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Abstract

Convolutional Neural Networks (CNNs) are a powerful and versa-
tile tool for performing computer vision tasks in both resource con-
strained settings and server-side applications. Most GPU hardware
vendors provide highly tuned libraries for CNNs such as Nvidia’s
cuDNN or ARM Compute Library. Such libraries are the basis for
higher-level, commonly-used, machine-learning frameworks such
as PyTorch or Caffe, abstracting them away from vendor-specific
implementation details. However, writing optimized parallel code
for GPUs is far from trivial. This places a significant burden on
hardware-specific library writers which have to continually play
catch-up with rapid hardware and network evolution.

To reduce effort and reduce time to market, new approaches are
needed based on automatic code generation, rather than manual
implementation. This paper describes such an approach for direct
convolutions using LIFT, a new data-parallel intermediate language
and compiler. LIFT uses a high-level intermediate language to ex-
press algorithms which are then automatically optimized using a
system of rewrite-rules. Direct convolution, as opposed to the ma-
trix multiplication approach used commonly by machine-learning
frameworks, uses an order of magnitude less memory, which is
critical for mobile devices. Using LIrT, we show that it is possible
to generate automatically code that is X10 faster than the direct
convolution while using X3.6 less space than the GEMM-based
convolution of the very specialized ARM Compute Library on the
latest generation of ARM Mali GPU.
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1 Introduction

Convolutional neural networks [8] (CNN) dominate the field of
computer vision and image processing. Due to the availability of
parallel accelerators such as mobile GPUs, we are able to use CNNs
to perform these complex tasks on resource constrained mobile
devices. However, modern neural networks are computationally
demanding, yielding large memory footprints and slow inference
times, which has slowed their adoption in embedded settings.

CNNss typically have several convolution layers and one or more
fully connected layers. Most of their execution time is spent in
convolutions [15].Convolutions slide several kernels across a multi-
channel 2D image (e.g., the first input has typically three channels,
RGB). The layers configurations vary significantly across networks
and even among layers of the same network. For instance, in VGG ar-
chitectures [19], the first convolutional layer operates on a 224x224
image with 3 channels while the 7th layer operates on a 112x112
image with 128 channels. The size and shape of convolutional ker-
nels might also vary between networks or layers. This diversity
in convolution input shapes represents a significant challenge for
high-performance software engineers. In fact, obtaining good per-
formance for rapidly evolving networks, hardware and workloads
is a significant engineering challenge for library vendors relying
on hand-coded solutions.

Most neural network libraries, such as Caffe [13] for CPU and
CuDNN [5] for Nvidia GPU, solve this issue by expressing convo-
lutions as General Matrix Multiplication (GEMM), since heavily
optimized implementations are readily available. While this ap-
proach leads to high-performance, it significantly increases the
required memory footprint, which can be a problem when running
on mobile devices. For instance, a GEMM implementation of the
2nd convolutional layer of VGG requires 116 MB of memory for
a single image while the direct convolution requires only 13 MB.
If a large neural network processes multiple images (e.g., a video
stream) at once, the device memory is quickly filled up.

Support for high performance direct convolution is not as com-
mon given that it is a specialized operation compared to the more
generic GEMM. As a result, vendors typically do not invest as much
effort in providing a tuned direct convolution implementation. As
an example, the ARM Compute Library implementation of direct
convolution only supports a handful of convolution shapes and is
actually 10X slower than its GEMM counterpart on the ARM Mali
GPU. This calls for an automatic approach that produces highly-
specialized high-performance code for direct convolutions.
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Figure 1. GEMM input preparation: im2col transformation applied
to two 33 kernels and portion of the larger input matrix generated
from the smaller original 5 X 5 input image.

This paper presents an automatic code generation approach for
direct convolution based on L1FT. LIFT expresses algorithms using a
high-level data-parallel Intermediate Representation (IR). A system
of rewrite rules optimizes LIFT expressions to specialize on the
target architecture.

More specifically, this paper shows how CNN convolutions are
expressed and optimized in LirT. This is achieved by exploring
a parametric space which includes tile sizes, amount of padding,
amount of data reusage and the number of sequential operations
performed by a thread. A series of constraints is automatically
produced to restrict the search to valid combinations of tuning
parameters (e.g., input size must be divisible by tile size). Using
the latest generation of ARM Mali GPU, we demonstrate that LIrT
generates high-performance direct convolution code that is on av-
erage X10 faster than the ARM compute library direct convolution
implementation, while using x3.6 less space than GEMM-based
convolution provided by the same library.

To summarize, the main contributions are:

e Show how we leverage LIFT to express the convolutional
layers of neural networks;

o Evaluate a large optimization space of 1,000 points with L1rT;

o Produce code automatically for direct convolution that achieves
a speedup of X10 and memory saving of x3.6 over the ARM’s
own high performance library on the ARM Mali GPU

2 Motivation
2.1 Convolutional Neural Networks (CNN’s)

CNN s are the tool of choice for most computer vision problems.
They are composed of stacked layers of convolutions over multi-
channel inputs, where each layer produces a feature map per con-
volution kernel. In computer vision, the first image passed to a
convolutional neural network has three channels, red, green and
blue channels. They get transformed in scale and value based on
the learned kernel weights at each layer.

