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Bicontinuous interfacially jammed emulsion gels (bijels) are novel composite materials that can

DOI: 00.0000/XXXXXXXXXX

be challenging to manufacture. As a step towards automating production, we have developed

a machine learning tool to classify fabrication attempts. We use training and testing data in the
form of confocal images from both successful and unsuccessful attempts at bijel fabrication. We
then apply machine learning techniques to this data in order to classify whether an image is a
bijel or a non-bijel. Our principal approach is to process the images to find their autocorrelation
function and structure factor, and from these functions we identify variables that can be used for
training a supervised machine learning model to identify a bijel image. We are able to categorise
images with reasonable accuracies of 85.4% and 87.5% for two different approaches. We find
that using both the liquid and particle channels helps to achieve optimal performance and that
successful classification relies on the bijel samples sharing a characteristic length scale. Our
second approach is to classify the shapes of the liquid domains directly; the shape descriptors are
then used to classify fabrication attempts via a decision tree. We have used an adaptive design
approach to find an image pre-processing step that yields the optimal classification results. Again,
we find that the characteristic length scale of the images is crucial in performing the classification.

1 Introduction

Physics has a close relationship to machine learning, especially
with respect to the development of neural networks1™. Today,
there are a number of areas of physics in which machine learn-
ing is used extensively.l In soft matter physics, this is especially
true for the design of soft materials.! Examples include the in-
verse design of self-assembled materials® and the investigation of
protein folding landscapes.® In addition to this, machine learning
has been used to design experiments themselvesZ and to identify
crystal structures from molecular simulations or particle tracking
data.8?

In this study, we are using machine learning to classify the
outcome of experiments. A bijel is a “bicontinuous interfacially
jammed emulsion gel”: a special class of particle-stabilised emul-
sion prepared by arresting demixing that occurs via spinodal de-
composition.191 The end result is a bicontinuous structure with
the two phase-separated liquids intertwined and stabilised by
the adsorption of colloidal particles to the liquid-liquid interface.
This adsorption is effectively irreversible due to the high attach-
ment energy of the particles to the interface,12 so the structure is

* emily@tarn.org

@ School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell
Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.

b Condensed Matter Physics Laboratory, Heinrich Heine University, Universitctsstr: 1,
Diisseldorf 40225, Germany.

jammed once the particles are closely packed and is stable against
further coarsening.

The tortuous, interconnected spinodal pattern is what charac-
terises bijels and also what makes them interesting materials for
a number of potential applications, including fuel cells, 13 con-
trolled release devices!# and tissue engineering.! A bijel has a
single characteristic length scale, which is the width of the liquid
channels. This can also be seen in the structure factor of a system
undergoing spinodal decomposition, which shows a single inten-
sity peak at any given time during demixing.

We are interested in simple methods to quickly separate suc-
cessful bijel samples from failed ones in order to expedite pro-
duction. A simple tool for bijel classification could be widely used
to verify if a bijel fabrication has been successful. Because of the
difficulty in manufacturing them, research is ongoing into eas-
ier methods for making bijel structures, such as solvent transfer
induced phase separationl® and direct mixing. 1718 This area of
research provides even more potential applications for a bijel clas-
sification tool, and in fact some initial attempts have been made
to evaluate potential bijel structures using an empirical cost func-

tion. 12

We make use of data from a previous study of the mechanical
properties of bijels under compression,?? in which there was a
great need to verify the quality of bijel samples before they were
subjected to centrifugal compression. This verification involved
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assessing each sample under a confocal microscope and we there-
fore have a large number of confocal images of both successful
and failed bijel samples on which we can train and test our clas-
sification methods.

Current bijel research tends to focus solely on successful sam-
ples, so there is little public record of methods used for determin-
ing whether a bijel synthesis has been successful or not. We as-
sume that most samples are assessed by the experimenter by eye
both macroscopically and (predominantly) microscopically dur-
ing imaging. Additionally, there are a number of methods used
to quantify different aspects of a bijel, some of which can be used
to identify failed bijels as well as to characterise successful ones.
The local Gaussian (K) and mean (H) curvatures of a bijel struc-
ture have been found to have strong peaks at K < 0 and H =0,
respectively.2122l An alternative three-dimensional image analy-
sis method of ‘region growing’ is used to determine whether the
structure is bicontinuous:22' an important requirement of a bijel.

