

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Stomatal optimisation based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate

Citation for published version:

Eller, CB, Rowland, L, Mencuccini, M, Rosas, T, Williams, K, Harper, A, Medlyn, BE, Wagner, Y, Klein, T, Teodoro, GS, Oliveira, RS, Matos, IS, Rosado, BH, Fuchs, K, Wohlfahrt, G, Montagnani, L, Meir, P, Sitch, S & Cox, PM 2020, 'Stomatal optimisation based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate', *New Phytologist*. https://doi.org/10.1111/nph.16419

Digital Object Identifier (DOI):

10.1111/nph.16419

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: New Phytologist

Publisher Rights Statement:

© 2020 The Authors New Phytologist © 2020 New Phytologist Trust

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Stomatal optimisation based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate

Journal:	New Phytologist
Manuscript ID	NPH-MS-2019-31667.R1
Manuscript Type:	MS - Regular Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	Eller, Cleiton; University of Exeter, Department of geography Rowland, Lucy; University of Exeter, Department of Geography; University of Exeter, Department of Geography Mencuccini, Maurizio; CREAF, Universidad Autonoma de Barcelona, c/o, CREAF; Pg. Lluís Companys 23, ICREA Rosas, Teresa; Universitat Autonoma de Barcelona Centre de Recerca Ecologica i Aplicacions Forestals, Biologia Animal, Vegetal i Ecologia Medlyn, Belinda; Western Sydney University Hawkesbury Institute for the Environment, Ecosystem Function and Integration Williams, Karina; Met Office, Hadley Centre Harper, Anna; University of Exeter, College of Engineering, Mathematics and Physical Sciences Wagner, Yael; Weizmann Institute of Science, Department of Plant and Environmental Sciences Klein, Tamir; Weizmann Institute of Science, Department of Plant and Environmental Sciences Vadier, Rafael; University of Campinas, Plant Biology Oliveira, Rafael; University of Campinas, Plant Biology Oliveira, Rafael; University of Campinas, Plant Biology Oliveira, Rafael; Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes Rosado, Bruno; Universidade do Estado do Rio de Janeiro, Ecologia; Fuchs, Kathrin; ETH Zurich Department of Environmental Systems Science, Department of Environmental Systems Science, Department of Environmental Systems Science, Department of Science and Technology Montagnani, Leonardo; Free University of Bolzano Faculty of Science and Technology, Faculty of Science and Technology Meir, Patrick; Australian National University, Research School of Biology; University of Edinburgh, School of Geosciences Sitch, Stephen; University of Exeter, College of Life and Environmental Sciences ; University of Exeter, School of Engineering, Mathematics and Physical Sciences
Key Words:	climate change, drought, eddy covariance, land-surface models, stomata optimization models, xylem hydraulics

SCHOLARONE[™] Manuscripts

Stomatal optimisation based on xylem hydraulics (SOX) improves land surface model 1 simulation of vegetation responses to climate 2

Eller CB^{1,2}. Rowland L¹, Mencuccini M^{3,4}, Rosas T^{3,4}, Williams K⁵, Harper A⁶, Medlyn BE⁷, 3

Wagner Y⁸, Klein T⁸, Teodoro GS⁹, Oliveira RS², Matos IS¹⁰, Rosado BHP¹⁰, Fuchs K¹¹, 4

Wohlfahrt G¹², Montagnani L¹³, Meir P^{14,15}, Sitch S¹, Cox PM⁶ 5

¹College of Life and Environmental Sciences, University of Exeter, EX4 4QF, UK; ²Department of 6

Plant Biology, University of Campinas, Campinas, 13083-862, Brazil; ³CREAF, Barcelona, Spain. 7

- ⁴ICREA, Barcelona, Spain; ⁵Met Office Hadley Centre, Fitzroy Road, Exeter, EX1 3PB, UK; ⁶College of 8
- 9 Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK;
- ⁷Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 10
- 11 2751 Australia; ⁸Department of Plant & Environmental Sciences, Weizmann Institute of Science, 76100
- 12 Rehovot, Israel; ⁹Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, Brazil; 13 ¹⁰Department of Ecology - IBRAG, Rio de Janeiro State University (UERJ), 20550-013, Brazil;
- ¹¹Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 2,8092 Zurich, 14 15 Switzerland; ¹²Department of Ecology, University of Innsbruck, Innsbruck, 6020, Austria; ¹³Forest
- Services, Autonomous Province of Bolzano, Via Brennero 6, 39100 Bolzano, Italy; ¹⁴Research School of 16

Biology, The Australian National University, Acton ACT 2601, Australia; ¹⁵School of Geosciences, 17

- 18 University of Edinburgh, Edinburgh EH93FF, UK
- 19
- 20 Author for correspondence:
- 21 Cleiton B. Eller
- *Email:* c.breder-eller@exeter.ac.uk 22
- 23

ology, The Australian Nati	onal Univers	sity, Acton ACT 2601, Australia; ¹⁵ Schoo	ol of Geoscience
niversity of Edinburgh, Edinburgh EH93FF, UK			
uthor for correspondence:			
leiton B. Eller			
nail: c.breder-eller@exete	er.ac.uk		
Main text word count	6420	No. figures	6 (all color)
Summary	190	No. of Supporting Information files	1
Introduction	1174		
Material and Methods	1948		
Results	1441		
Discussion	1857		
Acknowledgments	118		
No. Tables	3		
	1	1	

24

25 Summary

Land surface models (LSMs) typically use empirical functions to represent vegetation
 responses to soil drought. These functions largely neglect recent advances in plant
 ecophysiology that link xylem hydraulic functioning with stomatal responses to climate.

We developed an analytical stomatal optimisation model based on xylem hydraulics (SOX)
 to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment
 Simulator (JULES) LSM, we conducted a global evaluation of SOX against observations.

SOX simulates leaf stomatal conductance responses to climate for woody plants more 32 • accurately and parsimoniously than the existing JULES stomatal conductance model. An 33 34 ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement 35 with observations and increases the predicted annual GPP by 30%. SOX decreases JULES 36 root mean squared error in GPP by up to 45 % in evergreen tropical forests, and can 37 simulate realistic patterns of canopy water potential and soil water dynamics at the studied 38 sites. 39

SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and
 optimality theory into LSMs, and an alternative to empirical stress factors.

42 Keywords: climate change, drought, eddy covariance, land-surface models, stomatal
43 optimization, xylem hydraulics.

- 44
- 45
- 46
- 47

48 Introduction

Large areas of the globe will be exposed to increased aridity in the near future (Sheffield & 49 Wood, 2008; Duffy et al., 2015; Marengo et al., 2018). As drought events become more intense 50 and frequent, accurately representing vegetation-climate feedbacks in Earth System Models 51 (ESMs) is increasingly important, as these interactions can drastically influence model projections 52 53 of global climate change (Cox et al., 2000). The current generation of Land Surface Models (LSMs) does not accurately simulate vegetation carbon dynamics during drought (Sitch et al., 54 2008; Powell et al., 2013; Medlyn et al., 2016; Ukkola et al., 2016; Restrepo-Coupe et al., 2017; 55 Rogers et al., 2017; Eller et al., 2018b), thereby restricting our capability to predict the effect of 56 increased aridity on vegetation distribution and its feedbacks on the global carbon cycle and 57 climate. Many LSMs represent the effects of reduced soil moisture on canopy carbon assimilation 58 (A) using an empirical drought factor commonly referred as β -factor (Cox et al., 1998). The β -59 factor approach has been shown to overestimate plant responses to seasonal and experimentally 60 61 induced drought (Ukkola *et al.*, 2016; Restrepo-Coupe *et al.*, 2017; Eller *et al.*, 2018b). The β factor has a large impact on the modelled global carbon budget, supressing 30-40% of the annual 62 gross primary productivity (GPP) in large areas of arid and semi-arid ecosystems (Trugman et al., 63 64 2018). Despite its importance, there is scarce empirical support for the drought functions used in most LSMs (Medlyn *et al.*, 2016). The lack of a theoretical or empirical basis for the β -factor 65 66 implies an urgent need for new modelling approaches to replace this important component of 67 LSMs so as to improve our capacity to predict vegetation-climate interactions.

Stomatal responses of plants to soil drought involve complex chemical signalling and
hydrodynamic processes in leaf cells, some of which have not been entirely elucidated (Buckley,
2017; 2019; Qu *et al.*, 2019). Stomatal optimization models are a useful approach to model

3

stomatal behaviour that circumvents the need to explicitly represent the physiological processes 71 involved in stomatal regulation. Optimization models employ a 'goal-oriented' approach, 72 assuming that plant stomata behaviour has been selected through plant evolutionary history to 73 maximize a given objective function (Cowan, 2002; Dewar et al., 2009; Prentice et al. 2014; 74 Buckley, 2017). The traditional approach to model optimal stomatal behaviour is derived from the 75 76 seminal work of Cowan & Farquhar (1977). This approach proposes that optimal stomatal behaviour maximizes A minus the carbon cost of water lost (λE) over a given time interval, where 77 E is transpiration and λ is the lagrange multiplier that represents the carbon cost of a unit of water 78 79 lost. This model, hereafter labelled CF, after Cowan & Farquhar, is capable of simulating many patterns of stomatal responses to climate over short time scales (Farquhar et al., 1980; Berninger 80 & Hari, 1993), and has provided the theoretical basis for several widely used semi-empirical 81 stomatal models (Jacobs, 1994; Leuning, 1995; Medlyn et al., 2011). However, CF predicts that 82 stomatal conductance (g_s) increases in response to elevated CO₂ when A is Rubisco-limited, which 83 contradicts most observations (Mott, 1988; Medlyn et al., 2001). Other limitations are related to 84 the λ , as the CF hypothesis does not link λ to measurable plant traits or environmental quantities 85 (Buckley, 2017), and assumes λ is constant over the period of reference (Cowan & Farguhar, 86 1977), which makes the original CF unable to predict long-term g_s decline in response to soil 87 moisture depletion. 88

Since the original CF work many attempts have been made to incorporate the effects of declining soil moisture in the CF stomatal optimization framework (Cowan, 1986; Mäkelä *et al.*, 1996; Williams *et al.*, 1996; Manzoni *et al.*, 2013). Some of these attempts, such as the Soil-Plant-Atmosphere (SPA) model of Williams *et al.* (1996), employ principles of plant hydraulics to constrain stomatal optimization and have been successfully incorporated into LSMs (Bonan *et al.*, 94 2014). The numerical approach used by SPA employs a hydraulic threshold to set a lower water 95 potential limit (Ψ_{min}) for g_s , which simulates a strict isohydric stomatal regulation (Fisher *et al.*, 96 2006). Despite using plant hydraulics SPA still relies on a water-use efficiency optimization 97 similar to CF to model stomatal behaviour when $\Psi > \Psi_{min}$ (Williams *et al.*, 1996; Bonan *et al.*, 98 2014).

