaplastic lymphoma kinase that may substitute for insulin receptor in the brain, that 25 

https://en.wikipedia.org/wiki/Serine-threonine_protein_kinase
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also signals through PI3K [43] to the Tor complex 1 (TORC1). If  suppression of the 1 

Adar mutant phenotype by reduced Tor is not due to changed responsiveness to external 2 

signals such as insulin, then it may be due to an intracellular effect. Since Tor is 3 

activated on lysosomes there may be an aberrant intracellular feedback from autophagy 4 

that leads to increased Tor. 5 

To determine whether increased autophagy may be rescuing Adar mutant 6 

defects by clearing aberrant accumulations of synaptic vesicles, we measured levels of 7 

the presynaptic protein Synaptotagmin1 that is associated with the synaptic vesicles in 8 

heads of Adar5G1 mutant and rescued flies by immunoblotting. Immunoblotting of head 9 

protein extracts with anti-Synaptotagmin 1 antibodies demonstrate that there is an 10 

aberrant accumulation of Synaptotagmin 1 in Adar5G1mutant heads [25] (Figure 4D) 11 

that is lowered by reduced Tor or by increased Atg5 expression. 12 

 13 

Increased autophagic vesicles but incomplete clearance of ref(2)p in the Adar5G1 14 

mutant 15 

To assess canonical autophagy in the Adar5G1 mutant and rescues, we examined 16 

levels of ref(2)p protein. ref(2)p is the Drosophila orthologue of the mammalian p62 17 

canonical autophagy adapter protein (also called Sequestosome1), that brings 18 

ubiquitinated cargo to canonical autophagosomes; p62 is degraded in the process and 19 

p62 accumulates when canonical autophagy is defective [44]. If canonical autophagy is 20 

operating normally in Adar5G1 and increased in heads of Adar5G1; Tor k17004 /+ double 21 

mutant or Adar5G1; ChAT>Atg5 flies then levels of p62 protein should be normal in 22 

Adar5G1 and reduced in the double mutants [45]. However, p62 protein levels are 23 

twofold higher than normal in Adar5G1 head protein extracts and increase further in the 24 

double mutants, (Figure 4E), in particular with increased Atg5. This suggests that 25 
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canonical autophagy mighr not benot functioning perfectly in the Adar5G1 mutant 1 

background, even though it partially clears excess synaptic vesicles proteins (see 2 

below).  3 

Larval fat cells are used to study autophagy in Drosophila, as these cells are 4 

much larger than brain neurons and form a single sheet of cells in which autophagy is 5 

readily induced by starvation of the larvae and detected by staining the lysosomes in 6 

live cells with acidic Lysotracker dye.  Staining larval fat cells from well-fed larvae of 7 

the Adar5G1 mutant with Lysotracker dye shows the presence of increased numbers of 8 

lysosomes in the Adar5G1 mutant, even in the absence of starvation (Figure 5E,F) 9 

relative to equivalent wildtype w1118 cells (Figure 5B,C). Starvation increases the 10 

number of lysosomes further in the Adar5G1 mutant cells (data not shown). Expression 11 

of ADAR 3/4 (Figure 5H, I), protein in Adar5G1 mutant fat cells under the control of the 12 

CollagenIV-GAL4 (CgIV-GAL4) driver is sufficient to eliminate the elevated basal 13 

autophagy in the Adar5G1 mutant, as indicated by the loss of Lysotracker vesicle 14 

staining. 15 

 16 

Rescue of Adar mutant phenotypes by increased expression of the endosomal 17 

microautophagy (eMI) protein Hsc70-4 18 

 Recent studies have shown that a different type of starvation-inducible, Tor-19 

inhibited autophagy called endosomal microautophagy (eMI), occurs in Drosophila 20 

neurons and is especially important in presynaptic active zones [46-49]. To test whether 21 

increased eMI rescues Adar5G1 mutant phenotypes we used the ChAT-GAL4 and Act 22 

5C-GAL4 drivers to increase expression of the Hsc70-4 protein by directing expression 23 

of UAS-Hsc70-4. Increasing Hsc70-4 in cholinergic neurons increases locomotion 24 

(Figure 6A); on the other hand, knocking down of Hsc70-4 in cholinergic neurons does 25 
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not improve the Adar5G1 mutant phenotype (Figure 6A). When acting as a chaperone 1 

for neurotransmitter synaptic vesicles Hsc70-4 acts together with an interacting partner 2 

protein called Small glutamine-rich tetratricopeptide repeat protein (Sgt), as an ATP-3 

driven molecular chaperone protein. In eMI Hsp70-4 acts without Sgt to recruit 4 

KFERQ-motif proteins to endosomes [46]. The Sgt protein favors the more general 5 

chaperone role of Hsc70-4 in synaptic vesicle cycling and suppresses its function in 6 

eMI. Therefore, we also increased eMI with an UAS-Sgt RNAi construct to decrease 7 

expression of Sgt specifically in cholinergic neurons and this also dramatically 8 

suppressed the Adar5G1 mutant locomotion defect (Figure. 5A); knockdown of Sgt with 9 

the ubiquitous Act 5C-GAL4 driver is lethal. Increased eMI in the Adar5G1 mutant 10 

background also suppresses neurodegeneration. Overexpression of Hsc70-4 (Figure 6, 11 

