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SUMMARY

Fruit softening in Fragaria (strawberry) is proposed to be associated with the modification of cell wall com-

ponents such as xyloglucan by the action of cell wall-modifying enzymes. This study focuses on the in vitro

and in vivo characterization of two recombinant xyloglucan endotransglucosylase/hydrolases (XTHs) from

Fragaria vesca, FvXTH9 and FvXTH6. Mining of the publicly available F. vesca genome sequence yielded 28

putative XTH genes. FvXTH9 showed the highest expression level of all FvXTHs in a fruit transcriptome data

set and was selected with the closely related FvXTH6 for further analysis. To investigate their role in fruit

ripening in more detail, the coding sequences of FvXTH9 and FvXTH6 were cloned into the vector pYES2

and expressed in Saccharomyces cerevisiae. FvXTH9 and FvXTH6 displayed xyloglucan endotransglucosy-

lase (XET) activity towards various acceptor substrates using xyloglucan as the donor substrate. Interest-

ingly, FvXTH9 showed activity of mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) and

cellulose:xyloglucan endotransglucosylase (CXE). The optimum pH of both FvXTH9 and FvXTH6 was 6.5.

The prediction of subcellular localization suggested localization to the secretory pathway, which was con-

firmed by localization studies in Nicotiana tabacum. Overexpression showed that Fragaria 3 ananassa fruits

infiltrated with FvXTH9 and FvXTH6 ripened faster and showed decreased firmness compared with the

empty vector control pBI121. Thus FvXTH9 and also FvXTH6 might promote strawberry fruit ripening by the

modification of cell wall components.

Keywords: Fragaria vesca, Fragaria 3 ananassa, FvXTH9, FvXTH6, xyloglucan, xyloglucan endotransgluco-

sylase (XET), mixed-linkage glucan:xyloglucan endotransglucosylase (MXE), cellulose:xyloglucan endotrans-

glucosylase (CXE), localization assay, overexpression.

INTRODUCTION

Plant cells are surrounded by a primary cell wall that con-

sists of polysaccharides, proteins and sometimes also lig-

nin, and exhibits variability in composition and

organization. The ripening-associated softening of fleshy

fruit such as Fragaria (strawberry) is related to the selective

modification of cell wall architecture (Prasanna et al., 2007;

Fry, 2017a). During fruit ripening, modifications in the cell

wall structure are characterized by the solubilization of pec-

tic polysaccharides and by a decrease in the polymer size

of xyloglucan (Hayashi and Kaida, 2011; Paniagua et al.,

2017). Furthermore, the alteration of linkages between the

polymers, such as in the cellulose–hemicellulose interac-

tion, in parallel with decreasing fruit firmness takes place

(Brummell, 2006; Vicente et al., 2007).

Strawberry fruit have a short post-harvest shelf life as a

result of the dramatic reduction in firmness during ripen-

ing. Recent findings showed that strawberry softening is

closely related to pectin metabolism (Paniagua et al.,

2017). The middle lamella of the cortical parenchyma cells

is extensively degraded throughout ripening in strawberry
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(Perkins-Veazie, 1995). Moreover, the silencing of

genes encoding enzymes acting on pectins in strawberry,

such as pectate lyase (Jim�enez-Berm�udez et al., 2002;

Santiago-Dom�enech et al., 2008; Youssef et al., 2009),

rhamnogalacturonan lyase (Molina-hidalgo et al., 2013),

endo-polygalacturonase (Quesada et al., 2009; Pos�e et al.,

2013) and b-galactosidase (Paniagua et al., 2016), involved

in polyuronide solubilization and pectin depolymerization,

significantly enhanced fruit firmness at ripening.

