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A Leap Into the Unknown – Early Events in
African Trypanosome Transmission
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Highlights
African trypanosomes are mainly trans-
mitted by tsetse flies.

During uptake in a blood meal, T. brucei
can use several potential environmental
cues to stimulate the initiation of
differentiation.

Signal transduction involves a phospha-
tase signaling cascade and spatial con-
African trypanosomes aremainly transmitted by tsetse flies. In recent years there
has been good progress in understanding how the parasites prepare for trans-
mission, detect their changed environment through the perception of different
environmental cues, and respond by changing their developmental gene expres-
sion. In this review, we discuss the different signals and signaling mechanisms
used by the parasites to carry out the early events necessary for their establish-
ment in the fly. We also compare Trypanosoma brucei and Trypanosoma
congolense, parasites that share a common pathway in the early stages of fly
colonization but apparently use different mechanisms to achieve this.
trol of key regulatory proteins.

Once differentiation is initiated, several
gene regulatory processes control the
differentiation frombloodstream to tsetse
midgut procyclic forms.

T. brucei and T. congolense show a
similar route of establishment in the
tsetse gut but show different develop-
mental mechanisms.
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Early African Trypanosome Transmission Events
African trypanosomes are single-celled parasites that are unusual in having the ability to infect a variety
of mammalian hosts, including humans, livestock, and game animals. Here, they cause human
African trypanosomiasis (HAT) and animal African trypanosomiasis, respectively, the latter being
responsible for significant restrictions in economic productivity across swathes of Africa. The host pro-
miscuity of African trypanosomes is not, however, matched by promiscuity in the arthropod vector
they use to achieve their transmission. For most of the major African trypanosome species, tsetse
flies are an essential component of their life cycle, although different parasite species show different
routes through this vector. Thus, Trypanosoma vivax is restricted to the mouthparts of the tsetse fly
(although non-tsetse mechanical transmission can also occur outside Africa). In contrast,
T. congolense and T. brucei develop within the gut of the fly before eventual passage to the mouth-
parts and salivary glands, respectively (Box 1). In this review we discuss the regulatory events that
contribute to the ability of trypanosomes to perceive their new environment and adapt as they transi-
tion from themammalian bloodstream to the tsetse fly vector. Mostmolecular knowledge is based on
studies in T. brucei, but recent discoveries, focused on the adaptations of T. congolense, are also
described and compared with the events characterized in T. brucei. Events relating to the physio-
logical passage and coordinated motility of the parasites within the tsetse fly are not covered here.
The picture emerging of trypanosome transmission events is of a sophisticated environmental
sensing response that culminates in gene expression changes, with key molecular players
at each step having been identified and characterized. In this review we detail these signals,
regulators, and regulatory responses.

Preadaptation of Bloodstream-form Parasites for Tsetse Uptake
In the mammalian bloodstream T. brucei exists as either a slender or stumpy morphotype, the
transition between these forms being signaled by a quorum sensing (QS) mechanism reviewed
elsewhere [1]. These morphotypes are not present in T. congolense but nonetheless these par-
asites also demonstrate density-dependent growth arrest. In both parasite species, the arrest
supports infection chronicity and, in T. brucei, it is also believed to promote transmission because
stumpy forms are preadapted to the drastically different environment in the tsetse fly. Indeed,
quantitatively, stumpy forms are more robust than slender forms and are able to withstand the
changes in pH and proteolytic exposure that they are likely to be encountered upon uptake in a
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Glossary
Epigenetic control: changes in gene
regulation controlled by heritable DNA
modifications (e.g., acetylation,
methylation) that affect chromatin
organization.
Monomorphic: refers to parasites that
have a reduced ability to generate
stumpy forms after serial syringe
passage between hosts (i.e., without
tsetse), or after long-term in vitro culture.
Pleomorphic: refers to those parasites
that are able to generate bloodstream
slender, intermediate, and stumpy
forms. Slender forms are proliferative,
whereas stumpy forms are
nonproliferative and express the PAD1
marker. Intermediate cells are not clearly
defined morphologically but have
committed to become stumpy forms.
This might involve further cell division
after commitment.
Post-transcriptional regulation:
changes in mRNA abundance generated
by regulated stability or instability of the
mRNA, often through interaction with
RNA-binding proteins. Control can also
operate at the level of protein synthesis
or turnover (this representing post-
translational regulation).
Protein kinase: an enzyme that
phosphorylates itself or another protein,
this often changes its activity or
interactions.
Protein phosphatase: an enzyme that
removes a phosphate group from
proteins, this often changes its activity or
interactions.
RNAi: RNA interference, a gene-
silencingmechanism that can be used to
experimentally deplete a transcript in the
trypanosome.
Stumpy regulatory nexus (STuRN): a
site close to the flagellar pocket, in
stumpy forms, where regulatory
molecules gather.