B, C) or knocking down Sgt (Figure 6, D, E) in Adar5G1 with ChAT-GAL4 suppresses 12 

the Adar5G1 mutant neurodegeneration in retina and mushroom body  13 

Immunoblotting of head protein extracts with anti-Synaptotagmin 1 antibodies 14 

demonstrates that the aberrant accumulation of Synaptotagmin 1 in Adar5G1mutant 15 

heads (Figure 6F) is dramatically reduced by increased Hsc70-4 expression. We 16 

conclude that increased eMI suppresses the Adar5G1 mutant phenotypes. The reduction 17 

of Synaptotagmin 1 to below wildtype levels is surprising but synaptic vesicle-18 

associated proteins are normally present at levels that probably reflect retention of a 19 

reserve of older protein molecules in association with the no-longer readily releasable 20 

reserve pool of synaptic vesicles [50-52]. We also see a less dramatic decrease in the 21 

level of Synaptotagmin 1 when reducing the level of Tor or overexpressing Atg5 in the 22 

Adar5G1 mutant background (Figure 4D)ncreased Atg5 is likely to be lowering 23 

synaptotagmin 1 through increased canonical autophagy and is unlikely to be acting 24 

within the eMI pathway as Atg5 has been reported to not be required for eMI [47]. 25 
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We also examined the level of ref(2)p when overexpressing Hsc70-4 or 1 

knocking down Sgt in Adar5G1 (Figure 6G). We did not observe any significant 2 

difference in ref(2)p levels between head extracts of  Adar5G1 mutant, Adar5G1; ChAT 3 

> Hsc70-4 or Adar5G1; ChAT > Sgt RNAi flies. This suggests that, as expected, 4 

increased Hsc70-4 does not increase canonical autophagy or significantly change levels 5 

of ref(2)p. 6 

Since increasing eMI suppresses the Adar5G1 mutant phenotypes, it is possible 7 

that eMI might be insufficient in Adar5G1. To investigate this, we determined the level 8 

of Hsc70-4 protein by immunoblotting head protein extracts (Figure 6H) and by 9 

measuring its expression by qPCR (Figure 6I). By both methods, we observe a small 10 

but significant decrease in Hsc70-4 level in Adar5G1.  11 

 12 

Discussion 13 

RNA editing by Adar is required to maintain the integrity of the CNS in adult 14 

Drosophila [6]. To find suppressors of the Adar5G1 null mutant phenotype, we 15 

performed an initial screen for genetic suppressors that increase the viability of Adar5G1 16 

and discovered a key role for Tor-regulated autophagy in all Adar mutant phenotypes 17 

(Fig. 1 A-C, Fig. 2, E-H). Tor protein is abnormally increased in Adar5G1 mutant heads 18 

(Fig. 1 D); therefore, suppression of Adar mutant defects by reduced Tor gene dosage 19 

is, at least in part, a true rescue i.e. reducing Tor directly corrects a defect in the Adar 20 

mutant rather than simply activating some entirely unrelated bypass pathway.  21 

Consistent with an autophagy defect, the Adar5G1 mutant neurodegeneration 22 

shows resemblances to neurodegenerations in Drosophila models of lysosomal storage 23 

diseases, a class of neurodegenerations in which lysosomes accumulate different 24 

intracellular components  [53]. The most distinctive abnormal intracellular components 25 
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in the vacuoles in the Adar5G1 mutant eyes and brains (Fig. 2, A-F), apart from double 1 

membrane autophagosomes (Fig. 3 F) are the multilamellar membrane whorls (Fig. 2 

3H). These have been identified in cell bodies in other Drosophila mutants such as 3 

eggroll [54], swiss cheese [55-57], and benchwarmer/spinster [58] and are 4 

characteristic of the human neurodegenerative Tay-Sachs disease [53, 59].  The 5 

formation of large vacuoles in Adar mutant mushroom body calyces might be directly 6 

related to accumulation of large numbers of neurotransmitter-containing presynaptic 7 

vesicles and associated presynaptic proteins such as Synaptotagmin 1 in the brain [25], 8 

which is prevented by reduced Tor gene dosage or by increased Atg5 (Fig. 4D) or 9 

increased Hsc70-4 (Fig. 6E) expression to increase autophagy.  10 

Which type of Tor-regulated autophagy is involved in the suppression of Adar 11 

mutant phenotypes? Canonical autophagy (CA) is be still sufficiently functional to 12 

mediate rescue of Adar5G1 mutant phenotypes (Fig. 4A-D), even though it may also be 13 

somewhat impaired in Adar5G1. Immunoblots show that ref(2)p protein, the Drosophila 14 

