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The impact of our local environment on cosmological statistics

Alex Hall 1, ∗

1Institute for Astronomy, University of Edinburgh,

Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, U.K.

We conduct a thorough investigation into the possibility that residing in an overdense region of the
Universe may induce bias in measurements of the large-scale structure. We compute the conditional
correlation function and angular power spectrum of density and lensing fluctuations while holding
the local spherically averaged density fixed and show that for Gaussian fields this has no effect on the
angular power at l > 0. We identify a range of scales where a perturbative approach allows analytic
progress to be made, and we compute leading-order conditional power spectra using an Edgeworth
expansion and second-order perturbation theory. We find no evidence for any significant bias to
cosmological power spectra from our local density contrast. We show that when smoothed over a
large region around the observer, conditioning on the local density typically affects density power
spectra by less than a percent at cosmological distances, below cosmic variance. We find that while
typical corrections to the lensing angular power spectrum can be at the 10% level on the largest
angular scales and for source redshifts zs . 0.1, for the typical redshifts targeted by upcoming wide
imaging surveys the corrections are sub-percent and negligible, in contrast to previous claims in
the literature. Using an estimate of the local spherically averaged density from a composite galaxy
redshift catalogue we find that the corrections from conditioning on our own local density are below
cosmic variance and subdominant to other non-linear effects. We discuss the potential implications
of our results for cosmology and point out that a measurement of the local density contrast may be
used as a consistency test of cosmological models.

I. INTRODUCTION

Current and upcoming surveys of large-scale structure
such as Euclid1, LSST2, and DESI3 aim to place percent-
level constraints on the dark energy paradigm and make
measurements of the summed mass of neutrino species [1,
2]. With the huge leap in statistical constraining power
that these surveys represent, many previously negligible
systematic effects must be mitigated to ensure unbiased
and precise constraints on cosmological models.
Recently it was pointed out in Ref. [3] (hereafter R19)

that a potential source of bias arises from neglecting to
account for the impact of our local environment on sum-
mary statistics measured in cosmological surveys. All as-
tronomical observations are made from our privileged po-
sition within a region of the Universe (the Local Group)
with an above-average density. Since the density field has
long-range spatial correlations, the distribution of large-
scale structure conditioned on our local density should
differ from the unconditional distribution. In particular
we might expect two-point statistics – the most common
summary statistics used to infer cosmological parameters
– to acquire a correction when conditioned on the local
density. R19 computed this correction assuming Gaus-
sian fields, claiming percent-level effects on the lensing
angular power spectrum over a wide range of angular
multipoles, i.e. at a level potentially important for a
Euclid-like survey.

∗Electronic address: ahall@roe.ac.uk
1 https://sci.esa.int/web/euclid
2 https://www.lsst.org/
3 https://www.desi.lbl.gov/

In this work we will critically examine the suggestion
that power spectra measured in cosmological surveys can
be biased by our local density at a significant level, build-
ing upon the work of R19. If there is an effect then clearly
it must be limited to the clustering of only the most
nearby cosmic structure – the correlation length of the
density field, defined say as the radius at which the corre-
lation function first crosses zero, is of order 100 h−1Mpc
at z = 0, whereas cosmological surveys typically mea-
sure large-scale structure at hundreds or thousands of
comoving megaparsecs. In the case of density fluctua-
tions there will be a small residual correction, quantified
by the conditional angular power spectrum or conditional
correlation function, which we compute in this work. In
the case of gravitational lensing we might expect a more
significant correction, since lensing inevitably picks up
contributions from nearby structure, albeit suppressed
by geometric factors. In any case, a full calculation is
necessary to check that any residual biases can be safely
ignored by future surveys.

We will focus on corrections to the power spectra from
spatial correlations in the density field in the case of
Gaussian and weakly non-Gaussian fields. We will com-
pute the correlation function and angular power spec-
trum conditional on a fixed spherically averaged density
field around the observer. We are interested in cosmo-
logical scales where fluctuations in the matter density are
small. It will transpire that in the case of purely Gaus-
sian fields only the power at l = 0 is affected, so for
observable effects we need to go to at least second-order
in the density field. Our approach is close to that sug-
gested by R19 where it was noted that the non-Gaussian
calculation involves highly oscillatory multi-dimensional
integrals. We will show how many of these integrals can

https://orcid.org/0000-0002-3139-8651
mailto:ahall@roe.ac.uk
https://sci.esa.int/web/euclid
https://www.lsst.org/
https://www.desi.lbl.gov/
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be done analytically in the perturbative regime.
In the case of lensing, the local density field contributes

to the unconditional lensing power at a statistical level
through the matter power spectrum projected onto our
past-light cone. Rather than including local fluctuations
in the variance of the signal in this way, we study the im-
pact of fixing the density in a local region to some mea-
sured value. Since the local density cannot be averaged
when considering many lines of sight we might expect
a conditional power spectrum to provide a better fit to
observations. We will discuss the implications (if any)
of conditioning on the local density on the information,
bias, and consistency of cosmological models.
The effects considered in this work are distinct from

other local effects which impact cosmological observables.
For example, the local gravitational potential in which
we reside adds a small blueshift to the spectrum of all
extragalactic objects [4]. In addition, temporal varia-
tions of our local gravitational potential can add a Rees-
Sciama/Integrated Sachs-Wolfe contribution to the cos-
mic microwave background (CMB) [5–7]. In this work we
focus on the impact of fixing the local density contrast
when computing ensemble averages of density and lens-
ing anisotropies. The impact of the local density field on
velocity statistics has been considered in Refs. [8–10].
This paper is structured as follows. In Section II

we present the calculation of the conditional correlation
function and angular power spectrum of density fluctua-
tions and estimate the local spherically averaged density
from a galaxy redshift catalogue. The main results of
this section are Equation (24) and Equation (39). In
Section III we compute the conditional lensing angular
power spectrum, the main result being Equation (56).
In Section IV we discuss the implications of our results
for cosmology and discuss the use of the local density as a
consistency check on cosmological models. We conclude
in Section V.
For numerical work we assume a flat ΛCDM cos-

mological model with parameters fixed to the best-
fit values from Planck 2015 (TT, TE, EE + lowP
+ lensing + ext) [11], i.e. (Ωbh

2,Ωch
2, h, As, ns) =

(0.0223, 0.1188, 0.6774, 2.142× 10−9, 0.9667). We will set
c = 1 unless otherwise specified.

II. CONDITIONAL COSMOLOGICAL

STATISTICS

The goal of this section is to compute the angular
power spectrum and correlation function of the matter
density contrast conditioned on the local density fluctua-
tion in which we reside. We define the local density con-
trast δ0(R) to be the density field δ(r) smoothed with a
spherical top-hat filter of comoving radius R and located
at the origin, i.e.

δ0(R) ≡
3

4πR3

∫

d3rΘ(R− |r|)δ(r), (1)

where Θ is the Heaviside step function. The constrained
random field whose angular power spectrum we seek to
compute consists of realizations of δ(r) which give rise
to a fixed δ0(R). We keep the time dependence of the
density field implicit in this section and focus solely on
the real-space dark matter density field.

A. Order-of-magnitude estimate

Before presenting a detailed calculation we first provide
a rough order-of-magnitude estimate of the size of the
correction to the angular power spectrum that results
from conditioning on our local density.
Firstly, suppose δ(r) obeyed Gaussian statistics with

mean zero and covariance ξ(d) ≡ 〈δ(r1)δ(r2)〉 where
d ≡ |r2 − r1| and we assume that the field is statisti-
cally homogeneous and isotropic. Angle brackets here
denote the ensemble mean over the unconditional dis-
tribution of δ(r). Since smoothing is a linear opera-
tion the field given by [δ0(R), δ(r)] is also Gaussian,
with mean zero4. Manipulating the Gaussian probabil-
ity distribution for this field and using that p(A|B) =
p(A,B)/p(B) it is easy to show that the conditional dis-
tribution of δ(r) given δ0(R) is also Gaussian, with mean
〈δ(r)|δ0(R)〉 = 〈δ(r)δ0(R)〉δ0(R)/σ2(R), where σ2(R) is
the variance of δ0(R). The covariance of the conditional
field is independent of the value of δ0(R) and is given
by cov[δ(r1), δ(r2)|δ0(R)] = ξ(d) − ξR(r1)ξR(r2)/σ

2(R)
where ξR(r1) ≡ 〈δ(r1)δ0(R)〉. When r1 = r2 the correc-
tion to the variance at a point is negative, representing a
loss of variance due to part of the field being held fixed.
As expected, when r1 and r2 are large the correction be-
comes negligible since the field decorrelates from the local
density. Crucially for what follows, in the Gaussian case
the correction is independent of the angle between the
two points r1 and r2 and depends only on their radial
distances from the observer. In spherical harmonic space
this corresponds to a correction to the (unobservable)
l = 0 mode. Therefore, interesting effects on the angular
power spectrum can only arise at second-order where the
density field is non-Gaussian. In simple terms, angle-
dependent effects can only arise when δ(r1) and δ(r2)
couple with δ(r0), and this can only happen in the pres-
ence of a connected three-point function, which Gaussian
fields do not possess. Although the independence of the
correction from the angular separation in the Gaussian
case was noted in R19, they claim an effect at all l, con-
trary to the above argument.
Thus, corrections to the l > 0 angular power spectrum

only arise at non-linear order in the density field. An
estimate of the size of this correction can be made us-
ing techniques similar to those employed in the study of

4 We will assume that r 6= 0 to ensure the covariance matrix is
invertible.
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non-linear effects on the baryon acoustic oscillation peak.
Since corrections from conditioning on the local density
will be greatest when the two points considered are at
least within a correlation length rc of the observer, we
consider the case r1, r2 ≪ rc. Demanding that the points
are well-within a smoothing volume centered on the ob-
server simplifies the following discussion, so we will ad-
ditionally impose that r1, r2 ≪ R. As shown in Ref. [12]
and as follows from Birkhoff’s theorem, short-wavelength
density fluctuations within a spherically symmetric long-
wavelength adiabatic overdensity such as δ0(R) behave
as if they reside in an FRW universe with slight pos-
itive curvature to first order in δ0(R). As described
in Refs. [13, 14], this enhances the growth of short-
wavelength fluctuations, rescales the background density,
and dilates all distances within the long-wavelength fluc-
tuation, resulting in a correction to the correlation func-
tion in Einstein-de Sitter of [68ξ(d)/21 + dξ′(d)/3] δ0(R)
to first order in δ0(R), where a prime denotes differen-
tiation. For a power-law correlation function ξ(d) ∼ dn

this implies a fractional correction of (68/21+n/3)δ0(R).
Thus, except in cases of extremely negative n, condition-
ing on a positive local density fluctuation enhances the
correlation of fluctuations well within a smoothing vol-
ume. In the case of gravitational lensing, we expect a
similar enhancement for the nearest source redshifts and
on the largest angular scales.

