
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Majorization preservation of Gaussian bosonic channels

Citation for published version:
Jabbour, MG, García-Patrón, R & Cerf, NJ 2016, 'Majorization preservation of Gaussian bosonic channels',
New Journal of Physics, vol. 18, no. 7, 073047. https://doi.org/10.1088/1367-2630/18/7/073047

Digital Object Identifier (DOI):
10.1088/1367-2630/18/7/073047

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
 New Journal of Physics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322484361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/raul-garciapatron-sanchez(efc0de8a-4df0-492b-8577-e276f99fdf19).html
https://www.research.ed.ac.uk/portal/en/publications/majorization-preservation-of-gaussian-bosonic-channels(df91c490-0d5d-4082-8b56-d188eb65a074).html
https://doi.org/10.1088/1367-2630/18/7/073047
https://doi.org/10.1088/1367-2630/18/7/073047
https://www.research.ed.ac.uk/portal/en/publications/majorization-preservation-of-gaussian-bosonic-channels(df91c490-0d5d-4082-8b56-d188eb65a074).html


            

PAPER • OPEN ACCESS

Majorization preservation of Gaussian bosonic
channels
To cite this article: Michael G Jabbour et al 2016 New J. Phys. 18 073047

 

View the article online for updates and enhancements.

Related content
Passivity and practical work extraction
using Gaussian operations
Eric G Brown, Nicolai Friis and Marcus
Huber

-

Bounding the energy-constrained quantum
and private capacities of phase-insensitive
bosonic Gaussian channels
Kunal Sharma, Mark M Wilde, Sushovit
Adhikari et al.

-

Converting multilevel nonclassicality into
genuine multipartite entanglement
Bartosz Regula, Marco Piani, Marco
Cianciaruso et al.

-

Recent citations
Fock majorization in bosonic quantum
channels with a passive environment
Michael G Jabbour and Nicolas J Cerf

-

Geometric inequalities from phase space
translations
Stefan Huber et al

-

This content was downloaded from IP address 129.215.224.108 on 17/02/2020 at 14:55

https://doi.org/10.1088/1367-2630/18/7/073047
http://iopscience.iop.org/article/10.1088/1367-2630/18/11/113028
http://iopscience.iop.org/article/10.1088/1367-2630/18/11/113028
http://iopscience.iop.org/article/10.1088/1367-2630/aac11a
http://iopscience.iop.org/article/10.1088/1367-2630/aac11a
http://iopscience.iop.org/article/10.1088/1367-2630/aac11a
http://iopscience.iop.org/article/10.1088/1367-2630/aaae9d
http://iopscience.iop.org/article/10.1088/1367-2630/aaae9d
http://iopscience.iop.org/1751-8121/52/10/105302
http://iopscience.iop.org/1751-8121/52/10/105302
http://dx.doi.org/10.1063/1.4974224
http://dx.doi.org/10.1063/1.4974224


New J. Phys. 18 (2016) 073047 doi:10.1088/1367-2630/18/7/073047

PAPER

Majorization preservation of Gaussian bosonic channels

Michael G Jabbour, RaúlGarcía-Patrón andNicolas J Cerf
Quantum Information andCommunication, École polytechnique de Bruxelles, CP165,Université libre de Bruxelles, 1050 Bruxelles,
Belgium

E-mail:mjabbour@ulb.ac.be

Keywords: quantum channels, quantumoptics, gaussian bosonic channels,majorization theory, passive states

Abstract
It is shown that phase-insensitive Gaussian bosonic channels aremajorization-preserving over the set
of passive states of the harmonic oscillator. Thismeans that comparable passive states under
majorization are transformed into equally comparable passive states by any phase-insensitive
Gaussian bosonic channel. Our proof relies on a newpreorder relation called Fock-majorization,
which coincides with regularmajorization for passive states but also induces another order relation in
terms ofmean boson number, thereby connecting the concepts of energy and disorder of a quantum
state. The consequences ofmajorization preservation are discussed in the context of the broadcast
communication capacity of Gaussian bosonic channels. Becausemost of our results are independent
of the specific nature of the systemunder investigation, they could be generalized to other quantum
systems andHamiltonians, providing a new tool thatmay prove useful in quantum information
theory and especially quantum thermodynamics.