Xyloglucan, a highly significant hemicellulose, plays a

crucial role in the determination of the physical properties

of the cell wall during growth (Albersheim et al., 2011; Park

and Cosgrove, 2015; Fry, 2017b). Xyloglucan possesses a

1,4-b-glucan backbone with 1,6-a-xylosyl residues along

the backbone. In dicotyledons, some of the xylose residues

are b-D-galactopyranosylated at O-2 and some of the galac-

tose residues are a-L-fucopyranosylated at O-2. As the 1,4-

b-glucan backbone can hydrogen-bond to cellulose

microfibrils, xyloglucan probably contributes to the inex-

tensibility of the cell wall when it tethers adjacent microfib-

rils and to the loosening of the cell wall when it is

degraded (Fry, 1989; Hayashi, 1989).

Several studies have analysed hemicellulose depolymer-

ization during strawberry ripening (Huber, 1984; Nogata

et al., 1996; Rosli et al., 2004). It has been suggested that

endo-b-1,4-glucanases modify the cellulose–xyloglucan
network. Nevertheless, the downregulation of endo-b-1,4-
glucanase in Fragaria 9 ananassa Duch did not alter fruit

firmness (Wooley et al., 2001; Palomer et al., 2006; Mer-

cado et al., 2010).

The discovery of the enzyme XTH (xyloglucan endo-

transglucosylase/hydrolase) in the early 1990s (Baydoun

and Fry, 1989; Smith and Fry, 1991; Fry et al., 1992; Nishi-

tani and Tominaga, 1992) has provided a candidate that

is considered a factor in cell wall modification leading to

fruit softening. XTHs are the best-known examples of

transglycanases, a class of enzymes that catalyse polysac-

charide:polysaccharide transglycosylation reactions

involving substrates such as xyloglucan, mixed-linkage

(1?3, 1?4)-b-D-glucan (MLG), cellulose, xylans and man-

nans (Frankov�a and Fry, 2013). XTHs can catalyse the

endolytic cleavage of xyloglucan polymers and the re-

joining of the newly generated reducing ends to other

xyloglucan molecules, which is referred to as xyloglucan

endotransglucosylase (XET) activity. In addition, XTHs

can also show xyloglucan endohydrolase (XEH) activity,

where water is used as an acceptor, and thus the xyloglu-

can molecule is hydrolysed (Fry et al., 1992; Nishitani and

Tominaga, 1992; Thompson and Fry, 2001; Rose et al.,

2002; Shi et al., 2015).

The XTHs are classified together with the lichenases,

which hydrolyse MLGs, in glycoside hydrolase family 16

(GH16, http://www.cazy.org/GH16.html; Planas, 2000;

Hrmova et al., 2007; Lombard et al., 2014; Behar et al.,

2018). The sequence similarity between XTHs and liche-

nases suggests that XTHs might be able to use MLG as an

alternative donor substrate (Strohmeier et al., 2004).

Indeed, it has been shown that an Equisetum hetero-trans-

b-glucanase (EfHTG; Figure 1) that is closely related to

XTHs can catalyse transglucosylation reactions with MLG

or cellulose (in preference to xyloglucan) as donor sub-

strate and xyloglucan oligosaccharides (XGOs) as acceptor

substrate (Fry et al., 2008; Simmons et al., 2015). The cor-

responding activities are termed MXE (MLG:xyloglucan

endotransglucosylase) and CXE (cellulose:xyloglucan

endotransglucosylase). Shinohara et al. (2017) recently

showed that AtXTH3, a member of the ancestral group of

XTHs (Figure 1) can catalyse cellulose:xyloglucan-oligosac-

charide (CXE) and cellulose:cellulose-oligosaccharide

transglycosylation, in addition to XET activity (xyloglucan:

xyloglucan-oligosaccharide transglycosylation).

The XTHs represent a huge multigene family, with 33

members in Arabidopsis thaliana (Yokoyama and Nishi-

tani, 2000), 25 members in Solanum lycopersicum

(tomato) (Saladi�e et al., 2006), 41 members in Populus

(poplar) (Geisler-Lee et al., 2006), 29 members in Oryza

sativa (rice) (Yokoyama et al., 2004) and 22 members in

Hordeum vulgare (barley) (Strohmeier et al., 2004). XTHs

have also been characterized in several fruits, such as

Actinidia deliciosa (kiwifruit) (Redgwell and Fry, 1993;

Atkinson et al., 2009), Malus domestica (apple) (Atkinson

et al., 2009) and Diospyros (persimmon) (Han et al., 2016).