Since the above expressions hold only at first order
in δ0(R), we must choose R to be much greater than
the scale of non-linearity. Then δ0(R) ≪ 1 and hence
the fractional correction from conditioning is expected
to be very small. We can quantify this further by esti-
mating our own local δ0(R) from galaxy redshift surveys.
For this purpose we use the 2M++ galaxy redshift cat-
alogue [15], a composite of the 2MASS Redshift Survey
(2MRS), SDSS-DR7, and 6dF with depth K2M++ ≤ 11.5
over the full sky (excluding the galactic plane), increas-
ing to K2M++ ≤ 12.5 in regions covered by SDSS and
6dF. The survey has full-sky coverage out to comoving
distance 125 h−1Mpc, corresponding to the magnitude
limit of 2MRS. This sample has been used extensively
to test for local voids which might bias the interpreta-
tion of the locally measured Hubble rate [16–18]. We use
the publicly available luminosity-weighted galaxy density
field from Ref. [19]5 (hereafter C15), which is weighted
to account for incompleteness and normalized to a con-
stant effective luminosity-weighted galaxy bias b∗. Using
the measurement of f/b∗ from C15 and our cosmology
we find that b∗ = 1.23± 0.06 for the 2M++ sample. We
convert the galaxy density into a dark matter density
with this bias and then average in spheres around the
observer.

In Figure 1 we plot the spherically averaged dark mat-
ter density contrast as a function of the smoothing radius

5 https://cosmicflows.iap.fr/
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FIG. 1: The local dark matter density contrast averaged
in spheres of radius R around the observer (solid black),
as measured from the 2M++ galaxy density field of C15,
and assuming a constant luminosity-weighted galaxy bias of
b∗ = 1.23 ± 0.06 in ΛCDM. The grey bands represent the
1σ error on this average from the combination of shot noise,
uncertainty in the galaxy bias, and uncertainty in the global
mean density. Note that these errors are highly correlated for
neighbouring R values. The solid blue curve is the spherically
averaged standard deviation of the linear dark matter density
field at z = 0.

R, as well as the linear standard deviation of the matter
density field at z = 0 in our cosmology, computed with
CAMB [20]. We estimate the shot noise on the smoothed
density field using the Schechter function fit to the lumi-
nosity function from Ref. [15] to estimate the number of
galaxies in each pixel and add this in quadrature with
the galaxy bias uncertainty. We then include the addi-
tional uncertainty incurred when estimating the global
mean density from the average density in the 2M++ vol-
ume. Assuming the difference between the survey and
global mean densities is small (justified since the lin-
ear r.m.s. density contrast on the survey scale is about
0.024), it is straightforward to show that this mismatch
biases the density contrast on average by a multiplicative
factor of α(R) = 1 − ξ(R,RB)/σ

2(R), where ξ(R,RB)
is the correlation between density contrasts averaged in
spheres of radius R and RB, with RB ≈ 200 h−1Mpc
the survey scale. We account for this bias by dividing
the dark matter density from C15 by α(R). The extra
variance from super-survey fluctuations is then roughly
[σ2(RB) − ξ(R,RB)

2/σ2(R)]/α(R)2, which we add in
quadrature to the shot noise and bias uncertainty. The
total error on δ0(R) estimated this way is shown as the
bands in Figure 1. Note that this procedure does not cor-
rectly account for the galaxy weights or the pixel smooth-
ing kernel, so should be taken as a rough estimate of
the noise. From Figure 1 we see that the local mat-

https://cosmicflows.iap.fr/
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ter density contrast smoothed on scales R ∼ 102 h−1Mpc
(within the 2MRS redshift coverage) is of order 10−2. We
can thus anticipate that corrections to cosmological two-
point functions from conditioning on this local density
will be at the percent level at most.
In Appendix A we consider an alternative measure-

ment of the local dark matter density field using the
Bayesian reconstruction method of Ref. [21]. The spheri-
cally averaged density contrasts of the two methods are in
agreement at the 2σ level, but the Bayesian mean density
is typically smaller and consistent with zero, i.e. consis-
tent with zero correction to the power spectrum from
conditioning. The results presented in this work are in
units of the fluctuation δ0(R)/σ(R), such that any esti-
mate of δ0(R) may be substituted to compute conditional
statistics. For example if one believed that we reside
within a large-scale void on some scale R then one could
compute conditional power spectra by substituting the
appropriate δ0(R).
We will soon see that the full calculation of the cor-

rection to the l > 0 angular power spectrum is simpli-
fied considerably when the smoothing radius is chosen
to ensure that δ0(R) is linear. We will largely focus on
the scale R = 120 h−1Mpc, which is sufficiently large to
ensure linearity but sufficiently small that a reliable full-
sky spherical average can be obtained from 2M++. Us-
ing the 2M++ density field from C15 described above,
we find δ0(R = 120 h−1Mpc) ≈ 0.045 ± 0.028, corre-
sponding to a fluctuation ν(R) ≡ δ0(R)/σ(R) of ν(R =
120 h−1Mpc) ≈ 0.85±0.53. We emphasise that the errors
here are only rough estimates but are sufficiently accu-
rate for our purposes. When measured with the BORG
method in Appendix A we find a smaller local density
δ0(R) = −0.024± 0.042, and hence a local fluctuation of
ν(R) = −0.45± 0.79.
In summary, we expect corrections to the angular

power spectrum of density or lensing fluctuations for
l > 0 to be at most at the percent level, with the largest
corrections for lensing coming from nearby source red-
shifts and large angular scales. We now turn to a de-
tailed calculation of conditional angular power spectra.
The radial dependence of the correction is expected to be
primarily determined by the correlation function ξR(r),
which is plotted in Figure 2. This figure shows that cor-
rections should be approximately constant with distance
for r . R and rapidly dying away on scales greater than
the local smoothing radius. As expected, for low r the
amplitude of the correction also rapidly decreases with
increasing R, i.e. as the smoothing procedure becomes
more aggressive. In the case of lensing fluctuations this
radial dependence will be modified by a kernel dictated
by the lensing geometry.

B. Conditional Edgeworth expansion

To derive the conditional angular power spectrum of
density and lensing fluctuations, we will first consider the

0 100 200 300 400
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R
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)|

R = 40h−1Mpc

R = 80h−1Mpc

R = 120h−1Mpc

R = 160h−1Mpc

R = 200h−1Mpc

FIG. 2: Absolute value of the correlation between the local
density contrast averaged in spheres of radius R with the un-
smoothed density contrast at radius r. Curves are ordered
top to bottom at r = 0 for increasing R and all go negative at
large r. This function roughly dictates the radial dependence
of corrections to the power spectrum from conditioning on the
local density.

more general problem of deriving conditional probability
distributions. In the Gaussian case considered in Sec-
tion IIA this was straightforward and amounted to ma-
nipulating Gaussian probability distributions and using
the fundamental relation p(A|B) = p(A,B)/p(B). We
have seen however that observable effects can only arise
at non-linear order where the field is non-Gaussian. In
the non-Gaussian setting the calculation becomes more
difficult since no fully general non-Gaussian distribution
for the density field is known, and even if it were then ex-
tracting an analytic prediction for the conditional power
spectrum seems intractable.

However, since the correction to the power spectrum
from conditioning on the local density field is expected to
be small for all practical purposes on cosmological scales,
we may assume that the non-Gaussianity in δ(x) is itself
small and use perturbative approaches to compute the
leading order effects. The Edgeworth expansion of the
probability density [22] then provides a useful approxi-
mation in the limit of weak non-Gaussianity which can
be used to construct conditional statistics. The general
approach we will take is, schematically, to use the leading
order non-Gaussian forms of p(A,B) and p(B) from their
Edgeworth expansions to construct an Edgeworth expan-
sion for p(A|B), from which we can read off the first few
conditional cumulants. Note that this procedure does not
suffer from the Edgeworth expansion’s well-known prob-
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lems in producing a positive-definite normalizable proba-
bility distribution - we only need the first few cumulants
rather than the full distribution.

The calculation of the conditional Edgeworth expan-
sion is presented in Ref. [23, 24] for a few simplifying
cases. Here we present it in full generality, before spe-
cialising to the cosmological context. We follow the
method and notation of Ref. [24]. Implicit summation
over repeated indices should be assumed throughout un-
less specified otherwise.

The cumulants of a set of p variables Xα (with α and
all other Greek letters running from 1 to p) are denoted
κα, κα,β, κα,β,γ etc. The probability density of Xα is
denoted fX(x;κ), where the dependence on the set of cu-
mulants is made explicit. Since we will ultimately divide
a joint density by a marginalised density, it will prove
more straightforward to work with log-densities where
this division becomes a subtraction. Xα has an Edge-
worth expansion around a Gaussian density given by

log fX(x, κ) = logφ(x;κ) + κα,β,γhαβγ(x)/3! + ..., (2)

where the Gaussian density φ(x;κ) is given by

φ(x;κ) ≡ |2πκα,β|−1/2 exp

[

−1

2
(xα − κα)(xβ − κβ)κα,β

]

,

(3)
where κα,β are elements of the matrix inverse of the co-
variance matrix κα,β, and |κα,β | is the determinant of the
covariance matrix. Also appearing in Equation (2) is the
Hermite tensor hαβγ(x) given by

hαβγ(x) = hα(x)hβ(x)hγ(x)− hα(x)κβ,γ [3], (4)

where the notation [3] denotes permutations of the given
partitioning of indices in the preceding expression (in the
case above 3 terms result from this). The Hermite tensor
hα(x) is given by

hα(x) = κα,β(x
β − κβ), (5)

i.e. the deviation from the mean normalized by the in-
verse covariance.

We assume that the non-Gaussianity of Xα is weak,
such that the third cumulant κα,β,γ is one order higher
in perturbation theory than the second cumulant, and
higher-order cumulants are successively smaller. Then
we can truncate the Edgeworth series by neglecting
the higher-order terms denoted by the ellipsis in Equa-
tion (2).