1. Introduction

Majorization theory (see, e.g., [1]) has long been known to play a prominent role in quantum information theory
[2, 3].When a quantum state rmajorizes another quantum state s, denoted as r s, itmeans that r can be
transformed into s by applying a convex combination of unitary operations, that is †s r= å w U Ui i i i , withUi

being unitaries, w 0i , andå =w 1i i . Thus, r smeans that s ismore disordered than r, and it implies in
particular that ( ) ( )s rS S , where S stands for the vonNeumann entropy (more generally, it implies a similar
inequality for any Shur concave function of r). Interestingly,majorization theory also provides a necessary and
sufficient condition for the interconversion between pure bipartite states using deterministic LocalOperations
andClassical Communication (LOCC) [2, 3]. A bipartite pure state ∣yñcan be transformed into ∣y¢ñvia a
deterministic LOCC if and only if r r¢ , where ( )r r¢ is the reduced state obtained from ∣ (∣ )y yñ ¢ñ by tracing
over either one of its two parts. Still another application ofmajorization is related to separability [4]: a separable
state rAB necessarily obeys r rA AB and r rB AB, which in turn provides a sufficient condition for
entanglement that is strictly stronger than the violation of the corresponding entropic conditions

( ) ( )r rS SAB A and ( ) ( )r rS SAB B [5, 6]. This resultmay even be extended to a distillability criterion by
noting that any non-distillable (but possibly bound-entangled) state satisfies the samemajorization
conditions [7].

The importance ofmajorization theory in continuous-variable quantum information theorywas first
suggested byGuha in [8], specifically in the context of Gaussian bosonic channels. These channels (defined in
section II) are ubiquitous in quantum communication theory as theymodelmost optical communication links,
such as optical fibers or amplifiers. Guhawas concerned in [8]with the classical capacity of these channels (see
[9]), whichwas known to require the proof of a Gaussianminimumentropy conjecture [10] (nowproven in
[11]). Denoting an arbitraryGaussian bosonic channel by [ ]F . , the conjecture is that ( [∣ ]) ( [∣ ])yF ñ F ñS S 0
for any input pure state ∣yñ, where ∣ ñ0 is the vacuum state. The intuitionwas that amajorization relation

[∣ ] [∣ ] yF ñ F ñ0 might be responsible for the conjectured entropic inequality.
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The existence ofmajorization relations inGaussian bosonic channels was first proven in [12], where the
quantum-limited amplifier [ ] . (defined in section II)was proven to obey an infinite ladder ofmajorization
relationswhen the input state is an individual Fock state, namely [∣ ] [∣ ] ñ + ñk k 1 , " k 0. A parametric
majorization relationwas also proven for varying gainG, namely [∣ ] [∣ ] ñ ñd+k kG G G if dG 0. Then, in
[13], a similar ladder ofmajorization relations [∣ ] [∣ ] ñ + ñk k 1 was shown to hold for a pure loss channel
 (defined in section II). Later on, in [14], the conjecturedmajorization relation [∣ ] [∣ ] yF ñ F ñ0 was proven
for any input state ∣yñand anyGaussian bosonic channelΦ, which generalizes (and implies) the proof [11] of the
aboveGaussianminimumentropy conjecture ( [∣ ]) ( [∣ ])yF ñ F ñS S 0 . Finally, the interconversion between
pureGaussian states was also investigated based onmajorization theory [15, 16], which revealed the existence of
surprising situationswhere a non-Gaussian LOCC is required although the states considered areGaussian.

In this paper, we introduce the notion of Fock-majorization, denoted asF, which induces a novel (pre)
order relation between states of a bosonicmode.We show that Fock-majorization has two powerful properties.
Firstly, it induces an order relation in terms of themean energy of the states. Secondly, it coincides with regular
majorization for passive states, namely the lowest energy states among isospectral states [17, 18]. Sincewe focus
on theHamiltonian of an harmonic oscillator, ˆ ˆ†= +H a a1 2 , whose eigenstates are the Fock states, all passive
states of a bosonicmode are obviously Fock-diagonal states with decreasing eigenvalues for increasing boson
number.

