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The semi-device-independent approach provides a framework for prepare-
and-measure quantum protocols using devices whose behavior does not need to
be characterized or trusted, except for a single assumption on the dimension
of the Hilbert space characterizing the quantum carriers. Here, we propose
instead to constrain the quantum carriers through a bound on the mean value
of a well-chosen observable. This modified assumption is physically better
motivated than a dimension bound and closer to the description of actual
experiments. In particular, we consider quantum optical schemes where the
source emits quantum states described in an infinite-dimensional Fock space
and model our assumption as an upper bound on the average photon num-
ber in the emitted states. We characterize the set of correlations that may
be exhibited in the simplest possible scenario compatible with our new frame-
work, based on two energy-constrained state preparations and a two-outcome
measurement. Interestingly, we uncover the existence of quantum correlations
exceeding the set of classical correlations that can be produced by devices be-
having in a purely pre-determined fashion (possibly including shared random-
ness). This feature suggests immediate applications to certified randomness
generation. Along this line, we analyze the achievable correlations in several
prepare-and-measure optical schemes with a mean photon-number constraint
and demonstrate that they allow for the generation of certified randomness.
Our simplest optical scheme works by the on-off keying of an attenuated laser
source followed by photocounting. It opens the path to more sophisticated
energy-constrained semi-device-independent quantum cryptography protocols,
such as quantum key distribution.

1 Introduction
Understanding the nature and extent of correlations that distinct systems may display
is a central problem in many applications of quantum physics. In particular, it is an
essential stone for developing device-independent (DI) quantum information protocols [1–
7], where the correlations that are observed between separate quantum devices provide a
guarantee that the protocol performs as expected. This guarantee follows independently
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of any assumptions on the local behavior of the quantum devices, hence its name, but it
must necessarily rely on some specific constraints on the information that they exchange.
Indeed, if arbitrary, unlimited communication is allowed between the devices, any kind of
correlations can be generated, even in a scenario restricted to classical physics.

In the standard DI framework based on Bell non-locality [8], the constraint on com-
munication is maximal: the separate devices are not allowed to communicate any type
of information, neither classical nor quantum. This no-communication constraint has the
conceptual advantage of having a clear physical and operational significance. In particular,
it is in principle possible to enforce it without knowledge of the internal behavior of the
devices, i.e., by adequate shielding or space-like separation of the devices. However, the
generation of useful, non-classical correlations in the absence of quantum communication
must then necessarily rely on (loophole-free) entanglement, which presently represents a
serious obstacle to practical DI applications.

This difficulty has motivated the development of an alternative framework for DI ap-
plications, which is inspired by the traditional prepare-and-measure implementation of
quantum key distribution and where communication is allowed between the quantum de-
vices. As noted above, a constraint, though, must be put on this communication and it is
usually formulated as a bound on the Hilbert space dimension of the exchanged quantum
messages [9–11]. With such a constraint, useful non-classical correlations can already be
generated by restricting the communication to qubits or qutrits in a purely prepare-and-
measure scenario, without the need of entanglement, which provides a clear advantage from
the implementation point of view. Several protocols for randomness generation (RNG)
[12] and quantum key distribution (QKD) [13, 14] have been introduced within this frame-
work, which is usually referred to as “semi-device-independent” (semi-DI). The downside,
however, is that the dimension assumption, even if it represents a convenient abstraction
for a theorist, is only an idealization. Carriers of quantum information, such as photons,
live in an infinite Hilbert space, and assuming that information is encoded in only a few
degrees of freedom is not justified without some intricate characterization of the devices
(hence the terminology “semi device independent”).

In this paper, we propose a physically better motivated approach for constraining the
exchanged quantum messages in a semi-DI framework. We express the restriction on
the exchanged states in terms of the mean values of some well-chosen observable, such
as the energy. As a simple example, consider the case where the Hilbert space carrying
the quantum messages is the Fock space of several quantum optical modes. This is the
appropriate space to describe quantum optics experiments, including those demonstrating
results based on dimension bounds, in which attenuated laser sources [15] or non-ideal
heralded photon sources [12, 16] are used. In this context, the emitted states can in
principle occupy an infinite-dimensional space so that, instead of putting a limit on the
dimension, it is much more natural to constrain the average number of photons. The
corresponding observable would then be the photon-number operator, which has a clear
physical significance. Alternatively, we could constrain the energy contained in one or
more frequency modes containing the quantum message, as the two are closely related.
This is thus a natural substitute for the dimension of a finite Hilbert space. Moreover,
designing devices in such a way that the average photon number does not exceed a given
threshold or verifying experimentally that it does not exceed such a threshold will typically
require a less detailed modeling of the devices than would be needed to verify, e.g., that
the emitted states span a Hilbert space of a given dimension.

A prerequisite for the development of any DI or semi-DI protocol is to examine the
set of correlations that are available under the assumptions considered. Much work has
been done specifically on this question in the standard settings based on non-locality
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x ∈ {1, . . . , k} y ∈ {1, . . . , l}

b ∈ {1, . . . , d}

ρx

Figure 1: A general prepare-and-measure scenario. Source (S) emits one of k states ρx depending on
an input x ∈ {1, . . . , k}. A measurement device (M) performs one of l measurements on the state
received, depending on an input y ∈ {1, . . . , l}, and registers an outcome b ∈ {1, . . . , d}. The behaviors
of S and M are not characterized and could even depend on shared hidden parameters λ. But we trust
that the prepared states satisfy constraints that are expressed in term of the expectations tr[Hρx] of
some given Hermitian operator H.

and dimension bounds, see e.g. [8, 17–22] and [9–11, 23, 24]. Here, we fully characterize
analytically the set of available correlations in the simplest scenario compatible with our
general framework. This uncovers interesting features suggesting immediate applications
to randomness generation, which will be fully developed in a forthcoming publication [25].

In Section 2, we introduce the general framework of semi-DI prepare-and-measure
scenarios and modify it to account for a physical constraint (mean value of an observable)
instead of a dimension bound. We define a simple setting with two state preparations
and a single measurement with binary outcomes, which suffices to produce a separation
between the quantum and classical correlations, and subsequently suggest a few simple
potential implementations using currently accessible quantum optics technology. The
quantum region (i.e., the set of available quantum correlations) is analyzed in Sections 3
and 4, while the classical region (i.e., the set of available correlations arising from a mixture
of classical deterministic behaviors) is studied in Section 5. Then, in Section 6, with an
eye toward the application to certified random number generation, we characterize an
intermediate deterministic region; correlations outside of this region are those for which
randomness can be certified for a specified input. We also show that correlations outside
this intermediate region are achievable with simple optical implementations. Finally, we
conclude in Section 7 and discuss other possible applications.

2 Semi-DI setting with a physical constraint
2.1 Definition of the general model
Let us first remind the general framework of semi-DI prepare-and-measure scenarios. As
depicted in Fig. 1, a source S is linked through a quantum channel to a measurement device
M. On the source S, an input x ∈ {1, . . . , k} can be selected, resulting in the emission of an
unknown quantum state ρx. The state is then measured by M, according to a measurement
selected through an input y ∈ {1, . . . , l}, and yields an outcome b ∈ {1, . . . , d}. This later
process is characterized by a set of unknown measurement operators {Mb|y}.

To an external observer that has access only to the inputs and output of S and M, the
joint behavior of the two devices is completely characterized by the probabilities

P (b|y, x) = tr[Mb|y ρx] . (1)

More generally, the behavior of the two devices could be correlated through dependence
on an additional hidden random parameter λ shared between the devices, in which case
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the probabilities take the more general form

P (b|y, x) =
∑
λ

pλ tr
[
Mλ
b|y ρ

λ
x

]
. (2)

In the semi-DI approach, no detailed assumptions are made on the states and mea-
surements underlying the correlations P (b|y, x), except for a specific constraint on the
messages ρx. Here, we propose to express such a constraint in terms of an observable H,
describing a physical property of the emitted states ρx that we trust or on which we have
control (more generally, one could introduce several such observables). A restriction on
the quantum messages ρx can then be formulated as a constraint on the corresponding
mean values Hx = tr[Hρx] of this observable.