99 Alternative routes to model plant optimal stomatal behaviour have been proposed recently (see Mencuccini et al., 2019a for a review). These approaches circumvent the CF limitations by 100 101 assuming plant optimal stomatal behaviour minimizes the instantaneous fitness costs associated with low Ψ . These new optimization models use widely available plant hydraulic traits (Kattge et 102 al., 2011; Choat et al., 2012) to simulate g_s responses to environmental conditions, producing a 103 realistic g_s decline in response to elevated atmospheric CO₂ and soil drought (Sperry *et al.*, 2017; 104 Eller et al., 2018b; Venturas et al., 2018; Wang et al., 2019). This approach predicts a tight 105 coordination between stomatal and xylem functioning which is widely corroborated by 106 107 observations (Hubbard et al., 2001; Meinzer et al., 2009; Klein, 2014). Another advantage of this approach is its capacity to simulate a diversity of contrasting stomatal behaviours, from iso to 108 anisohydric (Martinez-Vilalta et al., 2014; Klein, 2014). 109

Sperry *et al.* (2017) proposes a model that assumes that, as xylem hydraulic conductance declines, the increased risk of hydraulic failure is the main fitness cost associated with low Ψ . Eller *et al.* (2018b) adapted the Sperry *et al.* (2017) model into the stomatal optimization model based on xylem hydraulics (SOX), which principally differs from the Sperry *et al.* (2017) model by using a different optimization target. The SOX optimization target is based on the PGEN model (Friend, 1995), which assumes stomata optimize plant dry matter production, represented by the product of photosynthesis and a linear function of Ψ . The SOX model in Eller *et al.* (2018b) uses a 117 numerical routine to find the optimum g_s . However, the PGEN optimization target can also be 118 found analytically (Friend & Cox, 1995; Dewar *et al.*, 2018). A parsimonious analytical 119 formulation for SOX would facilitate its incorporation into existing LSMs and provide a practical 120 alternative to the β -function for modelling stomatal responses to drought at global scales.

In this study we develop an analytical approximation for the numerical SOX model presented 121 122 in Eller et al. (2018b). We then create a new configuration for the Joint UK Land Environment Simulator (JULES; Best *et al.*, 2011; Clark *et al.*, 2011) that uses SOX to compute vegetation g_s 123 from environmental and plant hydraulic data. Using a global dataset of xylem hydraulic traits, 124 together with an extensive leaf gas-exchange and eddy covariance dataset, we calibrate the SOX 125 parameters and compare the JULES-SOX performance to the default JULES using the β -function, 126 across all major global biomes. Our goals in this paper are twofold: 1- To test SOX agreement 127 with global observations of g_s to assess the generality of the underlying hypothesis in SOX, that 128 is, that plant stomata evolved to balance carbon assimilation with the loss of hydraulic 129 conductance; and 2 – To evaluate the effect of SOX on JULES ecosystem-scale predictions of 130 carbon and water fluxes, and their agreement with observations. 131

132 Materials and Methods

133 Analytical SOX description

The SOX central hypothesis can be summarised as 'stomatal conductance (g_s) is such as to maximise the product of leaf photosynthesis and xylem hydraulic conductance' and given by:

136
$$A(c_i(g_s)) K(\Psi_m(g_s))$$
(Eqn 1)

where A is leaf net CO_2 assimilation (mol CO_2 m⁻² s⁻¹), which is a function of leaf internal CO_2

partial pressure (c_i ; Pa), which is itself a function of stomatal conductance to CO₂ (g_s ; mol m⁻² s⁻

139 ¹). The K is the normalised (0 to 1) xylem hydraulic conductance computed as:

140
$$K(\Psi) = \frac{1}{\left[1 + \left(\frac{\Psi}{\Psi_{50}}\right)^a\right]}$$
 (Eqn 2)

141 where Ψ_{50} is Ψ when K = 0.5 and the parameter *a* gives the shape of the curve, with a higher *a* 142 producing a steeper response to Ψ . We use the mean (Ψ_m ; MPa) of the canopy water potential at 143 the predawn (Ψ_{pd} ; MPa) and the canopy water potential (Ψ_c ; MPa) to compute *K* with equation 2 144 to account for the gradual decline in Ψ along the soil to canopy hydraulic pathway (see details in 145 Notes S1). The g_s value that maximises equation 1 is found at:

146
$$\frac{\partial AK}{\partial g_s} = 0$$
 (Eqn 3)

The g_s value that satisfies equation 3 was found numerically in Eller *et al.* (2018b), but a computationally efficient analytical solution is preferable for application in Dynamic Global Vegetation Models (DGVMs) and ESMs. We developed an analytical approximation for the optimal SOX g_s using the partial derivatives of A with respect to c_i and K with respect to Ψ_m . All steps of the model derivation are described in Notes S1. The resulting SOX equation for the optimal g_s is:

153
$$g_s = 0.5 \frac{\partial A}{\partial c_i} \left(\sqrt{\frac{4\xi}{\partial A/\partial c_i} + 1} - 1 \right)$$
(Eqn 4)

The benefit of stomatal opening is represented here by the sensitivity of leaf photosynthesis to the internal CO₂ concentration $(\partial A/\partial c_i)$. By constrast, the parameter ξ represents the cost of stomatal opening in terms of loss of xylem conductivity under low Ψ_{pd} and/or higher leaf-to-air vapour pressure (*D*; mol mol⁻¹):

158
$$\xi = \frac{2}{1/K \,\partial K/\partial \Psi_m \, r_p 1.6D} \tag{Eqn 5}$$

Low ξ indicates high hydraulic costs occurring during drought (i.e. lower Ψ_{pd} and higher *D*, Fig. S1). SOX simulates dynamic changes on the plant hydraulic resistance (r_p) computing r_p as a

161 function of Ψ_{pd} and the plant minimum hydraulic resistance (r_{pmin} , m² s MPa mol⁻¹ H₂O):

162
$$r_p = \frac{r_{p,min}}{K(\Psi_{pd})}$$
(Eqn 6)

163 Solving SOX main equations (Eqn 4-5) requires computing the partial derivatives of *A* and *K*, 164 $\partial A/\partial c_i$ and $\partial K/\partial \Psi_m$, respectively. These derivatives were estimated numerically in this study as 165 described in Notes S2.

We evaluated SOX as a stand-alone leaf-level model, and coupled to JULES, hereafter JULES-SOX. The leaf-level model was evaluated against leaf gas exchange data as an 'assumption centred' (*sensu* Medlyn *et al.*, 2015) test of the hypothesis underlying SOX. The JULES-SOX was then evaluated against ecosystem-level eddy flux data, which constituted the first practical test of the utility of SOX for LSMs.

171 *JULES* β *-function description*

The JULES model (Best *et al.*, 2011; Clark *et al.*, 2011) uses the Collatz *et al.* (1991, 1992) photosynthesis model for C₃ and C₄ plants (Notes S3) to produce unstressed rates of *A* based on the co-limitation of light, Rubisco carboxylation capacity, and the transport of photoassimilates (for C₃ plants) and PEPcarboxylase limitation (for C₄ plants). The effect of soil moisture in *A* in the default JULES is given by multiplying *A* by the β factor, computed using the β -function from Cox *et al* (1998):

178
$$\beta = \begin{cases} 1 & \text{for } \theta > \theta_c \\ \frac{\theta - \theta_w}{\theta_c - \theta_w} & \text{for } \theta_w < \theta \le \theta_c \\ 0 & \text{for } \theta \le \theta_w \end{cases}$$
(Eqn 7)

179 where θ is the mean soil moisture in the root zone (m³ m⁻³), and θ_c and θ_w , are the critical and 180 wilting points, which are defined by Cox *et al.* (1998) as the θ when soil Ψ is -0.033 and -1.5 MPa, 181 respectively. The default JULES formulation employs the Jacobs (1994) equation to predict c_i from 182 *D*, c_a and the CO₂ compensation point, Γ (Pa):

183
$$c_i = f_0 \left(1 - \frac{D}{D_{crit}} \right) (c_a - \Gamma) + \Gamma$$
 (Eqn 8)

where f_0 and D_{crit} are empirical parameters (Jacobs, 1994; Cox *et al.*, 1998).

The JULES-SOX configuration replaces equations 7-8, computing g_s from environmental data and plant hydraulic inputs with equations 4-5. To compute *A* from the g_s predicted by equation 4, we solved the limiting photosynthetic rates from the Collatz *et al.* (1991; 1992) model as functions of c_a and g_s , as described in Notes S3.

189 *Leaf-level SOX evaluation*

We used a global compilation of leaf gas exchange data to evaluate the SOX capacity to 190 reproduce leaf stomatal responses of a wide range of woody plants. This dataset contains 191 observations compiled by Lin et al. (2015), complemented with other published and unpublished 192 data (see Table S1 and Fig. S2 for additional information). In total, there are 3597 measurements 193 of g_s and Ψ_{pd} together with environmental variables used for driving the model, that is: incident 194 photosynthetic active radiation (I_{par}), air temperature (T_a), c_a and D. This data comes from 30 195 woody plant species collected in 15 sites around the world (Fig. S2b). The Ψ_{pd} was measured on 196 the same day as g_s , and the environmental data was measured simultaneously with g_s . The dataset 197 included field and greenhouse observations, with environmental conditions varying from well-198 watered to extreme drought (Ψ_{pd} = -7 MPa). These observations were grouped into the global Plant 199 Functional Type (PFT) categories from Harper et al (2016) (Table 1). Harper et al. (2016) divides 200 Angiosperms tree species into Broadleaved Evergreen Tropical Trees (BET-Tr), Broadleaved 201

Page 11 of 43

Evergreen Temperate Trees (BET-Te) and Broadleaved Deciduous Trees (BDT), while Gymnosperms tree species are divided into Needle-leaved Evergreen Trees (NET) and Needleleaved Deciduous Trees (NDT). Shrub species were divided into Evergreen Shrubs (ESh) and Deciduous Shrubs (DSh), and two grass PFTs defined by their photosynthetic pathway (C₃ and C₄). The grass PFTs and the NDT were excluded from the leaf-level evaluation because no stomatal conductance data were available for these PFTs in the dataset used in this study.

The plant hydraulic parameters used in SOX (i.e. Ψ_{50} , a, and r_{pmin}) were fitted to the g_s data 208 using an algorithm that minimizes the model residual sum of squares within the constraints of the 209 observed Ψ_{50} , a and r_{pmin} . We compiled hydraulic data for each PFT from the literature to constrain 210 the leaf-level model fit. The Ψ_{50} for woody plants was obtained from a version of the Choat *et al.* 211 (2012) dataset updated recently by Mencuccini et al. (2019b). The shape parameter a of the xylem 212 vulnerability function (Eqn 2) was estimated from the linear gradient between Ψ_{50} and the Ψ when 213 the plant loses 88% of its maximum hydraulic conductance. The r_{pmin} was estimated from branch-214 215 level hydraulic conductivity measurements scaled from branch to whole plant taking into account plant height, Huber value and xylem tapering using the calculations described in Christoffersen et 216 al. (2016) and Savage et al. (2010) (Notes S4). All the data used for these calculations were 217 218 obtained from the hydraulic dataset from Mencuccini et al (2019b). We note that scaling branch to whole tree r_{pmin} requires several assumptions about tree hydraulic architecture (Notes S4). 219 220 Therefore, the presented values of r_{pmin} must be considered as a reference useful only to assess if 221 the r_{pmin} input values used in the model are within the same order of magnitude of the observations. 222 The other parameters of the photosynthesis model used in SOX (Notes S3) were set equal to Harper et al. (2016). 223

The model predictive skill was evaluated using the model root mean squared errors (RMSE) 224 and the Nash and Sutcliffe (1970) model efficiency index (NSE). The NSE varies from $-\infty$ to 1, 225 with 1 indicating perfect agreement between model and observations, while NSE < 0 indicates the 226 mean value of the observations is a better predictor than the model. The model parsimony was 227 evaluated using the Akaike Information Criterion (AIC), which penalizes model 228 229 overparameterization (Bozdogan, 1987). We compared SOX AIC score with the β -function (Eqn 7-8). The parameters f_0 and D_{crit} , (Eqn 8) were fitted to the PFT g_s data, while the θ_c and θ_w were 230 held at their default values (-0.033 and -1.5 MPa, respectively). 231

The uncertainty in plant hydraulic parameters caused by within PFT hydraulic variability was propagated to the model predictions using bootstrapped 95% confidence intervals. We created the interval based on 1000 model runs with parameters resampled from the hydraulic trait data for each PFT.