Recently, only two divergent XTH genes, namely Fc-XTH1

and Fc-XTH2, have been identified in strawberry (Fragaria

chiloensis), but biochemical assays for their predicted XET

and/or XEH activity have not yet been performed (Opazo

et al., 2010). A recent study showed the identification of

26 putative XTH-encoding genes, named as FvXTHs, and

their transcriptomic analysis, but the corresponding pro-

teins have not yet been further characterized (Opazo et al.,

2017).

To determine the contribution of xyloglucan modifica-

tion to strawberry fruit softening during ripening, we

searched the genome sequence of the diploid strawberry

Fragaria vesca ssp. vesca accession Hawaii 4 for putative

XTH genes (Shulaev et al., 2011). Based on transcriptome

data (H€artl et al., 2017) and quantitative polymerase chain

reaction (qPCR) analysis, FvXTH9 and FvXTH6 were

selected for further analyses. We compared the in vitro

enzymatic characteristics, including donor/acceptor sub-

strate preference and enzyme kinetics, of FvXTH6 and

FvXTH9 heterologously produced in the yeast Saccha-

romyces cerevisiae, and performed in vivo localization

assays in Nicotiana tabacum (tobacco) leaves and transient

expression in F. 9 ananassa fruit. The results show that

the metabolism of xyloglucan at the early stages of straw-

berry fruit development contributes to softening and pro-

motes ripening.
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RESULTS

Selection of candidate genes

Putative XTH genes were searched in the F. vesca ssp.

vesca accession Hawaii 4 genome sequence to functionally

characterize strawberry xyloglucan modifying enzymes in

Fragaria. The transcript levels of the putative XTHs were

analysed in a transcriptomic data set obtained from fruit

(receptacle) of different developmental stages (green,

white and ripe) of three F. vesca varieties (Reine de

Vall�ees, Hawaii 4 and Yellow Wonder; H€artl et al., 2017;

Figure S1). FvXTH9 showed the highest expression level in

green receptacles of all three genotypes. The FvXTH9 tran-

script level in receptacle decreased with progressing ripen-

ing and was low in achenes throughout strawberry fruit

development. A sequence analysis of different putative

F. vesca XTH genes revealed that FvXTH9 was closely

related to FvXTH6 (48.5% amino acid sequence identity)

Figure 1. Phylogenetic tree of xyloglucan endotransglucosylase/hydrolases (XTHs) from different species. FvXTH9 and FvXTH6 protein sequences (indicated by

arrows) were aligned with XTHs from Arabidopsis thaliana (At), Brachypodium distachyon (Bd), Equisetum fluviatile (Ef), Fragaria chiloensis (Fc), Fragaria vesca

(Fv), Malus 9 domestica (Md), Populus tremula 9 Populus tremuloides (Ptt), Solanum lycopersicum (Sl) and Tropaeolum majus (Tm). EfHTG (hetero-trans-b-
glucanase) and BdXTH8 possess mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) activity, whereas AtXTH3 shows cellulose:xyloglucan endotrans-

glucosylase (CXE) activity (indicated by asteriks). The phylogenetic tree was constructed by the neighbour-joining method with 5000 bootstrap replications using

MEGA 7. The GenBank accession numbers are indicated in the figure. Groups I/II, IIIA and IIIB show the different groups of XTHs.

© 2019 The Authors.
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(Figure S2). Therefore, FvXTH9 and FvXTH6 might be

involved in strawberry fruit ripening and were selected for

further investigation.

To confirm the transcriptome data, the expression pat-

terns of FvXTH9 and FvXTH6 were examined by quantita-

tive real-time PCR in F. vesca fruit at different ripening

stages as well as in leaf and flower tissues (Figure S3).

FvXTH9 was highly expressed in fully developed green

fruit, whereas its expression level dropped in later stages.