Equippedwith this tool, we can prove a new type of intrinsicmajorization property inGaussian bosonic
channels, namely the conservation across any channelΦ of a Fock-majorization relation between any two
comparable Fock-diagonal states, that is, [ ] [ ] r s r s F FF F . This implies in turn thatGaussian bosonic
channels preserve regularmajorization over the set of passive states of the harmonic oscillator, that is,

[ ] [ ] r s r s F F . Finally, we discuss the connection of this result with an open problem related to the
broadcast communication capacity of bosonic channels [19].

2.Gaussian bosonic channels

An arbitraryGaussian bosonic channel, denoted as [ ]F . , is such that if ρ is aGaussian state, then [ ]rF is a
Gaussian state too. In this paper, we restrict to the class of single-mode phase-insensitive Gaussian bosonic
channels, inwhich the two quadrature components (x̂ and p̂) of themode operator ˆ ( ˆ ˆ)= +a x ip 2 are
identically transformed underΦ in theHeisenberg picture. A simple example of such a channel is a beam splitter
of transmittance η, which linearly couples the inputmodewith an environmentmode in the vacuum state,

ˆ ˆ ˆ ˆ ( )h h = + -a a a a1 , 1in out in env

where âin, âenv , and âout are the bosonicmode operators for the input, environment, and outputmode,
respectively. This is the so-called pure loss channel h of transmittance η, where theGaussian noise originates
from the vacuum fluctuations of the bosonicfield in the environmentmode. Another basic phase-insensitive
Gaussian bosonic channel is a parametric optical amplifier of gainG, which couples the input (or signal)mode
with an environment (or idler)mode in the vacuum state according to

ˆ ˆ ˆ ˆ ( )† = + -a a G a G a1 . 2in out in env

In this so-called quantum-limited amplifier channelG of gainG, someGaussian thermal noise unavoidably
affects the output state because of parametric down-conversion. Now if the environmentmode is in a thermal
state for both cases of a beam-splitter or parametric down-converter, some additional Gaussian noise is
superimposed onto the attenuated or amplified output state, giving rise to a noisy version of channels h and
G.More generally, any single-mode phase-insensitive Gaussian bosonic channelΦmay be decomposed as a
suitable sequence of channels h andG [12, 20].

3. Fock-majorization

We recall the usual definition of themajorization relation between states ρ andσ, namely, r s if and only if

( ) å ål m "
=



=

 n, 0, 3
i

n

i
i

n

i
0 0

where l
i and m


i are the eigenvalues of ρ andσ, respectively, which have been ordered by decreasing value

(indicated by the arrowpointing downwards). Furthermore, the two summations in equation (3) should be
equal at the limit  ¥n so the traces of ρ andσ coincide formajorization to hold (this is obviously the case
here since ρ andσ are density operators).
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Definition.Wedefine that states ρ andσ satisfy the Fock-majorization relation denoted as r sF if and only if

( ) ( ) ( ) r s "P P nTr Tr , 0, 4n n

with ∣ ∣= å ñá=P i in i
n

0 being a projector onto the space spanned by the ( )+n 1 first Fock states ∣ ñi . This yields a
distinct (pre)order relation in state space, which only depends on the diagonal elements of ρ andσ (or their
eigenvalues if the states are Fock-diagonal). In contrast with regularmajorization, the diagonal elements are not
ordered by decreasing values, but instead by increasing boson number. Such a relaxed definition ofmajorization
without prior sorting is sometimes called ‘unorderedmajorization’ [1]; itmakes sense onlywhen there exists anatural
wayof ordering the elements (in thepresent case, it is the energy). Toourknowledge, thenotionof Fock-majorization
(where the elements are orderedby increasing energy)hasnever beendefinednor exploited in the context ofGaussian
bosonic channels ormore generally continuous-variable quantum information (see also section6).

Note that any two Fock states ∣ ñn and ∣ ñm satisfy the Fock-majorization relation ∣ ∣ ∣ ∣ñá ñán n m mF only if
n m, whereas they are always equivalent (isospectral) in terms of usualmajorization. Another feature of Fock-

majorization is that if r sF and s rF both hold, then ( ) ( )r s=diag diag . By comparison, for regular
majorization, if r s and s r both hold, then the states are equivalent (isospectral).

