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25 Summary 

26  Land surface models (LSMs) typically use empirical functions to represent vegetation 

27 responses to soil drought. These functions largely neglect recent advances in plant 

28 ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. 

29  We developed an analytical stomatal optimisation model based on xylem hydraulics (SOX) 

30 to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment 

31 Simulator (JULES) LSM, we conducted a global evaluation of SOX against observations. 

32  SOX simulates leaf stomatal conductance responses to climate for woody plants more 

33 accurately and parsimoniously than the existing JULES stomatal conductance model. An 

34 ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity 

35 of gross primary productivity (GPP) to soil moisture, which improves the model agreement 

36 with observations and increases the predicted annual GPP by 30%. SOX decreases JULES 

37 root mean squared error in GPP by up to 45 % in evergreen tropical forests, and can 

38 simulate realistic patterns of canopy water potential and soil water dynamics at the studied 

39 sites.

40  SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and 

41 optimality theory into LSMs, and an alternative to empirical stress factors. 

42 Keywords: climate change, drought, eddy covariance, land-surface models, stomatal 

43 optimization, xylem hydraulics.

44

45

46

47
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48 Introduction

49 Large areas of the globe will be exposed to increased aridity in the near future (Sheffield & 

50 Wood, 2008; Duffy et al., 2015; Marengo et al., 2018). As drought events become more intense 

51 and frequent, accurately representing vegetation-climate feedbacks in Earth System Models 

52 (ESMs) is increasingly important, as these interactions can drastically influence model projections 

53 of global climate change (Cox et al., 2000). The current generation of Land Surface Models 

54 (LSMs) does not accurately simulate vegetation carbon dynamics during drought (Sitch et al., 

55 2008; Powell et al., 2013; Medlyn et al., 2016; Ukkola et al., 2016; Restrepo-Coupe et al., 2017; 

56 Rogers et al., 2017; Eller et al., 2018b), thereby restricting our capability to predict the effect of 

57 increased aridity on vegetation distribution and its feedbacks on the global carbon cycle and 

58 climate. Many LSMs represent the effects of reduced soil moisture on canopy carbon assimilation 

59 (A) using an empirical drought factor commonly referred as β-factor (Cox et al., 1998). The β-

60 factor approach has been shown to overestimate plant responses to seasonal and experimentally 

61 induced drought (Ukkola et al., 2016; Restrepo-Coupe et al., 2017; Eller et al., 2018b). The β-

62 factor has a large impact on the modelled global carbon budget, supressing 30-40% of the annual 

63 gross primary productivity (GPP) in large areas of arid and semi-arid ecosystems (Trugman et al., 

64 2018). Despite its importance, there is scarce empirical support for the drought functions used in 

65 most LSMs (Medlyn et al., 2016). The lack of a theoretical or empirical basis for the β-factor 

66 implies an urgent need for new modelling approaches to replace this important component of 

67 LSMs so as to improve our capacity to predict vegetation-climate interactions. 

68 Stomatal responses of plants to soil drought involve complex chemical signalling and 

69 hydrodynamic processes in leaf cells, some of which have not been entirely elucidated (Buckley, 

70 2017; 2019; Qu et al., 2019). Stomatal optimization models are a useful approach to model 
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71 stomatal behaviour that circumvents the need to explicitly represent the physiological processes 

72 involved in stomatal regulation. Optimization models employ a ‘goal-oriented’ approach, 

73 assuming that plant stomata behaviour has been selected through plant evolutionary history to 

74 maximize a given objective function (Cowan, 2002; Dewar et al., 2009; Prentice et al. 2014; 

75 Buckley, 2017). The traditional approach to model optimal stomatal behaviour is derived from the 

76 seminal work of Cowan & Farquhar (1977). This approach proposes that optimal stomatal 

77 behaviour maximizes A minus the carbon cost of water lost (λE) over a given time interval, where 

78 E is transpiration and λ is the lagrange multiplier that represents the carbon cost of a unit of water 

79 lost. This model, hereafter labelled CF, after Cowan & Farquhar, is capable of simulating many 

80 patterns of stomatal responses to climate over short time scales (Farquhar et al., 1980; Berninger 

81 & Hari, 1993), and has provided the theoretical basis for several widely used semi-empirical 

82 stomatal models (Jacobs, 1994; Leuning, 1995; Medlyn et al., 2011). However, CF predicts that 

83 stomatal conductance (gs) increases in response to elevated CO2 when A is Rubisco-limited, which 

84 contradicts most observations (Mott, 1988; Medlyn et al., 2001). Other  limitations are related to 

85 the λ, as the CF hypothesis does not link λ to measurable plant traits or environmental quantities 

86 (Buckley, 2017), and assumes λ is constant over the period of reference (Cowan & Farquhar, 

87 1977), which makes the original CF unable to predict long-term gs decline in response to soil 

88 moisture depletion. 

89 Since the original CF work many attempts have been made to incorporate the effects of 

90 declining soil moisture in the CF stomatal optimization framework (Cowan, 1986; Mäkelä et al., 

91 1996; Williams et al., 1996; Manzoni et al., 2013). Some of these attempts, such as the Soil-Plant-

92 Atmosphere (SPA) model of Williams et al. (1996), employ principles of plant hydraulics  to 

93 constrain stomatal optimization and have been successfully incorporated into LSMs (Bonan et al., 
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94 2014). The numerical approach used by SPA employs a hydraulic threshold to set a lower water 

95 potential limit (Ψmin) for gs, which simulates a strict isohydric stomatal regulation (Fisher et al., 

96 2006). Despite using plant hydraulics SPA still relies on a water-use efficiency optimization 

97 similar to CF to model stomatal behaviour when Ψ > Ψmin (Williams et al., 1996; Bonan et al., 

98 2014).

99 Alternative routes to model plant optimal stomatal behaviour have been proposed recently (see 

100 Mencuccini et al., 2019a for a review). These approaches circumvent the CF limitations by 

101 assuming plant optimal stomatal behaviour minimizes the instantaneous fitness costs associated 

102 with low Ψ. These new optimization models use widely available plant hydraulic traits (Kattge et 

103 al., 2011; Choat et al., 2012) to simulate gs responses to environmental conditions, producing a 

104 realistic gs decline in response to elevated atmospheric CO2 and soil drought (Sperry et al., 2017; 

105 Eller et al., 2018b; Venturas et al., 2018; Wang et al., 2019). This approach predicts a tight 

106 coordination between stomatal and xylem functioning which is widely corroborated by 

107 observations (Hubbard et al., 2001; Meinzer et al., 2009; Klein, 2014). Another advantage of this 

108 approach is its capacity to simulate a diversity of contrasting stomatal behaviours, from iso to 

109 anisohydric (Martinez-Vilalta et al., 2014; Klein, 2014).

110 Sperry et al. (2017) proposes a model that assumes that, as xylem hydraulic conductance 

111 declines, the increased risk of hydraulic failure is the main fitness cost associated with low Ψ. Eller 

112 et al. (2018b) adapted the Sperry et al. (2017) model into the stomatal optimization model based 

113 on xylem hydraulics (SOX), which principally differs from the Sperry et al. (2017) model by using 

114 a different optimization target. The SOX optimization target is based on the PGEN model (Friend, 

115 1995), which assumes stomata optimize plant dry matter production, represented by the product 

116 of photosynthesis and a linear function of Ψ. The SOX model in Eller et al. (2018b) uses a 
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117 numerical routine to find the optimum gs. However, the PGEN optimization target can also be 

118 found analytically (Friend & Cox, 1995; Dewar et al., 2018). A parsimonious analytical 

119 formulation for SOX would facilitate its incorporation into existing LSMs and provide a practical 

120 alternative to the β-function for modelling stomatal responses to drought at global scales. 