Box 1. Different Paths through the Tsetse Fly in Different Trypanosome Species

T. congolense, like T. brucei, first colonizes the tsetse midgut. Subsequently, however, epimastigote and metacyclic forms
are found in the proboscis whereas equivalent T. brucei stages are found in the salivary glands (Figure I). T. vivax, on the
other hand, completes development within the fly mouthparts and can also be transmitted mechanically by other biting
insects, expanding its range outside Africa [73].

Reports of morphological heterogeneity during infections exist [74,75] but T. congolense lacks a morphologically stumpy
form, and there is conflicting evidence whether tsetse infectivity correlates with infection stage [75]. Nonetheless, mito-
chondrial activity is greater in T. congolense and T. vivax bloodstream forms than in T. brucei slender forms [76], and ev-
idence suggests that T. congolense has a different strategy to T. brucei to prepare for transmission. Thus, T. congolense
parasites accumulate in G1/G0 of the cell cycle [77], similar to T. brucei and T. vivax [78], but gene expression changes
accompanying the transition from ascending to peak parasitemia in T. congolense do not mirror the slender-to-stumpy
transition in T. brucei [79]. Indeed, T. congolense transcripts upregulated at peak parasitemia frequently belong to
T. congolense-specific groups, such as surface phylome family 22 members [79]. Orthologues of PAD proteins are iden-
tifiable in T. congolense, with up to 73% amino acid sequence identity, although their role in development is not defined;
PAD orthologues are not identifiable in T. vivax [46] where tsetse development is restricted to the mouthparts [80].

Transcripts with increased abundance in T. congolense insect stages relative to bloodstream stages include those involved in
oxidative phosphorylation and amino acid metabolism [81], matching T. brucei and T. vivax [82]. However, proteomic data sets
of developmental regulation show limited correlation between T. congolense and T. brucei [83,84]. Three sets of T. congolense
surfacemolecules characterize tsetse stages:GARP (glutamic acid/alanine-rich protein) [85,86], a protease-resistant surfacemol-
ecule (PRS) [87], and T. congolense procyclins [88]. T. congolense procyclins are expressed by midgut forms. They are heavily
glycosylated and comprise heptapeptide repeats (EPGENGT) reminiscent of EP or GPEET repeats within T. brucei procyclins.
Temporally, PRS and procyclins appear first, and then GARP. T. vivax lacks procyclins, but several T. vivax developmentally reg-
ulated surface families have been identified, including a family related to T. congolense GARP [82].

TrendsTrends inin ParasitologyParasitology

Figure I. Differences between Trypanosoma brucei and Trypanosoma congolense in Their Transmission
through the Tsetse Fly. (A) Relevant components of the tsetse digestive tract are shown, highlighting the position of the fly
proboscis, crop, midgut, and salivary glands. (B) Comparison between the key features of T. brucei and T. congolense
transmission biology highlighting their relative morphological heterogeneity in the bloodstream, their ability to arrest in response
to parasite density, and the integrity of the components required for this signaling response. Identified molecules enriched in
arrested bloodstream forms (stumpy forms for T. brucei, peak parasitemia forms for T. congolense) are also shown. Finally,
the journey of each parasite species within the fly is shown. Abbreviations: PAD, protein associated with differentiation; QS,
quorum sensing.
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tsetse blood meal [2,3]. They are also less susceptible to antibody-mediated destruction [4]. With
respect to metabolic preparation for development, stumpy forms show a partially elaborated mi-
tochondrion [5] and can utilize α-ketoglutarate as an alternative to glucose as an energy source
[6–8]. They are alsomore tolerant of glucose depletion than slender forms, which are quickly killed
[9]. 'Protein associated with differentiation' (PAD) proteins (additional abbreviations and gene
identifiers are detailed in Table 1) are also upregulated in stumpy forms [10], as are the transcripts
for major surface metalloprotease-B (MSP-B), associated with the variable surface glycoprotein
(VSG) cleavage necessary for the change of surface coat upon differentiation to procyclic forms
[11] as well as transcripts for proteins involved in cytoskeletal remodeling and membrane protein
and lipid remodeling [12,13]. Thus, stumpy cells are well adapted to endure uptake and differen-
tiation within the tsetse.

The Initiation of Differentiation
Signaling via Citrate/Cis-Aconitate
The best characterized requirements for the initiation of differentiation are the combination of
temperature reduction and sensitivity to the tricarboxylates citrate and/or cis-aconitate (CCA)
[14] (Figure 1). These cues are conveyed via the carboxylate transporters comprising the PAD
family [10]. The PAD1 protein is already expressed in stumpy forms but, at the lower temperatures
encountered upon transmission to the tsetse midgut, a second family member, PAD2, is upregu-
lated and trafficked to the cell surface. These PAD proteins sensitize the parasite to physiological
levels of citrate in the blood meal; indeed, their depletion by RNAi (see Glossary) renders the
parasites less responsive to the CCA differentiation signal [10].