Interestingly, Fock-majorization implies an energy order relation between comparable states, namely

⟹ ( ˆ) ( ˆ) ( ) r s r sn nTr Tr , 5F

where ˆ ˆ ˆ†=n a a is the number operator. Although equation (5) holds in general, we only give its proof for Fock-
diagonal states here becausewe only need to consider these states (especially passive states of the harmonic
oscillator) in the following. Take two Fock-diagonal states ∣ ∣r = å ñá= r i ii

N
i0 and ∣ ∣s = å ñá= s i ii

N
i0 whose

support is the space spanned by {∣ ∣ }ñ ñN0 , . (If their support have unequal sizes, we take the largest size forN.)
Weassume that r sF , that is

⟹ ( )   å å å å "
= = = =

r s r s n n N, s.t. 0 . 6
i

n

i
i

n

i
i n

N

i
i n

N

i
0 0

Summing this expression over n and interchanging the two summations gives

⟹ ( ) å å å å å å
= = = = = =

r s i r i s . 7
i

N

n

i

i
i

N

n

i

i
i

N

i
i

N

i
1 1 1 1 1 1

By taking the limit  ¥N , we conclude that themean energy of ρ is lower than that ofσ, which proves
equation (5). Note that the converse of equation (5) is not true.

Finally, it is straightforward to see that Fock-majorization r sF coincideswith regularmajorization r s
over the set of passive states. Bydefinition, passive states are diagonal in the energy eigenbasis of theharmonic
oscillator (i.e., Fockbasis of a bosonicmode) and their eigenvalues arenon-increasingwith respect to energy, that is,

∣ ∣ ( ) år = ñá "
=

¥

+r i i r r i, with , 0, 8
i

i i i
0

1

for a passive state ρ [17, 18]. Hence, when restricting to passive states, the Fock-majorization condition (4)
becomes equivalent to the regularmajorization relation (3). Otherwise, r sF and r s are distinct order
relations (in section 6, we discuss some implications between them).

Before coming to themain results of this paper (sections 4 and 5), we first introduce the following two
lemmas (proven in appendix A), which state fundamental Fock-majorization relations in phase-insensitive
Gaussian bosonic channels.

Lemma1.The pure loss channel h of arbitrary transmittance h exhibits a ladder of Fock-majorization relations

[∣ ∣] [∣ ∣] ( )  ñá + ñá + "h hk k k k k1 1 , 0. 9F



Lemma2.The quantum-limited amplifierG of arbitrary gain G exhibits a ladder of Fock-majorization relations

[∣ ∣] [∣ ∣] ( )  ñá + ñá + "k k k k k1 1 , 0. 10G GF



4. Fock-preserving and passive-preserving channels

A channelΦ is called Fock-preservingwhen it is such that if ρ is a Fock-diagonal state, then [ ]rF is also a Fock-
diagonal state. Phase-insensitive Gaussian bosonic channels arewell known to be Fock-preserving channels
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since theymap Fock states ontomixtures of Fock states [21]. A stronger condition, whichwe need here, is that a
Fock-preserving channelΦ is passive-preserving, i.e., itmaps passive states onto passive states. In order to show
that phase-insensitive Gaussian bosonic channels are indeed passive-preserving1, we need to prove the following
theorem,which provides a key to determinewhether any channelΦ is passive-preserving.

Theorem1.A channelΦ is passive-preserving if and only if its adjoint †F obeys the ladder of Fock-majorization
relations

[∣ ∣] [∣ ∣] ( )† † F ñá F + ñá + "k k k k k1 1 , 0. 11F



Proof.Equation (11) is equivalent to

( [∣ ∣]) ( [∣ ∣]) ( )† † F ñá F + ñá + "P k k P k k nTr Tr 1 1 , 0, 12n n

where ∣ ∣= å ñá=P i in i
n

0 . Using the definition of the adjoint of a channel, we get

(∣ ∣ [ ]) (∣ ∣ [ ]) ( ) ñá F + ñá + F "k k P k k P nTr Tr 1 1 , 0. 13n n

Now, assume that the input of channelΦ is a passive state (of the harmonic oscillator)

∣ ∣ ( ) år = ñá "
=

¥

+r n n r r n, with , 0. 14
n

n n n
0

1

It can also be rewritten as

( )år = = -
=

¥

+e P e r r, with . 15
n

n n n n n
0

1

where e 0n , " n 0, since ρ is passive. Then, wemay take the convex combination of inequalities (13)with
weights en and n going from0 to¥, resulting in

(∣ ∣ [ ]) (∣ ∣ [ ]) ( )r rñá F + ñá + Fk k k kTr Tr 1 1 . 16

Hence, the output state [ ]rF is passive, so that channelΦ is indeed passive-preserving. Conversely, it is trivial to
see thatΦ being passive-preserving implies equation (13) since Pn is (proportional to) a passive state, hence it
implies equation (11). ,

Corollary 1. Phase-insensitive Gaussian bosonic channels are passive preserving.