Note that contrarily to the states ρx and measurement operators Mb|y, which are a
priori unspecified and unknown, the observable H must be well defined. It is also implicit
that it should be defined on some given (possibly infinite) Hilbert space H describing the
physics of the quantum systems emitted by S. Thus, one should also assume that ρx is
defined on H.

This general formulation encompasses the usual dimension assumption, for instance,
by defining H as the projector onto a qudit subspace of H and requiring Hx = 1 for all x.
Expressing the dimension assumption in this form has the merit of making explicit that
the message qudits live in a subspace of a larger Hilbert space H, which in practice must
also be properly defined and characterized if one wants to make sure that information is
propagating in the relevant subspace and not in possible additional degrees of freedom,
which in a cryptographic protocol could be exploited by an eavesdropper (side channels).

As stated in the introduction, the main interest of our more general formulation,
however, is that it can be used to model communication constraints that are more natural
and better motivated physically than the usual dimension bounds. A particular example
is the case where H is the photon-number operator of a quantum optical system.

With this application in mind, we will consider in this work two types of constraints on
the mean values ofH. The first, which we denote the max-average assumption, corresponds
to assuming upper bounds

Hx = tr[Hρx] =
∑
λ

pλ tr[Hρλx] ≤ ωx , ∀x (3)

on the mean values Hx for given thresholds ωx. For instance, if H is the photon-number
operator, we may trust that for all states ρx emitted by the source, the mean photon
numbers Hx are below some threshold, though we may not know what the actual photon
number is.

In the case where the states emitted by S vary from run to run according to some
random parameter λ, the max-average assumption only bounds the mean value Hx av-
eraged over all possible values of λ. But it does not constrain the maximum values of
Hx|λ = tr[Hρλx], which could in principle be arbitrarily high. It is therefore natural to in-
troduce another (stronger) assumption, which we call the max-peak assumption, according
to which

max
λ

Hx|λ = max
λ

tr[Hρλx] ≤ ωx , ∀x . (4)

Note that if H is, e.g., the photon-number operator, this second condition still allows
for fluctuations in the photon number within each state ρλx and does not correspond to a
truncation of the Fock space, as the constraint only imposes a bound on the mean values
tr[Hρλx] of H for every ρλx. In particular, the states ρλx could have a non-zero amplitude in
any of the number-basis states.
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x ∈ {1, 2}

b ∈ {±1}

ρx

Figure 2: The prepare-and-measure scenario considered here, a special case of Fig. 1.

These two possible physically-motivated constraints on the communicated quantum
messages will be analyzed on specific examples later on. The max-average assumption
has the advantage that it could in principle be verified “from the outside” by performing
tests on the average emitted states ρx without any knowledge of the internal behavior
of the source. Verifying that the max-peak assumption is satisfied, on the other hand,
would typically rely on some modeling of the source. Its main advantage is that it is more
constraining and thus can certify useful properties that wouldn’t be certified using the
average-peak assumption (see examples in Sections 5 and 6).

2.2 The simplest setting: two inputs and two outputs
In the rest of this paper, we consider the simple situation where the source S has two
possible inputs x ∈ {1, 2} and the measurement device M has no input (i.e., y ∈ {1})
and two possible outputs, which we denote b ∈ {±1} for convenience, see Fig. 2. Note
that this corresponds to the simplest non-trivial prepare-and-measure scenario. Indeed,
M must obviously output at least two different possible values, and S must have at least
two different preparation choices, otherwise no quantum messages are needed and any
observed behavior can be classically simulated by S and M.

This prepare-and-measure scenario is simpler than any possible scenario based on a
dimension bound, for which one must have at least three choices on the source, i.e.,
x ∈ {1, 2, 3}, and any measurement device outputting a single bit b ∈ {±1} should have at
least two inputs, i.e., y ∈ {1, 2}. Indeed, since the smallest dimension bound corresponds
to one qubit, the channel connecting S to M always has a capacity of at least 1 bit under a
dimension assumption. This implies that the number of inputs on S should be larger than
two, because otherwise the input x can be encoded perfectly in the channel and transmitted
to M, who knowing x can now generate an output b compatible with any probability
distribution p(b|x, y). There should also be a number of binary measurements greater
than one, because otherwise S could locally choose a value b ∈ {±1} compatible with any
probability distribution p(b|x) and simply send that value b to M through the channel.
Strikingly, such strategies are not available under the assumptions that we consider here,
since, as we will see, they constrain the classical channel capacity to be sub-unity by
forcing the two emitted states ρ1 and ρ2 to have some non-zero overlap.

In our scenario, the joint behavior of S and M is thus characterized by the four proba-
bilities P (b|x) = tr[Mb ρx] where x = 1, 2 and b = ±1. It will be convenient to work with
the equivalent representation

Ex = tr[Mρx] (x = 1, 2) , (5)

where Ex = P (+1|x)−P (−1|x) is the expectation value of the observableM = M+1−M−1,
with −1 ≤ M ≤ 1. The value of Ex characterizes the bias of the output b toward +1 or
−1 for a given input x. We refer in the following to the quantities Ex as “correlations” as
they represent how the output of M is correlated to the input of S. For instance if E1 = 1
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and E2 = −1, the output of M is completely correlated to the input of S. More precisely,
the presence of correlations is actually reflected by the fact that |E−| = |E1 −E2| > 0. In
particular, a value |E−| > 0 implies that the measurement device M can (at least partly)
distinguish the two states ρ1 and ρ2. We will see further below that the quantity E− plays
a special role in our analysis, analogous to a Bell expression in the context of non-locality.

Having defined the general behavior of S and M, we now specify the properties of the
observable H that we use to model our assumptions on the quantum messages. As noted
above, in our scenario the two states ρ1, ρ2 should have a non-zero overlap, otherwise
they could encode faithfully the two values x = 1, 2 and our entire problem would become
trivial. One simple possibility for satisfying this condition in an optical system is simply
to have both states ρ1, ρ2 sufficiently close to the vacuum state |0〉. In a multimode
system with a discrete and finite number of possible mode frequencies ω, this amounts
to upper bounding the expectation values of the photon-number operator H =

∑
ω a
†
ωaω

or the energy operator H =
∑
ω ~ω a†ωaω. Alternatively, one could directly bound the

weight of the non-vacuum component, i.e., the expected value of the non-vacuum projector
H = 1−|0〉〈0|. More generally, the condition that ρ1, ρ2 have a non-zero overlap is satisfied
if they are both close to some given reference state |φ〉〈φ|, i.e., if the expectation values
Hx of the observable H = 1− |φ〉〈φ| are below some sufficiently small thresholds.

Formally, all the above examples correspond to constraints on the expected values of
an observable H satisfying the two following conditions:

1. H has a non-degenerate ground state,

2. H has a finite gap.

The results that we will derive below apply to any observable H satisfying these two
conditions, independently of their physical meaning. Without loss of generality, we can
assume (if necessary by rescaling H) that the ground state eigenvalue is 0 and the gap
is 1. In the following, we let |0〉 denote the ground state of H.

Before characterizing, in Sections 3 and 4, the set of possible correlations Ex between
S and M in terms of the constrained mean values Hx of such observables H, we briefly de-
scribe for concreteness some standard optical circuit implementations that can be analyzed
in our framework.

2.3 Examples of optical circuits
2.3.1 Binary Phase-Shift Keying (BPSK)

Our first optical implementation corresponds to the Binary Phase-Shift Keying (BPSK)
scheme and is illustrated in Fig. 3(a). We consider a single optical mode described over
the phase space (X,P ) of the two quadratures of light ([X,P ] = i

2). Depending on x, the
source prepares one of two coherent states |φ1〉 = |ξ〉 or |φ2〉 = |−ξ〉, where ξ is a small
positive real parameter, so that both states are close to the vacuum |0〉. Although these
two states have a non-zero overlap e−2|ξ|2 , it is possible to partly distinguish them by
performing a homodyne measurement of the quadrature X. In particular if we define the
output of the measurement device M as b = sign(X), then a straightforward calculation
gives

E1 = erf(
√

2ξ) , E2 = − erf(
√

2ξ) , (6)

i.e., we observe a correlation between the sign of b and the input x whose strength depends
on the value ξ.
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Laser OD φ

−

S M

x

0, π

b

QS

LO

(a) BPSK implementation. The source (S) consists of a laser that produces a coherent pulse which
is sent through an unbalanced beam splitter. The intense reflected beam is sent to the measurement
device (M) as a phase reference, i.e., local oscillator (LO); the transmitted beam is highly attenuated
at an optical density (OD) and phase shifted by 0 or π depending on x at a phase shifter. This is the
quantum signal (QS) sent to M. M then performs a homodyne measurement on QS: the two beams
interfere on a balanced beam splitter and two photodiodes measure the intensities of the resulting
beams. The difference of the two intensities is proportional to the quadrature X of the quantum signal.
Finally, M outputs the sign of X. Note that the LO does not depend on the input x and can be modeled
as shared randomness.