These methods could all be used to help identify successful bijel
samples. However, as these methods all require a suitable three-
dimensional image of the bijel (such as a confocal stack or a CT
scan of a polymerised bijel), as well as significant computational
workload, there is much scope for a more versatile, high through-
put alternative. Here we assess the sample classification perfor-
mance of machine learning methods applied to confocal micro-
graphs of only two dimensions.

2 Methods

2.1 Image processing

Our confocal images are from a selection of successful and un-
successful bijel samples. Each image is composed of a liquid
(fluorescein-doped ethanediol) and a particle (silica modified
with hexamethyldisilazane, doped with rhodamine B) channel.
These two different fluorescent dyes were used so that the par-
ticles and the liquid could be imaged separately.“? The images
from the two channels were processed independently to obtain
the structure factor and autocorrelation function of each image
and channel.

Two functions were derived from the Fourier transform of the
image. Firstly, the structure factor was calculated by radially aver-
aging the Fourier transform. Secondly, the autocorrelation func-
tion was also calculated from the Fourier transform by multiply-
ing it with itself under the transformation r — —r, then perform-
ing an inverse Fourier transform on the result. We have effectively
convolved the image with its reflection, which gives us the corre-
lation function of the image with itself, i.e. the autocorrelation
function:

1(F)*1(7) = I(F) " (—=F) = Z [ Z(I(F)).F (I* (=7))).
We performed this image processing in Python using the skim-
age package'?? to read in the two separate channels for each im-

age and using the fast Fourier transform methods available in the
standard scipy package.
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2.2 Machine learning

We used R to perform all of our machine learning, primarily
via the caret package,?# which contains a wide array of ma-
chine learning tools and algorithms. In order to achieve opti-
mal classification performance, we tested a number of different
machine learning classification algorithms with a variety of po-
tential predictors obtained from the structure factor and autocor-
relation functions of our images. Three algorithms were partic-
ularly suited to our data and approaches: these are described
below and detailed further in the Supplementary Information.
As well as testing different algorithms, we were always attempt-
ing to reduce the number of predictive variables used, because
an optimal model should also be a minimal one. In this project,
we never work with a large number of variables and the optimal
model could therefore be easily found without the need for vari-
able reduction methods, such as principal component analysis or
ridge regression.

2.2.1 K-nearest neighbours algorithm

The k-nearest neighbours (KNN) algorithm is one of the simplest
and therefore most commonly used machine learning classifica-
tion algorithms. This method classifies an unknown point in vari-
able space based on a “vote” of its nearest k neighbours of known
classification. The number of neighbours is tuned to improve the
fit of the model.2>

In order to avoid inadvertently weighting some variables more
than others, this algorithm requires that all variables are nor-
malised so that they are of comparable scale. As long as this is
done, the absolute scale of the variables is unimportant. Each
variable is usually therefore normalised by the mean of its value
over the whole training set.

2.2.2 Logistic regression

The logistic regression algorithm is in some ways more versatile
than k-nearest neighbours because it can give a probability of the
sample belonging to a class, which allows a classification to be
tuned to achieve a suitable balance of false positives and false
negatives depending on the needs of any application. We find the
probability p(X) of a sample being a bijel given a set of predictive
variables X = (X1,X»,...X;) by fitting a linear logit function:

log (15(7;())()) = Bo+BiXi + ... + BiXi 1)
using the maximum likelihood method to find values of § that
fit the training data provided.2> The form of this function means
that the probabilities p(X) are bounded between 0 and 1, as re-
quired.

2.2.3 Decision trees

The decision tree algorithm can be used for both classification
and regression, but here we focus on classification trees. In order
form a classification tree, we take an approach known as recur-
sive binary splitting, wherein we start at the ‘top’ of the tree and
split the predictor space in two, such that the classes are best sep-
arated. We then repeat the splitting process down both possible
branches, and we stop growing our tree when further branching
leads to no significant improvement in the classification error.%2
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The final tree shows us the proportion of a particular category in
each end node as well as the splits that have been chosen, for
example in Figure [9f(a).