Now, let us partition X into two sets X(1) and X(2)

of length q and p− q respectively. Elements of X(1) will
be indexed by i, j, k, ... and elements of X(2) by r, s, t, ....
We can decompose all the summations in Equation (2)
into these two blocks. For example, the Gaussian term

becomes

logφ(x;κ) = −1

2
(xi − κi)(xj − κj)κi,j

− 1

2
(xi − κi)(xr − κr)κi,r[2]−

1

2
(xr − κr)(xs − κs)κr,s

− 1

2
log|κi,j − κi,rκ̄r,sκ

s,j | − 1

2
|κr,s|

− q

2
log 2π − (p− q)

2
log 2π, (6)

where we used the determinant theorem for block matri-
ces. Note that we have to be careful to distinguish κr,s –
the (r, s) block of the full inverse joint covariance matrix
– from κ̄r,s, hereafter defined as the matrix inverse of the
(r, s) block of the full covariance matrix κα,β. These are
related via the formulae for block matrix inversion by

κr,s = κ̄r,s + κ̄r,t κ
t,i κ̄Sc

i,j κ
j,u κ̄u,s (7)

where κ̄Sc
i,j are elements of the inverse of the Schur com-

plement matrix whose elements are given by

κi,jSc ≡ κi,j − κi,rκ̄r,sκ
s,j. (8)

We seek the density of X(1) conditional on some real-
ization of X(2) - denote this realization by xr . This den-
sity has an Edgeworth expansion that can be obtained by
dividing the full joint density by the marginal density of
X(2). This marginal density has an Edgeworth expansion
given by

log fX(2)(x;κ) = logφ2(x;κ) + κr,s,th̄rst(x)/3! + ..., (9)

where the Gaussian part is given by

φ2(x;κ) = |2πκr,s|−1/2 exp

[

−1

2
(xr − κr)(xs − κs)κ̄r,s

]

,

(10)
and the Hermite tensor h̄rst is given by

h̄rst(x) = h̄r(x)h̄s(x)h̄t(x)− h̄r(x)κ̄s,t[3],

h̄r(x) = κ̄r,s(x
s − κs). (11)

Note that a key property here is that the marginal cumu-
lants of X(2) are just given by the appropriate sub-block
of the full joint cumulants Xα. That this is true may be
formally proved with the cumulant generating function.
To get the (log) conditional density, we simply sub-

tract Equation (10) from Equation (2), being careful to
remember that sub-blocks of matrix inverses aren’t the
same as inverses of matrix sub-blocks, and that the two
are related by the block-matrix inversion/Woodbury for-
mulae Equation (7).
The derivation is laborious in the general case, so we

only quote the results here. We find the conditional
density as an Edgeworth expansion whose first three cu-
mulants (i.e. conditional mean, covariance matrix, and
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three-point function) are given (a tilde on a quantity will
denote a conditional quantity throughout) by

κ̃i = κi + κi,rh̄r + κi,r,sc h̄rs/2,

κ̃i,j = κi,j − κi,rκ̄r,sκ
s,j + κi,j,rc h̄r,

κ̃i,j,k = κi,j,kc , (12)

where we have defined the quantity βi
r ≡ κi,sκ̄s,r and the

Hermite tensor h̄rs is given by h̄rs = h̄rh̄s − κ̄r,s. The
conditional third cumulants in Equation (12) are given
by

κi,j,kc = κi,j,k − βi
rκ

r,j,k[3] + βi
rβ

j
sκ

r,s,k[3]− βi
rβ

j
sβ

k
t κ

r,s,t,

κi,j,rc = κi,j,r − βj
sκ

i,r,s[2] + βi
tβ

j
sκ

r,s,t,

κi,r,sc = κi,r,s − βi
tκ

t,r,s. (13)

These expressions agree with those in Ref. [24] when
κi,r = 0, and with those in Ref. [23] when κα = 0.
Note that the conditional third cumulants are just the
unconditional third cumulants of the decorrelated vari-
ables (Y (1), Y (2)) where Y i = X i − βi

rX
r and Y r = Xr.

In the Gaussian case the third cumulant is zero, in
which case the conditional mean is κ̃i = κi+κi,rκ̄r,s(x

s−
κs). This takes the form of a correction to the uncondi-
tional mean due to correlations between the two sets of
variables. Non-Gaussianity imparts a quadratic correc-
tion to this proportional to the third cumulant. Like-
wise, the conditional covariance in the Gaussian case is
κ̃i,j = κi,j − κi,rκ̄r,sκ

s,j , which does not depend on the
value of the variable on which we condition. This sub-
tracts from the unconditional covariance a term account-
ing for correlations with the (fixed) variable X(2), i.e.
the scatter in X(1) is not as great as it could be since
the part correlated with X(2) must be held fixed. Non-
Gaussianity provides a linear correction to the covari-
ance, again proportional to the third cumulant.

C. The conditional correlation function of

unsmoothed fields

We can now apply Equation (12) to the real-space
dark-matter density field. We will neglect for now the
effects of evolution and assume all the fields lie at the
same redshift – this is actually a reasonable approxima-
tion more generally since corrections from conditioning
will only be significant for nearby structure. We wish
to compute the first few cumulants of the density field
δ(ri) ≡ δi conditioned on the observer’s local density
field δ0, assumed to be at the origin of the coordinate
system. To ensure that our truncated Edgeworth expan-
sion is a good description of the true distribution will
mean smoothing these density fields on some sufficiently
large scale.
In the notation of Section II B we have X i = δi and

Xr = δ0, with p − q = 1. Since we deal with density
contrasts we have κi = κr = 0, and by homogeneity (and

neglect of evolution) we have 〈δ2i 〉 = 〈δ20〉 ≡ σ2, where
the dependence on the smoothing scale is left implicit
for now. Plugging this into Equation (12) we get the
conditional mean

〈δi|δ0〉 = 〈δiδ0〉
δ0
σ2

+
1

2

[

〈δiδ20〉 −
〈δiδ0〉
σ2

〈δ30〉
](

δ20
σ4

− 1

σ2

)

.

(14)
The first term in Equation (14) is the Gaussian term ex-
pected from the discussion in Section IIA. The second
term, proportional to (δ20 − σ2), is the leading-order cor-
rection from non-Gaussianity. Note that subsequent av-
eraging of Equation (14) over δ0 yields zero, as required.
The quantity 〈δiδ0〉 is just the correlation function ξ(ri).

Similarly, the conditional covariance is given by

cov(δi, δj |δ0) = 〈δiδj〉 −
〈δiδ0〉〈δjδ0〉

σ2
+

[

〈δiδjδ0〉 −
〈δiδ0〉
σ2

〈δjδ20〉−

〈δjδ0〉
σ2

〈δiδ20〉+
〈δiδ0〉〈δjδ0〉

σ4
〈δ30〉

]

δ0
σ2
. (15)

The first line of Equation (15) is the Gaussian expres-
sion, expected from the discussion in Section II A. The
other lines of Equation (15) are the leading-order correc-
tions from non-Gaussianity and yield zero after subse-
quent averaging over δ0. They are proportional to vari-
ous three-point functions of the local and remote density
fields. In particular, it should be noted that the only
term depending on the angular separation of ri and rj

is 〈δiδjδ0〉δ0/σ2. We thus expect corrections at l > 0
to come solely from this term. Note also the similarities
and differences between the conditional correlation func-
tion of the density contrast and that of discrete tracers
given in Ref. [25], where the conditional probability of
finding two objects given the presence of a third follows
almost immediately from the definition of the three-point
function.

At leading order (tree-level) in standard perturbation
theory we may write the three-point function of the un-
smoothed density field (the expression for smoothed fields
is cumbersome to write down – we will address smoothed
fields in the next section) in Einstein-de Sitter as [26]

〈δ(r1)δ(r2)δ(r3)〉 =
10

7
ξ(r13)ξ(r23)

+∇ξ(r13) · ∇−1ξ(r23)

+∇ξ(r23) · ∇−1ξ(r13)

+
4

7

[

∇a∇−1
b ξ(r13)

) (

∇a∇−1
b ξ(r23)

]

+ cyc., (16)

where r13 ≡ r1 − r3 etc. and the terms involving the
correlation function may be written in terms of the linear
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power spectrum P (k) as6

∇ξ(r) = i

∫

d3k

(2π)3
kP (k)eik·r, (17)

∇−1ξ(r) = −i
∫

d3k

(2π)3
k

k2
P (k)eik·r, (18)

∇a∇−1
b ξ(r) =

∫

d3k

(2π)3
kakb
k2

P (k)eik·r. (19)

To obtain 〈δiδjδ0〉 we simply set r3 = 0 in Equation (16).
The integrals in Equations (17), (18) and (19) may be
simplified by noting that by isotropy we must have

∇a∇−1
b ξ(r) = ξ(r)

δab
3

+ ψ(r)

(

r̂ar̂b −
δab
3

)

, (20)

where ψ(r) ≡ 3
2 (r̂ar̂b − δab/3)∇a∇−1

b ξ(r). This yields

ψ(r) = −
∫

k2dk

2π2
P (k)j2(kr). (21)

Likewise, ∇ξ and ∇−1ξ must both be proportional to
r̂, so

∇ξ(r) = −r̂

∫

k2dk

2π2
kP (k)j1(kr)

= r̂

∫

k2dk

2π2
kP (k)j′0(kr)

= r̂ξ′(r), (22)

and

∇−1ξ(r) = r̂

∫

k2dk

2π2

P (k)

k
j1(kr)

≡ r̂Ω(r). (23)

Plugging the above expressions into Equation (15)
gives the conditional correlation function at tree-level in

6 Our Fourier convention is such that δ(r) =
∫

d3
k

(2π)3
δ(k)eik·r.

Einstein de-Sitter as

cov(δi, δj|δ0) = ξ(d)− ξ(ri)ξ(rj)

σ2
+

{

34

21
ξ(d) [ξ(ri) + ξ(rj)]

+ [ξ′(ri)Ω(rj) + ξ′(rj)Ω(ri)] cosβ

− [ξ′(d)Ω(ri) + ξ′(ri)Ω(d)] cosφ

+ [ξ′(d)Ω(rj) + ξ′(rj)Ω(d)] cosα

+
4

7

[

ψ(ri)ψ(rj)

(

cos2 β − 1

3

)

+ψ(d)ψ(ri)

(

cos2 φ− 1

3

)

+ψ(d)ψ(rj)

(

cos2 α− 1

3

)]

−ξ(rj)
σ2

[

34

21
ξ(ri)

2 + ξ′(ri)Ω(ri) +
8

21
ψ(ri)

2

]

−ξ(ri)
σ2

[

34

21
ξ(rj)

2 + ξ′(rj)Ω(rj) +
8

21
ψ(rj)

2

]}

δ0
σ2
.