Laser OD Att

x

ξ ± ε

b
QS

S M

(b) 2ASK implementation. The source (S) consists of a laser that produces a coherent pulse, which
is, at first, highly attenuated at an optical density (OD), and then sent through a variable attenuator
(Att), so that, depending on x, the amplitude of the resulting coherent states is ξ ± ε. This is the
quantum signal (QS) sent to the measurement device (M). M is a single-photon detector that outputs
b = +1 if it clicks, and b = −1 otherwise.

Laser OD Shutter

x

b

S M

QS

(c) OOK implementation. The source (S) consists of a laser that produces a coherent pulse, which is, at
first, highly attenuated at an optical density (OD). A controllable shutter then transmits or blocks the
beam depending on the value of x. The measurement device is a single-photon detector that outputs
b = +1 if it clicks, and b = −1 otherwise. Alternatively to the use of a shutter, the laser can simply be
turned on and off depending on x.

Figure 3: Three experimental implementation propositions.
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A semi-DI analysis for this setup (see Sections 5 and 6) is possible based only on the
assumption that the source emits optical systems with low mean photon number (choosing
H =

∑
ω a
†
ωaω) or small non-vacuum component (choosing H = 1− |0〉〈0|). The coherent

states |±ξ〉 have a mean photon number |ξ|2 and non-vacuum component 1−e−|ξ|2 , where
the mean photon number is larger than the non-vacuum component: |ξ|2 > 1−e−|ξ|2 . Thus
for given ξ, one can impose more constraining bounds if one defines H as the non-vacuum
projector rather than the photon-number operator and we will thus make the former choice
in the following. The difference between 1 − e−|ξ|2 and |ξ|2, though, is negligible when ξ
is small and this choice does not fundamentally affect our results. When performing the
semi-DI analysis of the above setup, we will thus take H = 1 − |0〉〈0| and upper bound
the expectation values of this operator through the max-average assumption (3) or the
max-peak assumption (4) using thresholds

ω1 = ω2 = 1− e−|ξ|2 . (7)

Note that in the implementation illustrated in Fig. 3(a), in addition to the quantum
states |φx〉, the source also emits an intense reference laser beam that serves as a local
oscillator to define the phase of these states. This local oscillator can, however, be modeled
as shared randomness (for instance it could exit the source S before the input x is cho-
sen). Alternatively, one could also consider more involved implementations where a phase
synchronization between S and M can be achieved without the need for the transmission
of a local oscillator signal between S and M [26].

2.3.2 2-level Amplitude-Shift Keying (2ASK)

Our second example corresponds to the 2-level Amplitude-Shift Keying (2ASK) scheme
and is illustrated in Fig. 3(b). The source emits the two coherent states |φ1〉 = |ξ + ε〉 or
|φ2〉 = |ξ − ε〉, where ξ and ε are two real, positive parameters. The measurement device
is a photodetector that outputs b = −1 if no photon is detected and b = +1 if at least one
photon has been detected. This setup generates the correlations

E1 = 1− 2e−(ξ+ε)2
, E2 = 1− 2e−(ξ−ε)2

. (8)

Suitable choices for ξ and ε can easily be found so that |E1 − E2| > 0, i.e., such that the
output of M and the input of S are correlated.

In this second example, the two states |φ1〉 = |ξ + ε〉 and |φ2〉 = |ξ − ε〉 are not
necessarily close to the vacuum if ξ is large, but they are close to the intermediate state
|ξ〉. We thus define for the purpose of the semi-DI analysis of this setup (see Sections 5
and 6) the observable H as H = 1 − |ξ〉〈ξ|, which measures the proximity of the states
|φx〉 to the reference state |ξ〉. Specifically, we have 〈φx|H|φx〉 = 1−e−ε2 ' ε2 for x = 1, 2.
Thus we will constrain the expected values of H using thresholds

ω1 = ω2 = 1− e−ε2 . (9)

Note that, contrarily to the previous example, such an assumption on the expectation
values of H may actually require a more detailed characterization of the source. First,
the observable does not correspond to a natural property, like the energy, and, second, an
experimental verification of the assumption would require a displacement operation with
a beam that is coherent with the quantum message followed by a photon number mea-
surement. It is thus probably not the most natural in a semi-DI setting. We nevertheless
include this example to stress that our formulation can be adapted to different constraints
on the source.
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2.3.3 On-Off Keying (OOK)

Our final example corresponds to the On-Off Keying (OOK) scheme and is illustrated in
Fig. 3(c). When x = 1, the source emits a coherent state |ξ〉 where |ξ|2 is small, and when
x = 2 it emits the vacuum state |0〉. The measurement performed at M corresponds, as
in the previous example, to a photodetector that outputs b = −1 if no photon is detected
and b = +1 if at least one photon has been detected. This yields

E1 = 1− 2e−|ξ|2 ' −1 + 2|ξ|2 , E2 = −1 . (10)

That is, when x = 2 one obviously observes the result b = −1 with certainty, while when
x = 1, there is a non-zero probability 1 − e−|ξ|2 ' |ξ|2 to obtain the outcome b = +1.
The measurement performed at M can thus be interpreted as a partial unambiguous
discrimination of the two states ρ1, ρ2 in the sense that when we find b = +1, we are sure
that the state sent was ρ1, but we cannot conclude anything definite when b = −1.

As in the first example, the semi-DI analysis for this setup (see Sections 5 and 6) will
only rely on the assumption that the source emits optical systems with low non-vacuum
component, i.e., we use H = 1−|0〉〈0|. The non-vacuum component is 1− e−|ξ|2 for x = 1
and 0 for x = 2 and we will thus use the thresholds

ω1 = 1− e−|ξ|2 , ω2 = 0 . (11)

Note that contrarily to the two above examples, here we bound differently the expectation
values of H in the case x = 1 and x = 2 since the implementation is not symmetric with
respect to the two situations. Alternatively to bounding the non-vacuum component, we
could use the mean photon number, but the difference would be negligible when ξ is small
and making one choice or the other does not fundamentally affect our results.

3 Pure-state quantum correlations
As we have explained earlier, a prerequisite for the development of any DI or semi-DI
protocol is to examine the set of correlations that are available under the assumptions
considered. One of our objectives is thus to characterize the most general set of quan-
tum correlations (E1, E2) compatible with arbitrary implementations of our prepare-and-
measure scenario.

In general, the source S and the measurement device M could behave in a way de-
pending on shared random parameters λ. As a first step, it is useful to consider the
case where the devices do not exploit such shared randomness and where in addition the
source S emits pure states φ1, φ2. In Section 4, we will relax these conditions and consider
completely general implementations.

Let us therefore define the set of pure-state correlations as

QH1,H2 =
{
(E1, E2)

∣∣ Ex = tr[Mφx], Hx = tr[Hφx] for x = 1, 2
}
, (12)

that is, the set of possible values (E1, E2) that are attainable with arbitrary pure states
φx = |φx〉〈φx| and an arbitrary measurement operator M satisfying −1 ≤ M ≤ 1, and
which are compatible with given expectation values (H1, H2) for an observable H with non-
degenerate ground state, lowest eigenvalue 0, and finite gap 1. To simplify the notation,
we will often write Q for QH1,H2 with the implicit understanding that the values (H1, H2)
are fixed.