2.2.4 Errors and Cross-validation

We define our classification error rate as the percentage of test
images that were misclassified. When fitting any model, the first
comparison to make is to the null error rate, which is the er-
ror rate obtained by classifying every sample as the most popular
class. In our case, the most common class is the successful bijels,
and our null error rate is 31.9% misclassification.

In general, the application of machine learning to a problem
requires splitting data into two sets: one for training and one for
testing. The algorithm is first trained on the training data, then
the final model output from this is used to predict the outcome of
the test data and the error on these predictions is used to compare
models. This approach is required in order to ensure that the
model is not over-fitted to the fluctuations and quirks of a specific
dataset, and can be effectively used to predict future data from
outside the training set.

As we have a relatively small dataset (135 samples) we used
cross-validation to make the most of this data without having to
set aside a large chunk for testing our models separately. Cross-
validation requires splitting the data into n equally sized sections,
or folds. One of these folds is set aside for testing, and the model
is trained on the remaining n — 1 folds. The trained model is then
tested on the fold set aside, and this result is stored. The process is
repeated n times, until each fold has been used once as a test set.
The results of all n tests are combined to give a cross-validated
error rate, which is a combination of all iterations and gives a
final error effectively based on the whole dataset as a test set,
but avoiding the problem of over-fitting. This method is often
used to tune model parameters within a single machine learning
method, and is included in the algorithm. The error quoted in
the model output is then the cross-validated error. Except where
stated otherwise, we used 10-fold cross-validation in all of our
model fitting.

2.3 Efficient global optimisation

Our secondary approach was to categorise the micrographs while
avoiding the averaging associated with autocorrelation functions
and structure factors. Instead, the distribution of shapes within
the images was separately analysed. The shapes of interest in our
images are the liquid domains; these can be simplified and iso-
lated using a grey-scale threshold. The resulting images show one
liquid domain as black and the other as white. We then use the
shape filter plugin for ImageJ to obtain descriptors of our liquid
domain shapes such as: the area per perimeter, the fractal dimen-
sionality, the solidity, and many others.2%27 This approach would
be advantageous if it captured details valuable for classification
which autocorrelation functions and structure factors lose.

In order to achieve the optimal performance of the classifica-
tion via the domain shape, we have carried out a thorough ex-
ploration of how the error rate is influenced by an image pre-
processing step. Here we have used a decision tree combined
with six-fold cross-validation as the final classification step. The
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great strength of this approach is that the succession of division
criteria can subsequently be read and interpreted. The decision
tree will effectively tell us what the optimisation step, described
below, actually achieved. Such information would be more diffi-
cult to access using an alternative classification algorithm.

The control parameters for our pre-processing are: the size of
a median filter, the upper and lower limits of a band pass filter of
the grey-scale images, and an upper bound on the size of small
liquid domains to ignore once the images have been thresholded.
The effect of these pre-processing steps on seven example images
is shown in the Supplementary Information.

We have used an approach variously known as efficient global
optimisation, adaptive design and kriging to explore this parame-
ter space.2822 We want our exploration to yield the lowest possi-
ble error rate for our classification of bijel images. Efficient global
optimisation begins with some well-spaced trial pre-processing
approaches; these are used to train a machine learning algo-
rithm. This algorithm could direct us to a prediction of the pre-
processing parameters for which the classification error rate is
apparently immediately minimised. This will, almost certainly,
be a local minimum. In efficient global optimisation a composite
parameter directs the search, favouring both a low error rate but
also driving the exploration towards uninvestigated regions of pa-
rameter space, as described in the Supplementary Information.

3 Results

3.1 Data

Figure a) shows the outcome (successful bijel or not) of a rep-
resentative set of 135 bijel experiments, and their dependence
on key compositional parameters. The HMDS (hexamethyld-
isilazane) content controls the particle wettability, and the ni-
tromethane mass fraction (relative to the ethanediol content) acts
as a proxy for the distance of the system from the critical composi-
tion, which is at a mass fraction of 0.640.2Y Many of the success-
ful samples are clustered around this composition. Nonetheless,
it is important to notice that the outcome of the experiment (bi-
jel or non-bijel) is not guaranteed to be the same for the same
experimental parameters. In other words, identical composition
parameters do not always give identical outcomes. This is why an
image analysis classification approach is valuable.