The premature differentiation of stumpy forms in the bloodstream is prevented by a negative
regulator, protein tyrosine phosphatase 1 (TbPTP1) [15]. TbPTP1 dephosphorylates its
substrate, TbPIP39 [16], this substrate also acts to reinforce the activity of TbPTP1, thereby
further inhibiting differentiation. TbPIP39 belongs to the DxDxT class of protein phosphatases
and displays unusual and important molecular characteristics, including a predicted citrate-
binding pocket and a carboxy terminal peroxisomal targeting signal 1 (PTS1). The PTS1 signal
marks proteins for sequestration in glycosomes, trypanosome-specific peroxisome-like
organelles which act as the site of glycolysis and other metabolic processes [17]. Interestingly,
the interaction between TbPTP1 and its substrate, TbPIP39, seems to occur at a specialized
site in stumpy forms, the so-called ‘stumpy regulatory nexus’ (STuRN), which is positioned
close to a flagellar pocket endoplasmic reticulum (ER) contact site [18] (Figure 1).

Structural predictions and biochemical evidence suggest that the activation of TbPTP1 by
TbPIP39 is inhibited by citrate [19]. Citrate, therefore, increases levels of phosphorylated and
active TbPIP39, which dissociates from the TbPTP1–TbPIP39 complex. Within 30 min of the
initiation of differentiation, TbPIP39 relocates from the STuRN to newly formed glycosomes.
Here, it is no longer accessible to inhibition by dephosphorylation mediated by cytosolic
TbPTP1, such that the separation of the key regulatory molecules enforces a 'point of no return'
in the regulation of trypanosome differentiation. Hence, the coassociation and disassociation
of TbPTP1 and TbPIP39 at the STuRN provides spatial control of the responsiveness to the dif-
ferentiation signal, which ensures the irreversibility of differentiation after initiation. The relocation
of TbPIP39 to glycosomes may also initiate the metabolic reprogramming that accompanies
differentiation (see later).

Alternative Signaling Pathways
In addition to CCA, other triggers of trypanosome differentiation have been reported: (i) mild acid
treatment [20], (ii) brief exposure to proteases [21–23], and (iii) reduced available glucose levels,
268 Trends in Parasitology, March 2020, Vol. 36, No. 3



Table 1. Molecules and Chemicals Mentioned in the Text

Abbreviation Description Gene identifier Function

ALBA1
ALB2
ALBA3
ALBA4

'Acetylation lowers binding affinity' domain
containing proteins

Tb927.11.4460
Tb927.11.4450
Tb927.4.2040
Tb927.4.2030

Developmental RNA regulation

BDF2
BDF3

Bromodomain factor 2 and 3 Tb927.10.7420
Tb927.11.10070

Epigenetic factors

CCA Citrate/cis-aconitate Chemicals that stimulate differentiation of Trypanosoma
brucei from bloodstream to procyclic forms in vitro

DOT1B Disruptor of telomeric silencing factor 1B, a H3
lysine-79 specific histone-lysine N-methyltransferase

Tb927.1.570 Epigenetic factor

EP procyclin Surface coat protein of T. brucei procyclic forms
with an internal EP amino acid repeat

Tb927.6.520,
Tb927.6.450,
Tb927.10.10250,
Tb927.10.10260

T. brucei surface protein

GARP Surface coat protein of Trypanosoma congolense
insect forms

TcIL3000_0_60810
TcIL3000_0_60820
TcIL3000_0_60830
TcIL3000_0_60840
TcIL3000_0_60850

T. congolense
surface protein

GPEET procyclin Surface coat protein of T. brucei procyclic forms
with an internal GPEET amino acid repeat

Tb927.6.510 T. brucei surface protein

MAPK5 MAP kinase member 5 Tb927.6.4220 Protein kinase

MKK1 MAP kinase kinase kinase 1 Tb927.3.4860 Protein kinase

MSP-B Major surface metalloprotease-B Tb927.8.1610
Tb927.8.1620
Tb927.8.1630
Tb927.8.1640

Protease involved in surface coat release

NRK NIMA-related kinase NRKA
Tb927.4.5390
NRKB
Tb927.8.6930

Kinase regulating differentiation to procyclic forms in
T. brucei

PAD1
PAD2

Protein associated with differentiation 1 and 2 Tb927.7.5930
Tb927.7.5940

Surface transporter involved in recognition of tsetse
uptake

PIP39 Protein tyrosine phosphatase 1 interacting protein
39 kD

Tb927.9.6090
Tb927.9.60100

Protein phosphatase that promotes
bloodstream-procyclic form differentiation

PTP1 Protein tyrosine phosphatase 1 Tb927.10.6690 Protein phosphatase that inhibits bloodstream-procyclic
form differentiation

RBP6
RBP10

RNA-binding protein 6 and 10 Tb927.3.2930
Tb927.8.2780

RNA regulation

RDK1
RDK2

Regulator of differentiation kinase 1 and 2 Tb927.11.14070
Tb927.4.5310

Protein kinase involved in bloodstream-procyclic form
differentiation

REG9.1 Regulator of ESAG9 factor 1 Tb927.11.14220 Negative regulator of stumpy-enriched transcripts