homolog of the vertebrate p62 adapter for canonical autophagy of ubiquitinated 15 

proteins, is increased in Adar5G1 and increased much more with reduced Tor or 16 

increased Atg5 (Fig. 4E). Adar5G1 larval fat cells also show increased Lysotracker-17 

positive acidic autophagosomal and lysosomal vesicles (Fig. 5 E,F). This impeded CA 18 

in Adar5G1 might arise because some proteins that have edited isoforms, play important 19 

roles in CA. [60]Transcripts of cacophony (cac) and straightjacket (stj) encode subunits 20 

of the pre-synaptic voltage-gated calcium channel that is also required for fusion of 21 

lysosomes with autophagosomes and endosomes. Loss of function mutations of cac or 22 

stj impair neurotransmission and lysosome function in neurons, leading to some 23 

accumulation of p62 protein [61], although it is not known whether loss of only the 24 

edited isoforms of these proteins is sufficient to cause any similar defect. Other edited 25 
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transcripts encoding CA-associated proteins include Atg14, Atg17, AMPKalpha, and 1 

Foxo (Table S1); all of these, in addition to probable involvement of edited synaptic-2 

vesicles associated proteins in membrane fusion events in CA [61], suggest that both 3 

CA and synaptic vesicle are among processes affected by proteins encoded by edited 4 

transcripts in CNS. An additional possible explanation for why ref(2)p clearance is 5 

impeded in Adar5G1 is that CA is affected by Dicer-2-mediated aberrant innate antiviral 6 

immune induction that occurs in Adar5G1-mutant heads (Deng et al., 2020, Nat. Comms, 7 

in press), which is likely to result from accumulated unedited intracellular dsRNA in 8 

Adar5G1 , paralleling the mouse Adar1 mutant interferon induction through antiviral 9 

dsRNA sensors [63-65] [64]. In mammalian cells  innate immune induction impedes 10 

CA in by diverting p62 from its role as the receptor for ubiquitinated proteins in CA to 11 

instead form a cytoplasmic innate immune signaling platform; p62 and other CA 12 

substrates now accumulate because they are less efficiently  turned over by CA [60]. 13 

This cross-regulation of p62 by innate immune signaling helps to redirect CA to innate 14 

immune defense and it is likely that a similar effect also acts on ref(2)p in Drosophila; 15 

this could in part account for the Adar5G1  mutant ref(2p protein accumulation.  16 

The increased ref(2)p in the Adar mutant may also lead to the increased Tor 17 

activation. In vertebrates the p62 protein associates with TORC1 on the cytosolic 18 

surface of the lysosome; increased p62 contributes to increased Tor activation by 19 

intracellular amino acids returning from the lysosome [66]. Aberrant Tor activation 20 

through this cell-autonomous pathway in Drosophila [67] might explain why we could 21 

not mimic the Tor/+ rescue of Adar mutant phenotypes by genetic manipulations that 22 

interfere with extracellular hormone and growth-related signaling to TORC1 e.g. by 23 

increased expression of the TSC1 and TSC2 proteins that repress Tor in the growth 24 

signaling pathways (Fig. 4A).  25 
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Endosomal microautophagy (eMI) has recently been described as an important 1 

new autophagy pathway involved in proteostasis at presynaptic active zones in 2 

Drosophila [46, 47]. Drosophila eMI targets proteins containing KFERQ motifs to 3 

endosomes using the homologous KFERQ-recognition protein (Hsc70-4 in Drosophila, 4 

HSPA8 in humans) that is also used in lysosomal chaperone-mediated autophagy 5 

(CMA) in vertebrates. Drosophila is believed to lack CMA as it does not have a 6 

homolog of the alternatively spliced isoform of lysosomal LAMP2A protein required 7 

to recruit HSPA8 to lysosomes [46, 47]. Increased expression of the key Hsc70-4 8 

protein or decreased Sgt increase eMI and rescue Adar mutant locomotion defects (Fig. 9 

6A), neurodegeneration (Fig. 6B-D) and elevated Synaptotagmin 1 levels in Adar 10 

mutant heads (Fig. 6F), without affecting ref(2)p levels (Fig. 6G). Immunoblots for 11 

Hsc70-4 indicate that this protein is at a lower level in Adar mutant heads (Fig. 6H,I); 12 

this suggests that eMI may be insufficient or suppressed by increased Tor in the Adar 13 

mutant. Similar to the p62 adapter during CA, the Hsc70-4 cargo selector is believed to 14 

also be turned over as KFERQ target proteins are recruited and destroyed during eMI 15 