A high expression level of FvXTH9 was also observed in

the flower, whereas its mRNA abundance was very low in

all other tissues investigated. The expression pattern of

FvXTH6 during fruit development resembled that of

FvXTH9, with the highest level found in fully developed

green fruit and with a clear decline in later stages. The

absolute expression level of FvXTH6 in fruit was much

lower than that of FvXTH9. Similar to FvXTH9, FvXTH6

was also highly expressed in flowers; however, FvXTH6

was expressed at a relatively high level in young leaf tissue

but at a low level in old leaf tissue. These data indicate that

FvXTH9 and FvXTH6 might play an important role in fruit

development and probably also in the flower. In addition,

FvXTH6 might be involved in cell wall modification in the

young leaf.

Phylogenetic analysis and amino acid sequence analysis of

FvXTH9 and FvXTH6

The deduced protein sequence of FvXTH9 is 294 amino

acids long, with a predicted molecular mass of 33.2 kDa

and a pI of 5.46. FvXTH6 consists of 293 amino acids with

a theoretical molecular mass and pI value of 33.3 kDa and

6.44, respectively. In contrast to the F. vesca genome data-

base (Shulaev et al., 2011), FvXTH9 and FvXTH6 were

recently named as FvXTH6 and FvXTH3, respectively

(Opazo et al., 2017); however, we decided to keep the

name of these two proteins as FvXTH9 and FvXTH6

according to the F. vesca annotation release 101. A phylo-

genetic tree of XTHs shows that FvXTH9 and FvXTH6 are

closely related to At-XTH9 and At-XTH6, respectively (Fig-

ure 1). Based on the phylogenetic tree of XTHs from differ-

ent species, FvXTH9 and FvXTH6 are classified in group I/II

(Figure 1), together with the well-characterized PttXET16A,

a strict XET enzyme (Johansson et al., 2004). All members

of group I/II studied to date, for example Arabidopsis

XTH12, 13, 14, 17, 18, 19 and 26 (Maris et al., 2009, 2011),

have proved to possess XET activity but not XEH activity.

Within group III, the bryophyte-free group, are subclades

IIIA, containing AtXTH31 (Zhu et al., 2012; Kaewthai et al.,

2013) and TmNXG1 (Baumann et al., 2007), with XEH activ-

ity, and IIIB, containing numerous XTHs such as AtXTH27

(Campbell and Braam, 1999), SlXTH5 and SlXTH8 (Miedes

and Lorences, 2009), with only XET activity.

Additionally, a multiple alignment was generated to

access relationships among group I/II of XTHs (Figure S4).

FvXTH9 and FvXTH6 contain the conserved motif of gly-

coside hydrolase family 16, (D/N)E(I/L/F)DFEFLGN, which

comprises the active-site motif (Campbell and Braam,

1998; Planas, 2000; Johansson et al., 2004; Baumann et al.,

2007), and also a potential N-linked glycosylation site, N-X-

S/T, indicating that these proteins possess the common

structural features of XTHs (Figure S4). FvXTH9 contains

the NEFDFEFLGN sequence at position 97–105, whereas

FvXTH6 has the DELDFEFLGN sequence at position 107–
115. FvXTH9 and FvXTH6 have N-T-T and N-R-T as putative

N-glycosylation motifs directly after the catalytic motif,

respectively. Most XTH genes have the N-glycosylation

motif immediately or spaced by 5–15 amino acids from the

catalytic motif (Kallas et al., 2005). These findings identify

FvXTH9 and FvXTH6 as typical class-I/II XTHs.

XET activity and pH dependency

To study the potential differential roles of the two putative

xyloglucan endotransglucosylase/hydrolases, the full-

length coding sequences of FvXTH9 and FvXTH6 were

amplified from F. vesca Hawaii 4 cDNA and cloned into

pYES2. Both FvXTH9 and FvXTH6 were expressed in the

heterologous S. cerevisiae expression system (Figure S5).