For classification tasks, the output tensor flattens each feature
map into a vector and passes it to one or more affine transforms.
These affine transformations account for very little of the total
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Figure 2. Runtime memory footprint of largest layers in some of
the most popular deep neural networks.

inference time. For example, in SENet [11], the most recent Im-
ageNet winner, convolution accounts for 99.99% of total floating
point operations. Therefore, this paper focuses primarily on the
convolution operation.

2.2 Direct Convolution

Each convolution kernel has a receptive field of spatial size
(kernel,,jqrn X kernelpeigns) in 2D, usually square, K X K, and
a depth to match the input number of channels C, across all M
kernels. On an input image size C X H X W the direct convolution
is performed with nested loops:
input[CI[HI[W]; kernels[MI[KI[KILCI; output[MI[CHI[WI;
for h in 1 to H do
for w in 1 to W do
for o in 1 to M do
sum = 0;
for i in 1 to K do
for j in 1 to K do
for ¢ in 1 to C do
sum += input[c][h+i][w+jIxkernels[o][i1[jIlc];
output[o][wl[h] = sum;

2.3 GEMM

The convolution operation is commonly implemented as matrix
multiplication due to the availability of highly optimized GEMM
routines available in libraries for both CPU (openBLAS) and GPU
(CLBlas, cuDNN). This is achieved through the image to column
(im2col) transformation, which unrolls each kernel into a row to
form a matrix of all kernels, and each patch of image is mapped to
a column to form another large matrix with a number of columns
equal to the times each kernel should be convoluted over the im-
age for the direct convolution approach. Matrices formed by each
image channel are concatenated row-wise. The entire convolution
operation is performed by executing one single dot product over
these two large matrices using an efficient GEMM routine.

Figure 1 presents the im2col operation, where two 3 X 3 kernels
are convoluted on a single channel 5 X 5 image. With direct con-
volution, the image has 25 elements and the two kernels have 9
elements each. To perform GEMM, kernels are unrolled into two
rows, and through im2col the input is mapped to the input-patch
matrix which is 9% larger than the original image. In total, this sim-
ple convolutional layer requires at least 9x more memory for the
GEMM method than it would otherwise with the direct convolution.

2.4 Memory footprint

Figure 2 shows the actual run-time memory footprint required
by the largest layer in the most popular deep neural networks.
GEMM requires consistently more memory than direct convolution
(one order of magnitude) due to increased memory size of the
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def stencil2D(weights [[float]s]s,
inputData [[float]width]height)
[[floatlwidrh-2]neignt-2 = {
mapWrg (0) (mapLcl (@) (neighborhood -> {
join(toGlobal(id,
reduceSeq(toPrivate(id,0.0f),
(acc, (1,r)) -> {acc + 1 *x r},
zip(join(neighborhood),
join(weights)))))3),
slide2D((3,3),(1,1),inputData))}

Listing 1. Example of a 2D Stencil

transformed input, which can be a limitation when deploying on
mobile and embedded devices.

3 Background: the LirT System

The design goal of LIFT is to raise the programming abstraction and
enable automatic performance optimizations on massively parallel
accelerators, such as GPUs. LIFT provides a high level Interme-
diate Representation (IR) [20], and a compiler that automatically
translates the high level IR to low level target code. The LirT IR
is functional where operations are side-effect free, enabling com-
position of LIFT primitives naturally. Optimizations choices are
encoded using a system of rewrite rules that capture the algorithmic
and hardware-specific optimizations.

3.1 Li1FT Abstractions

L1rT includes hardware agnostic algorithmic primitives, and low-
level primitives which encodes specific hardware details.

3.1.1 Algorithmic primitives
The main algorithmic primitives supported by L1rT and used in
this paper are listed below. These algorithmic primitives only ex-
press what need to be computed, shielding programmers from any
hardware-specific details.
map:(f:T— U, in:[T]p) — [Uln

reduce : (init : U, f:(U,T) - U, in:[T]p) = [Uh
[Tln, in2: [Uln) = [(T,U)]n
split: (m:int, in: [T]n) = [([Tlmln/m
[([Tlmln) = [Tlmxn

slide : (size : int, step : int, in: [T]n) — [[Tlsize] n-sizetstep
step

pad:(l:int, r:int, value: T, in: [T]n) = [T]jsner
transpose : (in : [[T]n]m) — [[Tlmln
reorder: (f :int — int,in: [T],) — [T]n
let:(f:T—U,input:T) - U

zip : (inl :

join: (in:

[T], denotes an array T and length n, where n is a symbolic
arithmetic expression. (T, U) is a tuple whose elements are of type
TandU.T — U is a function from T to U.

The map, reduce, zip are self-explanatory from their type. split
creates an extra dimension in an array while join flattens a 2D
array into a 1D one. slide moves a window of a fixed size across
the input by a given step and produces an array of neighborhoods.
pad pads an array with a fixed value, I times to the left and r times
to the right. transpose simply transposes a 2D matrix; reorder
permutes elements in the input array using an indexing function.
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Figure 3. Visualization of the 2D Stencil Example in Listing 1

An example indexing function is striddenIndex(s), which orders
elements with a stride s thus mapping an element i to position
i/n+s=(i%n). Finally, the 1et primitive bounds an input value to a
scope which is used in LIFT to express reusage as we will see later.
The type of let is similar to that of a function application.