We can see this problem in Figures b) and (c), which show
images from two compositionally identical samples. These were
created by splitting one sample in half and applying the same
experimental protocol to each half. From consideration of the
whole sample from which these images were taken, the one in
Figure[1}(b) was classified as a bijel, and Figure[I|(c) is not a bijel,
as is evident from the abundance of droplets in the image.

Figure [2| shows examples of the particle channel structure fac-
tor (a) and liquid channel autocorrelation function (b) of a bi-
jel and a non-bijel. As the structure factor is much noisier than
the autocorrelation function (in both channels but particularly the
particle one), it was less useful for providing a wide range of vari-
ables to test in our models.

Figure[3]shows how the variables in our final machine learning
models can individually distinguish an image of a bijel from an
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Fig. 1 Experimental data used in this project. Panel (a) shows the out-
come of 135 attempted bijel samples indicating whether a successful bijel
was created as a function of particle wettability and nitromethane mass
fraction. Where samples 1 and 2 have the same composition, they are
made from the same sample batch split in half. Panels (b) and (c) show
examples of a successful and an unsuccessful bijel respectively. The
ethanediol phase (liquid channel) is shown in magenta on the left, and
the stabilising silica particles (particle channel) are in cyan on the right.
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Fig. 2 Comparisons of representative example bijels (in red) and non-
bijels (in black) in terms of their structure factors and autocorrelation func-
tions. Panels (a) and (b) show the structure factors and autocorrelation
functions of the liquid channel images respectively. Panels (c) and (d)
show the structure factors and autocorrelation functions of the particle
channel images.
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Fig. 3 Box-and-jitter plots of the three variables included in the final
combined-channel model. These plots show how the values of the vari-
able are distributed for bijels and non-bijels. Jitter is added in the x-axis
so all points can be seen. Panel (a) shows the position of the first turn-
ing point in the liquid channel autocorrelation function. Panels (b) and (c)
show the gradient of the first 10 and 20 points, respectively, in the particle
channel autocorrelation function.

image of a failed bijel. Plots like these were made for a number
of potential variables which were chosen to represent key features
in the functions, and were used to rule out variables that clearly
showed no distinction between bijels and non-bijels.

It is clear that the position of the first turning point in the auto-
correlation function of the liquid channel is a strong predictor on
its own. Other variables, such as the gradient of a straight line fit
to the first 10 (Figures [3|(b)) and first 20 (Figure [3|(c)) points of
the particle channel autocorrelation function, show only a small
difference between bijel and non-bijel samples and prove to be
significant only when combined with other predictors. These two
variables both approximate the initial slope of the autocorrelation
function but both were assessed individually because the distribu-
tions shown in the box-and-jitter plots are sufficiently different,
and because if they do give the same information then one will
be eliminated when we remove ineffective variables.

The usefulness of these variables that seem less important is
not unexpected, as we are analysing a multidimensional variable
landscape and there is no need for a useful predictor to classify
a bijel image alone. Instead, our approach requires only that any
variables included in the final model are useful for reducing the
overall classification error rate. This keeps the number of vari-
ables as low as possible while still maximising performance.

3.2 Machine learning results
3.2.1 Liquid channel model

We first trained the model using 7 predictive variables describing
the shapes of the autocorrelation function and structure factors
of the liquid channel images. We tested a number of algorithms
and found that the k-nearest neighbours algorithm consistently
gave the best results for these images, so we continued to use this
model for further refinement.
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Fig. 4 Results from the best liquid channel KNN model. Panel (a) shows
cross-validation results for the final KNN fit to the liquid channel images,
and how the cross-validated accuracy of the model changes with the
number of neighbours used in the classification. Panel (b) shows the
predicted (open circle) and true(filled circle) bijel classifications for each
sample in the dataset, with y-axis jitter added as only one variable was
used in the model. Predictions were output from the final liquid channel
KNN fit.

Once we had this base model, we worked to improve its classi-
fication performance. We revisited the variables we had chosen,
and assessed their success in differentiating between bijel and
non-bijel samples. As we were working with only a few predictive
variables, we opted to assess the impact of each variable individu-
ally rather than relying on methods such as principal component
analysis. This gave us the benefit of knowing exactly how each
variable affected the final performance of the model.