Using lemmas 1 and 2 togetherwith theorem1, we obtain that the pure loss channel h , whose adjoint is
h1 times the quantum-limited amplifier h1 , as well as the quantum-limited amplifierG, whose adjoint is
G1 times the pure-loss channel  G1 , are both passive preserving. Then, the corollary follows from the fact that

any phase-insensitive Gaussian bosonic channelΦ can be expressed as the concatenation of a pure loss channel
 and a quantum-limited amplifier, i.e., ◦ F = [12, 20], and that passive-preservation is transitive over
channel composition.

5. Fock-majorization preserving channels

AFock-preserving channelΦ is called Fock-majorization preserving provided it is such that if r sF , with ρ
andσ being Fock-diagonal states, then [ ] [ ]r sF FF . In order to prove that phase-insensitive Gaussian
bosonic channels are Fock-majorization preserving, we need to prove the following theorem.

Theorem2.A channel F is Fock-majorization preserving if and only if it obeys the ladder of Fock-majorization
relations

[∣ ∣] [∣ ∣] ( ) F ñá F + ñá + "k k k k k1 1 , 0. 17F



Proof.We start with two Fock-diagonal states

∣ ∣ ∣ ∣ ( )å år s= ñá = ñá
= =

r i i s i i, , 18
i

N

i
i

N

i
0 0

1
This property is also proven in [22], where it is called Fock-preserving, but we give an independent simple proof here.
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whose supports is the space spanned by {∣ ∣ }ñ ñN0 , . (If their supports have unequal sizes, we take the largest
size forN.)Weassume thatwe have a Fock-majorization relation between two states at the input of the channel,
that is

⟺ ( )  r s "R S n, 0, 19n nF

where

( ) ( ) ( )å år s= = = =
= =

R P r S P sTr , Tr . 20n n
i

n

i n n
i

n

i
0 0

Wewant to prove that the same Fock-majorization relation holds at the output,

[ ] [ ] ⟺ ( )  r sF F "A B n, 0 21n nF

where

( [ ]) ( [ ]) ( )( ) ( )å år s= F = = F =
= =

A P r P B P s PTr , Tr , 22n n
i

N

i n
i

n n
i

N

i n
i

0 0

with

( [∣ ∣]) ( )( ) = F ñáP P i iTr . 23n
i

n

Now,we define the quantities

( )( ) ( ) ( ) åa = + =
= +

R P r P k N, 0, , 24n
k

k n
k

i k

N

i n
i

1

where the second term in the right-hand side is taken equal to zerowhen k=N, so that ( ) ( )a = R Pn
N

N n
N .

Similarly, we define

( )( ) ( ) ( ) åb = + =
= +

S P s P k N, 0, , 25n
k

k n
k

i k

N

i n
i

1

with the convention ( ) ( )b = S Pn
N

N n
N . The Fock-majorization relationwe need to prove, equation (21), is

equivalent to

( )( ) ( ) a b " n, 0 26n n
0 0

corresponding to k=0.Wewill nowprove

( )( ) ( ) a b " n, 0 27n
k

n
k

by recurrence in k, starting from k=N and ending at k=0.We have trivially ( ) ( )a bn
N

n
N , " n 0, since

= =R S 1N N . Now,we assume that

( )( ) ( ) a b "+ + n, 0 28n
k

n
k1 1

which can be rewritten as

( )( ) ( ) ( ) ( )å å+ ++
+

= +
+

+

= +

R P r P S P s P . 29k n
k

i k

N

i n
i

k n
k

i k

N

i n
i

1
1

2
1

1

2

Using = ++ +R R rk k k1 1 and = ++ +S S sk k k1 1, we reexpress it as

( )( ) ( ) ( ) ( )å å+ ++

= +

+

= +

R P r P S P s P , 30k n
k

i k

N

i n
i

k n
k

i k

N

i n
i1

1

1

1

which is equivalent to

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )a b- + - ++ +R P P S P P , 31k n
k