121 In this study we develop an analytical approximation for the numerical SOX model presented 

122 in Eller et al. (2018b). We then create a new configuration for the Joint UK Land Environment 

123 Simulator (JULES; Best et al., 2011; Clark et al., 2011) that uses SOX to compute vegetation gs 

124 from environmental and plant hydraulic data. Using a global dataset of xylem hydraulic traits, 

125 together with an extensive leaf gas-exchange and eddy covariance dataset, we calibrate the SOX 

126 parameters and compare the JULES-SOX performance to the default JULES using the β-function, 

127 across all major global biomes. Our goals in this paper are twofold: 1- To test SOX agreement 

128 with global observations of gs to assess the generality of the underlying hypothesis in SOX, that 

129 is, that plant stomata evolved to balance carbon assimilation with the loss of hydraulic 

130 conductance; and 2 – To evaluate the effect of SOX on JULES ecosystem-scale predictions of 

131 carbon and water fluxes, and their agreement with observations.

132 Materials and Methods 

133 Analytical SOX description

134 The SOX central hypothesis can be summarised as ‘stomatal conductance (gs) is such as to 

135 maximise the product of leaf photosynthesis and xylem hydraulic conductance’ and given by:

136 𝐴(𝑐𝑖(𝑔𝑠)) 𝐾(𝛹𝑚(𝑔𝑠))                                                                                                                       (𝐸𝑞𝑛 1)

137 where A is leaf net CO2 assimilation (mol CO2 m-2 s-1), which is a function of leaf internal CO2 

138 partial pressure (ci; Pa), which is itself a function of stomatal conductance to CO2 (gs; mol m-2 s-

139 1). The K is the normalised (0 to 1) xylem hydraulic conductance computed as:
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140 𝐾(𝛹) =
1

[1 + (𝛹 𝛹50)𝑎]
                                                                                                                 (𝐸𝑞𝑛 2)

141 where Ψ50 is Ψ when K = 0.5 and the parameter a gives the shape of the curve, with a higher a 

142 producing a steeper response to Ψ. We use the mean (Ψm; MPa) of the canopy water potential at 

143 the predawn (Ψpd; MPa) and the canopy water potential (Ψc; MPa) to compute K with equation 2 

144 to account for the gradual decline in Ψ along the soil to canopy hydraulic pathway (see details in 

145 Notes S1). The gs value that maximises equation 1 is found at:

146
∂𝐴𝐾
∂𝑔𝑠

= 0                                                                                                                                              (𝐸𝑞𝑛 3)

147 The gs value that satisfies equation 3 was found numerically in Eller et al. (2018b), but a 

148 computationally efficient analytical solution is preferable for application in Dynamic Global 

149 Vegetation Models (DGVMs) and ESMs. We developed an analytical approximation for the 

150 optimal SOX gs using the partial derivatives of A with respect to ci and K with respect to Ψm. All 

151 steps of the model derivation are described in Notes S1. The resulting SOX equation for the 

152 optimal gs is: 

153 𝑔𝑠 = 0.5
∂𝐴
∂𝑐𝑖( 4𝜉

∂𝐴 ∂𝑐𝑖
+ 1 ― 1)                                                                                               (𝐸𝑞𝑛 4)

154 The benefit of stomatal opening is represented here by the sensitivity of leaf photosynthesis to the 

155 internal CO2 concentration ( .  By constrast, the parameter ξ represents the cost of stomatal ∂𝐴 ∂𝑐𝑖)

156 opening in terms of loss of xylem conductivity under low Ψpd and/or higher leaf-to-air vapour 

157 pressure (D; mol mol-1):

158 𝜉 =
2

1 𝐾 ∂𝐾 ∂𝛹𝑚 𝑟𝑝1.6𝐷
                                                                                                               (𝐸𝑞𝑛 5)
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159 Low ξ indicates high hydraulic costs occurring during drought (i.e. lower Ψpd and higher D, Fig. 

160 S1). SOX simulates dynamic changes on the plant hydraulic resistance (rp) computing rp as a 

161 function of Ψpd and the plant minimum hydraulic resistance (rpmin, m2 s MPa mol-1 H2O): 

162 𝑟𝑝 =
𝑟𝑝,𝑚𝑖𝑛

𝐾(𝛹𝑝𝑑)                                                                                                                                      (𝐸𝑞𝑛 6)

163 Solving SOX main equations (Eqn 4-5) requires computing the partial derivatives of A and K, 

164 ∂A/∂ci and ∂K/∂Ψm, respectively. These derivatives were estimated numerically in this study as 

165 described in Notes S2. 

166 We evaluated SOX as a stand-alone leaf-level model, and coupled to JULES, hereafter JULES-

167 SOX. The leaf-level model was evaluated against leaf gas exchange data as an ‘assumption 

168 centred’ (sensu Medlyn et al., 2015) test of the hypothesis underlying SOX. The JULES-SOX was 

169 then evaluated against ecosystem-level eddy flux data, which constituted the first practical test of 

170 the utility of SOX for LSMs. 

171 JULES β-function description

172 The JULES model (Best et al., 2011; Clark et al., 2011) uses the Collatz et al. (1991, 1992) 

173 photosynthesis model for C3 and C4 plants (Notes S3) to produce unstressed rates of A based on 

174 the co-limitation of light, Rubisco carboxylation capacity, and the transport of photoassimilates 

175 (for C3 plants) and PEPcarboxylase limitation (for C4 plants). The effect of soil moisture in A in 

176 the default JULES is given by multiplying A by the β factor, computed using the β-function from 

177 Cox et al (1998):

178 𝛽 = { 1  𝑓𝑜𝑟 𝜃 > 𝜃𝑐
𝜃 ― 𝜃𝑤

𝜃𝑐 ― 𝜃𝑤
   𝑓𝑜𝑟 𝜃𝑤 < 𝜃 ≤ 𝜃𝑐

0 𝑓𝑜𝑟 𝜃 ≤ 𝜃𝑤

                                                                                                   (𝐸𝑞𝑛 7)
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179 where θ is the mean soil moisture in the root zone (m3 m-3), and θc and θw, are the critical and 

180 wilting points, which are defined by Cox et al. (1998) as the θ when soil Ψ is -0.033 and -1.5 MPa, 

181 respectively. The default JULES formulation employs the Jacobs (1994) equation to predict ci from 

182 D, ca and the CO2 compensation point, Γ (Pa):

183 𝑐𝑖 = 𝑓0(1 ―
𝐷

𝐷𝑐𝑟𝑖𝑡)(𝑐𝑎 ― 𝛤) + 𝛤                                                                                                     (𝐸𝑞𝑛 8)

184 where f0 and Dcrit are empirical parameters (Jacobs, 1994; Cox et al., 1998). 

185 The JULES-SOX configuration replaces equations 7-8, computing gs from environmental data 

186 and plant hydraulic inputs with equations 4-5. To compute A from the gs predicted by equation 4, 

187 we solved the limiting photosynthetic rates from the Collatz et al. (1991; 1992) model as functions 

188 of ca and gs, as described in Notes S3. 