(24)

where we defined the angles cosβ = r̂i · r̂j , cosφ =

r̂i · r̂j − ri, cosα = r̂j · r̂j − ri. Evolution could be ac-
counted for by replacing the correlation functions with
their appropriate unequal-time counterparts, i.e. with
the appropriate linear growth factors. The term in braces
is the non-Gaussian correction, linear in the local density
fluctuation.
The correction terms in Equation (24) have been

grouped according to their angular dependence. Re-
call that in standard Eulerian perturbation theory, the
second-order density field can be written as the sum of
a monopolar density-squared term, a dipolar shift term,
and a quadrupolar tidal term. The second line of Equa-
tion (24) is the product of the monopole second-order
density at ri with the linear densities at rj and the origin,
with a corresponding term for ri by symmetry (the corre-
sponding term with the second-order density at the ori-
gin has been cancelled by the remaining terms in square
brackets in Equation (15)). The third, fourth, and fifth
lines are the products of the dipole second-order densi-
ties at the origin, ri, and rj respectively with the linear
densities at the other points, and the sixth, seventh, and
eighth lines are the equivalent terms for the tidal part
of the second-order density. Finally, the ninth and tenth
lines are the remaining terms in square brackets in Equa-
tion (15) which have not cancelled.
Equation (24) is not particularly useful since none of

the fields involved has been smoothed. In particular, no
smoothing scale has been specified for δ0. The real-space
three-point function for smoothed fields is rather com-
plicated and better described in Fourier space, so we de-
fer discussion of smoothing to the next section where we
compute the conditional angular power spectrum. Nev-
ertheless, we can gain some insight from this expression.
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Consider the case where only long-wavelengthmodes con-
tribute to the local density field, such that it can be taken
as linear (we will tighten up this statement in the next
section where we consider smoothed fields). Then we can
neglect the third, sixth, ninth and tenth lines of Equa-
tion (24). If only wavenumbers having k < kmax con-
tribute to δ0 then when r ≪ k−1

max we have ξ(r) ≈ σ2 and
Ω(r) ≈ rσ2/3. We also have ξ′(r)Ω(d) ≪ ξ′(d)Ω(r) be-
cause the integrand of ξ′(r) is suppressed by the restric-
tion k < kmax while the integrand of Ω(r) is enhanced
– see Equations (22) and (23). The tidal terms propor-
tional to ψ(r) are quadratic in r when r ≪ k−1

max, so the
seventh and eighth lines of Equation (24) are suppressed
by factors ∼ (rkmax)

2 and can hence be neglected. This
leaves us with

cov(δi, δj |δ0) ≈ ξ(d)− σ2

+

{

68

21
ξ(d) + [rj cosα− ri cosφ]

ξ′(d)

3

}

δ0

= ξ(d)− σ2 +

[

68

21
ξ(d) + d

ξ′(d)

3

]

δ0

(kmax ≪ kNL, r
−1
i , r−1

j ), (25)

where the third line follows from the second by the defini-
tions of the angles α and φ. Equation (25) is the Gaussian
conditional correlation plus a term precisely matching the
approximate conditional correlation function derived in
Section IIA using effective curvature arguments. This
should come as no surprise of course but provides a use-
ful check on Equation (24).

D. The conditional angular power spectrum of

smoothed fields

In the previous section we applied the general condi-
tional covariance expression Equation (15) to the real-
space dark matter field, which allowed us to quickly
derive the conditional correlation of unsmoothed fields
Equation (24). This expression is not particularly use-
ful however, since no smoothing scale has been specified
for δ0, the local density contrast. Ultimately we expect
the corrections from conditioning will be most significant
for gravitational lensing observables, which inevitably
pick up contributions from nearby structure in projec-
tion. This suggests we need not worry too much about
smoothing the two remote density fields, since for lensing
we will ultimately be effectively replacing them with the
gravitational potential.
Smoothing is most easily implemented in Fourier

space, and since the non-Gaussian terms which are the fo-
cus of this work are the only contribution for l > 0 we will
now compute the conditional angular power spectrum of
density fluctuations. Theoretical modelling of cosmolog-
ical statistics usually starts with a Fourier-space expres-
sion, which provides further motivation for working in
spherical-harmonic space. The derivation is slightly in-

volved, and the reader only interested in the final expres-
sion may skip to Equation (39).
Since conditioning on δ0 introduces no preferred direc-

tion, the conditional density field must be statistically
isotropic7. With δlm(r) the spherical multipoles of the
density field at r, we define the conditional angular power
spectrum C̃l(ri, rj) as

cov(δlm(ri), δl′m′(rj)|δ0) = (−1)m
′

δKll′δ
K
m−m′C̃l(ri, rj),

(26)

where δKab is the Kronecker delta and where C̃l(ri, rj) is
symmetric in its arguments and can be written in terms
of the real-space conditional correlation function as

C̃l(ri, rj) =
∫

d2r̂i Y
∗

lm(r̂i)

∫

d2r̂j Ylm(r̂j)cov(δ(ri), δ(rj)|δ0).
(27)

Substituting in Equation (15) and noting that δ00(0) =√
4πδ0 we find that

C̃l(ri, rj) = Cl(ri, rj)−
4πξ(ri)ξ(rj)

σ2
δKl0

+
[

Bm−m0
ll0 (ri, rj , 0)(−1)m − ξ(ri)B

000
000(rj , 0, 0)δ

K
l0

−ξ(rj)B000
000(ri, 0, 0)δ

K
l0 + ξ(ri)ξ(rj)B

000
000(0, 0, 0)δ

K
l0

]

× δ0

σ2
√
4π
, (28)

where we have introduced the bispectrum of the
multipoles defined by 〈δl1m1(r1)δl2m2(r1)δl3m3(r3)〉 ≡
Bm1m2m3

l1l2l3
(r1, r2, r3). Note that C0(ri, 0) = 4πξ(ri).

The m-dependence of the bispectrum follows from
isotropy, and leads to the definition of the reduced bis-
pectrum bl1l2l3(r1, r2, r3) as

Bm1m2m3

l1l2l3
(r1r2r3) =

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
(

l1 l2 l3
0 0 0

)(

l1 l2 l3
m1 m2 m3

)

bl1l2l3(r1, r2, r3), (29)

where the terms in parentheses are the Wigner 3j sym-
bols. From this it follows that the conditional angular
power spectrum is

C̃l(ri, rj) = Cl(ri, rj)−
4πξ(ri)ξ(rj)

σ2
δKl0

+
[

bll0(ri, rj , 0)− ξ(ri)b000(rj , 0, 0)δ
K
l0

−ξ(rj)b000(ri, 0, 0)δKl0 + ξ(ri)ξ(rj)b000(0, 0, 0)δ
K
l0

] δ0
4πσ2

,

(30)

7 This can be seen at tree-level from Equation (24), where the
conditional correlation function depends only on ri, rj , and cos β.
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Therefore, for l > 0 the leading-order correction to the
angular power spectrum is bll0(ri, rj , 0)δ0/(4πσ

2).

It is worth noting at this point that we have assumed
that the density field is accessible over the full sky in
order to obtain the full set of spherical multipoles. In
reality we observe the density field in a finite survey
window, which complicates the calculation of the con-
ditional power spectrum since the window induces mix-
ing between Fourier modes. One particular feature of
the finite-sky case relevant to the discussion is the use
of a local average density instead of a global average in
defining the density contrast. As discussed in Ref. [27],
the measured density contrast in the survey window is
δM (n̂) = [δ(n̂) − δL]/(1 + δL), where δL is the density
contrast averaged over the survey patch mostly having
contributions from super-survey modes. Since the local
density field correlates with δ(n̂) in exactly the same way
as δL, to leading order this measured field is uncorre-
lated with δ0 and hence in the Gaussian case there is no
correction from conditioning, even for l = 0. The same
argument in fact holds on the full sky, but there the ambi-
guity between using the ensemble-averaged mean density
or the realization-dependent measured mean density to
define density contrasts only impacts the l = 0 mode. On
the cut sky one needs to be careful about which mean one
is using, but since in practice we are interested in lensing
we will consistently define density contrasts with respect
to the FRW ensemble-averaged density.

To keep things as symmetric for as long as possible
we will first compute the general reduced bispectrum
bl1l2l3(r1, r2, r3). This was first done in Ref. [28], al-
though there are some missing factors of i which are cor-
rected in Ref. [29]. We repeat the derivation here in a
slightly clearer fashion and incorporate smoothing.

Writing δ(r) = δ(1)(r) + δ(2)(r) + ..., the bispectrum
of smoothed fields follows from writing the density field
multipoles in terms of the Fourier modes δ(k) and reads

Bm1m2m3

lll2l3
(r1, r2, r3) =

∫

k21dk1
2π2

W (k1R)

∫

k22dk2
2π2

W (k2R)

∫

k23dk3
2π2

W (k3R)

∫

d2k̂1

∫

d2k̂2

∫

d2k̂3 i
l1+l2+l3

× jl1(k1r1)jl2(k2r2)jl3(k3r3)Y
∗

l1m1
(k̂1)Y

∗

l2m2
(k̂2)Y

∗

l3m3
(k̂3)

× 〈δ(2)(k1)δ
(1)(k2)δ

(1)(k3)〉+ cyc., (31)

where W (kR) is the smoothing kernel, which we assume
is isotropic.