The LirT compiler mostly handles 1D primitives. Higher-level ab-
stractions for multi-dimensional arrays [10] can be built by reusing
1D primitives. For instance, we can define map, slide and pad that
operates on 2D arrays as follows:

map2D (f,input) = map(x -> map(f,x),input)

slide2D ((sizel,size2),(stepl,step2),input) =
map (transpose,slide(sizel,stepl,map(row ->
slide(size2,step2,row), input)))

pad2D(l,r,t,b,value,input) =
transpose(
map(col ->
pad(t,b,value,col),transpose(map(row ->
pad(l,r,value,row),input))))

3.1.2 Hardware-specific primitives

In order to support the generation of code for parallel accelerators,
LirT introduces low-level primitives that are tightly coupled with
the hardware-specific programming model. We review brifely the
main OpenCL primitives that are used in this paper to target a
mobile GPU.

Map & reduce LIFT exposes variation of the map primitive corre-
sponding to the OpeCL programming model: mapWrg and mapLcl.
These assign computation to the workgroups and local thread, re-
spectively. These primitives take an additional parameter specifying
the dimension in which to map the computation in the thread itera-
tion space. Sequential versions of the reduction and map primitives
also exist in the form of mapSeq and reduceSegq.

Vectorization LIFT provides asVector and asScalar which cast
scalar arrays to vector types (e.g., float4) and vice versa. vectorize
is provided to vectorize any scalar operator.

Address Spaces Finally, LIFT expresses OpenCL address spaces
using toGlobal and toPrivate, which force the enclosed function
to write its results into either address spaces. Private memory usu-
ally corresponds to registers while global refers to off-chip GPU
RAM accessible by all threads.

3.2 Example Stencil Program

This section reviews how LIFT expresses stencil computations [10],
which forms the basis for convolutions. Listing 1 shows an example
code using LIFT primitives to express a stencil computation. The
function stencil2D takes a 3 X 3 weight array and a 2D image array.
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kernel stencil2D(global float * weights,
global float * inData,
global float * outData,
int width, int height) {
for (int wrg_i = get_group_id(0Q); wrg_i<height;
wrg_i += get_num_groups(@)) // mapWrg
for (int 1lcl_i = get_local_id(@); lcl_i<height;
lcl_i += get_local_size(@)) { // mapLcl

private float acc = 0.0f;
for(int i=0; i<9; i++)
acc = acc + weights[i] =*
inDatalwrg_i*xwidth + lcl_i +
(i%3-1) + (i/3xwidth-width)]
out[wrg_i*width+lcl_i] = acc;}} //toGlobal(id)

// toPrivate(id)
// reduceSeq

Listing 2. Code generated with LirT for the 2D Stencil example
from listing 1.

The body consists of two parts: the data layout arrangement and
the core computation. For data layout, it first creates a 3 X 3 sliding
window using slide2D in line 10 which results in a 2D neighborhood.
Then, two maps are used in line 4 to schedule the work to each
local thread in each workgroup running on the GPU hardware.

Each thread performs the core computation part on a neighbor-
hood, in lines 8 to 6. This process is visualized in fig. 3. First, two
joins are used to flatten the two 2D arrays: the weight array and the
sliding window (i.e., neighborhood), into simpler 1D arrays. Then,
the two 1D arrays are zipped into a single array of tuples, and re-
duced sequentially to a single scalar value which is the convolution
output for each single image pixel position.

3.3 Code Generation Example

LirT produces parallel OpenCL code by walking the program IR
tree and emits code for each primitive. The exception to this process
are the primitives that are changing the data layout, such as join,
split, zip, pad or slide. In these cases, the compiler builds an
internal representation called a view [20], which captures the effects
that these primitives have on data layout. Then, when the data is
accessed by other primitives, the compiler uses the information
stored in the view to produce the right accesses to memory.
Listing 2 shows the code produced by the LIrT compiler (with
minor cosmetic changes such as naming and indentation) for the
example in listing 1. First, a for loop for distributing the work
among workgroup in the dimension 0 is generated on line 5 corre-
sponding to the mapWrg. Then, a second loop for distributing the
work among local threads is generated on line 7 corresponding
to the mapLcl. The reduction accumulator is allocated in private
memory and initialized on line 10. The reduction for loop follows,
which accumulates the results of multiplying an element of the
weight together with the corresponding element of the input data.
Note that the array accesses are automatically generated using the
information in the view built from the slide and zip primitives.

3.4 Optimization through Rewrites

L1FT uses rewrite rules to encode optimization choices. This section
briefly discusses two examples of such rewrites.