It is not known how activated Tor suppresses eMI; it has been proposed that Atg1 is 16 

also involved [47]; possibly the reduced Hsc70-4 observed in Adar5G1 is part of the 17 

mechanism of eMI suppression by increased Tor.. 18 

Since rescue of Adar mutant locomotion defects by expression of Adar requires 19 

expression of the catalytically active Adar protein, we expected that RNA editing of 20 

some target transcript might be essential to rescue locomotion [1]. For instance, editing 21 

of the transcript encoding Synaptotagmin 1 might be required because this leads to 22 

production of an edited isoform with a different residue close to those that determine 23 

the calcium responsiveness of synaptic vesicle exocytosis, potentially affecting the 24 

calcium-dependence of the synaptic vesicle cycle [24]. Or editing of the transcript 25 
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encoding Synapsin might be required because this changes an important residue that is 1 

phosphorylated by cAMP-dependent protein kinase A (PKA); edited synapsin may 2 

limit aberrant synaptic vesicle accumulation and clustering [20, 25]. Therefore, rescue 3 

of locomotion defects by reduced Tor or increased autophagy without restoring editing 4 

of any target transcript is surprising.  5 

 6 

ConclusionAltering flows of membranes and proteins through Tor-regulated 7 

autophagy processes is surprisingly sufficient to overcome Drosophila Adar mutant 8 

synaptic synaptic defects, locomotion defects and age-dependent neurodegeneration, 9 

presumably  by rejuvenating synaptic vesicle pools (hese Adar mutant defects are 10 

summarized in Figure 7). This suggests that  that controlling such flows is also a major 11 

biological role of Adar RNA editing in Drosophila.Can we therefore propose an overall 12 

coherent role of ADAR2-type RNA editing in CNS of vertebrates and invertebrates? 13 

The independent evolutionary expansions of ADAR2-type RNA editing events in 14 

transcripts encoding CNS proteins in advanced insect groups and in cephalopods 15 

suggests involvement in brain function and more complex cognition, behavior and life-16 

cycles. In vertebrates, the homologous ADAR2 is a cycling protein that mediates 17 

circadian effects [68]; ADAR2 editing also mediates a type of homeostatic postsynaptic 18 

plasticity through regulated editing of transcripts encoding glutamate receptor subunits 19 

[69, 70] and the seizures that develop in Adar2 mutant mouse pups also involve 20 

widespread effects of aberrant synaptic plasticity [71]. It is likely that Drosophila Adar 21 

is also involved in circadian rhythms [72], and Drosophila Adar is also involved in 22 

synaptic plasticity during sleep [25]. Aberrantly increased sleep arises because the 23 

increased reserve pools of presynaptic neurotransmitter synaptic vesicles cannot be 24 

reduced normally during sleep. The role of Adar we outline here acts to protect the brain 25 
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through effects on synaptic plasticity. Adar RNA editing may be involved in circadian 1 

changes in synaptic plasticity and may even mediate beneficial effects of sleep on the 2 

brain. 3 

 4 

Methods 5 

 6 

Fly maintenance and fly strains 7 

All fly stocks were raised on standard corn meal-agar medium. Fly stocks were 8 

maintained at 18°C and crosses were performed at 25°C. Flies used in aging 9 

experiments were maintained in tubes not supplemented with additional yeast, to 10 

prevent flies from becoming stuck to the yeast. A single fly was maintained in a vial 11 

and each vial was tipped-on daily. The wild-type control strains were either w1118. The 12 

GAL4 driver lines and balancer lines were obtained from the Bloomington Stock 13 

Centre. Detailed genotypes of individual strains used are as follows; 14 

Tork17004: y[1] w[67c23]; P{w[+mC]=lacW}Tor[k17004]/CyO,                       15 

TorMB07988: w[1118]; Mi{ET1}Tor[MB07988]  16 

S6KKQ (dominant negative):   w[1118]; P{w[+mC]=UAS-S6k.KQ}2 17 

Thor: w[*]; P{w[+mC]=UAS-Thor.wt}2 18 

Atg6: y; UAS-Atg6-2D; Sb/Tm6b (from U. Pandey)  19 

Atg5: y[1] w[1118]; wg[Sp-1]/CyO; P{w[+mC]=UAS-eGFP-drAtg5}16 20 

Atg1[6A]: y,w,hsflp;; UAS-Atg1[6A], (from T. Neufeld)  21 

Atg1[GS10797](EP line): y,w,hsflp; Atg1[GS10797], (from T. Neufeld) 22 

TSC1, TSC2:  y,w,hsFlp; UAS-TSC1, UAS-TSC2, (from T. Neufeld) 23 

UAS-Hsc70-4: w[126]; P{w[+mC]=UAS-Hsc70-4.K71S}G 24 

BDSC #28709 - y1 v1; P{TRiP.JF03136}attP2 ( Hsc70-4 RNAi) 25 

https://flybase.org/reports/FBal0018607.html
https://flybase.org/reports/FBal0017656.html
https://flybase.org/reports/FBti0127273.html
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BDSC #61267  - y1 v1; P{TRiP.HMJ23046}attP40 (sgt RNAi) 1 

 2 

The GAL4 binary system was used to express transgenes in the Adar mutant 3 

background. The Adar5G1 mutant strain was combined with ChAT>-GAL4 and virgin 4 

females of these strains were crossed to males of the transgenic lines bearing the 5 