189 Leaf-level SOX evaluation

190 We used a global compilation of leaf gas exchange data to evaluate the SOX capacity to 

191 reproduce leaf stomatal responses of a wide range of woody plants. This dataset contains 

192 observations compiled by Lin et al. (2015), complemented with other published and unpublished 

193 data (see Table S1 and Fig. S2 for additional information). In total, there are 3597 measurements 

194 of gs and Ψpd together with environmental variables used for driving the model, that is: incident 

195 photosynthetic active radiation (Ipar), air temperature (Ta), ca and D. This data comes from 30 

196 woody plant species collected in 15 sites around the world (Fig. S2b). The Ψpd was measured on 

197 the same day as gs, and the environmental data was measured simultaneously with gs. The dataset 

198 included field and greenhouse observations, with environmental conditions varying from well-

199 watered to extreme drought (Ψpd = -7 MPa). These observations were grouped into the global Plant 

200 Functional Type (PFT) categories from Harper et al (2016) (Table 1). Harper et al. (2016) divides 

201 Angiosperms tree species into Broadleaved Evergreen Tropical Trees (BET-Tr), Broadleaved 
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202 Evergreen Temperate Trees (BET-Te) and Broadleaved Deciduous Trees (BDT), while 

203 Gymnosperms tree species are divided into Needle-leaved Evergreen Trees (NET) and Needle-

204 leaved Deciduous Trees (NDT). Shrub species were divided into Evergreen Shrubs (ESh) and 

205 Deciduous Shrubs (DSh), and two grass PFTs defined by their photosynthetic pathway (C3 and 

206 C4). The grass PFTs and the NDT were excluded from the leaf-level evaluation because no 

207 stomatal conductance data were available for these PFTs in the dataset used in this study. 

208 The plant hydraulic parameters used in SOX (i.e. Ψ50, a, and rpmin) were fitted to the gs data 

209 using an algorithm that minimizes the model residual sum of squares within the constraints of the 

210 observed Ψ50, a and rpmin. We compiled hydraulic data for each PFT from the literature to constrain 

211 the leaf-level model fit. The Ψ50 for woody plants was obtained from a version of the Choat et al. 

212 (2012) dataset updated recently by Mencuccini et al. (2019b). The shape parameter a of the xylem 

213 vulnerability function (Eqn 2) was estimated from the linear gradient between Ψ50 and the Ψ when 

214 the plant loses 88% of its maximum hydraulic conductance. The rpmin was estimated from branch-

215 level hydraulic conductivity measurements scaled from branch to whole plant taking into account 

216 plant height, Huber value and xylem tapering using the calculations described in Christoffersen et 

217 al. (2016) and Savage et al. (2010) (Notes S4). All the data used for these calculations were 

218 obtained from the hydraulic dataset from Mencuccini et al (2019b). We note that scaling branch 

219 to whole tree rpmin requires several assumptions about tree hydraulic architecture (Notes S4). 

220 Therefore, the presented values of rpmin must be considered as a reference useful only to assess if 

221 the rpmin input values used in the model are within the same order of magnitude of the observations. 

222 The other parameters of the photosynthesis model used in SOX (Notes S3) were set equal to Harper 

223 et al. (2016). 
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224 The model predictive skill was evaluated using the model root mean squared errors (RMSE) 

225 and the Nash and Sutcliffe (1970) model efficiency index (NSE). The NSE varies from -∞ to 1, 

226 with 1 indicating perfect agreement between model and observations, while NSE < 0 indicates the 

227 mean value of the observations is a better predictor than the model. The model parsimony was 

228 evaluated using the Akaike Information Criterion (AIC), which penalizes model 

229 overparameterization (Bozdogan, 1987). We compared SOX AIC score with the β-function (Eqn 

230 7-8). The parameters f0 and Dcrit, (Eqn 8) were fitted to the PFT gs data, while the θc and θw were 

231 held at their default values (-0.033 and -1.5 MPa, respectively).

232 The uncertainty in plant hydraulic parameters caused by within PFT hydraulic variability was 

233 propagated to the model predictions using bootstrapped 95% confidence intervals. We created the 

234 interval based on 1000 model runs with parameters resampled from the hydraulic trait data for 

235 each PFT. 

236 Eddy-covariance based JULES-SOX evaluation 

237 We evaluated default JULES and JULES-SOX against daily gross primary productivity (GPP) 

238 estimates derived from eddy flux tower data at 62 FLUXNET sites (http://fluxnet.fluxdata.org, 

239 Baldocchi et al., 2001) and 8 LBA sites (https://daac.ornl.gov/LBA, Saleska et al., 2013) covering 

240 all the major biomes of the world (Fig. S2, Table S2). In 10 of these sites we also had data for 

241 surface (5 to 15 cm) soil moisture content, which was used to evaluate the model soil moisture 

242 dynamics predictions. We classified the land cover on each site using the International Geosphere-

243 Biosphere Programme (IGBP) classification (Loveland et al., 2000). Each site was classified as 

244 one of the following categories according to its prescribed PFT cover (Table S2): cropland (CRO), 

245 deciduous broadleaf forests (DBF), deciduous needleleaf forests (DNF), temperate evergreen 

246 broadleaf forests (EBF-Te), tropical evergreen broadleaf forests (EBF-Tr), evergreen needleleaf 
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247 forest (ENF), grassland (GRA), mixed forest (MF), savannah (SAV), shrubland (SHR), and 

248 wetlands (WET). We grouped the IGBP categories open and closed shrublands into SHR, as we 

249 only had a single closed shrubland site. Similarly, woody savannah was grouped with SAV, as we 

250 only had two woody savannah sites. We divided the evergreen broad leaf forests category into 

251 EBF-Te and EBF-Tr, as these sites were dominated by distinct PFTs (BET-Te and BET-Tr, 

252 respectively). 

253 We evaluated JULES-SOX using the SOX hydraulic parameters (i.e. Ψ50, a, and rpmin) that 

254 minimized the residual sum of squares between SOX predictions and the eddy flux GPP 

255 observations from a subset of the sites used for model evaluation (Fig. S2; Table S2). Each site 

256 was used to calibrate the hydraulic parameters for its dominant PFT (i.e. the PFT covering more 

257 than 50% of the site area), except for DSh, which was not dominant in any of the available sites. 

258 We used a site with DSh cover of 35% (US-SRM) to calibrate the hydraulic parameters of this 

259 PFT. The hydraulic parameters of the others PFTs (if any) present on the site were kept constant 

260 during the model runs for parameter calibration. Similar to the leaf-level evaluation, the parameter 

261 calibration in JULES-SOX was constrained within the range of the observed values of Ψ50, a, and 

262 rpmin for all PFTs, except NDT which did not have enough observations to satisfactorily constrain 

263 the model parameters. The Ψ50 for grasses was obtained from Lens et al. (2016) dataset updated 

264 with data from Ocheltree et al. (2016). 

265 Model setup

266 The JULES and JULES-SOX configuration used in this study employed the 10-layer canopy 

267 scheme with sunlit and shaded leaves in each layer as described in Clark et al. (2011). The canopy 

268 radiation profile was given by the two-stream approach from Sellers (1985), with the sun-fleck 

269 penetration scheme from Mercado et al. (2009), and an exponential decrease of photosynthetic 
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270 capacity through the canopy (Mercado et al., 2007). All the model runs used in this study were 

271 site-level simulations driven with hourly local meteorological data. Vegetation dynamics (Cox, 

272 2001) was turned off and the site PFT coverage by site was prescribed based on the site vegetation 

273 description obtained from the site principal investigators (Table S3) or information from the site 

274 available on the FLUXNET website (https://fluxnet.fluxdata.org/sites/site-list-and-pages/). Site 

275 soil hydraulic properties were parameterised using Brooks and Corey (1964) relations. These 

276 properties were derived from data collected at each site or, when local data were not available, 

277 calculated from the sand/silt/clay fractions in the nearest gridbox in the high-resolution input file 

278 to the Met Office Central Ancillary Program (Dharssi et al., 2009), using approximations from 

279 Cosby et al. (1984). The model was spun-up by recycling the meteorological data at each site for 

280 up to 50 years. 