VSG Variable surface glycoprotein Major surface protein on bloodstream trypanosomes

ZC3H18 CCCH containing zinc-finger protein 18 Tb927.7.2140 Developmental RNA regulation

ZFP1
ZFP2
ZFP3

CCCH containing zinc-finger proteins 1, 2, and 3 Tb927.6.3490
Tb11.01.6590
Tb927.3.720

Developmental RNA regulation

Trends in Parasitology
either by using glucose-depleted media [9,24] or by partially inhibiting glucose uptake in parasites
using phloretin or 2-deoxy-D-glucose (2-DOG) [25]. The variation in cell lines and lifeforms
used (slender, stumpy, monomorphic slender) makes it difficult to judge which of these stimuli
may be physiologically relevant, particularly for cultured parasites where it can be difficult to
Trends in Parasitology, March 2020, Vol. 36, No. 3 269
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disentangle the kinetics of differentiation events, the continued growth of bloodstream cells, and
the outgrowth of differentiated procyclic cells. Nonetheless, using the synchronous differen-
tiation of stumpy forms and markers that are now available to monitor differentiation quanti-
tatively, CCA,mild acid conditions and protease treatment have all been shown to be robust stimuli
for the transformation to procyclic forms [19,23]. Furthermore, using RNAi-mediated TbPIP39 de-
pletion, it has been possible to evaluate the extent to which different stimuli signal through the
TbPIP39-dependent pathway or through an alternative route. Such experiments have shown that
differentiation stimulated byCCAormild acid is reduced by TbPIP39 depletionwhereas differentiation
stimulated using proteases remains unaffected, suggesting that it operates via a separate branch. In-
deed, there is evidence that CCA and protease operate synergistically to promote differentiation [23].

The contribution of the depletion of glucose to the initiation of differentiation remains controver-
sial. Early studies using monomorphic cells demonstrated that replacing glucose with glycerol
favored the emergence of procyclic forms. However, this took place over several days [24], and
so whether this represented an enhanced initiation of differentiation or selection for the
outgrowth of procyclic forms was unclear. Similarly, the use of the glucose uptake inhibitor,
2-DOG, enhanced the expression of some differentiation-related transcripts in cultured blood-
stream forms either as a differentiation or stress response [25]. Most recently, in 2018, Qiu et al.
[9] showed that pleomorphic slender- and stumpy-form parasites rapidly deplete glucose
TrendsTrends inin ParasitologyParasitology

Figure 1. Signaling Events Contributing to the Initiation of Differentiation from Stumpy Forms to Procyclic
Forms. Stumpy forms are held poised for differentiation through the action of the protein tyrosine phosphatase, TbPTP1
and the protein kinases RDK1 (regulator of differentiation kinase 1) and RDK2. For the initiation of differentiation to
procyclic forms, different stimuli have been reported but the best characterized is mediated through citrate/cis-aconitate
(CCA). This is conveyed via 'protein associated with differentiation' (PAD) family proteins. Within the stumpy regulatory
nexus (STuRN, positioned close to the stumpy flagellar pocket), copositioning of TbPTP1 and TbPIP39 (TbPTP1
interacting protein, 39 kD) prevents differentiation, with TbPTP1 dephosphorylating and reducing the activity of TbPIP39
In the presence of CCA, this repression is alleviated and TbPIP39 is phosphorylated by an unidentified protein kinase and
activated. Within 30 min, TbPTP1 and TbPIP39 redistribute away from the STuRN, with TbPIP39 relocating to
glycosomes. Mild acid and pronase can also stimulate rapid differentiation, with mild acid requiring the presence o
TbPIP39; protease signaling is TbPIP39-independent. The protein kinase NRKA/B (NIMA-related kinase A and B) is
important for differentiation, and in its absence signaling via both CCA and pronase is reduced. Glucose depletion may
also stimulate metabolic adaptation of the parasite and eventual outgrowth of adapted procyclic forms. Irreversible
commitment to differentiation occurs around 2 h after signal exposure.

270 Trends in Parasitology, March 2020, Vol. 36, No. 3
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from the culture media (from the initial 500 μM to 37–62 μM), leading to the preferential survival
of stumpy cells. Furthermore, exposing stumpy cells to 5 μM glucose led to EP procyclin
expression and procyclic cell outgrowth over several days, a so-called 'glucose-responsive
slow' differentiation response [9]. This contrasts with the rapid differentiation seen after
CCA treatment, and there is an absence of any differentiation response over 24 h when
parasites are exposed to 50 μM glucose [19] rather than 5 μM (respectively 100× and
1000× lower than physiological bloodstream levels). Interestingly when the transcriptomes
of procyclic forms differentiated after glucose starvation (5 μM) or CCA exposure were compared,
upregulation of transcripts involved in gluconeogenesis, amino acid metabolism (proline and thre-
onine), and the electron transport chain was detected in cells undergoing 'glucose-responsive
slow' differentiation.