236 Eddy-covariance based JULES-SOX evaluation

We evaluated default JULES and JULES-SOX against daily gross primary productivity (GPP) 237 estimates derived from eddy flux tower data at 62 FLUXNET sites (http://fluxnet.fluxdata.org, 238 Baldocchi et al., 2001) and 8 LBA sites (https://daac.ornl.gov/LBA, Saleska et al., 2013) covering 239 240 all the major biomes of the world (Fig. S2, Table S2). In 10 of these sites we also had data for surface (5 to 15 cm) soil moisture content, which was used to evaluate the model soil moisture 241 dynamics predictions. We classified the land cover on each site using the International Geosphere-242 243 Biosphere Programme (IGBP) classification (Loveland et al., 2000). Each site was classified as one of the following categories according to its prescribed PFT cover (Table S2): cropland (CRO), 244 245 deciduous broadleaf forests (DBF), deciduous needleleaf forests (DNF), temperate evergreen 246 broadleaf forests (EBF-Te), tropical evergreen broadleaf forests (EBF-Tr), evergreen needleleaf forest (ENF), grassland (GRA), mixed forest (MF), savannah (SAV), shrubland (SHR), and wetlands (WET). We grouped the IGBP categories open and closed shrublands into SHR, as we only had a single closed shrubland site. Similarly, woody savannah was grouped with SAV, as we only had two woody savannah sites. We divided the evergreen broad leaf forests category into EBF-Te and EBF-Tr, as these sites were dominated by distinct PFTs (BET-Te and BET-Tr, respectively).

We evaluated JULES-SOX using the SOX hydraulic parameters (i.e. Ψ_{50} , a, and r_{pmin}) that 253 minimized the residual sum of squares between SOX predictions and the eddy flux GPP 254 255 observations from a subset of the sites used for model evaluation (Fig. S2; Table S2). Each site was used to calibrate the hydraulic parameters for its dominant PFT (i.e. the PFT covering more 256 than 50% of the site area), except for DSh, which was not dominant in any of the available sites. 257 We used a site with DSh cover of 35% (US-SRM) to calibrate the hydraulic parameters of this 258 PFT. The hydraulic parameters of the others PFTs (if any) present on the site were kept constant 259 during the model runs for parameter calibration. Similar to the leaf-level evaluation, the parameter 260 calibration in JULES-SOX was constrained within the range of the observed values of Ψ_{50} , a, and 261 r_{pmin} for all PFTs, except NDT which did not have enough observations to satisfactorily constrain 262 the model parameters. The Ψ_{50} for grasses was obtained from Lens *et al.* (2016) dataset updated 263 with data from Ocheltree et al. (2016). 264

265 *Model setup*

The JULES and JULES-SOX configuration used in this study employed the 10-layer canopy scheme with sunlit and shaded leaves in each layer as described in Clark *et al.* (2011). The canopy radiation profile was given by the two-stream approach from Sellers (1985), with the sun-fleck penetration scheme from Mercado *et al.* (2009), and an exponential decrease of photosynthetic

12

capacity through the canopy (Mercado et al., 2007). All the model runs used in this study were 270 site-level simulations driven with hourly local meteorological data. Vegetation dynamics (Cox, 271 2001) was turned off and the site PFT coverage by site was prescribed based on the site vegetation 272 description obtained from the site principal investigators (Table S3) or information from the site 273 available on the FLUXNET website (https://fluxnet.fluxdata.org/sites/site-list-and-pages/). Site 274 275 soil hydraulic properties were parameterised using Brooks and Corey (1964) relations. These properties were derived from data collected at each site or, when local data were not available, 276 calculated from the sand/silt/clay fractions in the nearest gridbox in the high-resolution input file 277 278 to the Met Office Central Ancillary Program (Dharssi et al., 2009), using approximations from Cosby et al. (1984). The model was spun-up by recycling the meteorological data at each site for 279 up to 50 years. 280

281 Results

282 SOX sensitivity to environmental and hydraulic drivers

The SOX analytical approximation (Eqn 4-5) has g_s responses to climate which are consistent 283 with the patterns commonly reported in the literature (Mott, 1988; Leuning, 1995; Dewar et al., 284 2018). The g_s responses to I_{par} and c_a in SOX (Fig. 1a) are given by the $\partial A/\partial c_i$ gradient decreasing 285 286 at low light because of the changes in the light response curve, as A starts being limited by light (Notes S3), or at high c_a , which affects the gradient between $A(c_a)$ and $A(c_{i,col})$ (Notes S2). SOX 287 288 correctly predicted stomatal closure in response to increased c_a under Rubisco-limited conditions 289 (Mott, 1988; Fig. 1a). The classical exponential g_s responses to D (Leuning, 1995) was reproduced in SOX (Fig. 1a) through the D effect on ξ (Eqn 5; Fig. S1a). An exponential g_s decline was also 290 predicted by SOX in response to decreasing Ψ_{pd} , (Fig. 1a) which summarizes both the responses 291 292 to the soil water availability in the root zone and the hydraulic stress of transporting water to the

top of the canopy (Eqn S1.2 in Notes S1). The plant hydraulic parameters modulated the model sensitivity to D or Ψ_{pd} (Fig. 1b-d), with a less negative Ψ_{50} or a higher r_{pmin} increasing the g_s sensitivity to Ψ_{pd} and D (Fig. 1c-d). The effect of the vulnerability curve shape parameter a was more complex, lower a increased g_s sensitivity to less negative Ψ_{pd} , but decreased g_s sensitivity to very negative Ψ_{pd} values (Fig. 1c).

The patterns produced by the analytical SOX were similar to the numerical version from Eller *et al.* (2018b), with a correlation coefficient ranging from 0.92 to 1 (Fig. S3). However, the use of linear gradients in equations 4 and 5 (Notes S2) can cause discrepancies between the different model versions under certain ranges of environmental conditions. The analytical version of SOX underestimated g_s at low D (Fig. S3), overestimated g_s at low c_a , and g_s increased faster in response to light (Fig. S3) than in the numerical model.

304 SOX leaf-level evaluation

SOX simulated the observed leaf-level g_s responses to soil drought better than the β -function 305 in all the studied woody PFTs, except BDT (Fig. 2). The β -function predicted all PFTs will reach 306 $g_s = 0$ at $\Psi_{pd} > -2$ MPa, whereas SOX predicted $g_s > 0$ even when $\Psi_{pd} < -4$ MPa in some PFTs (Fig. 307 2b, e). The less conservative stomatal behaviour predicted by SOX produced a NSE, on average, 308 309 0.65 higher and a RMSE 26% lower than the β -function. Most of the observed g_s was within SOX 95% confidence bounds derived from the hydraulic parameters' uncertainty (shaded region in Fig. 310 311 2). The only values outside SOX uncertainty boundaries were the highest g_s values in BET-Tr and BET-Te (Fig. 2a-b), and the lowest NET g_s values when $\Psi_{pd} > -3.5$ MPa (Fig. 2d). 312

SOX produced a better fit to the g_s data, which resulted in a lower AIC than the β -function for all PFTs, except BDT (Table 1). Fitting the two empirical parameters of the Jacobs (1994) equation (f_0 and D_{crit} , Eqn 8) to the g_s data results in a β -function AIC score 512.1 higher than SOX (Table

- 316 1). For the BDT observations, the β -function results in an AIC score 11.6 lower than SOX. Our
- BDT observations were restricted to relatively well watered conditions (lowest Ψ_{pd} was -1.2 MPa),

318 which limits the utility of this dataset to evaluate the model responses to soil drought.

319 JULES-SOX site-level calibration

The hydraulic parameters that maximized the JULES-SOX fit to the GPP data at the calibration 320 321 sites (Table S2; Fig. S2) were within one SD of the mean observed hydraulic parameters for most PFTs (Table 2). The Gymnosperm PFTs (NDT and NET) required Ψ_{50} values 1.6 MPa less 322 negative than their observed Ψ_{50} means to fit the GPP data, which is lower than the observed SD 323 range but still within the range of Ψ_{50} observations for NET (Ψ_{50} ranges from -2.3 to -7.5 MPa in 324 NET). The NDT and BET-Tr calibrated *a* were also slightly lower than the SD range (Table 2), 325 but within the observed a range for BET-Tr (a ranges from 1.8 to 7.8 in BET-Tr). The only PFT 326 with a calibrated r_{pmin} outside the SD range of the mean r_{pmin} was ESh (Table 2). 327

The monthly GPP modelled by JULES-SOX fitted the eddy covariance GPP data better than 328 329 the default JULES in 8 out of the 9 sites used for parameter calibration (Table S2; Fig. S2) (Fig. 3). The default JULES NSE was 0.01 higher in the DSh site (Fig. 3i), whereas in all the other sites 330 JULES-SOX had a better fit. The difference between JULES-SOX and default JULES NSE ranged 331 332 from 0.03 for C3 grasses (Fig. 3f) to 11.44 for BET-Tr (Fig. 3a). The large improvement in the BET-Tr site was caused by the lower GPP decline predicted by SOX during Jan-Mar and Sep-Dec. 333 334 The decline in BET-Tr GPP in default JULES can be attributed to the β -factor overestimating the 335 effects of soil moisture on the vegetation carbon assimilation during drier periods (Fig. S4a). On average, JULES-SOX NSE for GPP was 1.59 higher than default JULES, while its RMSE was 336 38% lower than JULES. 337

The less conservative stomatal behaviour predicted by SOX resulted in higher 338 evapotranspiration rates throughout the year (Fig. S5; S6), which depleted soil moisture to lower 339 levels than the β -function in default JULES during drier periods (Fig. S4; S7). The soil moisture 340 dynamics from JULES-SOX are more closely aligned with the monthly soil moisture observations 341 in 8 out of the 10 sites where soil moisture data was available (Fig. S7). JULES-SOX NSE for 342 343 monthly soil moisture was 1.67 higher and a RMSE 19% lower than default JULES. JULES-SOX also simulates realistic Ψ_c for most PFTs (Fig. 4; S4). The modelled Ψ_c at the calibration sites is 344 within the interquartile range of the observed minimum Ψ_c at midday for all woody PFTs, except 345 NDT (Fig. 4). 346