We calculated the significance of each variable in our model us-
ing the f-statistic:22 a measure commonly used to compare mod-
els related to the ratio between the variance in the data that is
explained by this variable and the variance that is not. We used
these values to rank our predictive variables in order of signifi-
cance, and iteratively refit the model removing the least signifi-
cant variable each time. This allowed us to reached a minimal
model with maximal performance.

Of the 7 variables used to fit the initial models, we discovered
that the position of the first turning point in the autocorrelation
function was the most significant predictor, followed by the ini-
tial gradient of the structure factor. Upon reducing the number of
variables in the model, we found a decrease in error with each re-
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duction, starting at 21.5% and achieving 16.6% when the model
was reduced to only the most significant variable. Although we
have identified a single useful indicator, and could therefore con-
sider classifying bijels based on a threshold value of this variable,
the application of machine learning is still required for two rea-
sons. Firstly, the machine learning algorithms generally allow for
more complex decision boundaries than a single split at a certain
value. This can be seen in Figure b), with non-bijels predicted
at position (x) as well as values above position (f). Secondly, the
benefit of developing a machine learning method is that once a
good model is chosen it can be re-trained on a different set of data
in order to make predictions about a different bijel system. If we
aimed to identify bijels by simply setting a threshold for the value
of this autocorrelation turning point, this could not be generalised
to other bijel systems.

Figure |4| shows the outcome of the final k-nearest-neighbours
model fitted to the liquid channel images. Figure[d(a) shows how
the error rate varies depending on the number of nearest neigh-
bours used in the model. We see that k = 9 gives the best perfor-
mance because it gives the highest accuracy, so this is chosen for
the final model. Figure b) shows the predictions made by this
model compared to the true classifications. The error rate for this
prediction model is 16.6%.

3.2.2 Particle channel model

Once the results using the liquid channel alone were no longer im-
proving, we turned to the particle channel for more information
that could help to identify a bijel sample. We first investigated
this channel on its own in order to understand which variables
would be useful predictors.

Using 5 initial predictive variables, in this case all derived from
the autocorrelation function due to the noisiness of the structure
factor, we tested various machine learning algorithms and found
that logistic regression out-performed its competitors. The logis-
tic regression generates a probability of a sample being a bijel
and being a non-bijel, and the sample is classified as a bijel if
Pr(bijel) > Pr(not bijel). We also considered the support vector
machine algorithm®? as a strong contender in this test since it
gave no significant improvement over logistic regression. How-
ever, logistic regression has the benefit that the fits can be used
directly to determine the significance of each variable. Therefore,
we will not pursue the support vector machine algorithm further
here.

For this channel, our initial predictors were all associated with
the autocorrelation function because the structure factors for the
images in this channel were much noisier and less consistent than
those of the liquid channel. From the logistic regression fit, we
found that the most significant of these predictors were the gradi-
ents of the first 10 and first 20 points of the autocorrelation func-
tion, followed by the value of the autocorrelation function at its
first turning point. The least significant predictors were the num-
ber of turning points and the position of the first turning point in
the autocorrelation function. Removing these two variables from
the model led to an error change from 20.4% to 20.6%, a small
drop in performance. However, removing the turning point value,
leaving only the two gradient variables, led to a much improved
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Fig. 5 Results from the best particle channel logistic regression model.
Predicted (open circle) and true (filled circle) bijel classification results
for each sample in the dataset. Predictions were output from the final
particle channel model and plotted as a function of the two variables in
the model.

error of 17.6%. Further reduction of the model led to a large
increase in the error.

Figure |5| shows the outcome of the best performing model fit-
ted to particle channel images. This model was a linear logistic
regression of two variables: the straight line gradients of the first
10 and first 20 points of the autocorrelation function. The error
rate for this model is 17.6%, which is worse than that of the lig-
uid channel model. In order to seek further improvements, we
combined the two channels together for a final model.

3.2.3 Combined model

We combined the optimal variables from both the liquid and parti-
cle channels, and again tested a number of algorithms in order to
identify which performed best. We unsurprisingly found that the
KNN and logistic regression methods gave the best performance.
Of these, logistic regression gave the lower error so we explored
this model a little further by assessing the impact of non-linear de-
pendencies of the logit function on the predictive variables. This
consistently decreased the performance confirming that the linear
logistic regression was the most suitable version.