A first observation is that if H1 + H2 = 1 then any correlations (E1, E2) satisfying
the trivial constraints |Ex| ≤ 1 belong to Q. Indeed, let |0〉 be the ground state of H
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and |1〉 an eigenstate with eigenvalue 1. Clearly, H1 + H2 = tr[H(φ1 + φ2)] = 1 can be
obtained for any two orthogonal states |φ1〉 and |φ2〉 in the space spanned by |0〉 and |1〉.
Therefore, one cannot exclude that S emits two orthogonal pure states φ1 and φ2. But in
this case, they can encode faithfully the two values x = 1, 2 and any correlations (E1, E2)
are possible, for instance by setting M to M = E1φ1 + E2φ2.

However, if H1 + H2 < 1, then intuitively H1 and H2 are both small and both close
to the non-degenerate ground state |0〉 of H. Thus they should have a non-zero overlap
which will restrict the set of possible correlations (E1, E2). This intuition is made precise
by the following result.

For H1, H2 ≥ 0 and H1 + H2 ≤ 1, the set QH1,H2 consists of the values (E1, E2)
satisfying |Ex| ≤ 1 and

g(E1, E2) ≥ h(H1, H2) , (13)

where

g(E1, E2) = 1
2
(√

1 + E1
√

1 + E2 +
√

1− E1
√

1− E2
)
, (14)

h(H1, H2) =
√

1−H1
√

1−H2 −
√
H1
√
H2 . (15)

The trivial constraints |Ex| ≤ 1 follow immediately from the definition of these quanti-
ties, so we only need to establish (13). We do this in two steps. First of all, given two pure
states φ1, φ2, the set of correlations (E1, E2) =

(
tr[Mφ1], tr[Mφ2]

)
that can be obtained

using an arbitrary measurement M obviously only depends on the scalar product
∣∣〈φ1|φ2〉

∣∣.
We show in Subsection 3.1 that this set is completely characterized by the constraint

g(E1, E2) ≥
∣∣〈φ1|φ2〉

∣∣ . (16)

We then show in Subsection 3.2 that the parameters H1, H2 imply a tight lower bound
on the scalar product, ∣∣〈φ1|φ2〉

∣∣ ≥ h(H1, H2) . (17)

Combining these two bounds we obtain the relation g(E1, E2) ≥ h(H1, H2) in (13).
Note that we characterize the set Q only for values of H1, H2 such that H1 +H2 ≤ 1.

Indeed, in the next sections we are going to use pure-state correlations in Q as building
blocks for more general sets of correlations but under the assumption that the possible
expectation values Hx of the observable H are upper bounded by some given thresholds
ωx, as in (3) and (4). But since any correlations (E1, E2) are already possible in the case
H1 + H2 = 1, as we pointed out above, there is obviously no advantage in considering
larger values H1 +H2 > 1 to comply with the assumed thresholds. From now on, we thus
always consider that H1 +H2 ≤ 1 (and similarly that ω1 + ω2 ≤ 1 in bounds of the type
(3) and (4)).

3.1 Characterization of the possible correlations (E1, E2) for pure states as a function
of their scalar product

∣∣∣〈φ1|φ2〉
∣∣∣

Since |Ex| ≤ 1, the region of possible values (E1, E2) is obviously contained in the square
[−1, 1]× [−1, 1]. We now show how a promise on the scalar product

∣∣〈φ1|φ2〉
∣∣ = γ further

constrains the possible values of (E1, E2).
The parameter γ satisfies 0 ≤ γ ≤ 1. The two extreme cases are readily solved. When

γ =
∣∣〈φ1|φ2〉

∣∣ = 1, the two states are indistinguishable and the measurement statistics
must necessarily yield E1 = E2. When γ = 0, the two states are orthogonal and thus
can perfectly encode the value of the input x. In particular, we can attain any value
(E1, E2) ∈ [−1, 1]× [−1, 1] by setting M to M = E1φ1 + E2φ2. These two situations can
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be summarized by the relation g(E1, E2) ≥ γ, which implies E1 = E2 when γ = 1 and
which does not put any restriction on (E1, E2) when γ = 0 since g(E1, E2) ≥ 0 is always
satisfied for |Ex| ≤ 1.

Let us now assume 0 < γ < 1. Obviously, we can restrict our analysis to the two-
dimensional subspace spanned by φ1 and φ2. In that subspace, we can rewrite the states
as qubit operators φx = (1+nx ·σ)/2, where σ = (σ1, σ2, σ3) are the Pauli matrices and
‖nx‖ = 1. Then, a general measurement M in that subspace can be written as a convex
combination (p0−p1)1+p2m ·σ, where pi ≥ 0,

∑
i pi = 1, ‖m‖ = 1, and m can be taken

in the span of {n1,n2} without loss of generality. The resulting correlations correspond
to the mixture

(E1, E2) = p0(1, 1) + p1(−1,−1) + p2(n1 ·m,n2 ·m). (18)

In other words, the region of allowed (E1, E2) is the convex hull of the points{
(1, 1), (−1,−1), (n1 ·m,n2 ·m)

}
(19)

Let us characterize further the points (E1, E2) = (n1 ·m,n2 ·m). Since m lies in the
span of n1, n2 and since (n1 +n2) · (n1−n2) = 0, we can write without loss of generality

m = cos(θ) n1 + n2
‖n1 + n2‖

+ sin(θ) n1 − n2
‖n1 − n2‖

. (20)

Using this formulation together with ‖n1 +n2‖ = 2γ and ‖n1−n2‖ = 2
√

1− γ2, we find

E1 + E2
2γ = n1 + n2

‖n1 + n2‖
·m = cos(θ) , (21)

E1 − E2

2
√

1− γ2 = n1 − n2
‖n1 − n2‖

·m = sin(θ) . (22)

We thus find that the set of points (E1, E2) = (n1 ·m,n2 ·m) for a given γ corresponds
to the ellipse (

E+
2γ

)2
+
(

E−

2
√

1− γ2

)2
= 1 , (23)

where we have defined E± = E1 ± E2. The region of allowed (E1, E2) for an arbitrary
measurement M is therefore the convex hull of (1, 1), (−1,−1), and any points on this
ellipse, as represented in Fig. 4.

We can represent this region in a compact way as the condition g(E1, E2) ≥ γ. Indeed,
first note that the ellipse (23) intersects the borders of [−1, 1]× [−1, 1] at the two points
(E1, E2) ∈

{
(2γ2−1, 1), (−1, 1−2γ2)

}
in the region above the E+-axis and at the two points{

(1−2γ2,−1), (1, 2γ2−1)
}

in the region below the E+-axis, as represented in Fig. 4. These
two pairs of points define two arcs of ellipses, as illustrated in Fig. 4. After some basic
algebra (corresponding to writing (23) explicitly in terms of E1, E2), one finds that these
two arcs of ellipses correspond to the values of (E1, E2) which solve g(E1, E2) = γ. It is
not difficult to observe that any point in the convex hull of (1, 1), (−1,−1), and the ellipse
(23) also belongs to the arcs of a second ellipse satisfying g(E1, E2) = γ̃ ≥ γ. Indeed, by
increasing γ̃, the four intersection points defined above move towards the corners (−1,−1)
and (1, 1), which they reach when γ̃ = 1 and the ellipse becomes the line segment between
the points (1, 1) and (−1,−1). Therefore, as γ̃ increases, the two corresponding arcs of
ellipses stretch and move over the entire convex region for (E1, E2) defined above. We
deduce that this convex region is given by the values of (E1, E2) satisfying g(E1, E2) ≥ γ.

In summary, we have established that the set of correlations (E1, E2) that can be
obtained by measuring two pure states with given scalar product γ =

∣∣〈φ1|φ2〉
∣∣ is given by
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(2γ2 − 1,+1)

(+1, 2γ2 − 1)

(1 − 2γ2,−1)

(−1, 1 − 2γ2)

E+

E−

E1

E2

Figure 4: Representation of the ellipse (23) in the space (E1, E2), depicted here for γ = 0.82. The
region of physically possible (E1, E2) corresponds to the convex hull of this ellipse with the two corner
points (1, 1) and (−1,−1). The ellipse intersects the borders of the region [−1, 1]× [−1, 1] at the four
depicted points. This defines two arcs of ellipses, corresponding to the portions of the ellipse represented
in bold, and given by the solutions to g(E1, E2) = γ. The set of physically possible (E1, E2) then
corresponds to the subset of [−1, 1]× [−1, 1] lying between these two arcs of ellipses. This corresponds
to the region g(E1, E2) ≥ γ.