In combination, such studies suggest that stumpy cells respond rapidly to CCA, mild acid and pro-
teases, whereas glucose reduction might provoke a slow adaptation and differentiation. Under-
standing the physiological contribution of glucose depletion to differentiation requires careful
kinetic examination of parasite survival and differentiation as well as the analysis of glucose levels
in the tsetse fly after a bloodmeal.

Commitment to Differentiation after Initiation of the Process
Once differentiation is stimulated, parasites commit to onward development irrespective of
the continued presence of the signal. Exploring this, Domingo-Sananes and her coworkers [26] re-
examined earlier studies to investigate the commitment point during the synchronous differentiation
from stumpy to procyclic forms [23,27]. This quantitative analysis mapped irreversible commitment
to 2–3 h after exposure to CCA, showing that cells after this time not only maintain the expression
of procyclin (already expressed at commitment) but also re-enter a proliferative cell cycle (DNA synthe-
sis occurs at 8–10 h after exposure to CCA [28]). When the CCA was removed from the media after
the commitment point, these 'CCA-primed cells' completed successful differentiation to procyclic
forms, confirming that the cells retained ‘memory’ of their signal exposure. To determine if this signal
memory was dependent on new protein synthesis, parasites were incubated with CCA in the
presence of the reversible translational inhibitor cycloheximide. Cells with blocked protein synthesis
did not respond to CCA; however, removing the inhibitor and re-exposing the parasites to CCA
stimulated differentiation with similar kinetics to uninhibited cells. This demonstrated that new protein
synthesis (rather than mRNA or post-translational modifications) was needed to retain the memory of
signal exposure and also to ‘set the clock’ for the subsequent differentiation events.

Examination of the proteome and phosphoproteome of cells during commitment revealed that
changes in protein phosphorylation occurred first (around 1 h after CCA exposure, mainly
involving dephosphorylation), followed by large changes in protein expression at 3 h. A key
change observed early in differentiation was an upregulation of two serine threonine protein
kinases encoded by closely related genes, NRKA/NRKB already known to be enriched in
stumpy forms [29,30]. Depletion of TbNRKA/B in pleomorphic trypanosomes by RNAi did
not affect growth or development in the bloodstream but almost completely inhibited differen-
tiation to procyclic forms. This inhibition operated on both the CCA- and protease-stimulated
differentiation pathways, placing the kinase downstream of TbPIP39 in the environmental
signaling cascade where the pathways converge (Figure 1). Subsequently, a quantitative
label-free proteomic analysis described changes in protein expression through differentiation
from short stumpy to procyclic forms [31]. This provided a high-quality temporal map of pro-
teome changes in the early time points of synchronous differentiation from stumpy to
procyclic forms adding to earlier studies of the proteome in different developmental forms
of the parasite [32–34].
Trends in Parasitology, March 2020, Vol. 36, No. 3 271
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Apart from the described CCA/PAD/TbPTP1/TbPIP39 regulatory cascade, little is known about
signaling events regulating life-cycle differentiation. The first kinase identified to regulate develop-
mental competence was a MAP kinase (MKK1) for which null mutants failed to develop salivary
gland infections [35]. A further kinase, TbMAPK5, apparently regulates stumpy differentiation in vivo
[36]. With respect to the differentiation from stumpy to procyclic forms, two regulatory kinases were
identified in a kinome-wide RNAi screen: repressor of differentiation kinase 1 and 2 (RDK1 and
RDK2) [37]. Although depletion of both kinases promoted spontaneous differentiation to procyclic
forms, differences were detected. RDK1 depletion triggered around 20% of cells to differentiate,
and this was elevated to 60% when the RNAi cell line was treated with the tyrosine phosphatase
inhibitor BZ3 [38], suggesting that RDK1 and TbPTP1 work additively to regulate differentiation. On
the other hand, RDK2 seemed to prevent differentiation of all cells within the population [37]. Both ki-
nases were detected in the differentiation proteome. RDK1 was only detectable in established
procyclic forms, suggesting an additional, procyclic specific role, in addition to its role regulating
differentiation. RDK2, in contrast, was highly expressed in stumpy forms and in the first 12–24 h of
differentiation [31], which correlates well with its proposed role. Other kinases and phosphatases
that exhibit protein expression profiles suggesting roles in differentiation, include the aforementioned
NRKA/B and a putative AGC/RSK family serine/threonine kinase (Tb927.11.5860), both of which are
elevated in stumpy forms but then decline during differentiation to procyclic forms. Other putative
kinases are either transiently upregulated (Tb927.10.3230) or are only detectable during late time
points of the differentiation process (Tb927.4.2680) [31]; both await further exploration.