347 Biome-level JULES-SOX evaluation

Using JULES-SOX with calibrated SOX hydraulic parameters produced a better fit to the GPP 348 data than default JULES for 50 out of the 70 eddy flux evaluation sites (Table S2; Table 3; Fig. 349 5). Across all biomes the JULES-SOX median NSE was 0.19 higher than default JULES, and its 350 RMSE was 19% lower (Table 3). The difference between JULES-SOX and JULES skill was 351 highest at EBF-Tr sites, which have a median NSE 3.18 higher and RMSE 45% lower in JULES-352 SOX (Table 3; Fig 5a). The fit of EBT-Te to data was also improved substantially by JULES-353 354 SOX, with JULES-SOX having a median NSE 1.01 higher and a RMSE 18% lower (Fig. 5a; Table 3). Default JULES only outperformed JULES-SOX at CRO, which have a median NSE 0.08 lower 355 356 in JULES-SOX, and GRA where the RMSE 5% was higher in JULES-SOX (Fig. 5a; Table 3). Default JULES significantly underestimated the observed mean annual GPP by 143.3 g C m⁻² 357 across all biomes, which corresponds to 13.6% of the observed mean annual GPP (Fig. 5b). 358 JULES-SOX deviation from the observed mean annual GPP was considerably smaller (71.6 g C 359

 m^{-2} ; Fig. 5b). The significantly lower annual GPP predicted by default JULES can be attributed to

 β -function induced GPP declines, which also produced a stronger GPP seasonality than what is 361 present in the data (Fig. 5c). JULES overestimated the median observed GPP seasonality by 70%, 362 versus a 13% overestimation by JULES-SOX (Fig. 5c). This difference means JULES predicts 363 17% of the sites have a markedly seasonal GPP (SI > 0.8; Walsh & Lawler, 1981) while just 4 % 364 of the sites actually have SI > 0.8. JULES-SOX predicts only 8% of the sites would have SI > 0.8. 365 The light use efficiency (LUE; Fig. 6) is the ratio between GPP and the I_{par} absorbed by the 366 canopy (Stocker et al., 2018), and can be used to disentangle the effects of soil moisture and light 367 availability controlling the vegetation GPP. The JULES LUE declined as soil dries out with a mean 368 369 linear slope of 1.21 (±0.1) across all biomes. In contrast, the JULES-SOX LUE-soil moisture relationship had a mean slope of $0.73 (\pm 0.21)$ with some biomes, such as DBF, reaching a slope 370 as low as 0.22 (Fig. 6b). The consequence of sustaining higher LUE at low soil moisture in JULES-371 SOX is a greater depletion of soil moisture, as indicated by the more left skewed soil moisture 372 probability distribution predicted by JULES-SOX (lower panels in Fig. 6). The mean moisture 373 content of the top 1 m of soil predicted by JULES-SOX was, on average, 10% lower than default 374 JULES. In JULES-SOX some biomes, such as ENF, could reach a soil moisture on average 17% 375 lower than JULES (Fig. 6f). 376

377 Discussion

We report the first evaluation of a LSM using a stomatal optimization model fully based on xylem hydraulics (SOX) to drive the vegetation stomatal responses to climate. Our results provide support for the SOX underlying hypothesis that stomata evolved to balance carbon assimilation with instantaneous hydraulic conductance loss. The risk of mortality through hydraulic failure (Choat *et al.*, 2012; Rowland *et al.*, 2015; Anderegg *et al.*, 2016; Adams *et al.*, 2017), should drive the evolution of mechanisms to prevent the plant from reaching lethal embolism thresholds Page 19 of 43

(Sperry, 2004). There is abundant evidence that stomata controls xylem tension, and consequently
embolism (Hubbard *et al.*, 2001; Brodribb *et al.*, 2003; Meinzer *et al.*, 2009; Klein, 2014). Our
model represents this xylem-stomata coordination through the assumption of optimisation by
natural selection (Wolf *et al.*, 2016).

Whereas our model fits the observations of most PFTs better than its empirical alternative, 388 389 there is still a considerable amount of unexplained variance in the data (Fig. 2). This can be partially attributed to the large hydraulic heterogeneity within each PFT, but we must also 390 acknowledge that many processes not directly related with xylem hydraulics are important to plant 391 392 life history and stomatal evolution. Processes related to nutrient use and acquisition, carbohydrate allocation and storage, the maintenance of tissues and biochemical apparatus, and protection from 393 pathogens and herbivores (Melotto et al., 2008; Cramer et al., 2009; Prentice et al., 2014) all could 394 explain part of our model residual variance. It is extremely important to explore the relevance of 395 these processes in future research on stomatal optimality. However, the SOX model as we propose 396 already provides a parsimonious alternative to the empirical models commonly used in LSM. 397

Our findings that xylem hydraulics-based models can adequately simulate stomatal behaviour 398 agree with other recent studies. For example, Anderegg et al. (2018b) shows that a hydraulics 399 400 based optimization model can simulate the stomatal behaviour of woody plants better than CF. More recently, Wang et al. (2019) shows that a similar hydraulics-based model can predict 401 402 stomatal responses to increased CO_2 better than the Ball-Berry-Leuning empirical model (Leuning, 403 1995). These results show the potential of using plant hydraulics to model the stomatal behaviour of plants across contrasting environmental conditions, and supports its use in ESMs to project the 404 405 evolution of global climate.

Page 20 of 43

The analytical formulation developed for SOX facilitates its coupling to LSMs, allowing the 406 host LSM to constrain its predictions using plant hydraulic information. We show that including 407 plant hydraulics in JULES through SOX improves its capabilities to simulate GPP and soil 408 moisture dynamics in most of the studied biomes (Fig. 3-5). In addition, SOX opens new 409 possibilities to evaluate LSM predictions and expands the range of hypotheses that can be tested 410 411 with JULES. Using JULES-SOX within ESMs will allow us to understand how hydraulic processes affect climatic and biogeochemical cycles at global scale, as well as to investigate the 412 role of plant hydraulics on vegetation distribution and its response to climate change. 413

414 *SOX parametrization and parsimony*

Other LSMs and DGVMs have already successfully employed principles of plant hydraulics 415 (Hickler et al., 2006; Bonan et al., 2014; Kennedy et al., 2019), but JULES-SOX is the first LSM 416 to use the new generation of hydraulically-based stomatal optimization models (Wolf *et al.*, 2016; 417 Sperry et al., 2017; Anderegg et al., 2018b; Eller et al., 2018b) to predict stomatal responses to 418 climate. The SPA (Williams et al., 1996) adaptation to the Community Land Model (CLM) by 419 Bonan et al. (2014) was one of the first approaches to link plant stomatal function to plant hydraulic 420 processes in a LSM. Despite SPA being an extremely useful model, SOX has an advantage in 421 422 circumstances where assuming a strict isohydric behaviour is not appropriate (Klein, 2014; Martinez-Vilalta et al., 2014). In relation to SOX, SPA does not represent dynamic changes in the 423 424 plant hydraulic conductance or an anisohydric mode of stomatal regulation (Williams et al., 1996; 425 Fisher et al., 2006). However, SPA accounts for plant hydraulic capacitance, which can be important for plant functioning, especially during early morning (Goldstein et al., 1998), and is 426 427 currently not implemented in SOX.

Recently Kennedy et al. (2019) implemented a Plant Hydraulic Scheme (PHS) in CLM. The 428 PHS simulates dynamic changes in hydraulic conductance in different compartments along the 429 soil-atmosphere continuum, providing a more detailed representation than SOX of hydraulic 430 processes occurring along the soil-plant hydraulic pathway. However, PHS still requires empirical 431 parameters to represent stomatal responses to soil drought and D (Kennedy et al. 2019), namely 432 433 the g_0 and g_1 parameters from the Medlyn *et al.* (2011) model, and the critical and wilting points used in the empirical stress factor. The main advantage of SOX is providing an alternative to the 434 β -function and empirical stomatal parameters by linking plant hydraulic processes directly to 435 stomatal functioning. As we treat the soil-plant-atmosphere pathway as a single hydraulic 436 compartment, SOX only requires the hydraulic parameters r_{pmin} , Ψ_{50} and a to predict stomatal 437 responses to climate. This makes SOX even more parsimonious than default JULES, which 438 requires four empirical parameters to simulate stomatal responses to climate (Eqn 7-8) and does 439 not simulate any aspect of vegetation hydraulic functioning (Clark et al., 2011). 440

441 We show that the SOX hydraulic parameters in most PFTs can be constrained with plant branch-level hydraulic observations (Table 2), which is an advantage over models that employ 442 empirical parameters difficult to constrain and interpret biologically. However, we observed 443 444 discrepancies between the SOX-calibrated parameters and the observed hydraulic traits in certain PFTs (Table 2). In some cases, such as NDT, the parameter discrepancy may have been due to a 445 446 very restricted observational sampling of hydraulic parameters in this group. The NDT only had 447 Ψ_{50} data for five species and a and r_{pmin} for two species (Table 2). Considering that the observations used in this study were not collected in the same FLUXNET sites used to evaluate SOX, some of 448 449 the observed discrepancies between calibrated and measured parameters might reflect hydraulic 450 differences between populations treated as the same PFT in this study. For example, the deciduous

angiosperms species present in the XFT dataset used in this study contain mostly hydraulic data from cold-deciduous temperate species (Mencuccini *et al.*, 2019b), which might not be adequate to describe the hydraulic system of tropical and subtropical drought-deciduous. Our hydraulic scheme opens possibilities to improve the representation of different global vegetation types in JULES with different hydraulic and phenological strategies. Capturing the large diversity of ecological strategies in plants is important to simulate species rich ecosystems such as tropical forests (Xu *et al.*, 2016).

And eregg et al. (2018a) computed the community weighted average values for Ψ_{50} in two of 458 459 the FLUXNET sites used in this study (US-MMS and IT-Ren) and obtained values closer to the calibrated values for BDT and NET (-2.1 and -3.6 MPa, respectively), than the means from our 460 compiled hydraulic dataset (Table 2). In Eller et al. (2018b) a numerical version of SOX 461 outperformed the β -function approach when parameterized with locally measured branch-level 462 hydraulic data from EBF-Tr. These findings suggest that SOX can be constrained with *in-situ* 463 464 hydraulic measurements when these are available. However, we must also consider the possibility that there are intrinsic limitations in using branch-level hydraulic data to parameterize the model. 465 Roots and leaves can be more vulnerable to embolism than branches (Bartlett et al., 2016; Wolfe 466 467 et al., 2016), which can make these tissues bottleneck plant hydraulic conductance during drought. The soil outside the roots can also limit plant hydraulic conductance and, ultimately, control its 468 469 water use (Fisher et al. 2007). These bottlenecks could bias the SOX calibrated hydraulic 470 parameters towards the limiting component and explain its departure from the branch-level hydraulic data. In this case SOX parameterization would benefit from the use of more integrative 471 472 methodologies to estimate hydraulic parameters that represent the entire soil-plant hydraulic 473 vulnerability (Eller *et al.*, 2018a). Alternatively, the SOX structure (i.e., the K function in Eqn 2)

Page 23 of 43

474 would need to explicitly represent the variability between different hydraulic compartments along

475 the soil-plant-atmosphere pathway, similarly to SPA or other models (Kennedy *et al.*, 2019;

476 Mencuccini *et al.*, 2019b; Eller *et al.*, 2018b).

477 Ecosystem-level implications of SOX

SOX improved JULES GPP simulation in over 70% of the 70 studied sites and soil moisture 478 479 dynamics in 80% of the 10 sites where soil moisture data were available. This improved fit was achieved using hydraulic parameters calibrated against the GPP data of a small subset of eddy flux 480 sites (the sites in Fig. S2), which suggests that the calibrated parameters are generic enough to be 481 used in global simulations. The lower sensitivity of SOX to soil moisture improved the simulations 482 of annual GPP (Fig. 5) and predicted terrestrial biomes to assimilate on average 2.58 Mg C ha⁻¹ 483 yr⁻¹ or 30% more than predicted by default JULES. This increased carbon assimilation could affect 484 Earth's atmospheric CO₂ evolution and climate change projections (Cox et al., 2000; Winkler et 485 al., 2019). 486

JULES-SOX particularly improved the fit of EBF-Tr sites to the observations (Fig. 5; Table 487 3), using hydraulic parameters very similar to those observed in BET-Tr (Table 2). Considering 488 that SOX is also able to capture the response of EBF-Tr even to extreme experimental drought 489 490 (Eller *et al.*, 2018b), JULES-SOX may contribute to decrease the large uncertainty in how these important ecosystems will respond to climate change (Sitch et al., 2008). Tropical forest 491 492 productivity estimated by SOX is less sensitive to seasonal soil drought (Fig. 3; S4), which is 493 consistent with the little seasonality often observed in tropical forest-atmosphere CO₂ exchange (Grace et al., 1995; Carswell et al., 2002; Alden et al., 2016), as well as to forest responses to 494 495 experimental drought (Meir et al., 2009; da Costa et al., 2010; Meir et al., 2018). da Costa et al. 496 (2018) shows that even after 15 years of partial rainfall exclusion, Amazon trees can maintain or

497 even increase their transpiration rates (albeit following significant mortality). Whereas tropical 498 forest resistance to drought has previously been attributed only to deep roots possessed by the 499 vegetation (Nepstad *et al.*, 1994), our results indicate that plants more resistant to embolism could 500 maintain their carbon assimilation during drought even without a deeper root system.