Drosophila UAS-cDNA constructs. Female genotype is y, Adar5G1, w / w, FM7, Bar; 6 

(ChAT-GAL4.7.4)19B,(UASGFP.S65T)T2 / (ChATGAL4.7.4)19B,(UASGFP.S65T)T2. 7 

 8 

DrosDel screen for suppressors of reduced viability in the Adar5G1 mutant. 9 

To screen for suppressors of Adar5G1 mutant reduced viability we crossed virgin female 10 

y, Adar5G1, w /FM7, Bar in groups of five with males from the DrosDel / SM5 Cy lines. 11 

Taking male non-Curly progeny, we counted the Adar5G1; DrosDel / + and FM7 Bar; 12 

DrosDel / + flies that eclosed from pupae and determined the ratio of male y, Adar5G1, 13 

w; Df / + to sibling male FM7; Df / +progeny for each deficiency. DrosDel deficiencies 14 

are marked with mini-w+. Tests of Tor mutants were performed in the same way. 15 

 16 

Open field locomotion assays.  17 

Open field locomotion was measured by recording crossing of individual flies over lines 18 

in a gridded Petri dish (three 2 min. measurements on each of 10 or more flies for each 19 

line) as previously described [17]. The data are presented as the average number of lines 20 

crossed by a fly in the 2 min. period. The flies are collected on the day of eclosion from 21 

the pupae. Next morning, when effects of CO2 anesthesia have worn off, they are 22 

individually introduced to the measuring dish and the measuring period begins after 23 

tapping the dish once on the bench. The test measures the flies maximized movement 24 

response to an initial stimulation and to a new environment.  25 

http://bdsc.indiana.edu/stocks/61267
https://flybase.org/reports/FBal0018607.html
https://flybase.org/reports/FBal0017656.html
https://flybase.org/reports/FBti0179378.html
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 1 

Histology techniques  2 

For standard haematoxylin-eosin stained sections Drosophila heads were fixed at room 3 

temperature in Carnoy’s fixative for 4 hours. For detecting cell death, the terminal 4 

deoxynucleotidyl transferase Biotin-dUTP nick end-labelling (TUNEL) kit from Roche 5 

was used. Drosophila heads were fixed for 4 hours at room temperature in 4% 6 

paraformaldehyde. The heads were embedded into paraffin wax with standard histology 7 

procedures. Sections were cut at 6m and either stained with haematoxylin and eosin 8 

for pathological analysis or stained for cell death according to the TUNEL kit 9 

instructions. Images were captured using a compound microscope, which comprised of 10 

a Coolsnap HQ CCD camera (Photometrics Ltd, Tucson, AZ) with Plan-neofluar 11 

objectives (Carl Zeiss, Welwyn Garden City, UK). Images were captured with neofluar 12 

objectives at 40X (with a numerical aperture of 1.3) for eyes and at 63X and 40X (with 13 

a numerical aperture of 1.25) for mushroom bodies. Color additive filters (Andover 14 

Corporation, Salem, NH) installed in a motorized filter wheel (Ludl Electronic 15 

Products, Hawthorne, NY) were used sequentially to collect red, green and blue images, 16 

which were then superimposed to form a color image. Image capture and analysis were 17 

performed with in-house scripts written for IPLab Spectrum (Scanalytics Corp, Fairfax, 18 

VA). The brightness and contrast were altered with the advanced histogram section in 19 

either IP Lab Spectrum or Adobe Photoshop. This was done by manually setting the 20 

minimum and maximum pixel intensities on the histogram. If necessary, the gamma 21 

was altered on the histogram. The images shown are representative examples from 22 

samples of 10-20 heads sectioned for each age and genotype. 23 

 24 

Electron microscopy 25 
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The Adar5G1 mutants and w1118 controls were aged to 25 days or longer from parallel 1 

collections. The proboscis was removed in Schneider’s insect media and the heads were 2 

fixed for at least one hour in 2.5% glutaraldehyde and subsequently fixed in 1% osmium 3 

tetroxide in Sorenson's buffer. The heads were dehydrated and embedded into resin. 4 

Survey sections of 0.5m were cut through the frontal brain and ultra-thin sections were 5 

cut at the regions of interest. The sections were stained with 2% aqueous uranyl acetate 6 

for 15 minutes and lead citrate (supplied by Leica) for five minutes. The tissue sections 7 

were viewed with a Philips CM 100 Compustage (FEI) transmission electron 8 

microscope and digital images are collected with an AMT CCD camera (Deben). The 9 

brightness and contrast were altered manually with the advanced histogram section in 10 

either IP Lab Spectrum or Adobe Photoshop by setting the minimum and maximum 11 

pixel intensities on the histogram. If necessary, the gamma was altered on the 12 

histogram. 13 

 14 

Immunoblotting 15 

Male flies (minimum 15 flies) of the desired genotype were collected and aged for 2 16 

days and then homogenized in NB Buffer (150mM NaCl, 50mM Tris-HCl pH 7.5, 2mM 17 

EDTA, 0.1% NP-40). Protein concentration was determined with Pierce BCA Protein 18 