Gene Regulation before and during Differentiation
Gene regulation is particularly important in trypanosome parasites because of their complex
life cycle, the requirement to adapt to different environments or to preadapt in preparation for
differentiation. Notably, the parasite’s absence of regulatable RNA II polymerase promoters for
protein coding genes [39] and their polycistronic transcription requires almost complete
reliance on post-transcriptional control for regulated gene expression. Supporting this, the
genome of trypanosomes contains large numbers of genes encoding predicted RNA-binding
proteins [40,41]. To date, many predicted RNA regulators have been studied, and we highlight
only a few of those most relevant in the preparation for, and at early stages of, development
from bloodstream forms to procyclic forms (Figure 2).

Regulatory Control in the Bloodstream
RBP10
RBP10 is a cytosolic protein with a single RNA recognition motif [42] that seems to be critical for
maintenance of parasites as bloodstream forms. Both western blot [43] and proteome analyses
[31] indicate that RBP10 is expressed in proliferating bloodstream forms (monomorphic and
slender forms) but not in stumpy forms or procyclic forms. When RBP10 is depleted by RNAi in
bloodstream forms, the outgrowth of procyclic-form cells is favored, albeit inefficiently in the
population. Conversely, with RBP10 ectopic expression in procyclic forms, bloodstream-form-
enriched transcripts become more abundant; this results from developmental progression
through metacyclic and then bloodstream forms in a subset of the population. The transcripts
targeted by RBP10 for translational repression and instability are enriched for the motif UA(U)6,
a motif previously identified as enriched in procyclic-form mRNAs [44]. Hence, RBP10
favors maintenance of the bloodstream form state and represses procyclic-enriched gene
expression.

REG9.1
The relative control of stumpy- and slender-enriched gene expression represents an interesting
regulatory question given that slender and stumpy forms share the same environment (unlike
272 Trends in Parasitology, March 2020, Vol. 36, No. 3
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Figure 2. Regulatory Control of the Trypanosome Life Cycle. Different transitions through the parasite's life cycle are
depicted with regulators that either promote (in blue) or inhibit (in red) the different developmental transitions being shown
Abbreviations: ALBA, ‘acetylation lowers binding affinity’ domain-containing protein; BDF, bromodomain factor; DOT1B
‘disruptor of telomeric silencing’ factor 1B; RBP, RNA-binding protein; REG9.1, regulator of ESAG 9; ZFP, zinc-finger protein

Trends in Parasitology
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bloodstream and procyclic forms). To explore this regulation, a genome-wide RNAi screen was
exploited to isolate repressors of stumpy-enriched gene expression [45]. This identified several
negative regulators, including one (REG9.1; REGulator of ESAG9), whose depletion by RNAi up-
regulatedmembers of the ESAG9 family. These genes are characterized by their elevated expres-
sion in stumpy forms and occasional presence in VSG gene expression sites. Similarly, other
stumpy-enriched cell-surface phylome members (Family 5, Family 7) [46] were also upregulated,
highlighting the broader role of REG9.1 in the repression of several stumpy-elevated transcripts.
Consistent with this role, the depletion of REG9.1 accelerated stumpy formation in vitro and
in vivo, whereas spontaneous differentiation to procyclic forms was observed upon overexpres-
sion of the molecule – albeit in only a subset of cells.

Interestingly, while the expression levels of REG9.1 do not change markedly in the life cycle, its
subcellular location is regulated. Indeed, the molecule is located at the same paraflagellar site
as TbPIP39 and TbPTP1 in stumpy forms, that is, the STuRN [18], but disperses within minutes
after the initiation of differentiation. This highlights the importance of the subcellular position of
regulatory components in stumpy-form parasites as they prepare for, and initiate, the differentia-
tion events that allow them to adapt to the tsetse midgut environment.

Regulatory Control Early during Differentiation
ZFP Family of Proteins
The first RNA-binding protein identified with a role in regulating stumpy to procyclic differentiation
was a small protein, TbZFP1 [47], a member of the CCCH (ZC3H) zinc-finger-motif-containing
family [48]. The expression of TbZFP1 was elevated between 2 h and 8 h after the initiation of
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differentiation, and then downregulated, reappearing in established procyclic forms [47]. ZFP1
null mutants show compromised kinetoplast repositioning [49], one of the major morphological
events marking differentiation between bloodstream and procyclic forms [50].