In order to confirm that the inclusion of all three previously
chosen variables gave for the best result, we tested all previously
untried combinations of pairs of these variables using both the
KNN and logistic regression algorithms. We found that, with both
the KNN and logistic regression algorithms, the inclusion of all
three variables gave the best performance. Interestingly, reduc-
ing the number of variables made little to no difference to the
performance of the KNN method, but with logistic regression the
inclusion of all three variables was vital for achieving the optimal
performance and allowing it to outperform the KNN algorithm
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and the single-channel models.

Figure[6]shows the outcome of the best performing model fitted
using variables from both the liquid and particle image channels.
We achieved a 14.6% error: our best performance with this ap-
proach and a significant improvement from the results of either
channel individually. Once the variables have been selected, this
model can be trained and used to classify new images in a matter
of seconds. This approach therefore provides an effective method
of quickly categorising bijel images.

3.2.4 Model validation

Once our final model was chosen, we used a number of tests to
assess the performance of the model further. This allows us to
gain more information on the quality of the final model besides
the classification error, and to verify that it is a useful classification
tool.

Figureis a ROC (receiver operator characteristic) curve show-
ing the balance between the true and false negative results as we
change the probability threshold above which a sample is classi-
fied as a bijel. The straight line signifies the expected result from
a random guess. The point (0, 1) is the error-free point, where all
of our classifications would be correct. The area underneath the
curve is used to measure the quality of the model as a test, where
an area of 1 represents a perfect test and a test with an area of
0.5 is worthless. Our test has an area of 0.912, which is generally
viewed as excellent.

As a test of whether the images carry useful information about
the classification of the samples, we randomised the classification
of the images. Figure [8| shows the error rate for 1000 iterations
of the final model. This model was used to classify the same
images that were used for training but with random (and thus
incorrect) labels of bijel and non-bijel. The total number of each
label was not changed. Comparison to the error rate of our best
model (in purple) shows that the predictive power of the model
is indeed significant and relies on the images being correctly clas-
sified. Therefore, we can be sure that we are indeed identifying
features of images from bijel samples rather than random similar-
ities between images.

We assessed the performance of the fitted model on multiple
images from the same sample. These additional images were
taken from two of the 135 experimental samples used in the train-
ing of the model, one a bijel and one not. The model was used
to predict whether these new images were from a bijel sample or
not, and these predictions were correct for 6 of 8 bijel images,
and all of the 11 non-bijel images tested.

As a final test of our machine learning approach, we applied
it to a new set of data. This data was from samples of the same
general composition but using a different batch of particles which
led to different results in the final sample. Our machine learning
models show that the two sets of samples have different proper-
ties: testing the previously trained model on the new data gave
an error rate of 39%. In contrast, when we use the same ap-
proach and train a k-nearest neighbours algorithm with the same
3 predictive variables on the new data, we obtain a model that
can identify a bijel with only a 13% error rate. This shows that
the machine learning approach developed here can be used on

Page 6 of 10


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sm02187f

Page 7 of 10

Open Access Article. Published on 11 February 2020. Downloaded on 2/14/2020 10:47:57 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

View Article Online
DOI: 10.1039/C9SM02187F

g g
— <~ |°Biel . ® — < |:PBiel, . ® I= * Bijel , .
R T I - <
[e) o Pred non-bijel o o Pred non-bijel T o |° Prednon-bijel ;
o g | a 8 | © < g
o - o < o < o8
o a c | “— _ ey O
é é £ @
3 8- 3 8- 8 S - . @%ég

I o ®

L | T | o S « ®
< o | < o | L o %

N - I3 5 0 g e

| T T T T T T T T T T O T T T T I
-0.025 -0.015 -0.005 -0.012  -0.008 -0.004 '-0.025 -0.015 -0.005

SF 10-point gradient

SF 20-point gradient

SF 10-point gradient

Fig. 6 Results from the final logistic regression model using both liquid and particle channels. Predicted (open circle) and true (filled circle) bijel
classification results for each sample in the dataset plotted for each possible pair of the three variables used in the model.
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Fig. 7 Receiver operator characteristic curve for the final model fit used
to measure the quality of the fitted model. This shows how the true and
false negative results change as a function of the probability threshold at
which a sample is classed as a non-bijel. The area beneath the curve is
0.912, indicating an excellent model.

a variety of different bijel systems and confirms that the models
require re-training for each new system, since the characteristic
length scale changes.