−1 0 1
−1

0

1

E1

E2

γ2 = 0.3

γ2 = 0.6

γ2 = 0.9

γ2 = 1

Figure 5: Region of possible values (E1, E2) satisfying g(E1, E2) ≥ γ for γ = 0.55, 0.77, 0.95, 1.
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g(E1, E2) ≥ γ, i.e., (16). The corresponding regions for different values of
∣∣〈φ1|φ2〉

∣∣ = γ
are represented in Fig. 5. Note that the regions strictly grow when the scalar product
γ decreases, starting from the line segment E1 = E2 when γ = 1 (corresponding to
two indistinguishable states), to the full square when γ = 0 (corresponding to two fully
orthogonal states).

3.2 Lower bound on the scalar product
∣∣∣〈φ1|φ2〉

∣∣∣ as a function of expectation values
(H1, H2)
We have just seen that the region of possible correlations (E1, E2) attainable with pure
states only depends on their scalar product through (16). We now show that the parame-
ters (H1, H2) constrain the possible values of this scalar product through the lower bound∣∣〈φ1|φ2〉

∣∣ ≥ h(H1, H2) where h(H1, H2) is defined in (15). Intuitively if H1 and H2 are
small, both states φ1 and φ2 are close to the non-degenerate ground state |0〉 of H and
thus they should have a non-zero overlap. This is what (15) makes precise.

Let us first show that for any values of (H1, H2) it is indeed possible to find two states
φ1, φ2 such that their scalar product satisfies

∣∣〈φ1|φ2〉
∣∣ = h(H1, H2). This implies that any

point (E1, E2) satisfying (13) can indeed be realized in our prepare-and-measure scenario.
For this, simply note that any H1 and H2 satisfying H1, H2 ≥ 0 and H1 +H2 ≤ 1 can

be expressed as Hx = sin(θx)2 for some suitable θx ∈ [0, π/2]. Computing h(H1, H2), we
find h(H1, H2) = cos(θ1 + θ2). Define the two states

|φ1〉 = cos(θ1)|0〉+ sin(θ1)|1〉 , (24)

|φ2〉 = cos(θ2)|0〉 − sin(θ2)|1〉 . (25)

Then, their scalar product satisfies
∣∣〈φ1|φ2〉

∣∣ = cos(θ1 + θ2) = h(H1, H2), as required.
Let us now show that the scalar product between φ1, φ2 cannot be smaller than the

value given by (15). This implies that no correlations outside the region defined by (13)
can be obtained by measuring pure states in our scenario.

For this, let βx = 1−〈0|φx|0〉 be the weight of the state φx in the subspace orthogonal to
the groundstate |0〉 of H. We have that βx ≤ Hx since Hx = tr[Hφx] =

∑
i>0 λi tr[Piφx] ≥∑

i>0 tr[Piφx] = 1 − tr[P0φx] = βx, where λi and Pi denote the eigenvalues of H and the
corresponding projectors, with λ0 = 0 and λi ≥ 1 for i > 0. Writing

|φx〉 =
√

1− βx|0〉+
√
βx|ξx〉 , (26)

where |ξx〉 is in the subspace orthogonal to |0〉, we have that

|〈φ1|φ2〉| =
∣∣√1− β1

√
1− β2 +

√
β1
√
β2〈ξ1|ξ2〉

∣∣
≥
∣∣√1− β1

√
1− β2 −

√
β1
√
β2
∣∣

=
√

1− β1
√

1− β2 −
√
β1
√
β2

= h(β1, β2) , (27)

where in the second line we used that the right hand-side is minimized when 〈ξ1|ξ2〉 = −1
and in the last line we used that h(β1, β2) is positive when β1 + β2 ≤ 1, which is the case
since H1 + H2 ≤ 1 and βx ≤ Hx. Now, given that the function h(x, y) is non-decreasing
in x and y in the region x+ y ≤ 1, we have that h(β1, β2) ≥ h(H1, H2), which gives (15).
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4 General quantum correlations
4.1 Shared randomness
Let us now turn to the general case where S and M can exploit shared random parameters
λ. This includes in particular the case where the source S can emit mixed states since any
mixed state ρx can be viewed as a convex decomposition ρx =

∑
λ pλφ

λ
x of pure states. Let

Q′H1,H2 =
{
E =

∑
λ

pλEλ

∣∣ Eλ ∈ QHλ
,
∑
λ

pλHλ = H
}
, (28)

be the set of possible quantum correlations (E1, E2) compatible with given expectation
values (H1, H2) in the presence of shared randomness, where we write E = (E1, E2)
for the correlations averaged over the shared randomness λ, Eλ = (E1|λ, E2|λ) for the
correlations corresponding to a specific value of the shared randomness, and similarly
for H and Hλ. The set Q′ (as in the previous section we drop the subindices H1, H2
to simplify the notation) thus corresponds to convex sums E =

∑
λ pλEλ of pure-state

quantum realizations, each of which is characterized by expectation valuesHλ. The values
Eλ must thus belong to QHλ

and we require in addition that we recover on average the
given expectations H:

∑
λ pλHλ = H.

We now show that
Q′H1,H2 = QH1,H2 , (29)

i.e., the set of pure-state correlations is closed under shared-randomness. Interestingly,
the same property is also shared by pure-state quantum correlations in the context of
Bell non-locality, but is not true in the context of semi-DI scenarios based on dimension
bounds.

Since obviously Q′ ⊇ Q, we need only prove that Q′ ⊆ Q, i.e., that given any mixture
E =

∑
λ pλEλ of pure-state correlations with average expectations H =

∑
λ pλHλ, then

the exact same correlations E can be obtained through a single pure-state quantum real-
ization with expectation values H. This simply amounts to showing that g(E) ≥ h(H)
since this condition fully characterizes the set of pure-state quantum correlations, or equiv-
alently that g(E)2 − h(H)2 ≥ 0 since the functions g and h are positive in the domain
H1 + H2 ≤ 1. We establish this by showing that g2 and −h2 are concave. Indeed, if this
is the case we have

g(E)2 − h(H)2 = g
(∑

λ pλEλ

)2 − h(∑λ pλHλ

)2
≥
∑
λ

pλg(Eλ)2 −
∑
λ

pλh(Hλ)2

=
∑
λ

pλ
(
g(Eλ)2 − h(Hλ)2)

≥ 0 (30)

where we used the concavity of g2 and −h2 in the first inequality and the condition
g(Eλ)2−h(Hλ)2 ≥ 0 for each λ in the second inequality, since by assumption Eλ ∈ QHλ

.
Note that both g2 and −h2 can be written in term of the function

f(x, y) =
(√

xy +
√

(1− x)(1− y)
)2

(31)

as g(E1, E2)2 = f
(1+E1

2 , 1+E2
2
)

and −h(H1, H2)2 = f(H1, 1 − H2) − 1. Showing the
concavity of g2 and −h2 thus reduces to showing that f is concave for 0 ≤ x, y ≤ 1, i.e.,
that its Hessian matrix Hess(f) is negative semidefinite. A straightforward computation
shows that tr

[
Hess(f)

]
≤ 0 and det

[
Hess(f)

]
≥ 0 for any 0 ≤ x, y ≤ 1. Since Hess(f)

is a 2 × 2 symmetric matrix, this implies, as desired, that both of its eigenvalues are
nonpositive.
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4.2 Upper bounds on the expectation values of H
The sets Q and Q′ defined above assume that the source S emits states with given expecta-
tion values H = (H1, H2) for the observable H. However, as we pointed out in Section 2,
rather than assuming that H takes some exact values, it is more natural to assume upper
bounds on the possible values of H, and we introduced two possible ways to bound such
values, either through the max-average assumption (3) or the max-peak assumption (4).
This leads us to define the set of quantum correlations under the max-average assumption
as

Qω1,ω2 =
{∑

λ

pλEλ | Eλ ∈ QHλ
,
∑
λ

pλHλ ≤ ω
}

(32)

and the set of quantum correlations under the max-peak assumption as

Q̂ω1,ω2 =
{∑

λ

pλEλ | Eλ ∈ QHλ
, max

λ
Hλ ≤ ω

}
, (33)

where we have written ω = (ω1, ω2). Note that following the remark made at the end of
Section 3, we always assume that ω1 +ω2 ≤ 1, since any possible correlations (E1, E2) are
already possible in the case ω1 + ω2 = 1.