281 Results

282 SOX sensitivity to environmental and hydraulic drivers

283 The SOX analytical approximation (Eqn 4-5) has gs responses to climate which are consistent 

284 with the patterns commonly reported in the literature  (Mott, 1988; Leuning, 1995; Dewar et al., 

285 2018). The gs responses to Ipar and ca in SOX (Fig. 1a) are given by the ∂A/∂ci gradient decreasing 

286 at low light because of the changes in the light response curve, as A starts being limited by light 

287 (Notes S3), or at high ca, which affects the gradient between A(ca) and A(ci,col) (Notes S2). SOX 

288 correctly predicted stomatal closure in response to increased ca under Rubisco-limited conditions 

289 (Mott, 1988; Fig. 1a). The classical exponential gs responses to D (Leuning, 1995) was reproduced 

290 in SOX (Fig. 1a) through the D effect on ξ  (Eqn 5; Fig. S1a). An exponential gs decline was also 

291 predicted by SOX in response to decreasing Ψpd, (Fig. 1a) which summarizes both the responses 

292 to the soil water availability in the root zone and the hydraulic stress of transporting water to the 
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293 top of the canopy (Eqn S1.2 in Notes S1). The plant hydraulic parameters modulated the model 

294 sensitivity to D or Ψpd (Fig. 1b-d), with a less negative Ψ50 or a higher rpmin increasing the gs 

295 sensitivity to Ψpd and D (Fig. 1c-d). The effect of the vulnerability curve shape parameter a was 

296 more complex, lower a increased gs sensitivity to less negative Ψpd, but decreased gs sensitivity to 

297 very negative Ψpd values (Fig. 1c). 

298 The patterns produced by the analytical SOX were similar to the numerical version from Eller 

299 et al. (2018b), with a correlation coefficient ranging from 0.92 to 1 (Fig. S3). However, the use of 

300 linear gradients in equations 4 and 5 (Notes S2) can cause discrepancies between the different 

301 model versions under certain ranges of environmental conditions. The analytical version of SOX 

302 underestimated gs at low D (Fig. S3), overestimated gs at low ca, and gs increased faster in response 

303 to light (Fig. S3) than in the numerical model.  

304 SOX leaf-level evaluation

305 SOX simulated the observed leaf-level gs responses to soil drought better than the β-function 

306 in all the studied woody PFTs, except BDT (Fig. 2). The β-function predicted all PFTs will reach 

307 gs = 0 at Ψpd > -2 MPa, whereas SOX predicted gs > 0 even when Ψpd < -4 MPa in some PFTs (Fig. 

308 2b, e). The less conservative stomatal behaviour predicted by SOX produced a NSE, on average, 

309 0.65 higher and a RMSE 26% lower than the β-function. Most of the observed gs was within SOX 

310 95% confidence bounds derived from the hydraulic parameters’ uncertainty (shaded region in Fig. 

311 2). The only values outside SOX uncertainty boundaries were the highest gs values in BET-Tr and 

312 BET-Te (Fig. 2a-b), and the lowest NET gs values when Ψpd > -3.5 MPa (Fig. 2d). 

313 SOX produced a better fit to the gs data, which resulted in a lower AIC than the β-function for 

314 all PFTs, except BDT (Table 1). Fitting the two empirical parameters of the Jacobs (1994) equation 

315 (f0 and Dcrit, Eqn 8) to the gs data results in a β-function AIC score 512.1 higher than SOX (Table 

Page 15 of 43

Manuscript submitted to New Phytologist for review



For Peer Review

15

316 1). For the BDT observations, the β-function results in an AIC score 11.6 lower than SOX. Our 

317 BDT observations were restricted to relatively well watered conditions (lowest Ψpd was -1.2 MPa), 

318 which limits the utility of this dataset to evaluate the model responses to soil drought. 

319 JULES-SOX site-level calibration

320 The hydraulic parameters that maximized the JULES-SOX fit to the GPP data at the calibration 

321 sites (Table S2; Fig. S2) were within one SD of the mean observed hydraulic parameters for most 

322 PFTs (Table 2). The Gymnosperm PFTs (NDT and NET) required Ψ50 values 1.6 MPa less 

323 negative than their observed Ψ50 means to fit the GPP data, which is lower than the observed SD 

324 range but still within the range of Ψ50 observations for NET (Ψ50 ranges from -2.3 to -7.5 MPa in 

325 NET). The NDT and BET-Tr calibrated a were also slightly lower than the SD range (Table 2), 

326 but within the observed a range for BET-Tr (a ranges from 1.8 to 7.8 in BET-Tr). The only PFT 

327 with a calibrated rpmin outside the SD range of the mean rpmin was ESh (Table 2). 

328 The monthly GPP modelled by JULES-SOX fitted the eddy covariance GPP data better than 

329 the default JULES in 8 out of the 9 sites used for parameter calibration (Table S2; Fig. S2) (Fig. 

330 3). The default JULES NSE was 0.01 higher in the DSh site (Fig. 3i), whereas in all the other sites 

331 JULES-SOX had a better fit. The difference between JULES-SOX and default JULES NSE ranged 

332 from 0.03 for C3 grasses (Fig. 3f) to 11.44 for BET-Tr (Fig. 3a). The large improvement in the 

333 BET-Tr site was caused by the lower GPP decline predicted by SOX during Jan-Mar and Sep-Dec. 

334 The decline in BET-Tr GPP in default JULES can be attributed to the β-factor overestimating the 

335 effects of soil moisture on the vegetation carbon assimilation during drier periods (Fig. S4a). On 

336 average, JULES-SOX NSE for GPP was 1.59 higher than default JULES, while its RMSE was 

337 38% lower than JULES. 
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338 The less conservative stomatal behaviour predicted by SOX resulted in higher 

339 evapotranspiration rates throughout the year (Fig. S5; S6), which depleted soil moisture to lower 

340 levels than the β-function in default JULES during drier periods (Fig. S4; S7). The soil moisture 

341 dynamics from JULES-SOX are more closely aligned with the monthly soil moisture observations 

342 in 8 out of the 10 sites where soil moisture data was available (Fig. S7). JULES-SOX NSE for 

343 monthly soil moisture was 1.67 higher and a RMSE 19% lower than default JULES. JULES-SOX 

344 also simulates realistic Ψc for most PFTs (Fig. 4; S4). The modelled Ψc at the calibration sites is 

345 within the interquartile range of the observed minimum Ψc at midday for all woody PFTs, except 

346 NDT (Fig. 4). 

347 Biome-level JULES-SOX evaluation

348 Using JULES-SOX with calibrated SOX hydraulic parameters produced a better fit to the GPP 

349 data than default JULES for 50 out of the 70 eddy flux evaluation sites (Table S2; Table 3; Fig. 