Now, let’s focus on the term in Equation (31) for
which the non-linear field is δ(r1). The tree-level Fourier
space bispectrum in Einstein de-Sitter (although the
cosmology-dependence is very weak) is [26]

〈δ(2)(k1)δ
(1)(k2)δ

(1)(k3)〉 =
2(2π)3F2(k2,k3)P (k2)P (k3)δ

D(k1 + k2 + k3). (32)

We now write the F2 kernel as

F2(k2,k3) =
∑

L

fL(k2, k3)LL(k̂2 · k̂3)

= 4π
∑

L

fL(k2, k3)

2L+ 1

∑

M

YLM (k̂2)Y
∗

LM (k̂3)

(33)

where LL is a Legendre polynomial. This implies that
f0(k2, k3) = 17/21, f1(k2, k3) = (k2/k3 + k3/k2)/2,
f2(k2, k3) = 4/21, and fL(k2, k3) = 0 for L > 2.
Now we write the Dirac delta function as the Fourier

transform of unity and expand its Fourier exponential

in spherical harmonics. The integral over k̂1 in Equa-
tion (31) for our term is trivial and enforces l = l1 and

m = −m1. The integrals over k̂2 and k̂3 involve three
spherical harmonics and so can be written as products
of 3j symbols. The same is true of the integral over r̂.
This leaves a sum over the product of six 3j symbols, and
the remaining integrals over k1, k2, k3, and r. The three
3j symbols with non-zero m-arguments can be summed
over m using Equation 8.7.3.12 of Ref. [30] and written
as the product of a 6j symbol and a 3j symbol – this 3j
symbol contains all the m-dependence of the bispectrum
and is consistent with isotropy. Following the notation of
Ref. [28] and Ref. [29] we define the geometric quantities

gl1l2l3 ≡
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l2 l3
0 0 0

)

(34)

and

I l1l2l3ll′l′′ ≡
√

(4π)3(2l1 + 1)(2l2 + 1)(2l3 + 1)

×
(

l l′′ l1
0 0 0

)(

l′ l l2
0 0 0

)(

l′′ l′ l3
0 0 0

)

(35)

and finally

Ql1l2l3
ll′l′′ ≡ I l1l2l3ll′l′′

{

l1 l2 l3
l′ l′′ l

}

(−1)l+l′+l′′ , (36)

where the term in braces is a Wigner 6j symbol.
Making all these replacements, using the explicit ex-

pressions for the fL coefficients and then using the defi-
nition of the reduced bispectrum gives, finally

bl1l2l3(r1, r2, r3) = 4π
{l1 l2 l3}
gl1l2l3

×
∫

k21dk1
2π2

W (k1R)

∫

k22dk2
2π2

W (k2R)

∫

k23dk3
2π2

W (k3R)

× (−i)l2+l3jl1(k1r1)jl2(k2r2)jl3(k3r3)

∫

r2dr jl1(k1r)

×
∑

l′,l′′

il
′+l′′(2l′ + 1)(2l′′ + 1)jl′(k2r)jl′′ (k3r)2P (k2)P (k3)

×
[

17

21
Ql1l2l3

l′0l′′ +
1

2

(

k2
k3

+
k3
k2

)

Ql1l2l3
l′1l′′ +

4

21
Ql1l2l3

l′2l′′

]

+ sym., (37)
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where {l1 l2 l3} = 1 if the symmetries of gl1l2l3 are en-
forced (i.e. the triangle conditions and l1+l2+l3 equalling
an even integer), and zero otherwise. Note that Equa-
tion (37) agrees with the expression in Ref. [29], which
can be shown by using the symmetries of the 3j and 6j
symbols and some relabelling. Note that the power spec-
tra are really unequal-time power spectra, and we should
replace P (k2) → P (k2; z2, z1) and P (k3) → P (k3; z3, z1)
in Equation (37).
Now, two of the integrals in Equation (37) can be done

analytically using the orthogonality of spherical Bessel
functions if we assume W (k1R) = 1, i.e. if we leave the

non-linear field unsmoothed in each term. Since we will
want to at least smooth the local density field, this sug-
gests that we will have to neglect any non-linearity in δ0.
With R the smoothing scale of the local density, this im-
plies that we must choose R sufficiently large to suppress
non-linearity in δ0. The resulting smoothed field is δ0(R).
Since we wish to maintain non-linearity in the non-local
fields, we can only make further analytic progress if we
leave these fields unsmoothed. This is acceptable if we
wish to compute lensing spectra, since the relevant den-
sity fields are unsmoothed in this case.
We now take the limit of Equation (37) when δ(r3) =

δ0, the local density field smoothed on scale R. We set

r1 = ri, r2 = rj , r3 = 0, l1 = l, l2 = l, and l3 = 0. We’ll
continue to work with the term having δ(r1) as a non-
linear field, with the other two fields linear. The triangle
condition is clearly met, and {l l 0} = 1. We also have

gll0 = (−1)l
√

(2l + 1)/4π. The coefficients Qll0
l′Ll′′ can be

computed straightforwardly for L = 0, 1, 2 and are

Qll0
l′0l′′ = δKl′′0(4π)

3/2 (−1)l√
2l + 1

δKl′l,

Qll0
l′1l′′ = δKl′′1

(4π)3/2(−1)l

3
√
2l+ 1

(

l + 1

2l + 3
δKl′,l+1 +

l

2l − 1
δKl′,l−1

)

,

Qll0
l′2l′′ = δKl′′2

(4π)3/2(−1)l

5
√
2l+ 1

[

3(l + 1)(l + 2)

2(2l+ 3)(2l + 5)
δKl′,l+2

+
l(l+ 1)

(2l− 1)(2l + 3)
δKl′,l +

3(l − 1)l

2(2l− 3)(2l− 1)
δKl′,l−2

]

.

(38)

Substituting these coefficients into Equation (37), us-
ing the recursion relations for the spherical Bessel func-
tions and their derivatives, and neglecting non-linearity
in δ0(R), we finally obtain the conditional angular power

spectrum for l > 0 as C̃l(ri, rj) ≈ Cl(ri, rj) +∆Cl(ri, rj)
with

∆Cl(ri, rj) = 4π

∫

k2dk

2π2
P (k; zi, zj)jl(krj)

×
{

34

21
ξR(ri)jl(kri) +

[

kΩR(ri)−
ξ′R(ri)

k

]

j′l(kri)−
8

21
ψR(ri)

[

3

2
j′′l (kri) +

1

2
jl(kri)

]}

δ0(R)

σ2(R)
+ (ri ↔ rj).

(39)

The correlation functions of Section II C reappear in
Equation (39) in smoothed form as

ξR(r) =

∫

k2dk

2π2
P (k; z, 0)j0(kr)W (kR), (40)

ξ′R(r) = −
∫

k2dk

2π2
P (k; z, 0)kj1(kr)W (kR), (41)

ΩR(r) =

∫

k2dk

2π2

P (k; z, 0)

k
j1(kr)W (kR), (42)

ψR(r) = −
∫

k2dk

2π2
P (k; z, 0)j2(kr)W (kR). (43)

Note that σ2(R) 6= ξR(0), since σ
2(R) has W (kR)2 in its

integrand rather than W (kR).
Equation (39) is the first main result of this work,

representing the leading-order correction to the angular
power spectrum of density fluctuations in spherical shells
for l > 0 due to conditioning on the local smoothed
density contrast. One may verify that this expression
is consistent with the real-space three-point function in

Equation (24). To show this, note that ∂d/∂ri = − cosφ
and ∂d/∂rj = cosα, and that j1 and j2 can be written
as derivatives of j0. The agreement then follows from
taking second derivatives of d with respect to ri and rj .
So far, the only source of stochasticity in deriving

Equation (39) has been that of the density field itself,
i.e. cosmic variance. In practice the fields also contain
observational (including Poisson) noise. This can be eas-
ily incorporated by replacing all power spectra and vari-
ances in the above equations with their noisy versions. In
particular, we can in practice only make a noisy estimate
of the local density field. In this case, the variance σ(R)

should be replaced by
√

σ2(R) + σ2
N (R), where σ2

N (R) is
the smoothed noise variance. δ0(R) is then a noisy esti-
mate of the local density, for example that arising from a
point estimate such as a maximum-likelihood estimator.
To keep our results as general as possible, we will neglect
noise and instead account for it by quoting uncertainties
in δ0(R) or ν(R) = δ0(R)/σ(R) which should bracket the
typical corrections ∆Cl.
In Figure 3 we plot the four correlation functions de-
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FIG. 3: Left panel : The functions ξR(r) (upper blue) and ψR(r) (lower orange) defined in the text for a smoothing scale of
R = 120 h−1 Mpc. Right panel : The functions ΩR(r) and ξ

′

R(r) defined in the text, normalised to the equality scale keq and for
R = 120 h−1 Mpc. The dashed horizontal line denotes zero correlation. Both panels assume a linear matter power spectrum.

fined in Equation (40)–(43) for our preferred smoothing
scale R = 120 h−1Mpc. All the correlation functions ex-
cept ξR(r) go to zero as r → 0, and all go to zero for
r ≫ R. The result is that ξ′R(r), ΩR(r) and ψR(r) have
support mostly around r ≈ R, whereas ξR(r) is large for
r . R and strongly suppressed for r & R.

In Figure 4 we plot the fractional correction to the
angular auto power spectrum of density fluctuations
in units of the normalized local fluctuation ν(R) =
δ0(R)/σ(R), i.e. the r.m.s. fractional correction. We
set the smoothing scale equal to R = 120 h−1Mpc, as
discussed in Section IIA. The correction due to our own
local density can be obtained by multiplying the curves
in Figure 4 by ν(R), where our estimate from the C15
density field is ν(120 h−1Mpc) ≈ 0.85± 0.53 – we choose
to display results in units of ν(R) so that any estimate
of the local density contrast can be inserted. In the left
panel we plot results for three spherical shells located at
z = 0.15, z = 0.32, and z = 0.43, corresponding to the
lower, effective, and upper redshifts of the BOSS LOWZ
galaxy sample [31], as a function of angular multipole. In
the right panel we plot the radial dependence for a few
choices of l.

The typical size of the correction to the Cl are ∼ 10−3

for the BOSS LOWZ redshift shells, i.e. at the sub-
percent level. At the effective redshift of LOWZ the
corrections are smaller, at the ∼ 10−4 level and hence
negligible for ν(R) ∼ 1 as suggested by the 2M++ cata-
logue. As shown in the left panel of Figure 4, the largest
effects are at the largest angular scales, although the de-
pendence on l is quite weak. Note also that the sign of
the correction is negative, i.e. for positive δ0(R) condi-
tioning on the local density suppresses the angular power
spectrum for these redshifts.

The correction from conditioning is larger for closer

redshift shells, as expected. The right panel of Figure 4
shows that for r . 100 h−1Mpc (i.e. z . 0.03) the correc-
tions can be & 10%, roughly independent of l (in agree-
ment with the left panel). The radial dependence shown
here roughly follows that of ξR(r), i.e. the green curve
in Figure 2. For r & R the correction quickly becomes
sub-percent.