From our previous results, the characterization of Qω1,ω2 and Q̂ω1,ω2 is immediate.
First, it is easy to check that the sets QH1,H2 of allowed values of (E1, E2) are strictly
increasing with H1, H2. That is, QH1,H2 ⊆ QH′1,H′2 if H1 ≤ H ′1 and H2 ≤ H ′2. This
follows from the fact that h(H1, H2) is a non-increasing function of H1 and H2 in the
range H1 +H2 ≤ 1 and that the sets of values (E1, E2) defined by g(E1, E2) ≥ γ increase
with decreasing γ, as illustrated in Fig. 5. It thus follows that in (32) one can always
assume that

∑
λ pλHλ = ω and in (33) that Hλ = ω for all values of λ. Using the results

of the previous subsection on the behavior of Q under shared randomness, we deduce that

Qω1,ω2 = Q′ω1,ω2 = Qω1,ω2 = Q̂ω1,ω2 . (34)

We thus conclude that any correlations that can be generated by an arbitrary quantum re-
alization constrained only by upper bounds ω1 and ω2 on H1 and H2, whether through the
max-average or the max-peak assumption, always admit an equivalent pure-state quantum
representation saturating these upper bounds. In this sense the max-average and max-
peak assumptions are equivalent. As we will see in Sections 5 and 6, however, different
quantum realizations of the same correlations may exhibit different underlying quantum
properties, and the max-average and max-peak assumptions are different from this per-
spective.

5 Classical correlations
A basic property of fully- or semi-DI setups based on non-locality or dimension bounds
is the existence of quantum correlations that have no classical analogue. This is clearly
a prerequisite for any application of such correlations, e.g., for randomness certification.
This property is also present in our semi-DI scenario as we now show.

5.1 Definition
We need first to define some notion of “classicality” in our context and a corresponding
set of correlations. The no-communication assumption in standard Bell tests and the
dimension bound in usual semi-DI protocols have a well-defined meaning in a classical
context, without any reference to quantum theory. This is no longer the case for the
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assumptions that we consider here, as they are expressed as constraints on the mean value
of a quantum observable H and hence explicitly assume some underlying quantum model.
It is nevertheless still possible to identify sets of correlations that are “classical” in the
sense that they do not exhibit genuinely quantum features and thus are useless for semi-
DI applications. The most straightforward way to do so is to proceed by analogy with
standard Bell tests or usual semi-DI protocols, where classical correlations correspond
mathematically to those that can be expressed, with the help of shared randomness, as
convex combinations of deterministic correlations.

We thus define the set of classical correlations under the max-average assumption (3)
as

Cω1,ω2 =
{∑

λ

pλEλ

∣∣∣ Eλ ∈ QHλ
, Eλ ∈ {±1} × {±1},

∑
λ

pλHλ ≤ ω
}

(35)

and under the max-peak assumption as

Ĉω1,ω2 =
{∑

λ

pλEλ

∣∣∣ Eλ ∈ QHλ
, Eλ ∈ {±1} × {±1}, max

λ
Hλ ≤ ω

}
. (36)

The constraintEλ ∈ {±1}×{±1} in these definitions implies that for any given value of the
shared randomness λ, an output ±1 for the measurement performed at M is completely
pre-determined for each of the two states emitted by the source S. Thus no genuinely
quantum behavior is exhibited by the two devices. Conversely, if some correlations E lie
outside the set Cω1,ω2 , then necessarily the output of M cannot be predetermined for at
least one of the states sent by S, a typically quantum feature.

We show that Cω1,ω2 is a polytope, which apart from the trivial facets |Ex| ≤ 1 is
defined by

|E−| = |E1 − E2| ≤ 2(ω1 + ω2) . (37)

Similarly, Ĉω1,ω2 is a polytope characterized by the stronger inequality

|E−| = |E1 − E2| ≤ 2 Θ(ω1 + ω2) , (38)

where Θ(z) = 0 if z < 1 and Θ(z) = 1 if z = 1.
Let us first establish the characterization (37) of C. Remark that for any (Eλ,Hλ) ∈ Q

for which Eλ ∈ {±1}×{±1} there are two possibilities. Either E1|λ = E2|λ, in which case
|E1|λ − E2|λ| = 0. Or E1|λ = −E2|λ, in which case the states emitted for x = 1 and x = 2
must be orthogonal pure states and thus H1|λ + H2|λ ≥ 1 = |E1|λ − E2|λ|/2. By taking
convex combination of these possibilities, we find

|E1 − E2| ≤
∑
λ

pλ|E1|λ − E2|λ| ≤
∑
λ

pλ2(H1|λ +H2|λ) ≤ 2(ω1 + ω2) . (39)

Conversely, any correlations E satisfying the constraint (37) belong to C. To prove
this, note that the polytope defined by (37) has the following six extreme points

(E1, E2) =
{(
±1,±1

)
,
(
±1,±[1− 2(ω1 + ω2)]

)
,
(
±[1− 2(ω1 + ω2)],±1

)}
. (40)

Proving that any E in this polytope belongs to C amounts to showing, by convexity, that
any of these six extreme points belongs to C. This is evident for the two points (±1,±1).
The point

(
1, 1− 2(ω1 + ω2)

)
can be decomposed as p1E1 + p2E2 + p3E3, where

p1 = 1− ω1 − ω2 , E1 = (1, 1) ∈ Q0,0 , (41)

p2 = ω1 , E2 = (1,−1) ∈ Q1,0 , (42)

p3 = ω2 , E3 = (1,−1) ∈ Q0,1 , (43)
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Figure 6: Comparison of the quantum set Q and the classical set C for ω1 = ω2 = 0.15, showing that
it is possible to violate the classical bound (37) with quantum systems. The E−-axis (E− = E1 −E2)
measures how quantum the behavior of the boxes is, in a way similar to the CHSH witness in the study
of non-locality. For the particular case ω1 = ω2 = 0.15, classical systems are limited to |E−| ≤ 0.6 but
the maximal value for quantum systems is |E−| ' 1.43.

and thus also belongs to C. Similar decompositions are readily obtained for the three other
points.

The characterization (38) of Ĉ follows from two simple observations. If ω1 +ω2 < 1, the
only points Eλ ∈ Q such that Eλ ∈ {±1} × {±1} are (1, 1) and (−1,−1). Their convex
combination defines the line segment E1 − E2 = 0. If ω1 + ω2 = 1, the four corner points
{±1} × {±1} are available, and as usual we have no constraints on E, so that |E1 − E2|
can reach the maximal value 2.

5.2 Bell inequality analogues
The inequalities (37) and (38) play the same role as the inequality |CHSH| ≤ 2 in the
context of Bell non-locality, in that they separate the quantum region from the region
of convex combinations of deterministic correlations, see illustration of the sets C and
Q in Fig. 6. The analogue of the Tsirelson inequality |CHSH| ≤ 2

√
2 is the inequality

|E−| = |E1 − E2| ≤ 2
(√
H1
√

1−H2 +
√

1−H1
√
H2
)
. This quantum bound is readily

obtained from the results of the previous sections (the points maximizing |E1 − E2| in Q
correspond to the points on the E−-axis of the ellipse (23)).

The axis E− thus corresponds to the axis along which “quantumness” increases. Note
that we can interpret |E−| as a measure of how well it is possible to guess which input
x = 1 or x = 2 was used given the measurement outcome b. Indeed, since

1
2 |E−| =

1
2 |E1 − E2| = 1

2
∑
b=±1

∣∣P (b|x = 1)− P (b|x = 2)
∣∣ , (44)

the quantity 1
2 |E−| is equal to the statistical distance

d
(
PB|x=1, PB|x=2

)
≡ 1

2
∑
b=±1

∣∣P (b|x = 1)− P (b|x = 2)
∣∣ (45)

between the output probability distributions PB|x=1 and PB|x=2 for the two possible inputs.