350 5). Across all biomes the JULES-SOX median NSE was 0.19 higher than default JULES, and its 

351 RMSE was 19% lower (Table 3). The difference between JULES-SOX and JULES skill was 

352 highest at EBF-Tr sites, which have a median NSE 3.18 higher and RMSE 45% lower in JULES-

353 SOX (Table 3; Fig 5a). The fit of EBT-Te to data was also improved substantially by JULES-

354 SOX, with JULES-SOX having a median NSE 1.01 higher and a RMSE 18% lower (Fig. 5a; Table 

355 3). Default JULES only outperformed JULES-SOX at CRO, which have a median NSE 0.08 lower 

356 in JULES-SOX, and GRA where the RMSE 5% was higher in JULES-SOX (Fig. 5a; Table 3).

357 Default JULES significantly underestimated the observed mean annual GPP by 143.3 g C m-2 

358 across all biomes, which corresponds to 13.6% of the observed mean annual GPP (Fig. 5b). 

359 JULES-SOX deviation from the observed mean annual GPP was considerably smaller (71.6 g C 

360 m-2; Fig. 5b). The significantly lower annual GPP predicted by default JULES can be attributed to 
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361 β-function induced GPP declines, which also produced a stronger GPP seasonality than what is 

362 present in the data (Fig. 5c). JULES overestimated the median observed GPP seasonality by 70%, 

363 versus a 13% overestimation by JULES-SOX (Fig. 5c). This difference means JULES predicts 

364 17% of the sites have a markedly seasonal GPP (SI > 0.8; Walsh & Lawler, 1981) while just 4 % 

365 of the sites actually have SI > 0.8. JULES-SOX predicts only 8% of the sites would have SI > 0.8.

366 The light use efficiency (LUE; Fig. 6) is the ratio between GPP and the Ipar absorbed by the 

367 canopy (Stocker et al., 2018), and can be used to disentangle the effects of soil moisture and light 

368 availability controlling the vegetation GPP. The JULES LUE declined as soil dries out with a mean 

369 linear slope of 1.21 (±0.1) across all biomes. In contrast, the JULES-SOX LUE-soil moisture 

370 relationship had a mean slope of 0.73 (±0.21) with some biomes, such as DBF, reaching a slope 

371 as low as 0.22 (Fig. 6b). The consequence of sustaining higher LUE at low soil moisture in JULES-

372 SOX is a greater depletion of soil moisture, as indicated by the more left skewed soil moisture 

373 probability distribution predicted by JULES-SOX (lower panels in Fig. 6). The mean moisture 

374 content of the top 1 m of soil predicted by JULES-SOX was, on average, 10% lower than default 

375 JULES. In JULES-SOX some biomes, such as ENF, could reach a soil moisture on average 17% 

376 lower than JULES (Fig. 6f).

377 Discussion

378 We report the first evaluation of a LSM using a stomatal optimization model fully based on 

379 xylem hydraulics (SOX) to drive the vegetation stomatal responses to climate. Our results provide 

380 support for the SOX underlying hypothesis that stomata evolved to balance carbon assimilation 

381 with instantaneous hydraulic conductance loss. The risk of mortality through hydraulic failure 

382 (Choat et al., 2012; Rowland et al., 2015; Anderegg et al., 2016; Adams et al., 2017), should drive 

383 the evolution of mechanisms to prevent the plant from reaching lethal embolism thresholds 
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384 (Sperry, 2004). There is abundant evidence that stomata controls xylem tension, and consequently 

385 embolism (Hubbard et al., 2001; Brodribb et al., 2003; Meinzer et al., 2009; Klein, 2014). Our 

386 model represents this xylem-stomata coordination through the assumption of optimisation by 

387 natural selection (Wolf et al., 2016). 

388 Whereas our model fits the observations of most PFTs better than its empirical alternative, 

389 there is still a considerable amount of unexplained variance in the data (Fig. 2). This can be 

390 partially attributed to the large hydraulic heterogeneity within each PFT, but we must also 

391 acknowledge that many processes not directly related with xylem hydraulics are important to plant 

392 life history and stomatal evolution. Processes related to nutrient use and acquisition, carbohydrate 

393 allocation and storage, the maintenance of tissues and biochemical apparatus, and protection from 

394 pathogens and herbivores (Melotto et al., 2008; Cramer et al., 2009; Prentice et al., 2014) all could 

395 explain part of our model residual variance. It is extremely important to explore the relevance of 

396 these processes in future research on stomatal optimality. However, the SOX model as we propose 

397 already provides a parsimonious alternative to the empirical models commonly used in LSM. 

398 Our findings that xylem hydraulics-based models can adequately simulate stomatal behaviour 

399 agree with other recent studies. For example, Anderegg et al. (2018b) shows that a hydraulics 

400 based optimization model can simulate the stomatal behaviour of woody plants better than CF. 

401 More recently, Wang et al. (2019) shows that a similar hydraulics-based model can predict 

402 stomatal responses to increased CO2 better than the Ball-Berry-Leuning empirical model (Leuning, 

403 1995). These results show the potential of using plant hydraulics to model the stomatal behaviour 

404 of plants across contrasting environmental conditions, and supports its use in ESMs to project the 

405 evolution of global climate. 
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406 The analytical formulation developed for SOX facilitates its coupling to LSMs, allowing the 

407 host LSM to constrain its predictions using plant hydraulic information. We show that including 

408 plant hydraulics in JULES through SOX improves its capabilities to simulate GPP and soil 

409 moisture dynamics in most of the studied biomes (Fig. 3-5). In addition, SOX opens new 

410 possibilities to evaluate LSM predictions and expands the range of hypotheses that can be tested 

411 with JULES. Using JULES-SOX within ESMs will allow us to understand how hydraulic 

412 processes affect climatic and biogeochemical cycles at global scale, as well as to investigate the 

413 role of plant hydraulics on vegetation distribution and its response to climate change. 

414 SOX parametrization and parsimony

415 Other LSMs and DGVMs have already successfully employed principles of plant hydraulics 

416 (Hickler et al., 2006; Bonan et al., 2014; Kennedy et al., 2019), but JULES-SOX is the first LSM 

417 to use the new generation of hydraulically-based stomatal optimization models (Wolf et al., 2016; 

418 Sperry et al., 2017; Anderegg et al., 2018b; Eller et al., 2018b) to predict stomatal responses to 

419 climate. The SPA (Williams et al., 1996) adaptation to the Community Land Model (CLM) by 

420 Bonan et al. (2014) was one of the first approaches to link plant stomatal function to plant hydraulic 

421 processes in a LSM. Despite SPA being an extremely useful model, SOX has an advantage in 

422 circumstances where assuming a strict isohydric behaviour is not appropriate (Klein, 2014; 

423 Martinez-Vilalta et al., 2014). In relation to SOX, SPA does not represent dynamic changes in the 

424 plant hydraulic conductance or an anisohydric mode of stomatal regulation (Williams et al., 1996; 

425 Fisher et al., 2006). However, SPA accounts for plant hydraulic capacitance, which can be 

426 important for plant functioning, especially during early morning (Goldstein et al., 1998), and is 

427 currently not implemented in SOX. 
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428 Recently Kennedy et al. (2019) implemented a Plant Hydraulic Scheme (PHS) in CLM. The 

429 PHS simulates dynamic changes in hydraulic conductance in different compartments along the 

430 soil-atmosphere continuum, providing a more detailed representation than SOX of hydraulic 

431 processes occurring along the soil-plant hydraulic pathway. However, PHS still requires empirical 

432 parameters to represent stomatal responses to soil drought and D (Kennedy et al. 2019), namely 

433 the g0 and g1 parameters from the Medlyn et al. (2011) model, and the critical and wilting points 

434 used in the empirical stress factor. The main advantage of SOX is providing an alternative to the 

435 β-function and empirical stomatal parameters by linking plant hydraulic processes directly to 

436 stomatal functioning. As we treat the soil-plant-atmosphere pathway as a single hydraulic 

437 compartment, SOX only requires the hydraulic parameters rpmin, Ψ50 and a to predict stomatal 

438 responses to climate. This makes SOX even more parsimonious than default JULES, which 

439 requires four empirical parameters to simulate stomatal responses to climate (Eqn 7-8) and does 

440 not simulate any aspect of vegetation hydraulic functioning (Clark et al., 2011). 