N. Mogers et al.

3.4.1 Tiling

Tiling improves locality and enables work distribution to indepen-
dent groups of threads. When tiling the input data of convolutions,
care must be taken to ensure that the tiles overlap. To achieve this,
tiling of convolutions is achieved by simply reusing the slide2D.
This optimization is encoded using the following rewrite rule:

f(slide2D ((sizel,size2),(stepl,step2),input))
—
map2D (f,
slide2D((ts1,ts2),(ts1-stepl,ts2-step2),
slide2D((sizel,size2),(stepl,step2),input))

This rewrite matches a function f applied to the results of a slide2D.
The function f could be performing a convolution as in the exam-
ple from listing 1. In order to perform the tiling optimization, this
rewrite replaces the matched expression by two level of nested
slide2D and a map2D applied to f. The first slide2D at the bottom
is the original one producing a 2D array of neighborhoods. The
second one on top is the actual tiling of size ts1 X ts2 which is
performed by sliding the tile in 2D. The step is equal to the de-
sired tile size minus the original step. This results in a 2D array of
overlapping tiles containing 2D neighborhoods. The function f is
finally mapped in 2D over each tile.

3.4.2 Vectorization

Vectorization is another example of an important optimization that
highly benefits GPUs such as the ARM Mali GPU by using vector

loads and stores and the built-in dot operator.
The following rewrite expresses this optimization:

map (f, input)
—
asScalar (map(vectorize(f),(asVector(input))))

When a function f is mapped, it is possible to vectorize the function
with the LirT vectorize primitive. The asVector cast the input
scalar array into vector type while asScalar does the reverse.

4 Direct Convolution in L1FT

We now describe how a convolutional layer is expressed in LIrT
and introduces the low-level optimizations applied.

4.1 High-level LirT Expression

Listing 3 shows the LIFT expression of a convolution layer with
three inputs. kernelsWeights contains the weights of all the ker-
nels across the width, height and input channels. kernelsBiases
are the biases, one per kernel. inputData contains the layer’s input
which is a 3D array (width X height X input channels). padSizeisa
tuple of four values that specifies how much padding is required in
each direction by the layer specification. kernelStride specifies
by how much each kernel is displaced across the input (the step).
The output data is a set of feature maps represented as a 3D array
with the outer dimension corresponding to the number of kernels.

This LIFT program in listing 3 consists of three steps. First, data
is padded with zeros as per the configuration of the layer. Then,
we slide in 2D across the padded input along the two spatial di-
mensions (inputWidth and inputHeight) producing the sliding
windows. Finally, convolution is performed using a combination
of LIFT primitives. First, we map over each sliding window using
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def convLayer (kernelsWeights
[float]numKernel )
inputData

padSize (int,int,int,int),

: [[[float]outWidth]outHzight]numKernzl = {
value = @ ,inputData)

val paddedInput = pad2D(padSize,

[[[[float]inputChannels]kernelWidth]kernelHeight]numKernel , kernelsBiases

[[[float]inputChannels]inputWidth]inputHeight )

kernelStride (int,int))

val slidingWindows = slide2D(kernelHeight, kernelWidth, kernelStride._1, kernelStride._2, paddedInput)

map2D(slidingWindow ->
map ((singleKernelWeights,

singleKernelBias) ->
reduce(init = singleKernelBias, f = (acc, (x,

w)) -> {acc + x * w},

zip(join(join(slidingWindow)), join(join(singleKernelWeights)))),

zip(kernelsWeights,
slidingWindows)}

kernelsBiases)),

Listing 3. High-level Lift expression of convolutional layer

kernels I I
flattened
.......... | YV | window
_________ / / // [— e—
""" I f— ;///, I chunks
| \.Nmovtr'/ |
I tile I
image arp |grp2|grp3 I grp | flattened

| kernels

Figure 4. Visualization of the low-level LIFT expression.

map2D on line 7. Then, kernelsWeights and kernelsBiases are
zipped together on line 11 and mapped over on line 8. On line 9,
we finally reduce over the flattened and zipped slidingWindow
and singleKernelWeights. The zipping of the slidingWindow
and singleKernelWeight ensures that the reduction operates on
pair of corresponding elements from both arrays. The reduction
operator multiplies the corresponding elements and adds to the
accumulator which is initialized with a singleKernelBias.

4.2 Low-Level LirT Expression

As shown in Listing 3, convolution is expressed as a set of reductions
of sliding windows. However, in popular deep CNNs such as VGG,
ResNet and GoogleNet, most convolutional layers are wide to such
extent that the whole input does not fit in the cache (e.g., L2). We
address this issue by tiling the input and splitting reduction in
two steps. The first GPU kernel tiles the input, splits each sliding
window of each tile into chunks and reduces each chunk to a single
value. This resulting vector of values per sliding window is reduced
to one final value in the second GPU kernel.

To ensure that the tiles fit perfectly with the input sizes, extra
padding might be required on the input using another GPU kernel
before processing the data. Conversely, an extra GPU kernel might
be required at the end to crop back the output. We discuss all four
stages below.

4.2.1 Padding

The padding expression has a dual purpose. First, it pads the input
with zeros along all four edges as per the neural network architec-
ture. Secondly, it zero-pads the input across the right and bottom
edges so that the resulting array can be perfectly tiled. The amount
of padding p is determined automatically by a constraint solver
and is explained later.