Assay Kit. An equal amount of protein was loaded in each lane of a Tris-Glycine Gel 19 

and transferred to a nitrocellulose membrane. The membrane was blocked with 5% 20 

BSA, incubated with primary antibody overnight. The next day it the membrane was 21 

incubated with secondary antibody and developed with Pierce ECL Western Blotting 22 

Substrate. Anti-Ref2P(Antibody Registry ID: AB_2570151  (1:1000) was a gift from 23 

Tor Erik Rusten (University of Oslo), anti-synaptotagmin (1:500) (Developmental 24 

Studies Hybridoma Bank, DSHB Hybridoma Product 3H2 2D7, Antibody Registry ID: 25 

http://antibodyregistry.org/AB_2570151
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AB_528483), anti-Hsc70-4 (1;1000) was a gift from Konrad Zinsmaier (Bronk et.al, 1 

Neuron 2001) , anti-Tor antibody (Antibody Registry ID:  AB_2568971) ( 1:1000) was 2 

a gift from Gábor Juhász, anti-Tublin (Developmental Studies Hybridoma Bank, DSHB 3 

Hybridoma Product 12G10 , Antibody Registry ID: AB_1157911  ) (1:5000). Imaging 4 

was performed with ChemiDoc™ XRS+ System and signal intensity was quantified 5 

with Image J software and statistical analyses were done with the t-test. 6 

 7 

qPCR 8 

RNA from approximately 20 fly heads was isolated with Tripure and cDNA generated 9 

with RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). qPCR reactions 10 

were performed with The LightCycler® 480 SYBR Green I Master mix and the primers 11 

are listed in Supplementary Table 2 were used to measure expression levels. Expression 12 

levels were normalized to those of RP49 and t-tests were used for statistical analysis.  13 

 14 

Lysotracker staining of larval fat cells. 15 

 Drosophila larvae were collected and brains and fat body dissected in cold PBS. The 16 

tissue of interest was incubated with LysoTracker® Red DND-99, Molecular Probes, 17 

Invitrogen (l μl of dye in 10ml of cold PBS) for 5 minutes in ice. After five 2-minute 18 

washes in PBS, the tissue was mounted in Vectashield DAPI and viewed with a 19 

fluorescent microscope. 20 

 21 

Statistical Analyses 22 

Two sample data were analyzed by Student’s t-test. A p-value of <0.05 was considered 23 

statistically significant. More than three groups, p-values were calculated by a one-way 24 

ANOVA followed by Tukey's test. The significance of differences between variables 25 

http://antibodyregistry.org/AB_2568971
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was described based on p-values *: p-value < 0.05. **: p-value < 0.005. ***: p-value < 1 

0.001 and n.s (not significant). Error bars: SEM (Standard Error of Mean for biological 2 

replicates). 3 
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 25 

Figure legends  26 

Figure 1: Reduced Tor gene dosage rescues Adar5G1 mutant phenotypes. Tor 27 

mutations increase (A) viability at eclosion from the pupae, n = 3 (B) open field 28 

locomotion, n > 8 and (C) lifespan in Adar5G1mutant flies. FM7 is a first chromosome 29 

balancer strain.n = 3 (D) Immunoblot with antibody to Drosophila Tor protein of 30 

Adar5G1mutant and wildtype (w1118) fly head protein extracts. n = 3 Quantitation of 31 

immunoblot data shows increased level of Tor in Adar5G1. p-values in (A and B) were 32 

calculated by a one-way ANOVA followed by Tukey's test. The significance of 33 

differences between variables was described based on p-values *: p-value < 0.05. **: 34 



 34 

p-value < 0.005. ***: p-value < 0.001 and n.s (not significant). Error bars: SEM 1 

(Standard Error of Mean for biological replicates). p-value in D were calculated by 2 

Student ‘s t-test. Source data values are included in the additional file 6. 3 

 4 

Figure 2. Rescue of Adar5G1 mutant neurodegeneration by reduced Tor gene 5 

dosage. Images show representative 6 microns thick haematoxylin and eosin stained 6 

sections through mushroom body calyces (left panels, (63X)) and retinas (right panels, 7 

40X) of (A, B) 23-day w1118, (C, D) 23-day Adar5G1; ChAT-GAL4 / +, (E, F), 25 day 8 

Adar5G1; TorK170048 / + and (G, H) 23 day Adar5G1; TorMB07988 / +. Scale bars: 20μm. 9 