441 We show that the SOX hydraulic parameters in most PFTs can be constrained with plant 

442 branch-level hydraulic observations (Table 2), which is an advantage over models that employ 

443 empirical parameters difficult to constrain and interpret biologically. However, we observed 

444 discrepancies between the SOX-calibrated parameters and the observed hydraulic traits in certain 

445 PFTs (Table 2). In some cases, such as NDT, the parameter discrepancy may have been due to a 

446 very restricted observational sampling of hydraulic parameters in this group. The NDT only had 

447 Ψ50 data for five species and a and rpmin for two species (Table 2). Considering  that the observations 

448 used in this study were not collected in the same FLUXNET sites used to evaluate SOX, some of 

449 the observed discrepancies between calibrated and measured parameters might reflect hydraulic 

450 differences between populations treated as the same PFT in this study. For example, the deciduous 
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451 angiosperms species present in the XFT dataset used in this study contain mostly hydraulic data 

452 from cold-deciduous temperate species (Mencuccini et al., 2019b), which might not be adequate 

453 to describe the hydraulic system of tropical and subtropical drought-deciduous. Our hydraulic 

454 scheme opens possibilities to improve the representation of different global vegetation types in 

455 JULES with different hydraulic and phenological strategies. Capturing the large diversity of 

456 ecological strategies in plants is important to simulate species rich ecosystems such as tropical 

457 forests (Xu et al., 2016). 

458 Anderegg et al. (2018a) computed the community weighted average values for Ψ50 in two of 

459 the FLUXNET sites used in this study (US-MMS and IT-Ren) and obtained values closer to the 

460 calibrated values for BDT and NET (-2.1 and -3.6 MPa, respectively), than the means from our 

461 compiled hydraulic dataset (Table 2). In Eller et al. (2018b) a numerical version of SOX 

462 outperformed the β-function approach when parameterized with locally measured branch-level 

463 hydraulic data from EBF-Tr. These findings suggest that SOX can be constrained with in-situ 

464 hydraulic measurements when these are available. However, we must also consider the possibility 

465 that there are intrinsic limitations in using branch-level hydraulic data to parameterize the model. 

466 Roots and leaves can be more vulnerable to embolism than branches (Bartlett et al., 2016; Wolfe 

467 et al., 2016), which can make these tissues bottleneck plant hydraulic conductance during drought. 

468 The soil outside the roots can also limit plant hydraulic conductance and, ultimately, control its 

469 water use (Fisher et al. 2007). These bottlenecks could bias the SOX calibrated hydraulic 

470 parameters towards the limiting component and explain its departure from the branch-level 

471 hydraulic data. In this case SOX parameterization would benefit from the use of more integrative 

472 methodologies to estimate hydraulic parameters that represent the entire soil-plant hydraulic 

473 vulnerability (Eller et al., 2018a). Alternatively, the SOX structure (i.e., the K function in Eqn 2) 
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474 would need to explicitly represent the variability between different hydraulic compartments along 

475 the soil-plant-atmosphere pathway, similarly to SPA or other models (Kennedy et al., 2019; 

476 Mencuccini et al., 2019b; Eller et al., 2018b). 

477 Ecosystem-level implications of SOX

478 SOX improved JULES GPP simulation in over 70% of the 70 studied sites and soil moisture 

479 dynamics in 80% of the 10 sites where soil moisture data were available. This improved fit was 

480 achieved using hydraulic parameters calibrated against the GPP data of a small subset of eddy flux 

481 sites (the sites in Fig. S2), which suggests that the calibrated parameters are generic enough to be 

482 used in global simulations. The lower sensitivity of SOX to soil moisture improved the simulations 

483 of annual GPP (Fig. 5) and predicted terrestrial biomes to assimilate on average 2.58 Mg C ha-1 

484 yr-1 or 30% more than predicted by default JULES. This increased carbon assimilation could affect 

485 Earth’s atmospheric CO2 evolution and climate change projections (Cox et al., 2000; Winkler et 

486 al., 2019) . 

487 JULES-SOX particularly improved the fit of EBF-Tr sites to the observations (Fig. 5; Table 

488 3), using hydraulic parameters very similar to those observed in BET-Tr (Table 2). Considering 

489 that SOX is also able to capture the response of EBF-Tr even to extreme experimental drought 

490 (Eller et al., 2018b), JULES-SOX may contribute to decrease the large uncertainty in how these 

491 important ecosystems will respond to climate change (Sitch et al., 2008). Tropical forest 

492 productivity estimated by SOX is less sensitive to seasonal soil drought (Fig. 3; S4), which is 

493 consistent with the little seasonality often observed in tropical forest-atmosphere CO2 exchange 

494 (Grace et al., 1995; Carswell et al., 2002; Alden et al., 2016), as well as to forest responses to 

495 experimental drought (Meir et al., 2009; da Costa et al., 2010; Meir et al., 2018). da Costa et al. 

496 (2018) shows that even after 15 years of partial rainfall exclusion, Amazon trees can maintain or 
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497 even increase their transpiration rates (albeit following significant mortality). Whereas tropical 

498 forest resistance to drought has previously been attributed only to deep roots possessed by the 

499 vegetation (Nepstad et al., 1994), our results indicate that plants more resistant to embolism could 

500 maintain their carbon assimilation during drought even without a deeper root system. 

501 The unavoidable consequence of maintaining stomatal gas exchange during soil drought is a 

502 greater depletion of soil moisture reserves (Fig. 6; S4; S7). This behaviour is a direct consequence 

503 of the main assumption in SOX, which reflects a ‘use or lose it’ stomatal regulation strategy with 

504 respect to soil moisture (Sperry et al., 2017). SOX assumes plants with a more conservative water 

505 use strategy will be outcompeted by neighbouring plants with a less conservative stomatal 

506 behaviour (Wolf et al. 2016). The demographic consequences of the stomatal regulation strategy 

507 embedded in SOX should be explored in future studies using the dynamic vegetation component 

508 of JULES (Cox, 2001; Moore et al., 2018). The more competitive soil moisture dynamics predicted 

509 by SOX, together with a more accurate representation of vegetation drought-induced mortality, 

510 which also can be developed from SOX, might be the key to predict sudden and widespread 

511 vegetation die-off during droughts that have been increasingly reported in ecosystems around the 

512 globe (Allen et al., 2010; Worrall et al., 2010; Meir et al., 2015). 
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828

829

830

831

832

833 Figure captions.

834 Figure 1. SOX stomatal conductance (gs) sensitivity to environmental drivers in (a) (vapour 

835 pressure deficit, D; pre-dawn water potential, Ψpd, Incident photosynthetically active radiation, Ipar, 

836 and atmospheric CO2 partial pressure, ca) and plant hydraulic traits in (b) (Ψ  when plant loses 50% 

837 of its maximum conductance, Ψ50; shape of vulnerability function, a; and minimum plant hydraulic 

838 resistance, rpmin). The variables were changed individually while the others were held constant at 

839 their reference values (D = 0.5 kPa, Ψpd = -0.5 MPa, Ipar = 600 µmol m-2 s-1, ca = 36 Pa, Ψ50 = -2 

840 MPa, a = 3, rpmin =1 m2 s MPa mmol-1). For the panels (c) and (d) the reference lines (dashed 

841 black) represents values of Ψ50 = -3 MPa, a = 5, rpmin =1 mmol-1 m2 s MPa, the coloured lines show 

842 how changing each hydraulic parameter affects gs response to Ψpd and D. The Ipar was set to 2000 

843 µmol m-2 s-1 in panels (c) and (d). The Vcmax25 was set to 100 µmol m-2 s and the rest of the 

844 photosynthetic parameters follow the BET-Tr parameterization from Harper et al. (2016).