Another member of the CCCH family, TbZFP2, was also implicated in the control of early differen-
tiation events [47]. The protein is constitutively expressed in both bloodstream and procyclic
forms, and during synchronous differentiation between these forms. RNAi targeting TbZFP2
inhibits the initiation of differentiation (as assessed by surface expression of EP procyclin), con-
trasting with TbZFP1 where surface antigen exchange occurs successfully [47]. When ectopically
expressed, TbZFP2 generates a posterior microtubule extension (‘nozzle’), this being dependent
on the integrity of its CCCH motif [47]. A third member of the CCCH family, TbZFP3 was further
identified [51] in a data base search using the TbZFP1 and TbZFP2 protein sequences. TbZFP3
shows an overall motif organization similar to that of TbZFP2, comprising a C-terminal CCCH and
an N-terminal WW protein-interaction domain, most similar to a WW domain in E3 ubiquitin
ligases. In addition to the aforementioned motifs, TbZFP3 also has three copies of the RGG-
predicted RNA-binding motif located between the WW and CCCH domains. The expression
profile of TbZFP3 resembles that of TbZFP2, and both proteins associate with the translation
apparatus in procyclic forms but not in bloodstream forms [51]. Ectopic overexpression of
TbZFP3 in bloodstream forms stimulates differentiation to procyclic forms, complementing the
ablation of TbZFP2 by RNAi that inhibits differentiation. Moreover, yeast two-hybrid and
coimmunoprecipitation experiments demonstrate that TbZFP1 can interact directly with
TbZFP2 and TbZFP3 in vitro and in vivo, suggesting their overlapping roles and/or involvement
in the same protein complex(es).

With respect to mRNA targets, TbZFP3 coassociates with EP1 and GPEET procyclin mRNA, but
not with the distinctly regulated transcripts for EP2 and EP3 procyclin [52]. EP1 procyclin regula-
tion is mediated via predicted regions within its 3′UTR, namely the Loop II [53,54] and 16mer se-
quences that control transcript stability and translation [53]. It was proposed that TbZFP3
competes with a negative regulator targeting the Loop II region, such that its overexpression en-
hanced EP procyclin expression, this being demonstrated by mass spectrometry. Subsequently,
another zinc-finger protein, ZC3H18, with two CCCHmotifs, was identified with a potential role in
differentiation. Although RNAi depletion of ZC3H18 does not affect viability of the established
procyclic cells, it causes a delay in the in vitro differentiation of high-density bloodstream forms
to procyclic forms.

Regulatory Events at Subsequent Steps in the Developmental Cycle
ALBA Proteins
As well as CCCH-motif-containing molecules, important in the preparation for tsetse uptake
and early events thereafter, ALBA ('acetylation lowers binding affinity')-like proteins have
been shown to be important in the parasite’s development. ALBA proteins comprise a large
family known for their eponymous ALBA domain (Pfam PF01918) with nucleic acid–binding
ability [55], and which have a general role in the developmental program of several microor-
ganisms [56]. The trypanosome genome encodes four proteins containing ALBA domains,
two of which, ALBA3 and ALBA4, show 85% identity at the DNA level. In addition to the
ALBA domain, both proteins have multiple RGG repeats at their C terminus, believed to be im-
portant in nucleic acid binding. The four ALBA proteins can be found in a complex, with
ALBA3 as a core component [57], and the protein family binds mRNAs carrying regulatory el-
ements in their 3′UTR, for example, GPEET procyclin transcripts [57]. Overall, the expression
profile and overexpression phenotypes exhibited by ALBA domain proteins suggest a role in
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the mesocyclic-to-epimastigote transition, although a role at other transitions cannot be
excluded.

RBP6
Remarkably, the onward development from procyclic forms toward infectious metacyclic forms is
under dominant control of a single RNA-binding protein, RBP6 [58]. This molecule is normally el-
evated in proventricular forms of the parasite in the tsetse, but if ectopically overexpressed the
molecule precipitates full differentiation to infectious metacyclic forms. Moreover, further direct
development to proliferative bloodstream forms is possible through introduction of a single muta-
tion in RBP6 [59].

In combination, trypanosome RNA-binding proteins seem to exert relatively straightforward con-
trol over the parasite’s life cycle, where the level or (potentially) post-translational modification of a
restricted set of individual regulators can drive the activation of coherent developmental transi-
tions involving widespread cellular processes.

The Contribution of Epigenetic Control to Development
As well as changes in gene expression enacted by RNA-binding proteins during development,
there is also emerging evidence for a contribution from epigenetic events.

DOT1B
DOT1B (Tb927.1.570) is a histone methyltransferase responsible for the methylation of his-
tone H3 on lysine 76 [60]. Although not required in either bloodstream or procyclic forms,
it is essential for bloodstream-to-procyclic differentiation [61] and is involved in transcriptional
regulation of the expressed VSG in bloodstream forms [62–64]. DOT1B is expressed 12 h
after stumpy cells are induced to differentiate with CCA, this coinciding with their entry into
the differentiation cell cycle, suggesting a role for DOT1B during or after the first S-phase
of differentiation [31]. Consistent with this, DOT1B-deficient stumpy cells treated with CCA
undergo the normal early events of differentiation (VSG release, procyclin expression) but
then exhibit unusual nuclear/kinetoplast configurations at timepoints after the onset of cell
cycle re-entry [31].