Radioactive XET activity assays were performed at various

pH values using the radiolabelled reduced xyloglucan hep-

tasaccharide XXXGol as acceptor substrate and tamarind

xyloglucan as donor substrate. The pH optimum of XET

activity of both FvXTH9 and FvXTH6 crude extract was 6.5

in 100 mM sodium succinate buffer (Figure S6). FvXTH9

and FvXTH6 were inactive in XET assays at a pH of 4.0 and

below. Whereas FvXTH6 exhibited only 25% activity at

pH 4.8, FvXTH9 still showed approximately 70% of its max-

imal activity at that pH level, indicating a higher acid toler-

ance. Both enzymes displayed 50% of their maximal

activities at pH 7.0, which dropped below 30% at pH 8.0.

Their activities in sodium phosphate buffer were lower

than in sodium succinate buffer at the same pH level.

Substrate specificity of FvXTH9 and FvXTH6 for donor and

acceptor substrates indicates XET and MXE activities

Various acceptor substrates, including radiolabelled

XXXGol, XXLGol, XLLGol, XXFGol and XXGol, and various

donor substrates, such as tamarind xyloglucan, barley

mixed-linkage b-glucan (MLG) and hydroxyethylcellulose

(HEC), were used to determine the substrate specificity of

the recombinant enzymes (Figure 2). FvXTH9 acted effi-

ciently on all three donor substrates tested, with tamarind

xyloglucan being the preferred one followed by HEC and

barley MLG (Figure 2c). FvXTH9 therefore displayed XET

and also MXE activity. The acceptor substrate preference

for XET was in the following order: XXXGol > XXLGol >
XLLGol � XXFGol > XXGol (Figure 2d). For the MXE activ-

ity assay, it was in the following order: XXXGol > XXLGol

> XLLGol > XXGol > XXFGol (Figure 2f). FvXTH6 used
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Figure 2. Xyloglucan endotransglucosylase (XET) assay of recombinant FvXTH6 (a, b) and FvXTH9 (c, d, f). Donor substrate preference for the XET assay tested

with XXXGol as the acceptor substrate (a, c). Acceptor substrate preference for the XET assay tested with tamarind xyloglucan as donor substrate (b, d). Accep-

tor substrate preference for the mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) assay tested with mixed-linkage (1?3, 1?4)-b-D-glucan (MLG) as

donor substrate (f). No XET activity was detected in crude protein extracts of empty vector-transformed Saccharomyces cerevisiae cultures (control PYES2).

Each assay was performed in four replicates; error bars show standard deviations. Unsubstituted glucose (Glc) residues are abbreviated as G, whereas X, L and

F indicate Glc residues that are 6-O-substituted with a-D-Xylp, b-D-Galp-(1-2)-a-D-Xylp and a-L-Fucp-(1-2)-b-D-Galp-(1-2)-a-D-Xylp side chains, respectively (e) (Fry

et al., 1992).

© 2019 The Authors.
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tamarind xyloglucan efficiently as a donor substrate,

whereas only slight activity was observed for HEC and no

activity was observed for MLG (Figure 2a). Acceptor sub-

strates preference for FvXTH6 was XXLGol � XXFGol >
XLLGol > XXXGol > XXGol, although they showed only

small differences in activity (Figure 2b).

CXE activity

Finding MXE activity in a strawberry XTH was unexpected

as dicots lack the donor substrate, MLG. The Equisetum

enzyme responsible for MXE activity (Fry et al., 2008) was

also found to possess CXE activity (Simmons et al., 2015),

the donor substrate cellulose of which occurs in all land

plants. Therefore, we tested the two strawberry XTHs for

MXE activity (on MLG) compared with CXE activity (on cel-

lulose II, i.e. NaOH-treated filter paper) as the donor sub-

strate. Both assays used radiolabelled XXXGol as the

acceptor substrate. The result confirmed that FvXTH9 has

MXE activity and revealed that it also possesses surpris-

ingly high CXE activity. The MXE and CXE activities of

FvXTH9 were 15–20% (Figure 3a) and 30–40% (Figure 3b)

of the XET activity, respectively. FvXTH6 was confirmed to

lack MXE activity; it also exhibited no appreciable CXE

activity.