n
k

n
k

k n
k

n
k

n
k1 1

or simply

( )( ) ( )( ) ( ) ( ) ( )a b- - - +R S P P . 32n
k

n
k

k k n
k

n
k 1

Since ρ Fock-majorizesσ by hypothesis (equation (19)), we have -R S 0k k , " k 0. If [∣ ∣]F ñák k Fock-
majorizes [∣ ∣]F + ñá +k k1 1 , whichmeans that ( ) ( ) - +P P 0n

k
n

k 1 , " n 0, then the right-hand side of
equation (32) is greater than zero. Thus, equation (28) implies equation (27), which concludes the recurrence in
k and proves equation (26), hence equation (21). Conversely, it is trivial to see that Fock-majorization
preservation for channelΦ implies the ladder of Fock-majorization relations since individual Fock states satisfy
the Fock-majorization relation ∣ ∣ ∣ ∣ñá + ñá +n n n n1 1F , " n 0. ,
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Corollary 2. Phase-insensitive Gaussian bosonic channels are Fock-majorization preserving.

Weuse again the fact that any phase-insensitive Gaussian bosonic channelΦ can be expressed as the
concatenation ◦ F = and that Fock-majorization preservation is transitive over channel composition.

Corollary 3. Phase-insensitive Gaussian bosonic channels aremajorization-preserving over the set of passive states.

As a consequence of the equivalence between Fock-majorization and regularmajorization over the set of
passive states, a Fock-majorization preserving channel is necessarily alsomajorization-preserving over the set of
passive states provided it is passive-preserving. Since phase-insensitive Gaussian bosonic channels are passive-
preserving (corollary 1) and Fock-majorization preserving (corollary 2), we conclude that they preserve regular
majorization over the set of passive states.

6.Discussion and conclusion

Wehave introduced the notion of Fock-majorization, which induces a novel (pre)order relation between states
of the harmonic oscillator and coincides with regularmajorization for passive states, namely the lowest energy
states among isospectral states. As a notable application of this tool, we have shown that phase-insensitive
Gaussian bosonic channels preservemajorization over the set of passive states. This property nicely
complements the one very recently found in [22]. There, it was shown that among all isospectral states ρ at the
input of a phase-insensitive Gaussian bosonic channelΦ, the passive state, denoted as r, produces an output
state thatmajorizes all other output states, namely [ ] [ ]r rF F . Here, we consider instead two input states
that have different spectra but are both passive, r and s, and have demonstrated that r s  implies

[ ] [ ]r sF F  . This reflects the fact that Gaussian bosonic channels exhibit quite awide variety ofmajorization
properties, goingwell beyondwhat was originally expected in [8].

As amatter of fact, ourmain resultmay be combined together with that of [22], givingwhat can be viewed as
a fundamental majorization-preservation property

⟹ [ ] [ ] ( ) r s r sF F  , 33

valid for any phase-insensitive Gaussian bosonic channelΦ. Interestingly, this property (unlike the one of [22]) is
transitive if we concatenate several passive-preserving channels. In particular, itmeans that proving it for an
infinitesimal channel (e.g., using the Lindbladian) suffices to prove it for any concatenated channel. To be
complete, let us alsomention some implications between Fock-majorization and regularmajorization relations.
First, it is clear from their respective definitions that

⟺ ( ) r s r s  34F

where r (s) is the passive state with the same spectrum as ρ (σ). Furthermore, we have obviously r rº in
terms of regularmajorization, while r r

F in terms of Fock-majorization. This yields the following
implication from regular to Fock-majorization

⟹ ( ) r s r s  , 35F

wherewe have used r rº and s s
F . Conversely, we have the implication fromFock-majorization to

regularmajorization

⟹ ( ) r s r s , 36F

wherewe have used r r
F and s sº . Combining these various resultsmay help pave theway to solving

some of the open problems in thefield ofGaussian bosonic channels.
For example, the fundamentalmajorization-preservation property (33)may be a key element to solve the

broadcast communication capacity of phase-insensitive Gaussian bosonic channelsΦ, which is known to rely on
proving the conjecture that ( [ ]) ( [ ])r tF FS S for any input state ρ satisfying the entropy constraint