845 Figure 2. Predicted and observed (grey points) stomatal conductance (gs) response to changes in 

846 leaf pre-dawn water potential (Ψpd) for the woody plant functional types (PFT) from Harper et al. 

847 (2016), except for Needleleaf deciduous trees which was not present in the dataset used in this 

848 study. The red lines are SOX and β-function (Eqn 7-8) best fit. The shaded regions are non-

849 parametric 95% confidence boundaries derived from 1000 bootstrapping replications of the SOX 

850 hydraulic inputs. All environmental conditions except Ψpd were held constant at their median 

851 values when the gs measurements were taken. The Ψpd was transformed in soil volumetric water 
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852 content to drive the β-function using Clapp & Hornberger (1978) equations parameterized with 

853 soil physical properties derived from the Met Office Central Ancillary Program (Dharssi et al., 

854 2009). The model fit to data is shown as the root mean squared errors (RMSE) and Nash-Sutcliffe 

855 (1970) model efficiency index (NSE). The PFT abbreviations are: BET-Tr (Broadleaf evergreen 

856 tropical tree), BET-Te (Broadleaf evergreen temperate tree), BDT (Broadleaf deciduous tree), 

857 NET (Needleleaf evergreen tree), ESh (Evergreen shrubs) and DSh (Deciduous shrubs).  

858 Figure 3. Monthly mean gross primary production (GPP) modelled by default JULES (blue line) 

859 and JULES-SOX (red line) versus observations (grey points are means and bars are 2xSE) at each 

860 eddy flux site used for calibrating the SOX hydraulic parameters (PFT; Table S2 and Fig. S3). The 

861 model fit to data is shown as the root mean squared errors (RMSE) and Nash-Sutcliffe (1970) 

862 model efficiency index (NSE). The PFT abbreviations are: BET-Tr (Broadleaf evergreen tropical 

863 tree), BET-Te (Broadleaf evergreen temperate tree), BDT (Broadleaf deciduous tree), NET 

864 (Needleleaf evergreen tree), NDT (Needleleaf deciduous tree), C3 (C3 grasses), C4 (C4 grasses), 

865 ESh (Evergreen shrubs) and DSh (Deciduous shrubs).  

866 Figure 4. Minimum observed midday leaf water potential (Ψmidday) from 279 woody plant species 

867 compiled from the literature grouped using the Harper et al. (2016) plant functional types (PFT) 

868 categories. The SOX modelled Ψmidday for each of the calibration sites (see Table S2 and Fig. S2) 

869 is plotted in red. The circle is the mean Ψmidday and the arrows indicate the minimum and maximum 

870 Ψmidday. The data for the deciduous PFT was restricted to the growing season. The PFT 

871 abbreviations are: BET-Tr (Broadleaf evergreen tropical tree), BET-Te (Broadleaf evergreen 

872 temperate tree), BDT (Broadleaf deciduous tree), NET (Needleleaf evergreen tree), NDT 

873 (Needleleaf deciduous tree), C3 (C3 grasses), C4 (C4 grasses), ESh (Evergreen shrubs) and DSh 

874 (Deciduous shrubs).  
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875 Figure 5. The Taylor diagram (a) shows the difference in JULES and JULES-SOX skill to predict 

876 the monthly GPP in each biome. Green lines are the model centered root mean squared errors 

877 (RMSE), points closer to the reference circle in the x-axis indicate higher model skill. The two 

878 arrows highlight the improvement in model skill for EBF-Tr and EBF-Te. The boxplot panels 

879 show the differences between models (default JULES in blue and JULES-SOX in red) and 

880 observations in the annual gross primary productivity (GPP in b) and the GPP seasonality (GPP 

881 SI in c). Data gaps were excluded from the annual GPP calculations for both models and 

882 observations, therefore the differences can be used to evaluate the model skill, but the absolute 

883 values do not represent the total annual GPP in each biome. The GPP SI was computed using the 

884 approach from Walsh and Lawler (1981). Boxes filled with lines are different (at α=0.05) from 0 

885 in a one sample t-test. The biome abbreviations are: Cropland (CRO), deciduous broadleaf forests 

886 (DBF), deciduous needleleaf forests (DNF), temperate evergreen broadleaf forests (EBF-Te), 

887 tropical evergreen broadleaf forests (EBF-Tr), evergreen needleleaf forest (ENF), grassland 

888 (GRA), mixed forest (MF), savannah (SAV), shrubland (SHR), and wetlands (WET).   

889 Figure 6. Model predictions of the normalised light-use efficiency responses to soil moisture, 

890 expressed as a fraction of the soil moisture saturation point at the top 1 m of soil. The light use 

891 efficiency is computed as the ratio between gross primary productivity and the photosynthetic 

892 active radiation absorbed by the canopy. The default JULES predictions are in blue and JULES-

893 SOX predictions in red. The lines in the scatter plot panels are linear regressions fit to the data. 

894 The histograms on the bottom panels are the soil moisture probability density predicted by each 

895 model. The biome abbreviations are: Cropland (CRO), deciduous broadleaf forests (DBF), 

896 deciduous needleleaf forests (DNF), temperate evergreen broadleaf forests (EBF-Te), tropical 
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897 evergreen broadleaf forests (EBF-Tr), evergreen needleleaf forest (ENF), grassland (GRA), mixed 

898 forest (MF), savannah (SAV), shrubland (SHR), and wetlands (WET). 

899

900

901

902

903 Tables. 

904 Table 1. Residual sum of squares (RSS), number of leaf-level stomatal conductance observations 

905 (N) used to fit n parameters to the data, and the resulting Akaike Information Criterion differences 

906 (ΔAIC) between SOX and the β-function.