Kinetic properties of FvXTH9 and FvXTH6

To investigate the kinetic parameters of FvXTH9 and

FvXTH6 in more detail, both enzymes were expressed in

yeast and purified as His6-tagged protein (Figure S5) and

assayed for XET activity. For XXXGol, FvXTH9 displayed a

Michaelis constant (Km of 43 lM and a maximal rate of

reaction (Vmax of 0.00030 nkat mg�1. Recombinant FvXTH6

showed a Km of 89 lM and a Vmax of 0.0039 nkat mg�1 for

XXXGol. For xyloglucan, FvXTH9 showed a Km of

0.90 mg ml�1 and a Vmax of 0.00010 nkat mg�1. The KM

and Vmax of FvXTH6 for xyloglucan were 3.0 mg ml�1 and

0.0025 nkat mg�1, respectively (Figure 4). Km values for

the donor substrate are quoted in mg ml�1, not lM,
because XTHs are able to use any segment of the polysac-

charide chain equally, not just one site per molecule as is

the case with the acceptor substrate (Rose et al., 2002).

Subcellular localization

Prediction of the subcellular localization for both FvXTH9

and FvXTH6 pointed to the endoplasmic reticulum (ER)

using Predotar 1.04, the secretory pathway using Tar-

getP 1.1 and MultiLoc2, and the cell wall using Plant-

mPLoc (Table S1). These predictions suggest that FvXTH9

and FvXTH6 travel from the ER via vesicles to the Golgi

apparatus and finally to the cell membrane to be released

into the apoplast.

In order to provide experimental evidence for the subcel-

lular localization of FvXTH9 and FvXTH6 in plant cells, the

full-length coding sequence of FvXTH9 or FvXTH6 was

fused with the YFP gene at the C terminal and placed

under the control of the 35S cauliflower mosaic virus

(CaMV) promoter. The constructs were introduced into

Agrobacterium tumefaciens GV3101/pSoup cells by trans-

formation and infiltrated into Nicotiana tabacum leaves. As

a control, a construct encoding free YFP was infiltrated in

the same way. Confocal microscopy showed clear signals

at the cell membrane and/or cell wall for both FvXTH9-YFP

(Figure 5a) and FvXTH6-YFP (Figure 5b). For FvXTH6-YFP,

clear signals could also be observed in the cytoplasm.

Interestingly, the signals of both proteins appeared mainly

in spots of high intensity, indicating localization to

Figure 3. Mixed-linkage glucan:xyloglucan endotransglucosylase (MXE)/xyloglucan endotransglucosylase (XET) and cellulose:xyloglucan endotransglucosylase

(CXE)/XET activities of FvXTH9 and FvXTH6. MXE, CXE and XET assays used mixed-linkage (1?3, 1?4)-b-D-glucan (MLG), cellulose II (i.e. NaOH-treated filter

paper) and xyloglucan as donor substrates, respectively. All assays used radiolabelled XXXGol as the acceptor substrate. The results show the ratios of radioac-

tivity in cpm after correction for zero-donor controls. For MXE/XET activity (a), all values are the means of two assays. For CXE/XET activity (b), all values are

the means of four assays, �SE.
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subcellular structures, like vesicles, the ER or specific

regions of the cell membrane. In contrast, the signal for

free YFP was more evenly distributed, as is expected for a

cytoplasmic protein (Figure 5c). To investigate a potential

localization to the cell wall, infiltrated plant cells were trea-

ted with 0.5% (w/v) NaCl for 30 min to induce plasmolysis.

Under these conditions no signals were visible in the cell

wall whereas the spots in the cell were clearly visible, indi-

cating that the proteins, if released from the cell, are not

tightly associated with the cell wall. These results show

that both FvXTH9 and FvXTH6 are localized to the cell

membrane. FvXTH6 also appears in spots in the cyto-

plasm, which probably represent vesicles of the secretory

pathway.