The unavoidable consequence of maintaining stomatal gas exchange during soil drought is a 501 502 greater depletion of soil moisture reserves (Fig. 6; S4; S7). This behaviour is a direct consequence of the main assumption in SOX, which reflects a 'use or lose it' stomatal regulation strategy with 503 504 respect to soil moisture (Sperry et al., 2017). SOX assumes plants with a more conservative water 505 use strategy will be outcompeted by neighbouring plants with a less conservative stomatal behaviour (Wolf *et al.* 2016). The demographic consequences of the stomatal regulation strategy 506 embedded in SOX should be explored in future studies using the dynamic vegetation component 507 of JULES (Cox, 2001; Moore et al., 2018). The more competitive soil moisture dynamics predicted 508 by SOX, together with a more accurate representation of vegetation drought-induced mortality, 509 which also can be developed from SOX, might be the key to predict sudden and widespread 510 vegetation die-off during droughts that have been increasingly reported in ecosystems around the 511 globe (Allen et al., 2010; Worrall et al., 2010; Meir et al., 2015). 512

513 Acknowledgments

This research was supported by the Newton Fund through the Met Office Climate Science for Service Partnership Brazil (CSSP Brazil) and a NERC independent fellowship grant NE/N014022/1 to LR. This work used eddy covariance data acquired and shared by the FLUXNET community, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The ERA-Interim reanalysis

520	data are provided by ECMWF and processed by LSCE. The FLUXNET eddy covariance data
521	processing and harmonization was carried out by the European Fluxes Database Cluster,
522	AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the support of CDIAC
523	and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices.
524	Author contribution
525	CBE, LR, MM, SS and PMC led the scientific development of SOX. PMC and CBE derived the
526	analytical solution. CBE evaluated leaf-level SOX using data provided by LR, PM, MM, TR, BM,
527	YW, TK, GST, RSO, ISM, BHPR. CBE and KW coded SOX into JULES. KW and AH created a
528	JULES suite used by CBE to evaluate JULES-SOX against eddy covariance data collected by KF,
529	GW, LM, among other FLUXNET and LBA PIs. All authors contributed to writing the manuscript.
530	References
531	Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT,
532	Huxman TE, Hudson PJ, Franz TE, Allen CD, et al. 2017. A multi-species synthesis of
533	physiological mechanisms in drought-induced tree mortality. <i>Nature Ecology and Evolution</i> 1:
534	1285–1291.
535	Alden CB, Miller JB, Gatti L V., Gloor MM, Guan K, Michalak AM, van der Laan-Luijkx
536	IT, Touma D, Andrews A, Basso LS, et al. 2016. Regional atmospheric CO2 inversion reveals
537	seasonal and geographic differences in Amazon net biome exchange. Global change biology 22:
538	3427–3443.
539	Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M,
540	Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted., et al. 2010. A global overview of
541	drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest
542	Ecology and Management 259: 660–684.
543	Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S. 2016.
544	Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree
545	mortality across the globe. Proceedings of the National Academy of Sciences 113: 5024-5029.
546	Anderegg WRL, Konings AG, Trugman AT, Yu K, Bowling DR, Gabbitas R, Karp DS,
547	Pacala S, Sperry JS, Sulman BN, et al. 2018a. Hydraulic diversity of forests regulates

548	ecosystem resilience during drought. Nature 561: 538.
549	Anderegg WRL, Trugman AT, Bowling DR, Salvucci G, Tuttle SE. 2019. Plant functional
550	traits and climate influence drought intensification and land-atmosphere feedbacks. Proceedings
551	of the National Academy of Sciences of the United States of America 116 : 14071–14076.
552	Anderegg WRL, Wolf A, Arango-Velez A, Choat B, Chmura DJ, Jansen S, Kolb T, Li S,
553	Meinzer FC, Pita P, et al. 2018b. Woody plants optimise stomatal behaviour relative to
554	hydraulic risk. Ecology Letters 21: 968-977.
555	Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C,
556	Davis K, Evans R, et al. 2001. FLUXNET: A New Tool to Study the Temporal and Spatial
557	Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities.
558	Bulletin of the American Meteorological Society 82: 2415–2434.
559	Bartlett MK, Klein T, Jansen S, Choat B, Sack L. 2016. The correlations and sequence of
560	plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National
561	Academy of Sciences 113: 13098–13103.
562	Berninger F, Hari P. 1993. Optimal regulation of gas exchange: Evidence from field data.
563	Annals of Botany 71: 135–140.
564	Best MJ, Pryor M, Clark DB, Rooney GG, Essery R, Ménard CB, Edwards JM, Hendry
565	MA, Porson A, Gedney N. 2011. The Joint UK Land Environment Simulator (JULES), model
566	description-Part 1: energy and water fluxes. Geoscientific Model Development 4: 677-699.
567	Bonan GB, Williams M, Fisher RA, Oleson KW. 2014. Modeling stomatal conductance in the
568	earth system: Linking leaf water-use efficiency and water transport along the soil-plant-
569	atmosphere continuum. Geoscientific Model Development 7: 2193–2222.
570	Bozdogan H. 1987. Model selection and Akaike's Information Criterion (AIC): The general
571	theory and its analytical extensions. Psychometrika 52: 345-370.
572	Brodribb TJ, Holbrook NM, Edwards EJ, Gutiérrez M V. 2003. Relations between stomatal
573	closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell and
574	Environment 26 : 443–450.
575	Buckley TN. 2017. Modeling Stomatal Conductance. Plant Physiology 174: 572–582.
576	Buckley TN. 2019. How do stomata respond to water status? New Phytologist 224: 21-36.
577	Carswell FE, Costa AL, Palheta M, Malhi Y, Meir P, Costa JDPR, Ruivo MDL, Leal
578	LDSM, Costa JMN, Clement RJ, et al. 2002. Seasonality in CO2 and H2O flux at an eastern

579	Amazonian rain forest. Journal of Geophysical Research D: Atmospheres 107: LBA-43.
580	Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018. Triggers
581	of tree mortality under drought. Nature 558: 531-539.
582	Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS,
583	Gleason SM, Hacke UG, et al. 2012. Global convergence in the vulnerability of forests to
584	drought. Nature 491: 752-755.
585	Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG,
586	Essery RLH, Blyth E, et al. 2011. The Joint UK Land Environment Simulator (JULES), Model
587	description - Part 2: Carbon fluxes and vegetation. Geoscientific Model Development
588	Discussions 4: 641–688.
589	Cosby BJ, Hornberger GM, Clapp RB, Ginn TR. 1984. A Statistical Exploration of the
590	Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water
591	Resources Research 20: 682–690.
592	da Costa ACL, Galbraith D, Almeida S, Portela BTT, da Costa M, de Athaydes Silva
593	Junior J, Braga AP, de Gonçalves PHL, de Oliveira AA, Fisher R, et al. 2010. Effect of 7 yr
594	of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian
595	rainforest. New Phytologist 187: 579–591.
596	da Costa ACL, Rowland L, Oliveira RS, Oliveira AAR, Binks OJ, Salmon Y, Vasconcelos
597	SS, Junior JAS, Ferreira L V., Poyatos R, et al. 2018. Stand dynamics modulate water cycling
598	and mortality risk in droughted tropical forest. Global Change Biology 24: 249–258.
599	Cowan IR. 1986. Economics of carbon fixation in higher plants. In: On the economy of plant
600	form and function: proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary
601	Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard
602	Forest, August 1983. Cambridge [Cambridgeshire]: Cambridge University Press, c1986.
603	Cowan I. 2002. Fit, fitter, fittest; where does optimisation fit in? Silva Fennica 36: 745-754.
604	Cowan IR, Farquhar GD. 1977. Stomatal function in relation to leaf metabolism and
605	environment. Symposia of the Society for Experimental Biology 31: 471–505.
606	Cox PM. 2001. Description of the "TRIFFID " Dynamic Global Vegetation Model. Hadley
607	Centre technical note.
608	Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming
609	due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184.

Cox PM, Huntingford C, Harding RJ. 1998. A canopy conductance and photosynthesis model
for use in a GCM land surface scheme. Journal of Hydrology 212–213: 79–94.
Cramer MD, Hawkins HJ, Verboom GA. 2009. The importance of nutritional regulation of
plant water flux. Oecologia 161:15-24.
Dewar RC, Franklin O, Mäkelä A, McMurtrie RE, Valentine HT. 2009. Optimal Function
Explains Forest Responses to Global Change. BioScience 59: 127-139.
Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, Vesala T. 2018. New insights into
the covariation of stomatal, mesophyll and hydraulic conductances from optimization models
incorporating nonstomatal limitations to photosynthesis. New Phytologist 217: 571-585.
Dharssi I, Vidale PL, Verhoef A, Macpherson B, Jones C, Best M. 2009. New soil physical
properties implemented in the Unified Model at PS18. Met Office technical report 528.
Duffy PB, Brando P, Asner GP, Field CB. 2015. Projections of future meteorological drought
and wet periods in the Amazon. Proceedings of the National Academy of Sciences 112: 13172-
13177.
Eller CB, Bittencourt PRL, Oliveira RS. 2018a. Using sap flow to measure whole-tree
hydraulic conductance loss in response to drought. Acta Horticulturae 1222: 75-84.
Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros F V., da Costa ACL, Meir P,
Friend AD, Mencuccini M, Sitch S, et al. 2018b. Modelling tropical forest responses to
drought and El Niño with a stomatal optimization model based on xylem hydraulics.
Philosophical transactions of the Royal Society of London. Series B, Biological sciences 373:
20170315.
Farquhar G, Schulze E, Kuppers M. 1980. Responses to Humidity by Stomata of Nicotiana
glauca L. And Corylus avellana L. Are Consistent With the Optimization of Carbon Dioxide
Uptake With Respect to Water Loss. Australian Journal of Plant Physiology 7: 315-327.
Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P. 2006. Evidence from Amazonian
forests is consistent with isohydric control of leaf water potential. Plant, Cell and Environment
20 : 151–165.
Friend AD. 1995. PGEN : an integrated model of leaf photosynthesis , and conductance.
Ecological Modelling 77: 233–255.
Friend AD, Cox PM. 1995. Modelling the effects of atmospheric C02 on vegetation-atmosphere
interactions. Agricultural and Forest Meteorology 73: 295.