In particular, the optimal probability to guess the input is pg = 1
2(1+ 1

2 |E−|). For given H1,
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H2, this probability is maximal when |E−| achieves its maximal value 2
(√
H1
√

1−H2 +√
1−H1

√
H2
)
, in which case we know for sure that the two states sent by S are as

distinguishable as possible given the constraints on H1 and H2, and that M implements
the measurement that best distinguishes them. When

√
H1
√

1−H2 +
√

1−H1
√
H2 < 1

(which necessarily happens when H1 + H2 < 1), it follows that it is not possible to
deterministically guess which of the two choices x = 1 or x = 2 were made on S, which
proves that the quantum channel relating S to M has sub-unit capacity, as previously
anticipated.

5.3 Implementations discussion
The three experimental implementations that we have presented in Subsection 2.3 generate
non-classical correlations as illustrated in Fig. 9. Note that the BPSK and 2ASK schemes
do not admit a fully deterministic explanation under the max-average assumption, i.e.,
even if the source S is allowed to send states with arbitrary values for H, provided that
the average values do not exceed the assumed thresholds. This is not true for the OOK
implementation, which admits a deterministic explanation in this case. However, such a
deterministic explanation is no longer possible if the peak values for H are constrained.

Note that for ω1 +ω2 < 1, the set Ĉ is of measure 0. We can get some intuition for the
meaning of this set as follows. If ω1 + ω2 < 1, then for given λ every pair of states φλ1 , φλ2
emitted by the source must be non-orthogonal, as follows from the results of Subsection 3.2
and the max-peak assumption. Since there is no non-trivial measurement that will yield
with certainty definite outcomes for two non-orthogonal states, the measurement device
M, if it behaves deterministically, must actually ignore the quantum messages sent by M
and simply output a pre-registered outcome b = −1 or b = 1, independently of whether
x = 1 or x = 2. We thus necessarily have E1 = E2 in this case. Conversely, if we observe
correlations for which |E1−E2| > 0, we can conclude that the measurement device M did
not simply output pre-registered values, but actually performed a non-trivial measurement
on the states emitted by S, which are non-orthogonal. That is, the observation of |E1 −
E2| > 0 witnesses a typical quantum feature, which in particular necessarily results in a
non-deterministic outcome for at least one of x = 1, 2. A similar conclusion can be reached
under the max-average assumption, but this now requires |E1 − E2| to be above a finite
value 2(ω1 + ω2), as follows from (37).

6 Correlations exhibiting certified randomness
If S and M generate correlations in the classical sets C or Ĉ, then the output b is predeter-
mined simultaneously for both choices of inputs x = 1, 2, and the apparent randomness of
b only arises from the pre-established classical randomness λ. Observing a point outside
the sets C or Ĉ thus guarantees that at least one of the inputs, x = 1 or x = 2 leads
to genuinely random outcomes, but does not guarantee that a specific one, say x = 1
does, or that both x = 1 and x = 2 do. For instance, as can be seen in Fig. 6, the point
(E1, E2) =

(
1, 2h2(ω1, ω2) − 1

)
does not belong to C but nevertheless corresponds to a

situation where M returns b = 1 with certainty when x = 1 is used. A similar situation
arises in the context of Bell non-locality, in which correlations can be non-local and yet
have definite values for a subset of the measurement inputs [27].

In cryptographic applications, and for instance in DI or semi-DI RNG protocols, it is
usually the case that the certified randomness comes from a fixed subset of the inputs.
For instance, in our context, a semi-DI RNG protocol along the lines of [28–30] would
most of the time use the input x = 1 to generate the random string and from time to
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time both x = 1 and x = 2 to estimate the correlations E produced by the devices. Given
the estimated E, it is then possible to lower bound the amount of randomness extractable
from the x = 1 measurement data.

This leads us to consider sets based on a weaker constraint than those introduced in
the previous section, those for which the output of M is deterministic when a specified
input x is chosen, while potentially random for the remaining inputs:

Dx,ω1,ω2 =
{∑

λ

pλEλ

∣∣∣ Eλ ∈ QHλ
, Ex|λ ∈ {±1},

∑
λ

pλHλ ≤ ω
}
, (46)

D̂x,ω1,ω2 =
{∑

λ

pλEλ

∣∣∣ Eλ ∈ QHλ
, Ex|λ ∈ {±1}, max

λ
Hλ ≤ ω

}
. (47)

The sets D1, D2 clearly contain C but can be larger, and similarly for D̂1, D̂2 with respect
to Ĉ, see Fig. 7. Observing a point outside Dx or D̂x now certifies that the output of M
is (at least to some extent) random when the input x is chosen. Furthermore, observing
a point outside the convex hull of D1 ∪D2 or D̂1 ∪ D̂2 guarantees that the output of M is
random, independently of which input x = 1 or x = 2 was used.

The sets Dx and D̂x have a direct significance in the context of semi-DI random number
generation (RNG) protocols. The existence of quantum correlations outside, say, D1 or
D̂1 is sufficient to guarantee the existence of a semi-DI RNG protocol along the lines of
[28–30], in which the input x = 1 is used to generate the random string and both x = 1
and x = 2 are used on a smaller subsets of the runs to estimate the correlations E. As
long as the estimated E is outside D1 or D̂1 (modulo statistical corrections), one will be
able to certify that a certain amount of randomness has been produced (how to quantify
precisely this randomness will be presented in [25]).

6.1 Characterization of the set Dx
We show here that Dx consists of the values E satisfying |Ex| ≤ 1 and

Ex h
2
( 2ω1

1 + Ex
,

2ω2
1 + Ex

)
− Ex̄ ≤ 1− h2

( 2ω1
Ex + 1 ,

2ω2
Ex + 1

)
, (48a)

Ex h
2
( 2ω1

1− Ex
,

2ω2
1− Ex

)
− Ex̄ ≥ −1 + h2

( 2ω1
1− Ex

,
2ω2

1− Ex

)
, (48b)

where x̄ denotes the input complementary to x (x̄ = 2 if x = 1 and x̄ = 1 if x = 2).
Let us consider the case x = 1 to simplify the notation (the derivation is the same for

x = 2). Let E =
∑
λ pλEλ be an arbitrary point in D1. Define Λ± as the set of λ’s for

which E1|λ = ±1 and write

E = pE+ + (1− p)E− , (49)

ω ≥ pH+ + (1− p)H− , (50)

where

p = p+ =
∑
λ∈Λ+

pλ , 1− p = p− =
∑
λ∈Λ−

pλ (51)

and

E± = 1
p±

∑
λ∈Λ±

pλEλ , H± = 1
p±

∑
λ∈Λ±

pλHλ . (52)
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We have thus regrouped the components (Eλ,Hλ) in two subsets (E±,H±), for which
E1|+ = +1 and E1|− = −1, respectively. Since Q is convex, the two points (E±,H±)
belong to Q and satisfy the constraints obtained in Section 3.

In particular, since E1|+ = 1, it follows that E2|+ ≥ 2h2(H1|+, H2|+)− 1 and thus that

E2 ≥ p
(
2h2(H1|+, H2|+)− 1

)
− (1− p) = p 2h2(H1|+, H2|+)− 1 . (53)

On the other hand,

H1|+ ≤
ω1 − (1− p)H1|−

p
≤ ω1

p
, (54)

and similarly H2|+ ≤ ω2/p. It is easily established that the function h(x, y) is non increas-
ing in its two arguments and thus that

E2 ≥ p 2h2
(
ω1
p
,
ω2
p

)
− 1 . (55)

We can now use that p = (1 + E1)/2 and substitute in the inequality above, which gives
(48a). Following the same lines to lower bound E2, one obtains (48b). Finally, it is not
difficult to verify that all the intermediate inequalities in our derivation are tight and thus
that any E in the region defined by (48) can be attained by points in D1.

The sets Dx are compared in Fig. 7 to C and Q.

6.2 Characterization of the set D̂x
The set D̂x consists of the values E satisfying |Ex| ≤ 1 and∣∣Ex h2(ω1, ω2)− Ex̄

∣∣ ≤ 1− h2(ω1, ω2) . (56)

In order to establish the formula (56), note that, if Ex|λ = 1 and Hx|λ ≤ ωx, then
necessarily 1 ≥ Ex̄,λ ≥ 2h2(ω1, ω2)− 1, while if Ex,λ = −1, it holds that −1 ≤ Ex̄,λ ≤ 1−
2h2(ω1, ω2). The convex hull of these points is readily seen to be completely characterized
by (56) (together with the trivial inequalities |Ex| ≤ 1).