Dimension Size

Workgroup dim. 1 Number of tiles in the input
Workgroup dim. 0
Thread dim. 1

Thread dim. 0

Number of kernel groups
Number of sliding window groups in a tile
Number of sliding window partitions

Table 1. OpenCL dimension sizes defined in terms of tuning pa-
rameters

4.2.2 Partial Convolution

Figure 4 presents an overview of the partial convolution algorithm.
Acquiring input image and a set of convolutional kernels, we split
the image into tiles and kernels - in kernel groups. Each combina-
tion of a tile and kernel group is processed by a single work group.
Then, a window of the spatial size kernelWidth x kernelHeight
is slided across the tile. This results in a set of sliding windows,
which at this point are just virtual views into data.

Each sliding window is flattened across two spatial dimensions
and input channels, and split into chunks. Each chunk is processed
sequentially by a single thread. Each thread can process chunks
from more than one sliding window. Each kernel is split into chunks
accordingly; kernels are flattened across three dimensions and split.
Each sliding window chunk is coupled with corresponding chunks
in each of the kernels in the group. A thread processes each pairing
of the input chunk with the kernels in a kernel group.

Processing each input-kernel chunk pair involves multiplying
input values and corresponding weights, and summing the resulting
vector. Thus, each sliding window is reduced to a vector of values,
corresponding to each chunk in the sliding window. This is partial
reduction; another expression further reduces the vector to each
value resulting in a full convolution of each sliding window to a
single output value.

Listing 4 shows our L1rT algorithm. First, the input is tiled using
Slide2D and the 2D array of tiles is flattened (line 5). The tile size
is controlled by the parameter § and the stride is calculated to
minimize the amount of tile overlap:

tilingStride = 0 — (kernelWidthHeight — kernelStride)

We express convolution within each tile by nesting a second
slide2D on line 6. This new five-dimensional view of the input
data is further transformed using the inner expression on line 8.
The 3D sliding window and convolutional kernels are represented
as flat vectors; this simpler data layout enables coalescing of data
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1 | def partialConv(kernelsWeights [[[[float]inputChannels]kernelWidth]kernelHeight]numKerneIs,

2 paddedInput [[[float]inputChannels]padded[nputWidth]paddedInputHeight ’

3 kernelStride (int, int))

4 [[[[[[float]]windowSize/w]o—]nWindows]nTile/o‘]K]numKernels/K]nTilesInlnput = {

5 val tiledInput4D = join(slide2D (60, tilingStride, paddedInput))

6 val tiledSlidedInput5D = map(join(slide2D ((kernelHeight, kernelWidth), kernelStride)), tiledInput4D)
7 val windowSize = inputChannels « kernelWidth « kernelHeight

8 def coalesceChunkVectorizeWindow(window [[[floatlinputchannelslkerneiwidthlkernelHeight])

9 [[floatu]w]windowSize/w = {

10 val flatWindow1D = join(join(window))

11 val flatCoalescedWindow1D = reorder(striddenIndex (windowSize/w), flatWindow1D)

12 val flatCoalescedChunkedWindowlD = split(w, flatCoalescedWindowiD)

13 asVector (v, flatCoalescedChunkedWindowl1D) 3}

14 val tiledSlidedCoalescedChunkedVectorizedInput4D = map(tile4D -> split(o, map(window3D ->
15 coalesceChunkVectorizeWindow(window3D), tile4D)), tiledSlidedInput5D)

16 val groupedCoalescedChunkedVectorizedKernelsWeights4D = split(kx, map(singleKernelWeights ->
17 coalesceChunkVectorizeWindow(singleKernelWeights), kernelsWeights))

18 mapWrg (1, inputTile3D ->

19 mapWrg (@, kernelsGroupWeights3D -> transpose(

20 mapLcl (1, inputWindows2D -> transpose(

21 mapLcl (0, (inputWindowsChunk1D, kernelsGroupChunk2D) ->

22 mapSeq(singleKernelReducedChunk -> toGlobal(singleKernelReducedChunk),

23 join(

24 reduceSeq (

25 init = mapSeq(toPrivate(id(Value(@, [float]<)))),

26 f = (acc, (inputsValue, kernelsGroupValuelD)) ->

27 let(inputsValuePrivate ->

28 mapSeq((accValue, singleKernelValue) ->

29 mapSeq ((inputValuePrivate) ->

30 accValue + vectorize(v, dot(inputValuePrivate, singleKernelValue)),
31 inputsValuePrivate,

32 zip(acc, kernelsGroupValuelD),

33 mapSeq(toPrivate (vectorize (v, id(inputValue))))),

34 zip(transpose (inputWindowsChunk1D), transpose(kernelsGroupChunk2D))))),
35 zip(inputWindows2D, transpose(kernelsGroupWeights3D)))),

36 inputTile3D)),

37 groupedCoalescedChunkedVectorizedKernelsWeights4D),

38 tiledSlidedCoalescedChunkedVectorizedInput4D)

Listing 4. Low-level LIFT expression example of partial convolution

accesses using reorder, an important GPU optimization that im-
proves locality. The elements are virtually reordered with the stride
of windowSize/w, where w refers to the size of the partial window
processed by one thread. The resulting stride is the number of
threads processing the same window, ensuring each thread access
consecutive elements. The window is vectorised with vector length
v which is important for the Mali GPU. Finally, windows are split
in groups; each thread will process chunks from the whole group
of sliding windows.