SOX β-function
PFT N

RSS n RSS n
ΔAIC

BET-Tr 434 4.83 3 6.53 2 -126.1

BET-Te 1334 19.68 3 37.37 2 -853.2

BDT 71 3.48 3 3.04 2 11.6

NET 1571 0.65 3 2.29 2 -1926.4

ESh 133 3.37 3 7.94 2 -112

DSh 64 2.76 3 8.03 2 -66.4

907

908 Table 2. Observed (Obs) mean (±SD) hydraulic parameters compiled from literature for each plant 

909 functional type (PFT) from JULES (Harper et al. 2016). The calibrated (Cal) columns are the 

910 parameter values that maximize JULES-SOX fit to observed GPP in the calibration sites (see Table 

911 S2 and Fig. S2).

  Ψ50 (MPa) a (unitless) rpmin (mmol-1 m2 s MPa)
PFT

N Obs Cal N Obs Cal N Obs Cal

BET-Tr 77 -1.9(±1.3) -1.7 20  4.4(±2.1) 2.1 40 2.2(±3.4) 0.6

BET-Te 44 -2.7(±1.5) -1.8 17 3.7(±1.8) 2.8 40 3.1(±8) 5
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  BDT 87 -2.6(±1.4) -1.6 43 5.5(±3.8) 3.5 31 5.3(±5.6) 0.5

NET 48 -4.2(±1.2) -2.6 25 8.7(±4.9) 4.9 20 2.4(±1.8) 4.2

NDT 5 -3.4(±0.6) -1.8 2 7.4(±5) 1.8 2 8(±4.3) 9

C3 45 -3.1(±1.6) -2.4 - - 2.2 - - 3.2

C4 15 -2.7(±1.7) -1.5 - - 1.8 - - 9.5

  ESh 61 -4(±2.2) -2.1 53 4.1(±3.3) 2.5 49 1.5(±1.8) 9.5

DSh 26 -4(±2.3) -1.8 3 3.4(±2.2) 2.1 4 2.6(±2.4) 5

912 Note:  The N column is the number of species compiled for the correspondent parameter.

913

914 Table 3. Median Nash-Sutcliffe (1970) model efficiency index (NSE) and root mean square error 

915 (RMSE) for the biomes used for evaluating JULES-SOX and default JULES. 

JULES-SOX JULES
Biome N

NSE RMSE NSE RMSE

CRO 3 0.49 123.12 0.57 141.1

DBF 7 0.89 37.32 0.83 47.19

DNF 1 0.58 25.93 0.37 31.97

EBF-Te 3 -0.23 45.22 -1.24 66.36

EBF-Tr 6 0.41 40.36 -2.77 73.53

ENF 5 0.9 34.14 0.59 40.58

GRA 12 0.22 32.31 -0.01 30.62

MF 3 0.85 47.87 0.59 79.29

SAV 5 -0.4 59.72 -2.12 89.69

SHR 4 0.78 14.90 0.64 15.92

WET 21 0.68 32.23 0.46 38.67

916 Note:  The N column is the number of sites representing the biome in the eddy flux dataset
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SOX stomatal conductance (gs) sensitivity to environmental drivers in (a) (vapour pressure deficit, D; pre-
dawn water potential, Ψpd, Incident photosynthetically active radiation, Ipar, and atmospheric CO2 partial 
pressure, ca) and plant hydraulic traits in (b) (Ψ  when plant loses 50% of its maximum conductance, Ψ50; 

shape of vulnerability function, a; and minimum plant hydraulic resistance, rpmin). The variables were 
changed individually while the others were held constant at their reference values (D = 0.5 kPa, Ψpd = -0.5 

MPa, Ipar = 600 µmol m-2 s-1, ca = 36 Pa, Ψ50 = -2 MPa, a = 3, rpmin =1 m2 s MPa mmol-1). For the 
panels (c) and (d) the reference lines (dashed black) represents values of Ψ50 = -3 MPa, a = 5, rpmin =1 
mmol-1 m2 s MPa, the coloured lines show how changing each hydraulic parameter affects gs response to 

Ψpd and D. The Ipar was set to 2000 µmol m-2 s-1 in panels (c) and (d). The Vcmax25 was set to 100 µmol 
m-2 s and the rest of the photosynthetic parameters follow the BET-Tr parameterization from Harper et al. 

(2016). 

166x188mm (300 x 300 DPI) 
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Predicted and observed (grey points) stomatal conductance (gs) response to changes in leaf pre-dawn water 
potential (Ψpd) for the woody plant functional types (PFT) from Harper et al. (2016), except for Needleleaf 

deciduous trees which was not present in the dataset used in this study. The red lines are SOX and β-
function (Eqn 7-8) best fit. The shaded regions are non-parametric 95% confidence boundaries derived from 
1000 bootstrapping replications of the SOX hydraulic inputs. All environmental conditions except Ψpd were 
held constant at their median values when the gs measurements were taken. The Ψpd was transformed in 

soil volumetric water content to drive the β-function using Clapp & Hornberger (1978) equations 
parameterized with soil physical properties derived from the Met Office Central Ancillary Program (Dharssi et 

al., 2009). The model fit to data is shown as the root mean squared errors (RMSE) and Nash-Sutcliffe 
(1970) model efficiency index (NSE). The PFT abbreviations are: BET-Tr (Broadleaf evergreen tropical tree), 
BET-Te (Broadleaf evergreen temperate tree), BDT (Broadleaf deciduous tree), NET (Needleleaf evergreen 

tree), ESh (Evergreen shrubs) and DSh (Deciduous shrubs).   
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Monthly mean gross primary production (GPP) modelled by default JULES (blue line) and JULES-SOX (red 
line) versus observations (grey points are means and bars are 2xSE) at each eddy flux site used for 

calibrating the SOX hydraulic parameters (PFT; Table S2 and Fig. S3). The model fit to data is shown as the 
root mean squared errors (RMSE) and Nash-Sutcliffe (1970) model efficiency index (NSE). The PFT 

abbreviations are: BET-Tr (Broadleaf evergreen tropical tree), BET-Te (Broadleaf evergreen temperate tree), 
BDT (Broadleaf deciduous tree), NET (Needleleaf evergreen tree), NDT (Needleleaf deciduous tree), C3 (C3 

grasses), C4 (C4 grasses), ESh (Evergreen shrubs) and DSh (Deciduous shrubs).   

152x203mm (300 x 300 DPI) 
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The Taylor diagram (a) shows the difference in JULES and JULES-SOX skill to predict the monthly GPP in 
each biome. Green lines are the model centered root mean squared errors (RMSE), points closer to the 

reference circle in the x-axis indicate higher model skill. The two arrows highlight the improvement in model 
skill for EBF-Tr and EBF-Te. The boxplot panels show the differences between models (default JULES in blue 
and JULES-SOX in red) and observations in the annual gross primary productivity (GPP in b) and the GPP 
seasonality (GPP SI in c). Data gaps were excluded from the annual GPP calculations for both models and 
observations, therefore the differences can be used to evaluate the model skill, but the absolute values do 

not represent the total annual GPP in each biome. The GPP SI was computed using the approach from Walsh 
and Lawler (1981). Boxes filled with lines are different (at α=0.05) from 0 in a one sample t-test. The biome 
abbreviations are: Cropland (CRO), deciduous broadleaf forests (DBF), deciduous needleleaf forests (DNF), 
temperate evergreen broadleaf forests (EBF-Te), tropical evergreen broadleaf forests (EBF-Tr), evergreen 

needleleaf forest (ENF), grassland (GRA), mixed forest (MF), savannah (SAV), shrubland (SHR), and 
wetlands (WET).   
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Model predictions of the normalised light-use efficiency responses to soil moisture, expressed as a fraction of 
the soil moisture saturation point at the top 1 m of soil. The light use efficiency is computed as the ratio 
between gross primary productivity and the photosynthetic active radiation absorbed by the canopy. The 

default JULES predictions are in blue and JULES-SOX predictions in red. The lines in the scatter plot panels 
are linear regressions fit to the data. The histograms on the bottom panels are the soil moisture probability 
density predicted by each model. The biome abbreviations are: Cropland (CRO), deciduous broadleaf forests 

(DBF), deciduous needleleaf forests (DNF), temperate evergreen broadleaf forests (EBF-Te), tropical 
evergreen broadleaf forests (EBF-Tr), evergreen needleleaf forest (ENF), grassland (GRA), mixed forest 

(MF), savannah (SAV), shrubland (SHR), and wetlands (WET). 
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