Since our expression for the conditional power spec-
trum is only valid at second order in perturbation the-
ory, we need to be careful to avoid too much sensitiv-
ity to very non-linear scales. To check this we compute
Equation (39) using both the linear power spectrum (for-
mally correct at this order in perturbation theory) and a
non-linear power spectrum computed using the halofit
correction of Ref. [32], shown as the dashed curves in Fig-
ure 4. The impact of non-linear scales is non-negligible
for all terms but is generally at the 10% level. At l & 10
the sensitivity to non-linear scales is more severe – the
small oscillations seen in the left panel of Figure 4 are nu-
merical artefacts arising from truncation of the k-integral
in Equation (39) at kmax = 2.5 h−1Mpc. The sensitiv-
ity of the non-Gaussian correction ∆Cl to small scales is
greater than for the unconditional angular power spec-
trum, so we must take care to check that our results are
not too sensitive to non-linear wavenumbers.

Note that all the corrections shown here are less than
the cosmic variance uncertainty on Cl, even when this
cosmic variance is itself conditioned on the local density.
It is easy to show that at leading order the conditional
cosmic variance is just the familiar

√

2/(2l+ 1) in units
of the fractional difference, which suggests that for a typ-
ical δ0(R)/σ(R) the correction to the angular power spec-
trum is negligible, even for close redshift bins. It may be
the case that there is a choice of R for which δ0(R) is
sufficiently large to produce observable corrections. Al-
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FIG. 4: Left panel : R.m.s. fractional correction to the l > 0 angular power spectrum of matter density fluctuations on spherical
shells at z = 0.15 (blue lower curve), z = 0.32 (orange middle curve) and z = 0.43 (green upper curve), for R = 120 h−1 Mpc.
Dashed curves use a matter power spectrum corrected with halofit. The correction due to our own local density can be
obtained by multiplying these curves by ν(R) = δ0(R)/σ(R), with our C15 estimate being ν(120 h−1 Mpc) ≈ 0.85 ± 0.53.
Corrections at these distances are at the sub-percent level and well within the (conditional) cosmic variance on all angular
scales. Right panel : Same as left panel but as a function of the radial distances of the spherical shells and for the largest few
angular scales. All the curves lie roughly on top of each other. The radial behaviour seen here roughly matches that of the
ξR(r) function plotted in Figure 2. Corrections can reach ∼ 10% for nearby shells but are still within the conditional cosmic

variance, which is roughly
√

2/(2l + 1) in units of the fractional difference.

though Figure 1 casts doubt on this, a large observable
correction is certainly not ruled out.

In Figure 5 we plot the various contributions to Equa-
tion (39), grouped by their angular dependence in the
F2 kernel. In detail, the monopole is the term in Equa-
tion (39) proportional to ξR, the dipole is the term in-
volving ΩR and ξ′R, and the quadrupole is the term pro-
portional to ψR. In this figure we consider a single spher-
ical shell at z = 0.32, the effective redshift of the BOSS
LOWZ sample. The monopole term is dominant on these
angular scales, implying the radial dependence of the cor-
rection is given roughly by ξR(r), as suggested by Fig-
ure 4 and Figure 2. Again, changing the matter power
spectrum on non-linear scales can change the results at
the 10% level.

To summarize this section, we have computed the
angular power spectrum of density fluctuations condi-
tioned on our smoothed local density contrast. For large
smoothing scales a perturbative treatment is possible,
with corrections at the ten-percent level for very nearby
redshift shells and large angular scales, rapidly dropping
with redshift. The maximal size of the correction is in
rough agreement with the order-of-magnitude estimate
made in Section IIA. All corrections appear to be within
cosmic variance for the typical local density contrast es-

timated from the C15 density field. However, since we
have not considered smoothing the remote density con-
trast, biased tracers, or redshift-space effects, our results
are of limited practical use. For this reason, we now turn
to computing the impacts on gravitational lensing statis-
tics, also considered in R19. Since lensing inevitably in-
cludes contributions from nearby structure in projection,
corrections from conditioning are potentially relatively
more important.

III. APPLICATION TO GRAVITATIONAL

LENSING

In this section we will apply Equation (39) to the lens-
ing convergence field in direction n̂ for sources at a dis-
tance r, κ(n̂; r). The key quantity to compute is now the
mixed bispectrum bκκδll0 (r1, r2, 0) for sources at distance
r1 and r2.

Before we proceed we should note that all second-order
contributions to the convergence should be included, not
just those due to large-scale structure calculated in the
previous section. In particular, to be consistent we
must include post-Born effects at second-order in κ(n̂)
– the relevant cross-bispectrum term at leading post-
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Born order in the flat-sky approximation has recently
been presented in Ref. [33]. Post-Born effects are likely
to be most relevant for distant sources such as the CMB,
where photon trajectories are sufficiently long that the
post-Born signal can accumulate and become comparable
with large-scale structure terms [33–35]. For the nearby
source redshifts we consider, we expect post-Born terms
to be subdominant to second-order density terms, so to
keep the analysis simple we will neglect post-Born terms
in κ(n̂), noting that a consistent second-order analysis
could use a full-sky version of the cross-bispectrum from
Ref. [33] as a starting point.

Neglecting post-Born effects and the subdominant ra-
dial derivative terms, the lensing convergence from a
source at distance r1 is

κ(n̂; r1) =

∫ r1

0

driW (ri, r1)δ(rin̂; ri), (44)

where the lensing kernel is W (ri, r1) =
3ΩmH2

0

2c2 [1 +
z(ri)]ri(r1 − ri)/r1 in our spatially flat cosmology, and
the second argument of the density contrast is its time
dependence on the zeroth-order lightcone.

The conditional lensing power spectrum for l > 0 is

then given by

C̃κκ
l (r1, r2) =

∫ r1

0

driW (ri, r1)

∫ r2

0

drj W (rj , r2)C̃l(ri, rj)

(45)

where C̃l(ri, rj) is given in Equation (39). Note that we
still to work to second order in the fields, which means
that contributions from small |ri − rj | need to be suffi-
ciently suppressed in the lensing integrals. This means
we need to make sure r1 and r2 are sufficiently large
and ensure we don’t consider small angular scales where
our weak non-Gaussianity and tree-level approximations
break down. We will check these criteria are met by
re-computing all numerical results with halofit power
spectra.
The double integral in Equation (45) adds significant

computational complexity to the evaluation of ∆Cκκ
l .

Fortunately, we can write down a Limber approxima-
tion [36] which will prove to be accurate over a wide range
of angular scales. Readers uninterested in the deriva-
tion can skip to the main results given in Equations (56)
and (58).

A. Limber approximations

The correction to the angular power spectrum for l > 0
can be written as the sum of three terms given by

∆0
l (r1, r2) =

∫ r1

0

driW (ri, r1)

∫ r2

0

drj W (rj , r2)

×
∫

∞

0

k2dk

2π2
f0(k; ri, rj)jl(kri)jl(krj)

+ (r1 ↔ r2), (46)

∆1
l (r1, r2) =

∫ r1

0

driW (ri, r1)

∫ r2

0

drj W (rj , r2)

×
∫

∞

0

k2dk

2π2
f1(k; ri, rj)j

′

l(kri)jl(krj)

+ (r1 ↔ r2), (47)

∆2
l (r1, r2) =

∫ r1

0

driW (ri, r1)

∫ r2

0

drj W (rj , r2)

×
∫

∞

0

k2dk

2π2
f2(k; ri, rj)j

′′

l (kri)jl(krj)

+ (r1 ↔ r2), (48)

where the functions f0, f1, and f2 are smooth functions of
their arguments. The Limber approximation can be ap-
plied to the first term in the standard way, by assuming
that the spherical Bessel functions oscillate many times
over the characteristic length scales of f0, which allows
f0 to be pulled out of the integral. We can then use the
orthogonality of the spherical Bessels to do the k inte-
gral, which then allows one of the radial integrals to be
done, leaving us with one remaining radial integral over a
smooth slowly varying integrand, a good approximation
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even at fairly low l. This gives

∆0
l (r1, r2) ≈ 2

∫ rmax

0

dri
W (ri, r1)W (ri, r2)

4πr2i
f0(l/ri; ri, ri),

(49)
where rmax = min(r1, r2). However, this procedure fails
with the other two terms, since these involve derivatives
of spherical Bessel functions. Instead we follow Ref. [37]
and extend the techniques of Ref. [38] to derivative terms.
We start with the identity

∫

∞

0

dr f(r)Jν (kr) ≈ k−1f(ν/k)+O[k−3f ′′(ν/k)], (50)

and retain only the leading-order term. In the case of
∆0

l , we apply this approximation first to the rj integral
and assume that r2 ≫ ν/k so we can set the upper limit
to infinity. This will break down when rj is close to r2,
but this should be benign since the integrand is there
suppressed by the lensing kernel. Applying the identity
again to the k-integral then gives Equation (49) with l+
1/2 instead of l in the right-hand side, and with an upper
limit of r1 instead of min(r1, r2). Clearly the latter choice
makes more sense, so we put this limit in by hand.
We can follow the same steps for ∆1

l and ∆2
l after first

converting the spherical Bessel derivatives into undiffer-
entiated jl with mixed l values, i.e. using

j′l(x) =
l

2l + 1
jl−1(x)−

l + 1

2l + 1
jl+1(x) (51)

j′′l (x) =
(l − 1)l

(2l − 1)(2l + 1)
jl−2 −

2l(l+ 1)− 1

(2l − 1)(2l + 3)
jl(x)

+
(l + 1)(l + 2)

(2l+ 1)(2l + 3)
jl+2(x) (52)

This gives, for ∆1
l ,

∆1
l (r1, r2) ≈

∫ min(r1,r2)

0

dr
W (r, r1)

4πr2

×
[

2ν − 1

4ν

√

ν − 1

ν
W

(

ν

ν − 1
r, r2

)

f1

(

ν − 1

r
; r,

ν

ν − 1
r

)

−2ν + 1

4ν

√

ν + 1

ν
W

(

ν

ν + 1
r, r2

)

f1

(

ν + 1

r
; r,

ν

ν + 1
r

)

]

+ (r1 ↔ r2), (53)

where ν = l + 1/2.
For ∆2

l we have

∆2
l (r1, r2) ≈

∫ min(r1,r2)

0

dr
W (r, r1)

4πr2

×
[

ανW

(

ν

ν − 2
r, r2

)

f2

(

ν − 2

r
; r,

ν

ν − 2
r

)

−βνW (r, r2) f2

(ν

r
; r, r

)

+γνW

(

ν

ν + 2
r, r2

)

f2

(

ν + 2

r
; r,

ν

ν + 2
r

)]

+ (r1 ↔ r2), (54)

where

αν =
(2ν − 3)(2ν − 1)(ν − 2)