Lines 18-21 express mapping of parallel computations onto OpenCL
threads; for the sizes of the respective work group dimensions, see
1. In dimension 1, each work group processes one input tile; in di-
mension 0, each work group is assigned one group of convolutional
kernels. The grouping of kernels is expressed on line 16; the size of
a kernel group is controlled by the parameter «.

Inlocal dimension 1, threads are assigned an input window group.
In local dimension 0, threads are assigned a chunk of each input
window in a window group and a set of corresponding chunks of a
group of kernels. By reading the input window chunk only once
and reusing it for k kernels within the same thread, we reduce the

number of reads by a factor of k; by reading the kernels once and
reusing them for ¢ sliding windows within the thread, we further
reduce the number of reads by a factor of . By iterating across
the fastest changing dimension 0 in the innermost loop, we ensure
that the quad threads access consecutive window chunks; thanks
to the prior coalescing now stored in the view, quad threads access
consecutive locations in memory further reducing the number of
reads by a factor of four.

The reduction of the partial window across several kernels is
expressed on line 24: the accumulator is initialised to a vector of x
zeros on line 25 and the input to reduceSeq on line 34 is an array
of tuples of partial window elements and corresponding elements
from kernel weights.

The let primitive on line 27 ensures that the input values are
fetched into the private memory once on line 33 and are reused
across iterations of the sequential loop on line 28.

4.2.3 Summing partial results

The third expression completes the convolution by reducing the
partial weighted sums of each window. Each work group processes
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a single tile for a single kernel group; each thread reduces one or
more sliding windows in one output channel.

4.2.4 Cropping

The final expression reverses the effect of the extra padding per-
formed in the first expression. It crops the output using pad2D with
negative values for padding sizes. The amount of horizontal and
vertical cropping is calculated as:
. P
cropSize = —————
P kernelStride
The cropSize is guaranteed to be whole by the slide constraint
discussed later in section 5.2.

5 Space Exploration

When exploring the search space of possible implementation, we
leverage rich algorithmic information captured by the LirT IR. Type
safety and provable correctness of rewrite rules allow to automati-
cally explore structural code transformations that would otherwise
require costly static analysis.

LIFT supports symbolic parameter values into the types. Param-
eter tuning consists of finding valid combinations of tuning values,
replacing them at the type level and generating a specialized imple-
mentation. This leads to GPU kernels that are specialized for the
given input parameters and tuning values.

5.1 Tuning parameters and rewrite rules

Table 2 shows the tuning parameters.

Input tiling Splitting the input optimizes cache locality by en-
suring that adjacent threads process the same neighborhood. The
tile size is explored in the range from kernel size to double the
padded input size.

Padding Changing the input size solves the problem of finding an
efficient tile size that both splits the input evenly and can be evenly
split by the convolutional kernels. Though time might be wasted
on processing dummy data, we can achieve better data alignment
and cache locality.

Kernel and sliding window grouping Processing multiple ker-
nels and sliding windows per thread results in data re-usage: input
data is fetched once into private memory and is reused during out-
put channel computation; same for the weight coefficients. The
benefit of increased re-usage is a tradeoff since large values of k
increase register pressure.

Sliding window chunking Each sliding window and kernels
are flattened and split into chunks, processed sequentially within
threads. Smaller values for chunk size result in more parallel oper-
ations. Varying the amount of sequential work allows to explore
work group sizes which influences register consumption and maxi-
mum occupancy of the compute cores.

Vectorization The parameter space includes scalar and vector
operations, which is achieved by automatically rewriting the expres-
sion to use asVector and vectorise functions. Vectorizing data
loads reduces memory access times and allows LIFT to use the dot
builtin function tor compute dot-product in optimized hardware
units.

Coalescing Data accesses can be coalesced through rewriting so
that adjacent threads access consecutive scalar or vector values in
memory. Coalescing results in batch reads and cache line reusage.
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Symbol Parameter

0 Input tile size

Optimizational padding size

Number of kernels per workgroup
Number of sliding windows per thread
Sequentially processed input elements

< & Q a o

Vector size

Table 2. Convolution expression tuning parameters

Unrolling During rewriting, LIFT optionally unrolls the inner-
most reduction of the partial convolution. The compiler also re-
moves the loops over work group or work item indices where the
corresponding dimensions sizes are the same as the number of
elements being processed.

5.2 Constraint inference

The expressiveness of LIFT and the complex space produced by
rewriting results in a high number of dependent and independent
parameters which is hard to manual analysis. To address the prob-
lem of parameter validation, we used automatic constraint inference
based on the information encoded in the IR and the type system. By
traversing the AST, we collect variables from types and parameters,
and infer continuous and discrete constraints on the parameter
values. A constraint is expressed as a record specifying the condi-
tion that must hold true and the list of parameters the condition
is imposed upon. We present examples of the constraints that are
automatically derived from a LIFT expression.