641	Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A. 1998.
642	Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell
643	and Environment 21: 397-406.
644	Goulden ML, Miller SD, Da Rocha HR, Menton MC, De Freitas HC, E Silva Figueira AM,
645	Dias De Sousa CA. 2004. Diel and seasonal patterns of tropical forest CO2 exchange.
646	Ecological Applications 14: 42–54.
647	Grace J, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda HS, Nobre C, Moncrieff J,
648	Massheder J, Malhi Y, et al. 1995. Carbon dioxide uptake by an undisturbed tropical rain forest
649	in Southwest Amazonia, 1992 to 1993. Science 270: 778-780.
650	Harper AB, Cox PM, Friedlingstein P, Wiltshire AJ, Jones CD, Sitch S, Mercado LM,
651	Groenendijk M, Robertson E, Kattge J, et al. 2016. Improved representation of plant
652	functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2)
653	using plant trait information. Geoscientific Model Development 9: 2415–2440.
654	Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK,
655	Breshears DD, Davi H, Galbraith D, et al. 2018. Research frontiers for improving our
656	understanding of drought-induced tree and forest mortality. New Phytologist 218: 15–28.
657	Hickler T, Prentice IC, Smith B, Sykes MT, Zaehle S. 2006. Implementing plant hydraulic
658	architecture within the LPJ Dynamic Global Vegetation Model. Global Ecology and
659	Biogeography 15: 567–577.
660	Hubbard RM, Ryan MG, Stiller V, Sperry JS. 2001. Stomatal conductance and
661	photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell and
662	<i>Environment</i> 24 : 113–121.
663	Jacobs C. 1994. Direct impact of atmospheric CO2 enrichment on regional transpiration.
664	Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M,
665	Reich PB, Wright IJ, et al. 2011. TRY - a global database of plant traits. Global Change
666	<i>Biology</i> 17 : 2905–2935.
667	Kennedy D, Swenson S, Oleson KW, Lawrence DM, Fisher R, Costa ACL da, Gentine P.
668	2019. Implementing plant hydraulics in the Community Land Model, version 5. Journal of
669	Advances in Modeling Earth Systems 11: 485-513.
670	Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species
671	indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology 28:

672	1313–1320.
673	Lens F, Picon-Cochard C, Delmas CEL, Signarbieux C, Buttler A, Cochard H, Jansen S,
674	Chauvin T, Doria LC, Del Arco M, et al. 2016. Herbaceous angiosperms are not more
675	vulnerable to drought-induced embolism than angiosperm trees. Plant Physiology 172: 661-667.
676	Leuning R. 1995. A critical appraisal of a combined stomatal - photosynthesis model for C3
677	plants. Plant, Cell & Environment 18: 339-355.
678	Lin Y, Medlyn B, Duursma R. 2015. Optimal stomatal behaviour around the world. Nature
679	Climate Change 5: 459.
680	Loveland TR, Reed BC, Ohlen DO, Brown JF, Zhu Z, Yang L, Merchant JW. 2000.
681	Development of a global land cover characteristics database and IGBP DISCover from 1 km
682	AVHRR data. International Journal of Remote Sensing 21: 1303–1330.
683	Mäkelä A, Berninger F, Hari P. 1996. Optimal control of gas exchange during drought:
684	Theoretical analysis. Annals of Botany 77: 461-468.
685	Melotto M, Underwood W, He SY. 2008. Role of stomata in plant innate immunity and foliar
686	bacterial diseases. Annual Review of Phytopathology 46: 101-122.
687	Manzoni S, Vico G, Palmroth S, Porporato A, Katul G. 2013. Optimization of stomatal
688	conductance for maximum carbon gain under dynamic soil moisture. Advances in Water
689	<i>Resources</i> 62 : 90–105.
690	Marengo JA, Souza CM, Thonicke K, Burton C, Halladay K, Betts RA, Alves LM, Soares
691	WR. 2018. Changes in Climate and Land Use Over the Amazon Region: Current and Future
692	Variability and Trends. Frontiers in Earth Science 6: 228.
693	Martinez-Vilalta J, Poyatos R, Aguade D, Retana J, Mencuccini M. 2014. A new look at
694	water transport regulation in plants. New Phytologist 204: 105–115.
695	Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M,
696	Freeman M, Jackson SB, Kellomäki S, Laitat E, et al. 2001. Stomatal conductance of forest
697	species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytologist
698	149 : 247–264.
699	Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY,
700	De Angelis P, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical
701	approaches to modelling stomatal conductance. Global Change Biology 17: 2134–2144.
702	Medlyn BE, De Kauwe MG, Zaehle S, Walker AP, Duursma RA, Luus K, Mishurov M,

703	Pak B, Smith B, Wang YP, et al. 2016. Using models to guide field experiments: a priori
704	predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland.
705	<i>Global change biology</i> 22 : 2834–2851.
706	Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain
707	AK, Luo Y, Parton W, et al. 2015. Using ecosystem experiments to improve vegetation models.
708	Nature Climate Change 5 : 528.
709	Meinzer FC, Johnson DM, Lachenbruch B, McCulloh K a, Woodruff DR. 2009. Xylem
710	hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension
711	with hydraulic capacitance. Functional Ecology 23: 922-930.
712	Meir P, Brando PM, Nepstad D, Vasconcelos S, Costa ACL, Davidson E, Almeida S, Fisher
713	RA, Sotta ED, Zarin D, et al. 2009. Amazonia and Global Change (J Gash, M Keller, M
714	Bustamante, and P Silva Dias, Eds.). American Geophysical Union.
715	Meir P, Wood TE, Galbraith DR, Brando PM, Da Costa ACL, Rowland L, Ferreira L V.
716	2015. Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests:
717	Insights from Field Experiments. BioScience 65: 882-892.
718	Meir P, Mencuccini M, Binks O, da Costa AL, Ferreira L, et al. 2018. Short-term effects of
719	drought on tropical forest do not fully predict impacts of repeated or long-term drought: gas
720	exchange versus growth. Philosophical Transactions of the Royal Society B: Biological Sciences,
721	373 (1760): 20170311.
722	Mencuccini M, Manzoni S, Christoffersen B. 2019a. Modelling water fluxes in plants: from
723	tissues to biosphere. New Phytologist 222: 1207–1222.
724	Mencuccini M, Rosas T, Rowland L, Choat B, Cornelissen JHC, Jansen S, Kramer K,
725	Lepenas A, Manzoni S, Niinemets U, Reich P, Schrodt F, Soudzilovskaia NA, Wright I,
726	Martinez-Vilalta J, 2019b. Leaf economics and xylem hydraulics drive leaf/wood area ratios.
727	New Phytologist doi.org/10.1111/nph.15998.
728	Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM. 2009.
729	Impact of changes in diffuse radiation on the global land carbon sink. <i>Nature</i> 458 : 1014.
730	Mercado LM, Huntingford C, Gash JHC, Cox PM, Jogireddy V. 2007. Improving the
731	representation of radiation interception and photosynthesis for climate model applications.
732	Tellus, Series B: Chemical and Physical Meteorology 59 : 553–565.
733	Moore JR, Zhu K, Huntingford C, Cox PM. 2018. Equilibrium forest demography explains

734	the distribution of tree sizes across North America. Environmental Research Letters 13: 084019.
735	Mott KA. 1988. Do Stomata Respond to CO2 Concentrations Other than Intercellular? Plant
736	Physiology 86: 200–203.
737	Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I — A
738	discussion of principles. Journal of Hydrology 10: 282-290.
739	Nepstad DC, De Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Da
740	Silva ED, Stone TA, Trumbore SE, Vieira S. 1994. The role of deep roots in the hydrological
741	and carbon cycles of Amazonian forests and pastures. Nature 372: 666-669.
742	Ocheltree TW, Nippert JB, Prasad PVV. 2016. A safety vs efficiency trade-off identified in
743	the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance
744	and precipitation. New Phytologist 210: 97–107.
745	Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros F
746	de V., Cordoba EC, Fagundes M V., Garcia S, et al. 2019. Embolism resistance drives the
747	distribution of Amazonian rainforest tree species along hydro-topographic gradients. New
748	Phytologist 221: 1457–1465.
749	Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro HMA, Rowland L,
750	Almeida S, Brando PM, da Costa ACL, Costa MH, et al. 2013. Confronting model
751	predictions of carbon fluxes with measurements of Amazon forests subjected to experimental
752	drought. New Phytologist 200: 350–365.
753	Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ. 2014. Balancing the costs of carbon
754	gain and water transport: testing a new theoretical framework for plant functional ecology.
755	Ecology letters 17: 82-91.
756	Qu X, Cao B, Kang J, Wang X, Han X, Jiang W, et al. 2019. Fine-tuning stomatal movement
757	through small signaling peptides. Frontiers in plant science 10: 69.
758	Restrepo-Coupe N, Levine NM, Christoffersen BO, Albert LP, Wu J, Costa MH, Galbraith
759	D, Imbuzeiro H, Martins G, da Araujo AC, et al. 2017. Do dynamic global vegetation models
760	capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.
761	Global Change Biology 23: 191–208.
762	Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J,
763	Leakey ADB, Mercado LM, Niinemets U, et al. 2017. A roadmap for improving the
764	representation of photosynthesis in Earth system models. New Phytologist 213: 22-42.

765	Rowland L, Da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen
766	AM, Doughty CE, Metcalfe DB, Vasconcelos SS, et al. 2015. Death from drought in tropical
767	forests is triggered by hydraulics not carbon starvation. Nature 528: 119-122.
768	Saleska SR, da Rocha HR, Huete AR, Nobre AD, Artaxo P, Shimabukuro YE. 2013. LBA-
769	ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999-2006. Data set.
770	Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA.
771	Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, von Allmen EI. 2010.
772	Hydraulic trade-offs and space filling enable better predictions of vascular structure and function
773	in plants. Proceedings of the National Academy of Sciences of the United States of America 107:
774	22722–22727.
775	Sellers PJ. 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of
776	Remote Sensing 6: 1335–1372.
777	Sheffield J, Wood EF. 2008. Projected changes in drought occurrence under future global
778	warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31: 79-
779	105.
780	Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P,
781	Friedlingstein P, et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography
782	and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs).
783	Global Change Biology 14: 2015–2039.
784	Sperry JS. 2004. Coordinating stomatal and xylem functioning-an evolutionary perspective.
785	New Phytologist 162: 568-570.
786	Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM.
787	2017. Predicting stomatal responses to the environment from the optimization of photosynthetic
788	gain and hydraulic cost. Plant Cell and Environment 40: 816-830.
789	Stocker BD, Zscheischler J, Keenan TF, Prentice IC, Peñuelas J, Seneviratne SI. 2018.
790	Quantifying soil moisture impacts on light use efficiency across biomes. New Phytologist 218:
791	1430–1449.
792	Ukkola AM, De Kauwe MG, Pitman AJ, Best MJ, Abramowitz G, Haverd V, Decker M,
793	Haughton N. 2016. Land surface models systematically overestimate the intensity, duration and
794	magnitude of seasonal-scale evaporative droughts. Environmental Research Letters 11: 104012.
795	Venturas MD, Sperry JS, Love DM, Frehner EH, Allred MG, Wang Y, Anderegg WRL.