1
2

16(ν − 1)ν
3
2

,

βν =
[(2ν − 1)(2ν + 1)− 2]

8(ν2 − 1)
,

γν =
(2ν + 1)(2ν + 3)(ν + 2)

1
2

16ν
3
2 (ν + 1)

. (55)

Note that these expressions are only formally valid when
ν > 2.
The correction to the convergence angular power spec-

trum is, for l > 0

∆Cκκ
l (r1, r2) =

[

∆0
l (r1, r2) + ∆1

l (r1, r2) + ∆2
l (r1, r2)

] δ0(R)

σ2(R)
,

(56)
with

f0(k; ri, rj) = 4πP (k; zi, zj)

[

34

21
ξR(ri)−

4

21
ψR(ri)

]

f1(k; ri, rj) = 4πP (k; zi, zj)

[

kΩR(ri)−
ξ′R(ri)

k

]

f2(k; ri, rj) = 4πP (k; zi, zj)

[

−4

7
ψR(ri)

]

. (57)

In the limit that l ≫ 1 we have αν → 1/4, βν → 1/2,
and γν → 1/4. Assuming that P (k) varies much more
rapidly than the radial dependence of either W , f1 or f2,
we can Taylor expand the k-dependence of f1 and f2 to
give, in the l ≫ 1 limit

∆Cκκ
l (r1, r2) ≈ 2

δ0(R)

σ2(R)

∫ min(r1,r2)

0

dr
W (r, r1)W (r, r2)

r2

×
{[

34

21
ξR(r) −

4

21
ψR(r)

]

P (l/r; z, z) +

[

r

l
ξ′R(r) −

l

r
ΩR(r)

]

P ′(l/r; z, z)

r
− 4

7
ψR(r)

P ′′(l/r; z, z)

r2

}

(58)

where P ′(k) ≡ ∂P (k)/∂k and P ′′(k) ≡ ∂2P (k)/∂k2 are derivatives of the matter power spectrum. Equation (56)
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and Equation (58) are the second main results of this
work and represent the corrections to the lensing con-
vergence angular power spectrum from conditioning on
δ0(R) in the Limber approximation. In practice the cor-
rections are only relevant for low l, so we use the more
accurate Equation (56) for numerical work. For all re-
sults shown we find the Limber approximation disagrees
with the full integration Equation (45) to at worst a few
percent for l ≥ 10. For l ≤ 10 we use the full result of
Equation (45).

The correction to the lensing angular power spectrum
can be essentially thought of as arising from a multi-
plicative correction to the linear growth factor D(r) of
1 + αδ0(R)ξR(r)/σ

2(R) where α is a numerical factor of
order unity. This is only significant for r much less than a
correlation length, and since the lensing kernel suppresses
the contribution of nearby structure we can expect only
a very small correction to Cκκ

l .

In Figure 6 we plot the fractional correction to the
lensing angular power spectrum in units of the local fluc-
tuation ν(R), for a smoothing radius R = 120 h−1Mpc
and four source redshifts between zs = 0.1 and zs = 0.8.
Note that the l = 1 mode is unobservable in cosmic
shear experiments. For reference, the peak of the source
distribution for the Euclid lensing survey is expected
to be roughly zs = 0.8 [39] and the lower limit of the
KiDS+VIKING-450 lensing survey is zs = 0.1 [40]. The
figure shows that ∼ 10% corrections to the angular power
spectrum can arise at l = 2 and zs = 0.1 and are at the
percent level for higher source redshifts and smaller an-
gular scales. For l & 10 the corrections are sub-percent
for zs & 0.4. Note that the sign of the correction is pos-
itive on all scales, i.e. conditioning on a positive local
density contrast enhances the lensing power. As in the
case of the density angular power spectrum, corrections
are smaller than the (conditional) cosmic variance on all
scales. At the expected peak redshift of the Euclid source
distribution the corrections are completely negligible for
our estimated value of δ0(R).

The dashed curves in Figure 6 have a matter power
spectrum which includes a halofit prescription for non-
linear scales. For low source redshifts we see sizeable
corrections to the predicted Cκκ

l at l > 20. This implies
that our perturbative treatment of non-Gaussianity may
be breaking down in this regime, so the results should be
treated with caution. A more accurate treatment would
involve running constrained N-body simulations [3]. Note
that the correction must become large at sufficiently low
R and zs, since in this regime nearby structure is highly
correlated with our local density. For cosmological sur-
veys however the correction appears to negligible.

Our results are in contrast to those of R19, who claim
percent-level effects at all l when δ0 = 0.5 for a Euclid-
like lensing survey. Our results are difficult to compare
since R19 does not quote a smoothing scale for their local
density – however, it is clear from Figure 6 that at the
source redshifts expected to be relevant for Euclid the
corrections are sub-percent for all l > 10. The discrep-

ancy is likely due to R19 taking the Gaussian prediction
for l = 0 and applying it to all l rather than computing
the bispectrum, which we have shown is the only contri-
bution at l > 0.

The largest effects of conditioning on the local density
arise at low redshift, where there are large corrections
to the unconditional linear lensing power spectrum from
non-linear structures. Figure 7 shows the fractional cor-
rection to Cκκ

l for zs = 0.1 in units of the local fluctua-
tion, i.e. the same as the top curve in Figure 6, along with
the fractional correction to Cκκ

l from non-linearity in the
matter power spectrum, estimated by using applying a
halofit correction. For the value of ν(R) estimated in
Section IIA, ν(120 h−1Mpc) ≈ 0.85 ± 0.53, corrections
from conditioning are greater than those due to uncondi-
tional non-linear structure only at l < 10. At the scales
most accurately measured by upcoming lensing surveys,
corrections due to conditioning are very subdominant to
those from non-linear structure for this choice of R, and
below cosmic variance.

In Figure 8 we plot the dependence of the correc-
tion on source redshift for l = 2, the angular scale
where the correction is largest. As hinted at in Fig-
ure 6 the correction drops rapidly with redshift, although
the corrections are at the percent level for all values of
zs considered. The dominant contribution is from the
monopole term in Equation (58), i.e. the term propor-
tional to P (l/r). As suggested by Figure 3 the domi-
nant term is that proportional to ξR(r), confirming our
earlier claim that conditioning on the local density is
roughly equivalent to multiplying the linear growth factor
by 1+αδ0(R)ξR(r)/σ

2(R) where α is a numerical factor
of order unity, with α = 34/21 in Einstein-de Sitter.

Finally, in Figure 9 we plot the dependence of the r.m.s.
correction to lensing angular power on the smoothing
scale R for zs = 0.2. The dependence is sub-linear at
low R, with an l-dependent turn-over at high R. This
non-monotonic behaviour is due to the trade-off between
the R-dependence of the correlation function ξR(r) (Fig-
ure 2) and that of the variance σ2(R) (Figure 1), since
the r.m.s correction from conditioning effectively multi-
plies the lensing kernel by ξR(r)/σ(R). While σ(R) is a
monotonically decreasing function of R, ξR(r) increases
with R at high r and decreases at low r, with the relevant
values of r depending on l and zs.

If some large fluctuation ν∗ in the local density were
found at, say, R = 200 h−1Mpc, Figure 9 tells us that
the correction from conditioning would be roughly 0.03ν∗

with a modest dependence on l on large angular scales
and low source redshifts. A 3σ fluctuation on this large
scale could hence give detectable 10%-level corrections
for the lowest source redshift bins of a Euclid-like survey.
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FIG. 6: R.m.s. fractional correction to the angular power spectrum of gravitational lensing from a local density fluctuation in
a sphere of radius R = 120 h−1 Mpc, for sources at zs = 0.1 (blue top curve), zs = 0.2 (orange second-from-top curve), zs = 0.4
(green second-from-bottom curve) and zs = 0.8 (red bottom curve). Dashed curves use a matter power spectrum corrected
with halofit. The correction due to our own local density can be obtained by multiplying these curves by the local density
fluctuation ν(R) = δ0(R)/σ(R), where our estimate from the C15 density field is ν(120h−1 Mpc) ≈ 0.85 ± 0.53.

IV. DISCUSSION – INFORMATION, BIAS,

AND CONSISTENCY

We have seen that the conditional angular power spec-
trum of density of lensing fluctuations differs from its
unconditional form by a few percent in extreme cases,
and at the sub-percent level for the scales and redshifts
typically probed by cosmological surveys. In all cases,
it appears these differences are smaller than cosmic vari-
ance. Nevertheless, it is interesting to ask in what sense
neglecting the correction biases measurements of the Cl.

The value of our local density contrast δ0(R) is extra
information which in principle we are free to include or
exclude from a cosmological analysis, in the same way
as any external data correlated with what we measure
in a survey. One might hope therefore that a full joint
likelihood analysis with the measured Cl and δ0(R) would
yield tighter constraints on cosmological parameters than

Cl alone. This work has shown that for l > 0 it is nec-
essary to account for non-Gaussianity in the Cl when
computing the correlation, so the exact form of this joint
likelihood is complicated. Nonetheless, the correlation
between Cl and δ0 presented in this work is a necessary
part of this joint likelihood. Given its small amplitude
we do not expect the information gain to be significant.