The sets D1 and D̂1 are compared in Fig. 8. Note that when ω1 = 0 or ω2 = 0,
D1 = D2 = C.

6.3 Implementation examples
The three experimental implementations that we presented in Subsection 2.3 can be used
to certify the production of genuine randomness, as illustrated in Fig. 9. The BPSK
and 2ASK implementations can generate certified randomness under the max-average
assumption, while the OOK implementation requires the max-peak assumption.

Note that the BPSK correlations (6) satisfy E+ = E1 + E2 = 0 and thus only the
values of |E−| are important to determine whether they are outside of D1 or D̂1. Fig. 10
compares the BPSK value of |E−| to the intersections of the sets D1 and D̂1 with the
E−-axis as a function of the parameter ξ.

Finally, it is clear from Fig. 9 that the certification of randomness is robust to noise
in the three implementations, i.e., to correlations that deviate from the ideal ones. Let
us consider as an example the OOK implementation in the case where the source emits a
coherent state |ξ〉 and the photodetector has a limited efficiency η < 1. The correlations
(10) then change to

E1 = 1− 2e−|ξ|2η ' −1 + 2|ξ|2η , E2 = −1 . (57)
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Figure 7: Representations of the sets C, D1, D2, and Q for ω1 = ω2 = 0.15. Since the quantum region
is strictly larger than the individual sets Dx (or even than their convex combination), it is possible to
certify the production of genuine randomness.
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Figure 8: Comparison of the sets D1 and D̂1, corresponding respectively to the max-average and max-
peak assumptions, for ω1 = ω2 = 0.15, illustrating that the latter of the two assumptions puts a stronger
constraint on the behavior of the devices. The quantum set Q is also represented for comparison.
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The inequality (56) characterizing the region D̂1 is violated if h2(ω1, ω2)E1 − E2 > 1 −
h2(ω1, ω2). Inserting the above values for E1 and E2 and the threshold values (11) char-
acterizing the source (which give h(ω1, ω2) = e−|ξ|

2/2), we find the condition(
1− 2e−|ξ|2η

)
e−|ξ|

2 + 1 > 1− e−|ξ|2 , (58)

which is satisfied provided that e−|ξ|
2η < 1, i.e., that η > 0. In other words, the OOK im-

plementation can generate certified randomness with arbitrarily low detection efficiency in
the absence of other imperfections. The situation corresponding to η = 25% is represented
in Fig. 9(c) and Fig. 9(d). Since in addition to this tolerance to detector inefficiency the
OOK implementation is also very simple to implement experimentally, we will present in
a forthcoming publication [25] a full theoretical analysis of a semi-DI RNG protocol based
on this scheme.

7 Conclusion
In this paper, we introduced a new setting for semi-device-independent (semi-DI) quantum
information. Contrarily to the usual approach, we do not assume bounds on the Hilbert
space dimension of the carriers of quantum information, but instead on the mean values
of one (or several) physical observable(s). Ideally, the choice of such an observable should
be dictated by the physics of the source of quantum information carriers and rely as much
as possible on a high-level characterization of its internal behavior. In quantum optics
implementations, a natural choice is to upper bound the expected number of photons of the
states emitted by the source or, alternatively, the energy contained in a range of frequency
modes describing the system. We have completely characterized analytically the set of
possible correlations in the simplest possible prepare-and-measure scenario compatible
with such an assumption. We have in particular identified analogues of Bell inequalities,
which are able to distinguish genuinely quantum devices from those behaving in a purely
classically pre-determined fashion.

We note that semi-DI prepare-and-measure scenarios that do not rely on a Hilbert
space dimension bound have also been introduced in [31]. However, they rely on a bound
on the average von Neumann entropy of the emitted states, a quantity which as defined
in [31] requires a greater level of characterization of the source and also depends on the
probability distribution p(x) used to select the preparation x.

Our approach has several interests. First of all, as with semi-DI approaches based
on dimension bounds, it is of the prepare-and-measure type, and thus does not require
the manipulation of entanglement. But, as with full DI approaches based on non-locality,
it relies on assumptions that are physically motivated. It thus combines the practical
advantages of these two different approaches.

Quite nicely, such an advantage from the implementation point of view does not come
at the expense of theoretical simplicity. On the contrary, the minimal requirements on the
number of inputs and outputs in our setting (x ∈ {1, 2}, y ∈ {1}, b ∈ {±1}) are smaller
than those required for non-locality or dimension-bound protocols. Furthermore, in this
minimal scenario, our assumptions are not only more natural than dimension bounds, but
also more restrictive since they force the emitted states to have a sub-unit communication
capacity.

A further point to notice is that the no-communication assumption in the non-locality
scenario and the dimension-bound assumption are “yes or no” criteria (though it is also
possible to introduce more refined assumptions in such contexts [14, 32]). Our assumptions
are instead formulated in term of parameters that can take a continuous range of possible
values, e.g., as thresholds on the average photon number. As such, they naturally allow
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Figure 9: The sets Q, C, and D1 are displayed and compared to the correlations produced with
the three implementations. The BPSK and the 2ASK protocols are analyzed with the constraints
ω1 = ω2 = 0.15 under (a) the average-peak assumption and (b) the max-peak assumption. The OOK
protocol is analyzed for two different detector efficiencies (η = 100% and η = 25%) with the constraints
ω1 = 0.51 and ω2 = 0 under (c) the average-peak assumption and (d) the max-peak assumption. Note
that when ω2 = 0, the sets C and D1 coincide under the max-average assumption.
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Figure 10: The correlations produced with the BPSK implementation are compared to the sets D1
and D̂1. As these correlations lie on the E−-axis (they satisfy E1 + E2 = 0), it is only necessary to
compare the value of E− for the BPSK implementation to the intersections of the boundaries of the
sets D1 and D̂1 with the E1-axis. This is done for different values of the parameter ξ, which determines
corresponding values for ω1 and ω2 through (7). The range 0 ≤ ξ ≤

√
ln 2 ≈ 0.83 was chosen such that

0 ≤ ω1, ω2 ≤ 0.5. This figure shows that, with the BPSK implementation, it is possible to generate
correlations that produce certifiable randomness for ξ . 0.55 under the max-average assumption and
for ξ . 0.63 under the max-peak assumption.
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for the introduction of additional “margins of security” making protocols based on them
more robust to device imperfections. For instance, in an implementation using a source
designed to prepare states with certain average photon numbers, one could performing the
analysis assuming thresholds ω corresponding to higher average photon numbers in order
to allow for an additional margin for safety.

There are many potential applications of our results. First of all, note that one could
reverse their interpretation. We have characterized the possible correlations E generated
in a prepare-and-measure setting given upper bounds on the expectation values H of a
physical observable H. But one can equally well understand these results as providing
lower bounds for H given that some correlations E are observed. That is, in analogy
to the concept of DI “dimension witnesses” [9, 10], our results imply the existence, e.g.,
of DI “photon-number witnesses”. It is also reasonable to expect that our results could
be exploited to perform self-testing of quantum properties, namely one could probably
infer that the states and measurements have a specific form if certain correlations E are
observed under our assumptions.

Our main motivation at the origin of the present paper, however, is the possibility to
introduce new, physically motivated semi-DI random number generation and quantum key
distribution protocols. We have seen in Section 2.3 that very simple implementations of our
prepare-and-measure scenario can lead to correlations that do not admit any deterministic
explanation. It is in fact possible to use the characterization of the quantum set that we
have obtained here to compute precise lower bounds on the randomness that is produced
by such implementations as a function of the correlations E they generate. Such lower
bounds can directly be combined with the analysis of [28–30] and then lead to explicit
protocols for semi-DI random number generation protocols. We will present in detail how
to compute such lower bounds on the randomness and analyze the resulting semi-DI RNG
protocols under realistic experimental condition in a forthcoming publication [25], with a
special focus on the OOK implementation.

Note added The use of the On-Off Keying protocol of Fig. 3(c) in the context of semi-
DI randomness generation has also been discussed by the authors of [33], although it was
analyzed under different technical and security assumptions.
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