796	2018. A stomatal control model based on optimization of carbon gain versus hydraulic risk
797	predicts aspen sapling responses to drought. New Phytologist 220: 835-850.
798	Walsh RPD, Lawler DM. 1981. Rainfall Seasonality: Description, Spatial Patterns and Change
799	Through Time. <i>Weather</i> 36 : 201–208.
800	Wang Y, Sperry JS, Venturas MD, Trugman AT, Love DM, Anderegg WR. 2019. The
801	stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based
802	optimization model. Tree Physiology.
803	Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR, Melillo
804	JM, Munger JW, Fan SM, Nadelhoffer KJ. 1996. Modelling the soil-plant-atmosphere
805	continuum in a Quercus-acer stand at Harvard forest: The regulation of stomatal conductance by
806	light, nitrogen and soil/plant hydraulic properties. Plant, Cell and Environment 19: 911-927.
807	Winkler AJ, Myneni RB, Alexandrov GA, Brovkin V. 2019. Earth system models
808	underestimate carbon fixation by plants in the high latitudes. <i>Nature Communications</i> 10.
809	Wolf A, Anderegg WRL, Pacala SW. 2016. Optimal stomatal behavior with competition for
810	water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences 113:
811	E7222–E7230.
812	Wolfe BT, Sperry JS, Kursar TA. 2016. Does leaf shedding protect stems from cavitation
813	during seasonal droughts? A test of the hydraulic fuse hypothesis. New Phytologist 212: 1007-
814	1018.
815	Worrall JJ, Marchetti SB, Egeland L, Mask RA, Eager T, Howell B. 2010. Effects and
816	etiology of sudden aspen decline in southwestern Colorado, USA. Forest Ecology and
817	Management 260 : 638–648.
818	Xu X, Medvigy D, Powers JS, Becknell JM, Guan K. 2016. Diversity in plant hydraulic traits
819	explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical
820	forests. New Phytologist 212: 80-95.
821	
822	
823	
824	
825	
826	

- 827
- 828
- 829
- 830
- 831
- 832

833 Figure captions.

Figure 1. SOX stomatal conductance (g_s) sensitivity to environmental drivers in (a) (vapour 834 835 pressure deficit, D; pre-dawn water potential, Ψ_{pd} , Incident photosynthetically active radiation, I_{par} , and atmospheric CO₂ partial pressure, c_a) and plant hydraulic traits in (b) (Ψ when plant loses 50%) 836 of its maximum conductance, Ψ_{50} ; shape of vulnerability function, a; and minimum plant hydraulic 837 838 resistance, r_{pmin}). The variables were changed individually while the others were held constant at their reference values (D = 0.5 kPa, $\Psi_{pd} = -0.5 \text{ MPa}$, $I_{par} = 600 \text{ }\mu\text{mol} \text{ }\text{m}^{-2} \text{ }\text{s}^{-1}$, $c_a = 36 \text{ Pa}$, $\Psi_{50} = -2$ 839 MPa, a = 3, $r_{pmin} = 1$ m² s MPa mmol⁻¹). For the panels (c) and (d) the reference lines (dashed 840 black) represents values of Ψ_{50} = -3 MPa, a = 5, $r_{pmin} = 1$ mmol⁻¹ m² s MPa, the coloured lines show 841 how changing each hydraulic parameter affects g_s response to Ψ_{pd} and D. The I_{par} was set to 2000 842 μ mol m⁻² s⁻¹ in panels (c) and (d). The V_{cmax25} was set to 100 μ mol m⁻² s and the rest of the 843 photosynthetic parameters follow the BET-Tr parameterization from Harper et al. (2016). 844 Figure 2. Predicted and observed (grey points) stomatal conductance (g_s) response to changes in 845

leaf pre-dawn water potential (Ψ_{pd}) for the woody plant functional types (PFT) from Harper *et al.* (2016), except for Needleleaf deciduous trees which was not present in the dataset used in this study. The red lines are SOX and β -function (Eqn 7-8) best fit. The shaded regions are nonparametric 95% confidence boundaries derived from 1000 bootstrapping replications of the SOX hydraulic inputs. All environmental conditions except Ψ_{pd} were held constant at their median values when the g_s measurements were taken. The Ψ_{pd} was transformed in soil volumetric water content to drive the β -function using Clapp & Hornberger (1978) equations parameterized with soil physical properties derived from the Met Office Central Ancillary Program (Dharssi *et al.*, 2009). The model fit to data is shown as the root mean squared errors (RMSE) and Nash-Sutcliffe (1970) model efficiency index (NSE). The PFT abbreviations are: BET-Tr (Broadleaf evergreen tropical tree), BET-Te (Broadleaf evergreen temperate tree), BDT (Broadleaf deciduous tree), NET (Needleleaf evergreen tree), ESh (Evergreen shrubs) and DSh (Deciduous shrubs). **Figure 3.** Monthly mean gross primary production (GPP) modelled by default JULES (blue line)

and JULES-SOX (red line) versus observations (grey points are means and bars are 2xSE) at each
eddy flux site used for calibrating the SOX hydraulic parameters (PFT; Table S2 and Fig. S3). The
model fit to data is shown as the root mean squared errors (RMSE) and Nash-Sutcliffe (1970)
model efficiency index (NSE). The PFT abbreviations are: BET-Tr (Broadleaf evergreen tropical
tree), BET-Te (Broadleaf evergreen temperate tree), BDT (Broadleaf deciduous tree), NET
(Needleleaf evergreen tree), NDT (Needleleaf deciduous tree), C₃ (C₃ grasses), C₄ (C₄ grasses),
ESh (Evergreen shrubs) and DSh (Deciduous shrubs).

Figure 4. Minimum observed midday leaf water potential (Ψ_{midday}) from 279 woody plant species 866 compiled from the literature grouped using the Harper *et al.* (2016) plant functional types (PFT) 867 868 categories. The SOX modelled Ψ_{middav} for each of the calibration sites (see Table S2 and Fig. S2) is plotted in red. The circle is the mean Ψ_{midday} and the arrows indicate the minimum and maximum 869 870 Ψ_{midday} . The data for the deciduous PFT was restricted to the growing season. The PFT 871 abbreviations are: BET-Tr (Broadleaf evergreen tropical tree), BET-Te (Broadleaf evergreen temperate tree), BDT (Broadleaf deciduous tree), NET (Needleleaf evergreen tree), NDT 872 (Needleleaf deciduous tree), C₃ (C₃ grasses), C₄ (C₄ grasses), ESh (Evergreen shrubs) and DSh 873 874 (Deciduous shrubs).

Figure 5. The Taylor diagram (a) shows the difference in JULES and JULES-SOX skill to predict 875 the monthly GPP in each biome. Green lines are the model centered root mean squared errors 876 (RMSE), points closer to the reference circle in the x-axis indicate higher model skill. The two 877 arrows highlight the improvement in model skill for EBF-Tr and EBF-Te. The boxplot panels 878 show the differences between models (default JULES in blue and JULES-SOX in red) and 879 880 observations in the annual gross primary productivity (GPP in **b**) and the GPP seasonality (GPP SI in c). Data gaps were excluded from the annual GPP calculations for both models and 881 observations, therefore the differences can be used to evaluate the model skill, but the absolute 882 values do not represent the total annual GPP in each biome. The GPP SI was computed using the 883 approach from Walsh and Lawler (1981). Boxes filled with lines are different (at α =0.05) from 0 884 in a one sample t-test. The biome abbreviations are: Cropland (CRO), deciduous broadleaf forests 885 (DBF), deciduous needleleaf forests (DNF), temperate evergreen broadleaf forests (EBF-Te), 886 tropical evergreen broadleaf forests (EBF-Tr), evergreen needleleaf forest (ENF), grassland 887 (GRA), mixed forest (MF), savannah (SAV), shrubland (SHR), and wetlands (WET). 888

Figure 6. Model predictions of the normalised light-use efficiency responses to soil moisture, 889 expressed as a fraction of the soil moisture saturation point at the top 1 m of soil. The light use 890 891 efficiency is computed as the ratio between gross primary productivity and the photosynthetic active radiation absorbed by the canopy. The default JULES predictions are in blue and JULES-892 893 SOX predictions in red. The lines in the scatter plot panels are linear regressions fit to the data. 894 The histograms on the bottom panels are the soil moisture probability density predicted by each model. The biome abbreviations are: Cropland (CRO), deciduous broadleaf forests (DBF), 895 deciduous needleleaf forests (DNF), temperate evergreen broadleaf forests (EBF-Te), tropical 896

- 897 evergreen broadleaf forests (EBF-Tr), evergreen needleleaf forest (ENF), grassland (GRA), mixed
- forest (MF), savannah (SAV), shrubland (SHR), and wetlands (WET).
- 899
- 900
- 901
- 902
- 903 Tables.

904 Table 1. Residual sum of squares (RSS), number of leaf-level stomatal conductance observations

- 905 (N) used to fit *n* parameters to the data, and the resulting Akaike Information Criterion differences
- 906 (Δ AIC) between SOX and the β -function.

PFT	N _	SOX		β-functio	β-function		
111		RSS	n	RSS	n	ΔΑΙϹ	
BET-Tr	434	4.83	3	6.53	2	-126.1	
BET-Te	1334	19.68	3	37.37	2	-853.2	
BDT	71	3.48	3	3.04	2	11.6	
NET	1571	0.65	3	2.29	2	-1926.4	
ESh	133	3.37	3	7.94	2	-112	
DSh	64	2.76	3	8.03	2	-66.4	

907

Table 2. Observed (*Obs*) mean (±SD) hydraulic parameters compiled from literature for each plant
functional type (PFT) from JULES (Harper *et al.* 2016). The calibrated (*Cal*) columns are the
parameter values that maximize JULES-SOX fit to observed GPP in the calibration sites (see Table
S2 and Fig. S2).