3.2.5 Efficient global optimisation approach

Finally, we look at using an efficient global optimisation ap-
proach. This involves simply analysing the distribution of shapes
within the images. The classification error rate was investigated
for various image pre-processing steps. Prior to optimised pre-
processing, our typical error rate using this method was 27% of
the images misclassified. Following the investigation of dozens of
combinations of pre-processing parameters we reduced the error
rate to 12.0%. The classification was based on the shape descrip-
tors: fractal dimensionality, area per perimeter, Feret mean diam-

120-

90-

| Model error

Frequency
3

30-

Q1 0.2

0.3
Error for randomly labelled samples

0.4

Fig. 8 Histogram of the error rate for 1000 iterations of the final model
fitted with random bijel labelling. These errors are all significantly higher
than the error achieved with our model fit to the true data, shown as a
purple line.
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Fig. 9 Example outcomes from applying the decision tree algorithm to
variables before (a) and after (b) optimised pre-processing. The sam-
ples have been categorised based on the values of fractal dimension-
ality (Fract.Di), Feret mean diameter (Feret) and area per perimeter
(Area.Per). Ay’ result indicates that a sample in the node is predicted to
be a bijel and an ‘n’ that it is a non-bijel. The two numbers in each node
show the number of non-bijel and bijel training observations that fall in the
node respectively. The percentage in each node shows the percentage
of all training observations present in the node.
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Fig. 10 Box-and-jitter plots of an example variable: area per perimeter.

Panel (a) shows this variable with only minimal pre-processing, and (b)
shows it after pre-processing optimised via efficient global optimisation.
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eter, and the solidity. It is important to note that most of these
descriptors are, to some extent, characterising the length-scale of
the domains. The optimal image pre-processing approach (cor-
responding to a 12% failure rate) had no median filtering and
modest amounts of low and high pass filtering. The shape size
cut-off removed objects of size less than 415 pixels, which is sur-
prisingly large.

As shown in Figure [9f(a), the decision tree initially uses several
parameters to classify the images. Even then the performance
is poor. An example of the problem is shown in Figure [10|(a),
which shows a box plot of the shape descriptor area per perime-
ter. There is very strong overlap between this characteristic for
bijel and non-bijel samples. Once the pre-processing has been op-
timised this box plot changes markedly (see Figure [I0[(b)). Now
the overlap between bijel and non-bijel samples is considerably
reduced. The decision tree now harnesses this good separation
(see Figure [O(b)). The tree divides bijel from non-bijel samples
relatively cleanly relying on the area per perimeter parameter
alone. This makes classification more straightforward and there-
fore more likely to be accurate, as evidenced by the drop in error
rate from 27% to the final value of 12.0%.

4 Conclusions

We have found that machine learning can be a powerful tool for
use in the identification of bijels from a two-dimensional confo-
cal image. We have used two different but similar approaches,
and found both of them to be interesting. The first approach,
which involved processing the images to get the autocorrelation
function, was optimised to a classification accuracy of 85.4% and
allows for rapid classification. As our images contained separate
information about two of the three phases present in the bijel, we
found that we were able to gain even more classification perfor-
mance using both channels compared to using one channel alone.

The second approach, which involved optimising the pre-
processing of the image, gave a better classification accuracy of
88.0%. Using this approach, it was particularly clear that the
length scales present in the sample are important in the classifi-
cation of the bijel. The downside to this approach compared to
using the autocorrelation function is that the optimisation of the
pre-processing is more time-consuming and requires more human
input than simply calculating the autocorrelation function.

As the machine learning algorithms require very little compu-
tation time and minimal human intervention once the optimal
model has been found, these approaches provide an opportunity
to easily identify a bijel from a two-dimensional image. Even
without information from a third dimension, bijels can be identi-
fied with reasonable accuracy showing the usefulness of machine
learning for applications such as this.
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As a step towards automating bijel production, we have developed a machine learning tool to
classify fabrication attempts.
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