( )r =S S, where τ is the (Gaussian) thermal statewith the same entropy ( )t =S S [19]. Indeed, if all states were
always comparable undermajorization, a consequence of property (33)would be that the passive state at the
input r that gives the lowest output entropy necessarilymajorizes all other input statesσ, namely r s

implies [ ] [ ]r sF F , which in turn implies ( [ ]) ( [ ])r sF FS S . Then, using implication (35), wewould
know that r s

F . Next, from the energy order imposed by Fock-majorization (equation (5)), wewould
deduce that the optimal input state r satisfying the entropy constraint ( )r =S S should also haveminimum
energy. Since the thermal state τhas the lowest possible energy for a given entropy S, wewould conclude that
r t= , thereby proving the conjecture. Unfortunately,majorization is a preorder (instead of a full order)
relation, whichmeans that there exist pairs of incomparable states that neither satisfy r s nor s r. Hence,
the previous argument is not conclusive, despite providing further evidence of the conjecture being true. It also
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reflects that understanding the properties of states that are incomparable to the thermal state undermajorization
is a crucial step in solving the above conjecture.

For completeness, let usmention that our results can alsobe extended to the set of phase-conjugateGaussian
bosonic channels,which canbe expressed as a concatenationof a pure loss channelh and aquantum-limitedphase-

conjugate channel ̃G. The latter corresponds to the complementary channel of the quantum-limited amplifierG,
when it is representedusing its Stinespring dilation [23]. The interested reader is referred to appendixB.

Finally, wewould like to stress that all proofs in thiswork, except for lemmas 1 and2, are independent of the
specific nature of the system (i.e., the harmonic oscillatorHamiltonian for a bosonicmode). Therefore,we believe
that the application of Fock-majorization could be extended to other quantumsystems and arbitrary
Hamiltonians, yielding a general tool that could prove very useful in quantum information theory,more
specifically in quantum thermodynamics. As amatter of fact, Fock-majorization bears some similarity to a
relation called ‘upper-triangularmajorization’ that has been introduced in [24]. There, the authors show that
when two states obey such a relation, one canbe transformed into the other via a so-called ‘coolingmap’, resulting
from the coupling of the systemwith a zero-temperature reservoirwith an energy-conserving unitary. Instead,
Fock-majorization can be interpreted as a relation indicating the existence of a ‘heating’ or ‘amplifying’map
between the two states (it actually corresponds to a lower-triangularmajorization)2. Itmay thus be quite fruitful
to investigate the thermodynamical consequences of the existence of Fock-majorization, just as it was done for
upper-triangularmajorization in the context of coolingmaps. The lattermaps happen to be a special case of the
so-called ‘thermalmaps’, which result from the couplingwith afinite-temperature heat bath and are linked to
another type ofmajorization relation, called ‘thermo-majorization’ [25]. Since these various thermal operations
provide a suitablemodel in the study of thermodynamical processes formicroscopic systems,we anticipate that
our results on Fock-majorizationwillfind interesting applications in thefield of quantum thermodynamics.
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AppendixA. Proof of lemmas 1 and 2

Proof of Lemma1.The pure loss channel  of arbitrary transmittance exhibits a ladder of Fock-majorization
relations

[∣ ∣] [∣ ∣]  ñá + ñá + "k k k k k1 1 , 0.F



It is known that a similar relation holds when replacing Fock-majorizationwithmajorization [13]. Here, wewill
adapt this proof in order to derive a Fock-majorization relation.We have

[∣ ∣] ∣ ∣ ( )( ) ( ) år º ñá = ñá
=

k k r n n A.1k

n

k

n
k

0

where

( ) ( )( ) h h= - -⎜ ⎟⎛
⎝

⎞
⎠r

k

n
1 A.2n

k n k n

and η is the transmittance of channel .Majorizationwas proven in [13] based on the recurrence relation

( ) ( )( ) ( ) ( )  h h= + - " "+
-r r r k n1 , 0, 0, A.3n

k
n

k
n

k1
1

where thefirst term in the r.h.s. is taken equal to zero for n=0.We can rewrite it as

( ) ( )( ) ( ) ( ) ( )h- = -+
-r r r r , A.4n

k
n

k
n

k
n

k1
1

2
It can be checked that a quantum-limited amplified G acting on Fock-diagonal states gives rise to a Fock-majorization relation, while a

pure loss channel h acting on Fock-diagonal states gives rise to upper-triangularmajorization [16].
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Hence,

( )( ) ( ) ( ) å å h- =
= =

+r r r 0 A.5
i

n

i
k

i

n

i
k

n
k

0 0

1

which gives the Fock-majorization relation ( ) ( )r r +k k
F

1 in addition to themajorization relation ( ) ( )r r +k k 1

of [13].