DET	$\Psi_{5\theta}$ (MPa)				a (unitless)			<i>r_{pmin}</i> (mmol ⁻¹ m ² s MPa)		
PFT	N	Obs	Cal	Ν	Obs	Cal	Ν	Obs	Cal	
BET-Tr	77	-1.9(±1.3)	-1.7	20	4.4(±2.1)	2.1	40	2.2(±3.4)	0.6	
BET-Te	44	-2.7(±1.5)	-1.8	17	3.7(±1.8)	2.8	40	3.1(±8)	5	

BDT	87	-2.6(±1.4)	-1.6	43	5.5(±3.8)	3.5	31	5.3(±5.6)	0.5
NET	48	-4.2(±1.2)	-2.6	25	8.7(±4.9)	4.9	20	2.4(±1.8)	4.2
NDT	5	-3.4(±0.6)	-1.8	2	7.4(±5)	1.8	2	8(±4.3)	9
C_3	45	-3.1(±1.6)	-2.4	-	-	2.2	-	-	3.2
C_4	15	-2.7(±1.7)	-1.5	-	-	1.8	-	-	9.5
ESh	61	-4(±2.2)	-2.1	53	4.1(±3.3)	2.5	49	1.5(±1.8)	9.5
DSh	26	-4(±2.3)	-1.8	3	3.4(±2.2)	2.1	4	2.6(±2.4)	5

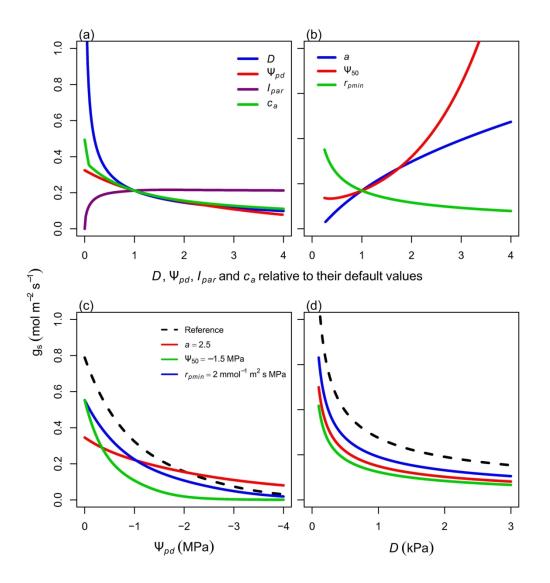
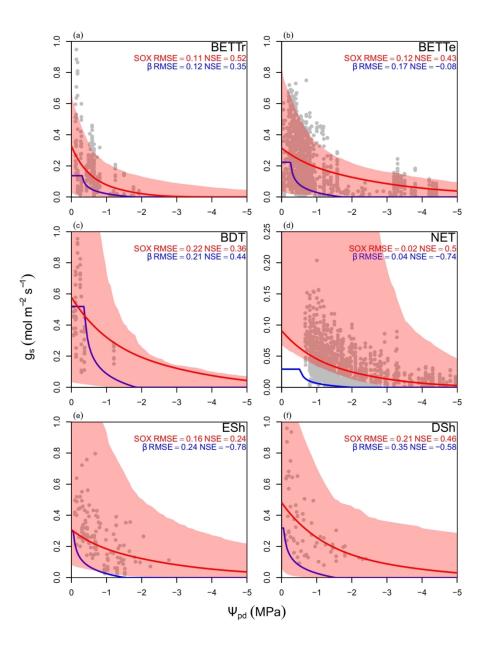

912 *Note: The N column is the number of species compiled for the correspondent parameter.*913

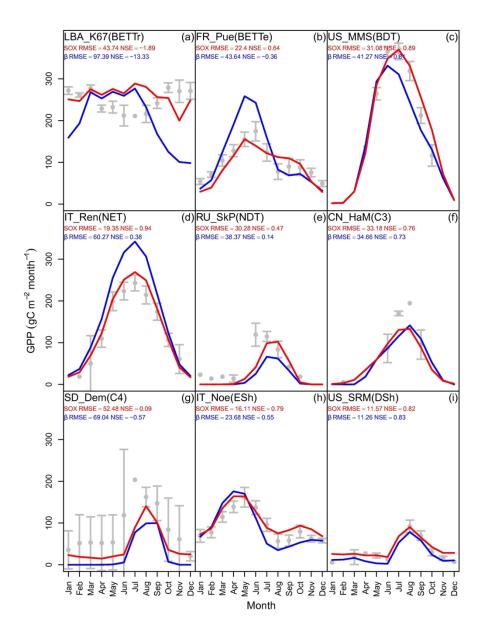
Table 3. Median Nash-Sutcliffe (1970) model efficiency index (NSE) and root mean square error

915	(RMSE) for the biomes used t	or e	valuating	JULES-SOX and	default JULES.
-----	-------	-------------------------	------	-----------	---------------	----------------

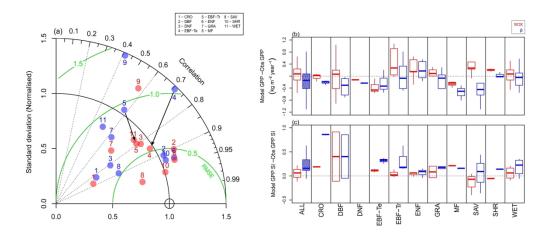

Biome	Ν.	JULE	ES-SOX	JULES		
DIUIIIe	19 -	NSE	RMSE	NSE	RMSE	
CRO	3	0.49	123.12	0.57	141.1	
DBF	7	0.89	37.32	0.83	47.19	
DNF	1	0.58	25.93	0.37	31.97	
EBF-Te	3	-0.23	45.22	-1.24	66.36	
EBF-Tr	6	0.41	40.36	-2.77	73.53	
ENF	5	0.9	34.14	0.59	40.58	
GRA	12	0.22	32.31	-0.01	30.62	
MF	3	0.85	47.87	0.59	79.29	
SAV	5	-0.4	59.72	-2.12	89.69	
SHR	4	0.78	14.90	0.64	15.92	
WET	21	0.68	32.23	0.46	38.67	

916 *Note: The N column is the number of sites representing the biome in the eddy flux dataset*

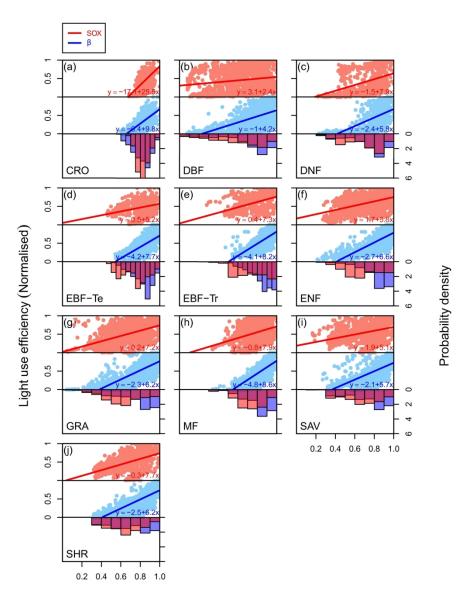
SOX stomatal conductance (gs) sensitivity to environmental drivers in (a) (vapour pressure deficit, D; predawn water potential, Ψ pd, Incident photosynthetically active radiation, Ipar, and atmospheric CO2 partial pressure, ca) and plant hydraulic traits in (b) (Ψ when plant loses 50% of its maximum conductance, Ψ 50; shape of vulnerability function, a; and minimum plant hydraulic resistance, rpmin). The variables were changed individually while the others were held constant at their reference values (D = 0.5 kPa, Ψ pd = -0.5 MPa, Ipar = 600 μ mol m-2 s-1, ca = 36 Pa, Ψ 50 = -2 MPa, a = 3, rpmin =1 m2 s MPa mmol-1). For the panels (c) and (d) the reference lines (dashed black) represents values of Ψ 50 = -3 MPa, a = 5, rpmin =1 mmol-1 m2 s MPa, the coloured lines show how changing each hydraulic parameter affects gs response to Ψ pd and D. The Ipar was set to 2000 μ mol m-2 s-1 in panels (c) and (d). The Vcmax25 was set to 100 μ mol m-2 s and the rest of the photosynthetic parameters follow the BET-Tr parameterization from Harper et al. (2016).


166x188mm (300 x 300 DPI)

Predicted and observed (grey points) stomatal conductance (gs) response to changes in leaf pre-dawn water potential (Ψ pd) for the woody plant functional types (PFT) from Harper et al. (2016), except for Needleleaf deciduous trees which was not present in the dataset used in this study. The red lines are SOX and β function (Eqn 7-8) best fit. The shaded regions are non-parametric 95% confidence boundaries derived from 1000 bootstrapping replications of the SOX hydraulic inputs. All environmental conditions except Ψ pd were held constant at their median values when the gs measurements were taken. The Ψ pd was transformed in soil volumetric water content to drive the β -function using Clapp & Hornberger (1978) equations parameterized with soil physical properties derived from the Met Office Central Ancillary Program (Dharssi et al., 2009). The model fit to data is shown as the root mean squared errors (RMSE) and Nash-Sutcliffe (1970) model efficiency index (NSE). The PFT abbreviations are: BET-Tr (Broadleaf evergreen tropical tree), BET-Te (Broadleaf evergreen temperate tree), BDT (Broadleaf deciduous tree), NET (Needleleaf evergreen tree), ESh (Evergreen shrubs) and DSh (Deciduous shrubs).


152x203mm (300 x 300 DPI)

Page 42 of 43


Monthly mean gross primary production (GPP) modelled by default JULES (blue line) and JULES-SOX (red line) versus observations (grey points are means and bars are 2xSE) at each eddy flux site used for calibrating the SOX hydraulic parameters (PFT; Table S2 and Fig. S3). The model fit to data is shown as the root mean squared errors (RMSE) and Nash-Sutcliffe (1970) model efficiency index (NSE). The PFT abbreviations are: BET-Tr (Broadleaf evergreen tropical tree), BET-Te (Broadleaf evergreen temperate tree), BDT (Broadleaf deciduous tree), NET (Needleleaf evergreen tree), NDT (Needleleaf deciduous tree), C3 (C3 grasses), C4 (C4 grasses), ESh (Evergreen shrubs) and DSh (Deciduous shrubs).

152x203mm (300 x 300 DPI)

The Taylor diagram (a) shows the difference in JULES and JULES-SOX skill to predict the monthly GPP in each biome. Green lines are the model centered root mean squared errors (RMSE), points closer to the reference circle in the x-axis indicate higher model skill. The two arrows highlight the improvement in model skill for EBF-Tr and EBF-Te. The boxplot panels show the differences between models (default JULES in blue and JULES-SOX in red) and observations in the annual gross primary productivity (GPP in b) and the GPP seasonality (GPP SI in c). Data gaps were excluded from the annual GPP calculations for both models and observations, therefore the differences can be used to evaluate the model skill, but the absolute values do not represent the total annual GPP in each biome. The GPP SI was computed using the approach from Walsh and Lawler (1981). Boxes filled with lines are different (at a=0.05) from 0 in a one sample t-test. The biome abbreviations are: Cropland (CRO), deciduous broadleaf forests (DBF), deciduous needleleaf forests (DNF), temperate evergreen broadleaf forests (EBF-Te), tropical evergreen broadleaf forests (EBF-Tr), evergreen needleleaf forest (ENF), grassland (GRA), mixed forest (MF), savannah (SAV), shrubland (SHR), and wetlands (WET).

218x93mm (300 x 300 DPI)

Fraction of soil moisture

Model predictions of the normalised light-use efficiency responses to soil moisture, expressed as a fraction of the soil moisture saturation point at the top 1 m of soil. The light use efficiency is computed as the ratio between gross primary productivity and the photosynthetic active radiation absorbed by the canopy. The default JULES predictions are in blue and JULES-SOX predictions in red. The lines in the scatter plot panels are linear regressions fit to the data. The histograms on the bottom panels are the soil moisture probability density predicted by each model. The biome abbreviations are: Cropland (CRO), deciduous broadleaf forests (DBF), deciduous needleleaf forests (DNF), temperate evergreen broadleaf forests (EBF-Te), tropical evergreen broadleaf forests (EBF-Tr), evergreen needleleaf forest (ENF), grassland (GRA), mixed forest (MF), savannah (SAV), shrubland (SHR), and wetlands (WET).

152x203mm (300 x 300 DPI)