Algorithmic Algorithmic constraints are inferred based on the
type of an IR primitive and the values of its parameters. Satisfying
such constraints is required for producing semantically correct
results. For the split primitive, the inferred constraint is as follows:

split: (m:int, in: [T],) >n%m=0

This constraint ensures that the split input is divisible evenly
into chunks of m elements. The compiler traverses the arithmethic
expression of the condition n%m = 0 and collects all the parameters;
they are marked as co-dependent.

asVector imposes a similar constraint to that of split:

asVector: (m: int, in: [T]y) =>n%m=0

slide comes in two conceptual flavours based on the constraints
it imposes on the variables. The slideStrict requires that the
sliding window covers perfectly the input:

slideStrict : (sze : int, step : int, in:[T],)

(n—sze) N
step

1=0

slideStrict must be used for tiling, when the semantic correct-
ness of the expression must be preserved for all parameter values.
For kernel sliding, we use the normal s1ide since sliding is allowed
to produce partial results; a notable example is the first layer of
AlexNet [14].

Hardware The specifications of the target hardware impose the
constraints on the maximum amount of threads in a single dimen-
sion, work group size, total memory allocated and maximum single
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Layer Input Conv ARM ARM  Lift
Direct GEMM
0 3x224x224 64x3x3 38.61 2.98 9.09
2 64x224x224 64x3x3 852.03 80.14 77.08
5 64x112x112 128x3x3 426.22 37.94  40.65
7 128x112x112  128x3x3 906.66 88.09  69.60
10 128x56x56 256x3x3 452.48 23.73  58.90
12 14 256x56x56 256x3x3 975.69 60.45 84.75
17 256x28x28 512x3x3 546.63 22.30  46.07
1921 512x28x28 512x3x3  1201.93 58.78 94.83

2426 28 512x14x14 512x3x3 311.04 17.13 19.8

Table 3. All unique convolutional layer configurations of VGG-16
and the runtime [ms] evaluated for the ARM Compute Library
(Direct and GEMM) and the LirT-generated code for the HiKey 970
(Kirin 970 processor)

buffer size. These constraints can be inferred by calculating the min-
imum resources necessary to compute an expression and matching
them against respective OpenCL driver information.

5.3 Constraint solver

To explore the space of valid parameter value combinations for a
given layer configuration, we designed the following search strat-
egy. Firstly, we use the rewrite rule system to produce a parametric
candidate expression; this expression is traversed for parameter
and constraint inference. Next, we sort the parameters in the order
in which they need to be explored - for example, if the parameter
A depends on the parameter B, B needs to be evaluated first. To
find this ordering, we represent the collection of constraints as
a directed acyclic graph and sort it topologically. The resulting
partial sorting order is finalized by imposing a random order on
the unsorted groups of parameters. The derived parameter order is
used to incrementally generate random combination of parameter
values that satisfy all the constraints.

6 Experimental Methodology

Code generation The LIFT compiler is used to generate the code
that runs on the GPU. We use an extended version of the LiFT
compiler to also generate OpenCL host code that sets up the de-
vice, compiles the GPU code, sends/retrieves the data and executes
the GPU code. For each layer configuration, we generated 1000
randomly chosen implementations that satisfy all the constraints.
As a baseline to evaluate the performance of our generated code,
we use the ARM Compute Library (v19.02) with the Graph API,
implementing the same layers and running these on the GPU by
indicating cl as the target from the API. All the ARM compute
library results are produced using ARM’s built-in auto-tuner.

Benchmarks To evaluate the code generated, we use all nine
unique layer configurations of the VGG-16 model [19]. This network
is well-studied performance in literature and has higher resource
requirements than others such as ResNet and GoogleNet [3]. Table 3
presents the layer configurations.

All results are validated by using a fixed random input and
comparing the output with that of PyTorch.
Platform In this paper, we target the ARM Mali-G72 (12 cores)

mobile GPU using the HiSilicon Kirin 970 SoC running Debian
GNU/Linux 9.8. The highest frequency (767MHz) was used.

N. Mogers et al.

GPU execution time For our own results, we measure GPU exe-
cution time using the c1_event associated with the kernel launches.
For the ARM compute library, GPU execution time is measured
by intercepting all OpenCL calls using our own profiler, which is
an OpenCL wrapper library. The library automatically grabs the
cl_event associated with each OpenCL kernel launch or creates
one on the fly if required. This is done in a fully transparent way
and does not influence the application being profiled. This allows us
to reuse the exact same methodology for measuring execution time
for the LirT generated GPU code and the ARM compute library.
The numbers reported are the sum of all the GPU kernels involved
in the operations of a convolutional layer, including the time to pad
the input and crop the outputs.

7 Evaluation

This section explores the performance of the automatically gen-
erated direct convolution in LIFT. A comparison is given against
the best hand-written library for the ARM Mali GPU: the ARM
Compute Library.

7.1 Comparison with ARM Compute Library

Table 3 shows the execution times of the LirT-generated OpenCL
kernels and the ARM Compute Library direct convolution and
GEMM implementation. Both these versions have been auto-tuned
using the tools provided by the ARM Compute Library. As evident
from the results, the LiFT-generated code is always faster than the
ARM Compute Library direct convolution and more space-efficient
than its GEMM method. Furthermore, in some cases it is actually
on par or better than the highly tuned GEMM implementation.