 10 

Figure 3: EM analysis of retinal degeneration in the Adar5G1 mutant. (A) The 11 

ommatidia of w1118 at 25 days. Each ommatidium comprises seven photoreceptor cells 12 

surrounded by and separated from neighboring ommatidia by thin pigment cells 13 

containing red pigment granules. (B) An ommatidium of 25 days old w1118 at higher 14 

resolution. The photoreceptor cells with light-detecting rhabdomeres (Rb) appear 15 

normal. The R7/R8 photoreceptor is indicated. Organelles such as mitochondria are 16 

identifiable (arrow). (C) Retina of the Adar5G1 mutant at 25 days showing pigment cells 17 

with large vacuoles between ommatidia (arrows). (D) Higher resolution image of a 18 

single ommatidium in 25 days old Adar5G1 with vacuole (V) between photoreceptor 19 

cells of two ommatidia. (E) Magnification of area within the circle in (D). Interrupted 20 

membrane (arrow) was observed inside the vacuole. (F) Magnification of area within 21 

the square in (D). Membrane-bounded vesicles (arrows) in the photoreceptors contain 22 

cellular components in an autophagosome-like structure surrounded by two or more 23 

membrane layers. (G, H) Multilamellar membrane structures (arrows) in a 24 

photoreceptor cell and within a glial cell close to the basement membrane between the 25 



 35 

retina and the lamina in Adar5G1. (I) Single membrane-bounded vesicles pinching off 1 

from the photoreceptor (arrows) in early stages of photoreceptor degeneration in 2 

Adar5G1. (J) Larger multilamellar membrane structures budding off from the 3 

extracellular membrane of photoreceptor cells into the ommatidial cavity (arrows) at 4 

more advanced stages of degeneration in Adar5G1. (K) Extensive loss of pigment cells 5 

separating ommatidia in advanced stages of neurodegeneration in Adar5G1. 6 

Photoreceptor cell cytoplasm and extracellular membrane are abnormal and vesicles 7 

bud from the rhabdomeres (arrows).  (L) Abnormal exocytosis from the rhabdomere in 8 

late stages. The extracellular membrane of the photoreceptor is not well defined. 9 

 10 

Figure 4: Decreased Tor, or increased Atg5 to increase autophagy, suppress 11 

Adar5G1 mutant phenotypes. A.  Rescue of Adar5G1 mutant open field locomotion 12 

defects in Adar5G1; TorK170048 / +, Adar5G1; TorMB07988 / +, Adar5G1; ChAT>Atg5 and 13 

Adar5G1; ChAT>Atg1 flies but not in Adar5G1; ChAT>Thor or Adar5G1; ChAT>S6KKD 14 

or Adar5G1; ChAT>TSC1,TSC2 flies. n > 8. B. Representative images of MB calyx 15 

(63X) and (C) retina (40X) in 30-day Adar5G1; ChAT>Atg5. Scale bars: 20μm. D 16 

Immunoblot with antibody to Synaptotagmin 1 of head protein extracts of Adar5G1, 17 

w1118, Adar5G1; TorK17004 / + and Adar5G1; ChAT > Atg5 flies.  Quantitation of 18 

immunoblot data shows increased Synaptotagmin 1 in Adar5G1 is reduced by decreased 19 

Tor or by increased Atg5.  n ≤ 3. E. Immunoblot with antibody to ref(2)p, the 20 

Drosophila p62 canonical autophagy protein, of head protein extracts of w1118, 21 

Adar5G1mutant, Adar5G1; TorK17004 / + and Adar5G1; ChAT > Atg5 flies. Quantitation of 22 

immunoblot data shows that increased ref(2)p, Drosophila p62 protein, in Adar5G1 is 23 

not reduced but increased by decreasing Tor or by increasing Atg5. n ≥ 3. p-values were 24 

calculated by a one-way ANOVA followed by Tukey's test.. The significance of 25 

differences between variables was described based on p-values *: p-value < 0.05. **: 26 



 36 

p-value < 0.005. ***: p-value < 0.001 and n.s (not significant). Error bars: SEM 1 

(Standard Error of Mean for biological replicates). Source data values are included in 2 

the additional file 6. 3 

 4 

Fig. 5. ADAR protein expression rescues the autophagy-related phenotype in 5 

Adar5G1 larval fat cells. The fat bodies of A-C: wild-type strain w1118, D-F: 6 

Adar5G1;CgIV>, G-I: Adar5G1;CgIV>UAS-dAdar3/4, have been dissected and live-7 

stained with DAPI (A,D,G ) and Lysotracker (B,E,H ) dyes (merges in C,F,I ). Wild-8 

type fat body does not show any Lysotracker staining (B and C). Adar5G1 mutant fat 9 

cells have an increased activation of autophagy as indicated by increased Lysotracker 10 

staining in lysosomes (E and F). Expression of the UAS-dAdar3/4 transgene in the 11 

Adar5G1 mutant fat cells is sufficient to rescue the elevated basal autophagy (H and I). 12 

Scale bars: 50 μm. 13 

 14 

Figure 6. Increased Hsc70-4 suppresses Adar5G1 mutant phenotypes. A. Rescue of 15 

Adar5G1 mutant open field locomotion defects in Adar5G1; ChAT>Hsc70-4 and Adar5G1; 16 