One could alternatively take the view that since we al-
ways observe the Universe from within our local density,
neglecting the correction from conditioning amounts to
using a biased model for the measured power spectra.
For a typical local fluctuation one might naively think
that this bias should be smaller than the cosmic variance
on the measurement (as we have indeed shown), since the
sampling distribution of the measured fields has implic-
itly marginalized over field values at all spatial locations
outside the survey volume, including at the location of
the observer. In other words, the variance we assign to
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FIG. 7: Same as Figure 6 for a source redshift of zs = 0.1
with (blue solid curve) and without (blue dashed curve) a
halofit matter power spectrum. We also plot the fractional
correction to the lensing angular power spectrum due to non-
linearity in the matter power spectrum itself (computed with
halofit, black curve). Local corrections to the lensing angu-
lar power spectrum can be more important than those due to
non-linear clustering of lenses on scales l . 10 and very low
source redshifts but are well within cosmic variance for the
local density field inferred from 2M++.

our measurement should have implicitly accounted for
local density fluctuations, so differences between the un-
conditional and conditional power spectrum should be
less than the cosmic variance (which also includes vari-
ance from density fluctuations at all other spatial loca-
tions as well as at the observer). This picture is com-
plicated by non-Gaussianity in the sampling distribution
of the measurements, but nevertheless one would expect
a model conditioned on the local density to provide a
better fit to the data, since one cannot average out the
local fluctuation in the way that typically happens when
averaging a summary statistic over the survey volume –
the ergodic theorem will not guarantee convergence of
the sample mean statistic to its ensemble mean.
Continuing along these lines, one possible application

of the conditional power spectrum is as a consistency
check on cosmological statistics. Given a measurement
of δ0(R), the expressions in this paper may be used to
predict conditional angular power spectra. If the cosmo-
logical model is consistent, this conditional model should
be a good fit to measurements of these power spectra. A
similar procedure was used in Ref. [41] to test for consis-
tency between CMB temperature and polarization mea-
surements in Planck. We have seen that for δ0(R) esti-
mated from the 2M++ catalogue and for the scales and
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FIG. 8: R.m.s. fractional correction to the l = 2 angular
power spectrum of gravitational lensing for sources at red-
shift zs and a smoothing scale R = 120 h−1 Mpc. We plot the
total correction (black dashed curve) and the individual cor-
rections labelled by their angular dependence in the F2 kernel;
monopole (blue upper curve), dipole (orange lower curve) and
quadrupole (green middle curve). The dot-dashed horizontal
line depicts zero correlation. Corrections can reach ∼ 10%
for nearby sources but are still within the conditional cosmic
variance. Corrections from non-linear wavenumbers in the
matter power spectrum are negligible on these scales.

redshifts of relevance to cosmological surveys the pre-
dicted conditional power spectra are so close to the un-
conditional power spectra that this consistency test is
passed if the unconditional models are good fits to the
data. For very low redshift large-scale structure probes
the consistency check may be more effective, since the
corrections to the unconditional power spectra are ex-
pected to be larger.
In principle the expressions derived in this paper could

be used to measure the local density field itself on differ-
ent smoothing scales. In practice we expect only weak
upper limits on |δ0(R)| will be provided by large cosmol-
ogy surveys like Euclid. Nevertheless, the possibility of
constraining local structure from large-scale structure is
an intriguing one.
Finally, pursuing the theme of our local environment

and its influence on cosmology one might wonder if the
very fact that we exist and are able to make astronomical
observations should be information that needs to be con-
ditioned on in a cosmological analysis. When computing
ensemble averages of measured summary statistics (such
as the lensing power spectrum), we typical allow the un-
derlying density field (or more accurately the primordial
curvature fluctuations) to fluctuate at all point in space.
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FIG. 9: R.m.s. fractional correction to the angular power
spectrum of gravitational lensing for sources at redshift zs =
0.2 for different smoothing scales R and multipoles l. We
plot the correction at l = 10 (blue upper solid), l = 18 (or-
ange middle solid) and l = 26 (green lower solid). Dashed
curves have been computed using the halofit correction to
the matter power spectrum. The dependence on the smooth-
ing scale is modest, although non-linear corrections are likely
significant at high l and low R.

If this set of fluctuations includes universes for which the
conditions at our spatial location are such that the prob-
ability of life forming is very low, should we exclude them
from the ensemble? In principle one could test the im-
pact of this with constrained hydrodynamic simulations
in the manner of Refs. [8–10]. One might expect this
probability to be related in some way to the local matter
density, so the expressions we have derived could be use-
ful in this respect. The uncertainties involved likely pre-
clude a quantitative study, but the concept of ‘anthropic
large-scale structure’ is again intriguing.

V. CONCLUSIONS

The conclusions of this work may be summarised as
follows:

• We have shown that for Gaussian fields, condition-
ing the angular power spectrum of density fluctu-
ations Cl on the spherically averaged local density
δ0(R) changes only the l = 0 power, which is typ-
ically unobservable. Changes at l > 0 arises from
non-Gaussianity in the density field, e.g. from non-
linear structure formation. The leading order cor-
rection is linear in the local density.

• We have identified a broad range of scales and red-
shifts where the correction to Cl from condition-
ing on δ0(R) may be computed with a perturbative
treatment. As suggested in R19 we have used a
conditional Edgeworth expansion to show that the
leading-order correction is proportional to the bis-
pectrum of the two remote density fields with the
local density field. Use of the tree-level bispectrum
from second-order perturbation theory and ensur-
ing the local smoothing scale is sufficiently large
makes the problem tractable, leading to analytic
expressions for the conditional correlation function
Equation (24) and the conditional angular power
spectrum Equation (39). These expressions agree
with rough analytic expectations in the squeezed
limit.

• For a large smoothing radius R = 120 h−1Mpc cho-
sen to ensure the validity of our perturbative ap-
proach, the correction to Cl from a typical value of
δ0(R) is sub-percent at the redshifts of the BOSS
LOWZ galaxy sample. Corrections can reach the
percent-level and even ten-percent level for red-
shifts much smaller than R on large angular scales
but are always less than cosmic variance.

• We have made a rough estimate of δ0(R) from
the 2M++ density field of C15 (Ref. [19]), find-
ing that the fluctuation ν(R) = δ0(R)/σ(R) is
roughly 0.85 ± 0.53 for R = 120 h−1Mpc. We
also made an alternative estimate from 2M++ us-
ing the BORG method of Ref. [21], which gives
ν(120 h−1Mpc) = −0.45± 0.79. Corrections to the
l > 0 density power spectrum therefore seem to be
negligible for current surveys.

• We have derived the leading-order correction to
the lensing angular power spectrum Cκκ

l in the
Born approximation from conditioning on δ0(R)
and derived its Limber approximant Equation (56)
which is accurate for l ≥ 10. The correc-
tion may be approximately captured by modify-
ing the linear growth factor as D(a) → D(a)[1 +
αξR(r)δ0(R)/σ

2(R)], where a is the scale factor at
comoving distance r on the past lightcone, ξR(r)
is the linear correlation between δ0(R) and δ(r),
and α is a numerical factor of order unity with
α = 34/21 in Einstein-de Sitter.

• For a typical value of δ0(R) the correction to Cκκ
l

can be at the percent level for source redshifts at
zs = 0.1, but quickly becomes small when zs is in-
creased. For a Euclid-like survey the corrections are
sub-percent for l > 10, in contrast to the claims of
R19. The correction is always smaller than cosmic
variance and smaller than other non-linear correc-
tions to Cκκ

l on all but the largest angular scales.

• In principle failing to apply a correction from condi-
tioning on our local density may bias measurements
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of Cl from large-scale structure but the bias should
be smaller than cosmic variance, as we have indeed
found. We would however expect a better fit to
the data from using the conditional model, and we
have highlighted its use as a consistency check on
cosmological models.

An additional outcome of this work are the expressions
for the conditional cumulants for weakly non-Gaussian
fields given in Equation (12) and Equation (13). These
may be of broader use in astronomical data analysis and
generalize previous expressions in the statistics literature.
Note that in this work we have chosen only to con-

dition on δ0(R), the local density contrast averaged in
spheres around the observer. How valid are the results
of this work if a different smoothing kernel were cho-
sen, or non-local but nearby structure were conditioned
upon? Firstly note that our conclusion that only non-
Gaussianity in the fields can change the l > 0 power
spectrum remains valid for any smoothing kernel, since
only a connected three-point function (zero for Gaussian
fields) can couple two remote fields with a local field in
the required way – the same is true if we were to condi-
tion on the local gravitational potential or the local tidal
field. In contrast, if we were to condition on the den-
sity at some non-local but nearby overdensity (e.g. the
Virgo cluster or the Shapley concentration), we would see
a scale-dependent effect at the Gaussian level. We defer
the study of this possibility to a future work.
In conclusion, we have found no evidence that residing

within an overdense region of the Universe induces bi-
ases in cosmological statistics in any significant way. As
a caveat however we note that we have pursued a pertur-
bative approach to the problem, necessarily limiting the
range of scales which can be accurately modelled. A more
complete answer to this question will require the running
of constrained N-body and possibly hydrodynamic simu-
lations.
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Appendix A: Reconstruction of the local density

field with BORG

In this Appendix we present an alternative measure-
ment of the local density field δ0(R) using the Bayesian
Origin Reconstruction from Galaxies (BORG) method of
Ref. [21] for reconstructing the dark matter density field.
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FIG. 10: The mean field of the BORG local density field
averaged in spheres of radius R around the observer (black
solid). The grey bands are estimates of the 1σ noise on these
averages, found by averaging the variance and dividing by the
number of voxels in each sphere. The blue solid curves are ±

the linear standard deviation at z = 0. This figure should be
compared with Figure 1.

This technique provides samples from the full posterior of
the dark matter density field given the 2M++ galaxy cat-
alogue. We take the mean field and average it in spheres
of radius R around the observer – the result is plotted in
Figure 10.

We estimate the noise in the spherical average by aver-
aging the variance of each voxel within each sphere and
dividing by the number of voxels in that sphere, i.e. we
assume that each voxel is independent – this is an ap-
proximation and hence the uncertainties here are lower
limits. The noise is about a factor of two larger than our
estimate of that of the C15 field in Section IIA but the
mean is more robust since more accurate bias models and
mean densities have been used. The spherical averages of
Figure 1 are typically no more than 2σ away from those
in Figure 10, in units of the BORG uncertainty, i.e. the
two are consistent.

There is a clear preference for lower spherically aver-
aged densities in Figure 10 compared with Figure 1. At
our favoured smoothing radius R = 120 h−1Mpc we find
that δ0(R) = −0.024 ± 0.042, which is consistent with
zero density contrast on this scale. This corresponds to a
fluctuation ν(R) = −0.45± 0.79. Setting δ0 = 0 sets the
leading-order correction to the power spectrum to zero as
well. We have chosen to present the results of this work
in units of the fluctuation δ0(R)/σ(R) so that any esti-
mate of δ0(R) can be inserted. The preference of BORG
for density contrasts closer to zero suggests that the cor-
rections to the power spectrum from conditioning may
actually be smaller than the r.m.s. values we have found
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in this work, i.e. safely negligible in future surveys.
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[5] A. Rakić, S. Räsänen, and D. J. Schwarz, Mon. Not. R.
Astron. Soc. 369, L27 (2006), astro-ph/0601445.

[6] M. Maturi, K. Dolag, A. Waelkens, V. Springel, and
T. Enßlin, A&A 476, 83 (2007), 0708.1881.

[7] C. L. Francis and J. A. Peacock, Mon. Not. R. Astron.
Soc. 406, 14 (2010), 0909.2495.

[8] R. Wojtak, A. Knebe, W. A. Watson, I. T. Iliev, S. Heß,
D. Rapetti, G. Yepes, and S. Gottlöber, Mon. Not. R.
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