Proof of Lemma2.The quantum-limited amplifier of arbitrary gain exhibits a ladder of Fock-majorization
relations

[∣ ∣] [∣ ∣]  ñá + ñá + "k k k k k1 1 , 0.F



Wealso use the relatedmajorization property for an amplifier as proven in [12].We have

[∣ ∣] ∣ ∣ ∣ ∣ ( )( ) ( ) ( ) å ås º ñá = + ñá + = ñá
=

¥

=

¥

-k k s n k n k s n n , A.6k

n
n

k

n k
n k

k

0

where

( ) ( )( ) =
+

- +⎜ ⎟⎛
⎝

⎞
⎠s

n k

n
t t1 , A.7n

k n k 1

and ( )=t rtanh2 is related to the gain ( )= -G t1 1 of amplifier, with r being the squeezing parameter.
Majorizationwas proven in [12] by using the recurrence relation

( ) ( )( ) ( ) ( )  = + - " "+
-
+s t s t s k n1 , 0, 0, A.8n

k
n

k
n

k1
1
1

where thefirst term in the r.h.s. is taken equal to zero for n=0.We can rewrite it as

( )( ) ( )( ) ( ) ( ) ( )- = - -+ +
-
+s s G s s1 . A.9n

k
n

k
n

k
n

k1 1
1
1

The differences between the cumulated sums of eigenvalues are given by

( ) ( )( )
( )

( ) ( ) ( )å å å- -
=

-
= +

- +
+

=
- -

+s s s s . A.10
i k

n

i k
k

i k

n

i k
k

i k

n

i k
k

i k
k

1
1

1 1

Using equation (A.9), we have

( ) ( )( )
( )

( ) ( ) å å- -
=

-
= +

- +
+

-
+s s G s1 0, A.11

i k

n

i k
k

i k

n

i k
k

n k
k

1
1

1 1

giving the Fock-majorization relation ( ) ( )s s +k k
F

1 in addition to themajorization relation ( ) ( )s s +k k 1 [12].

Appendix B.Majorization preservation for the phase-conjugate channel

Lemma3.The quantum-limited phase-conjugate channel ̃G of arbitrary gain G exhibits a ladder of Fock-
majorization relations

˜ [∣ ∣] ˜ [∣ ∣] ( )  ñá + ñá + "k k k k k1 1 , 0. B.1G GF



Proof of Lemma3.

Wehave

˜ [∣ ∣] ∣ ∣ ( )( ) ( ) åw º ñá = ñá
=

¥

k k s n n , B.2k

n
n

k

0

where the ( )sn
k are defined in equation (A.7). Note that the diagonal of [∣ ∣] ñák k in fact corresponds to the

diagonal of ˜ [∣ ∣] ñák k , shifted by an index k. The differences between the cumulated sums of eigenvalues are
given by

( ) ( )( ) ( ) ( ) å å- = -
= =

+ +s s G s1 0, B.3
i

n

i
k

i

n

i
k

n
k

0 0

1 1

wherewe used equation (A.9) again. This gives the Fock-majorization relation ( ) ( )w w +k k
F

1 .
Using lemma 3 togetherwith theorem 1,we obtain that the quantum-limited phase-conjugate channel ̃G,

whose adjoint is ( )-G1 1 times the quantum-limited phase-conjugate channel ˜ ( ) -G G 1 , is passive
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preserving. Since any phase-conjugate Gaussian bosonic channelΦ can be expressed as the concatenation of a
pure loss channel  and a quantum-limited phase-conjugate channel ̃, i.e., ˜ ◦ F = , and since passive-
preservation is transitive over channel composition, we deduce (following the reasoning of corollaries 1, 2 and 3)
that phase-conjugate Gaussian bosonic channels are passive preserving, Fock-majorization preserving, and
majorization-preserving over the set of passive states.
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