ChAT>Sgt RNAi flies with increased endosomal microautophagy. n ≥ 10. B. 17 

Representative images of MB calyx (40X) and (C) retina in 30-day Adar5G1; 18 

ChAT>Hsc70-4 (40X). (D) Representative images of MB calyx (40X) and (E) retina in 19 

30-day Adar5G1; ChAT>SgtRNAi (40X).  F. Immunoblot detection of the presynaptic 20 

protein Synaptotagmin1 in w1118, Adar5G1 mutant, Adar5G1; ChAT>Hsc70-4, Adar5G1; 21 

ChAT>Sgt RNAi and Adar5G1; Act5c>Hsc70-4 head protein extracts. Quantitation of 22 

the immunoblot data is shown below; levels of Synaptotagmin 1 compared to tubulin 23 

in each of the different head protein extracts. n ≤ 3. G. Immunoblot to detect ref(2)p, 24 

the Drosophila p62 autophagy protein, in total head proteins of Adar5G1 mutant, w1118 25 
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wildtype, Adar5G1; ChAT>Hsc70-4 and Adar5G1; ChAT>Sgt RNAi flies. n ≤ 3.  H. 1 

Immunoblot to detect Hsc70-4 protein in total head protein extracts of w1118 wildtype, 2 

Adar5G1 mutant, Adar5G1; ChAT>Hsc70-4 and Adar5G1; ChAT>Sgt RNAi flies and 3 

Adar5G1; Act5c>Hsc70-4. n = 3.  I. qPCR of Hsc70-4 from w1118 wildtype and Adar5G1 4 

heads showing that Hsc70-4 is significantly decreased in Adar5G1 heads. n = 6, p-values 5 

in (A,E,G and H ) were calculated by a one-way ANOVA followed by Tukey's test.. 6 

The significance of differences between variables was described based on p-values *: 7 

p-value < 0.05. **: p-value < 0.005. ***: p-value < 0.001 and n.s (not significant). Error 8 

bars: SEM (Standard Error of Mean for biological replicates). p-values in H were 9 

calculated by Student ‘s t-test. Source data values are included in the additional file 6. 10 

 11 

Fig. 7 Summary of Adar mutant phenotypes. In the Adar mutant, aberrantly 12 

increased Tor leads to inadequate autophagy, reduced synaptic vesicle clearance and 13 

neurodegeneration. 14 

 15 
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Additional files 17 

 18 

Additional file 1 19 

Figure S1- Screen of DrosDel deletions on Chromosome 2L for rescue of Adar5G1 20 

viability. Ratio of Adar5G1 to FM7 Bar genotypes among male progeny in the presence 21 

of DrosDel deficiencies, or in their absence (w1118 cross at the bottom) (expressed as a 22 

percentage). Progeny are obtained by crossing Adar5G1 / FM7, Bar virgin females to 23 

males to w1118 males or males of DrosDel/SM5, Cy deficiency stocks.  24 

 25 
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Additional file 2 1 

Figure S2- Adar5G1 neurodegeneration at 30 days. 2 

Images of 6 micron thick haematoxylin and eosin stained sections through mushroom body 3 

calyces (left panels, (63X)) and retinas (right panels, 40X) of 30-day Adar5G1. 4 

 5 

Additional file 3 6 

Figure S3-Neuronal cell death is not prominent in heads of 25-day-old Adar5G1 mutant 7 

flies.  (A) TUNEL staining to detect apoptotic cells in head sections from 25-day-old Adar5G1 8 

mutant flies stained with DAPI to detect nuclei. TUNEL-positive nuclei are not detected in 9 

neurons However TUNEL-positive nuclei are conspicuous in head fat bodies of 25-day-old 10 

Adar5G1 mutant flies (boxed area in A). (B) Magnification of area boxed in A (C) Haematoxylin 11 

and eosin stained section serial to A, white box indicates fat body tissue. (D) Magnification of 12 

area boxed in C.  (E, F) Images show representative 6 micron thick haematoxylin and eosin 13 

stained sections through mushroom body calyces (left panels, (63X)) and retinas (right panels, 14 

40X) of 30-day Adar5G1; ChAT>UAS-p35. Scale bars: 20μm 15 

 16 

Additional file 4 17 

Supplementary Table 1: List of Adar edited transcripts encoding proteins required for 18 

autophagy. 19 

 20 

Additional file 5 21 

Supplementary Table 2: Primers used for qPCR 22 

 23 

Additional file 6 24 

Excel sheet containing source data file for Figure 25 

1A ,1B ,1C.1D ,4A,4D,4E,6A,6F,6G,6H and 6I. 26 
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 1 

Additional file 7- Video of Adar5G1 null mutant showing locomotion defect. 2 

Additional file 8 – Video of Adar5G1; TorK170048 Double mutant, which shows 3 

locomotion defect is recued when Tor dosage is reduced in the Adar null mutant 4 

background.5 
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