Figure 5 shows the performance of the LIFT generated code
expressed as throughput — amount of useful outputs generated per
second — compared to that of direct and GEMM-based convolution
from the ARM Compute Library. For every layer, LIFT is faster
than the ARM Compute library direct convolution and is X10 faster
on average. While LIFT kernels achieve only X0.7 the throughput
of the GEMM-based implementation, the memory consumption
is X3.6 less and is close to that of the vanilla direct convolution.
This demonstrates that our approach based on automatic code
generation outperforms a human expert.

7.2 Multi-objective optimization

Depending on application, priorities in neural network inference
optimization might shift. In a resource-bound system such as a
mobile GPU that is shared among multiple tasks, low memory foot-
print is required; for time-critical tasks, throughput or latency are to
be prioritized. Figure 6 demonstrates how search space exploration
allows for multi-objective optimization to cater for various budgets:
advancing the Pareto frontier results in a set of implementation
candidates to choose from statically or at runtime for specific time
and space requirements. In the case of VGG layer 2, the compiler
might prioritize space efficiency by using 25 MBytes to compute
results in 100 ms; when the memory budget is bigger, the compiler
can prefer the 77 ms kernel that uses 31 Mbytes of space.

Populating a sizeable Pareto set is made possible thanks to the
exploration of the tuning parameter search space, performed in
a safe way thanks to constraint inference. Compared to libraries
that depend on sets of handwritten kernels, a compiler can adapt
to finer differences in the workload and target hardware.
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Figure 6. The Pareto frontier of time and space efficiency of the
search space explored for layer 2 of VGG-16

7.3 Analysis of the Best Point

We now analyze one of the best points that we found using the
7th layer of VGG as an exmaple. Table 4 shows the best tuning
parameters found together with the thread local sizes for the GPU
kernel responsible for performing a partial convolution. These
parameters show that a workgroup processes a tile which can fit
9 sliding windows. 4 out of 128 kernels are processed by a work
group, enabling reusage of the input data multiple times, without
adding too much register pressure; 3 out of 9 sliding windows are
processed by each thread, enabling reusage of the weight data. The
amount of padding is also quite minimal, which avoids unnecessary
work. We also see that this point is vectorized which is good for
memory loads on the Mali-G72 architecture.

8 Related Work

Several deep learning frameworks have recently been developed.
Most of these frameworks rely on high-level graph-based repre-
sentations of neural networks [1, 3, 13, 18] to allow for automatic

Parameter Value
Input tile size 5X5
Number of kernels per workgroup 4
Number of windows per thread 3
Sequentially processed input elements 144
Optimizational padding size 11
Vector size 4
Unrolling No
Coalescing Yes

Table 4. Best parameters found for layer 7 of VGG-16

differentiation. Such graphs are too high-level to be mapped opti-
mally to specific hardware, so frameworks rely on hand-written
code provided by hardware vendors, as found in Intel’s MKL-DNN,
Nvidia’s TensorRT and ARM’s Compute Library.

To address this, multi-level graph representations such as MXNet,
XLA and TVM (3, 4, 17] have also been proposed, allowing sub-
graph and dataflow optimization to be made device-specific. Ten-
sorComprehensions [24] make use of the polyhedral compilation
model to perform operation optimization and scheduling, but so
far only target CUDA-capable GPUs. Depending on the target hard-
ware, MXNet either provides handwritten layer implementations
which lack portability or using BLAS libraries such as Atlas, MKL,
CuBLAS and OpenBLAS. These libraries are also constrained in
how much they can adapt to the target hardware relying just on
tuning and handwritten code selection. Another code generator
with auto-tuning is Latte [21], which has shown good performance
for CPU code, although not evaluated on mobile devices. Their
performance is achieved by generating code with cross-layer fu-
sion, which is problematic for modeling exact layer conditions. On
mobile platforms, MXNet only supports CPU-based libraries.
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Other works have recently explored efficient implementations
of direct convolution [2, 9, 25] but are limited in the scope of their
available target platforms. In particular, [9, 25] are reliant on the
availability of SIMD instructions and are specific to CPUs. Tsai
et al. [22] rely on efficient implementation of OpenCL kernels to
reduce memory requirement of GEMM by avoiding replication of
input patches, however this is not fast enough for mobile devices.

There have also been several developments at the algorithmic
level allowing for fast approximations to convolution [16, 23], or
computationally cheaper substitutions [6, 7, 12]. In this work we
have not considered such approximate methods, but leave them for
future exploration.

9 Conclusions

Most machine-learning frameworks rely on GEMM to implement
convolutions due to the availability of high-performance implemen-
tations on most parallel devices. The downside is that GEMM re-
quires an order of magnitude more memory than direct convolution,
which can restrict the application of neural networks for memory
limited embedded devices. Direct convolution is an attractive alter-
native, however, hardware-vendor provided implementations are
often an order of magnitude slower than their GEMM counterpart.

This paper has shown how we automatically generate high per-
formance direct convolution with L1rT for the ARM Mali GPU. This
approach leads to a X10 speedup and X3.6 memory saving over the
tuned ARM Compute Library implementations.
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