Bromodomain Proteins
Bromodomain proteins are epigenetic readers of lysine acetylation that can be targeted by
selective inhibitors. Exploiting a particular inhibitor, BET151, Schulz and colleagues [65] ob-
served that bloodstream cells can be induced to express procyclic-form transcripts and
undergo differentiation, albeit with low efficiency. These inhibitor studies were supported by
the specific RNAi depletion of the transcripts of one of the bromodomain proteins identified
in the trypanosome genome, BDF3, suggesting that it may contribute to the maintenance of
the bloodstream form state. Depletion of a second bromodomain protein, BDF2, had little ef-
fect on procyclic-enriched transcript expression but did affect VSG monoallelic control. The
positional redistribution of bromodomain proteins, and the consequent effects on gene regu-
lation, was proposed as a possible mechanism for initiating a procyclic-form-specific tran-
scriptional program during stumpy-to-procyclic-form differentiation.

The Contribution of Metabolic Regulation to Development
Accompanying the regulatory events that drive differentiation from bloodstream to procyclic
forms, the parasite also experiences dramatic changes in its metabolic environment with inevita-
ble consequences for the parasite’s overall physiology. In the bloodstream, glucose is a dominant
carbon source, and slender forms utilize this via glycolysis without mitochondrial involvement.
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Outstanding Questions
How are environmental cues of
differentiation transduced via coherent
signaling pathways to drive developmental
gene expression?

What is the molecular composition and
cytological origin of the regulatory
STuRN structure?

How does the trypanosome process
the multiple signals that stimulate
differentiation (e.g., CCA, mild acid,
protease exposure) to coordinate its
developmental response?

What molecular events define the
irreversible commitment to differentiation?

How does metabolic adaptation drive
or respond to the differentiation
response?

How do gene regulators coordinate
their activity to ensure a successful
differentiation response at both
the level of epigenetic and post-
transcriptional control?

Does T. congolense have a specialized
transmission stage equivalent to the
stumpy form of T. brucei?

How different are the molecular
regulators and events that contribute
to the early development of T. brucei
and T. congolense in the tsetse gut?
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Glycerol can also be utilized through gluconeogenesis, potentially as an adaptation for tissue
compartmentation [66,67]. Stumpy forms, in contrast, can catabolize α-ketoglutarate as an
adaptation for the depletion of glucose in a tsetse blood meal. Stumpy forms do not require mi-
tochondrial DNA to be present for their viability; however, their lifespan is reduced in its absence
and the defective cells are unable to generate amitochondrial membrane potential [8]. In procyclic
forms, L-proline is actively taken up and catabolized inside the mitochondrion into succinate,
alanine, and acetate with the production of intermediate metabolites, reduced cofactors,
and ATP. The proline is converted to glutamate in three steps: first, proline is oxidized into
Δ1-pyrroline-5-carboxylate (P5C) by a FAD-dependent proline dehydrogenase (TbProDH)
[68]. Second, the P5C ring is spontaneously opened to produce glutamate-γ-semialdehyde
(γ GS), and finally the γ GS is further oxidized to glutamic acid by a P5C dehydrogenase
(TbP5CDH). This enzyme is present in procyclic but not bloodstream forms, and the depletion
of TbP5CDH significantly reduces midgut infection rates. These results suggest that, to enable
survival in the glucose-scarce environment of the tsetse midgut, procyclic forms rely both on
the tsetse fly-derived proline and a fully functional proline catabolic pathway [69]. Proline and
glycerol can also feed gluconeogenesis in procyclic forms and this appears to be important
for later steps of development of the parasite in the fly [70].

Concluding Remarks
In the past few years there have been substantial strides taken in understanding the molecular
events that occur during, and which regulate, the transition from bloodstream to procyclic
forms. We now have insight into how the parasite prepares for transmission, perceives its
changed environment, and responds through altered gene expression enacted by regulatory
RNA-binding proteins, epigenetic changes, and metabolic adaptation. Furthermore, there has
been an increasing appreciation that different trypanosome species exhibit different solutions to
the problem of tsetse colonization. These differences are highlighted by the presence of morpho-
logically stumpy forms, which represent a brucei-specific adaptation not present in either
T. congolense or T. vivax. Whilst it is important to recognize that morphology is not necessarily
the most important characteristic of stumpy forms – such that underlying controls in the develop-
mental pathway may well be conserved between species – the molecular comparisons between
the species point to important differences that require exploration. Similarly, this review has fo-

cused tightly on parasite-specific processes and has not considered interactions with either the
host or the tsetse fly except in limited terms. This is clearly naïve given the exquisite sensitivity
of trypanosomes to their environment, their sophisticated mechanisms of immune evasion (in
the mammal and tsetse), and their movement and coordinated motility within the vector
[71,72]. Hence, whilst there is now much that we understand about how the trypanosome can
successfully ‘leap into the unknown’ during its transmission to tsetse flies, there remains a
great deal to uncover and important controversies remain (see Outstanding Questions). The
tools now available for the genetic manipulation of T. brucei and T. congolense provide a tractable
system for understanding and comparing the differentiation events of the parasites in detail and
we can look forward to rapid progress.
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