Overexpression of XTH genes in strawberry fruit

In order to investigate the role of FvXTH9 and FvXTH6 in

strawberry fruit ripening, both proteins were overex-

pressed in F. 9 ananassa fruit. As both genes showed

decreasing transcripts during ripening (Figures S1 and S3),

we decided to overexpress the genes rather than

downregulate them in order to achieve maximum effects

and thus clear results. White immature F. 9 ananassa

fruits, while still attached to the plant, were evenly infil-

trated with A. tumefaciens AGL0 containing the Ti vector

pBI121 harbouring the full-length coding sequence of

FvXTH9 or FvXTH6. As a control, fruits were infiltrated with

agrobacteria possessing the empty vector pBI121. Infil-

trated fruits were harvested 8, 10, 12 and 14 days post infil-

tration (dpi). Fruits infiltrated with FvXTH9 and FvXTH6

ripened faster (Figure 6a–d) than control fruits. Gene

expression analysis indicated that XTH genes were highly

expressed in both FvXTH9 and FvXTH6 infiltrated fruits

compared with control pBI121 fruits (Figure 6e,f). Gene

expression levels of FvXTH9 and FvXTH6 increased from 8

to 12 dpi.

Effect on fruit firmness and metabolite levels

To evaluate the effect of FvXTH9 and FvXTH6 upregulation

on the rigidity of strawberry fruits, the firmness of the

fruits was measured using a texture analyser. FvXTH9 and

FvXTH6 overexpressing fruits were clearly softer than

Figure 4. Effect of acceptor-substrate concentration and donor-substrate concentration on transglucosylation rate catalysed by 1.01 mg ml�1 FvXTH9 protein (a,

c) and 0.86 mg ml�1 FvXTH6 protein (b, d). Each assay was performed in four replicates.
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Figure 5. Localization of FvXTH9-YFP (a),

FvXTH6-YFP (b), and control-YFP (c) in

Nicotiana tabaccum leaves. CW, cell wall;

CM, cell membrane; CP, cytoplasm; N,

nucleus. Scale bar: 10 lm.
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Figure 6. Fragaria 9 ananassa fruit phenotypes, qPCR analysis and texture analysis after agroinfiltration with FvXTH9 and FvXTH6. Fruit phenotypes after (a)

8 days post infiltration (dpi), (b) 10 dpi, (c) 12 dpi and (d) 14 dpi. qPCR analysis of FvXTH9 (e) and FvXTH6 (f) in F. 9 ananassa after 8, 10, 12 and 14 dpi. qPCR

data were obtained by analysing two or three biological replications and three technical replications. (g) Texture analyser was fitted with a 5-mm flat probe.

Each fruit (12 dpi) was penetrated to 5 mm at a speed of 0.5 mm sec�1 and the maximum force developed during the test was recorded in newtons (N). The

data were obtained by analysing 60 fruits for each group. The asterisk indicates statistically significant differences (P < 0.05) between agroinfiltrated fruits with

XTHs and the empty plasmid. Control fruit were infiltrated with Agrobacterium tumefaciens AgL0 carrying pBI121 empty plasmid.
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control pBI121 fruits, as significantly less force was

required to penetrate the fruit tissue (Figure 6g). Metabo-

lites were identified and quantified using LC-MS analysis

and the internal standard method. The results showed that

the levels of ripening-related anthocyanins, such as

pelargonidin-3-O-glucoside, pelargonidin-3-O-(60-malonyl)-

glucoside, cyanidin-3-O-glucoside and cyanidin-3-O-(60-
malonyl)-glucoside were increased in both the FvXTH9-

and FvXTH6-overexpressed fruits (Figure 7a–d). The same

result was found for citric acid and for ascorbic acid (Fig-

ure 7e,f); however, the concentrations of metabolites

known to accumulate in immature fruits, such as the

proanthocyanidins catechin, epicatechin and the dimer epi-

afzelechin-epicatechin, remained unchanged, except for

the epicatechin dimer, which showed low levels in

FvXTH9-overexpressed fruits (Figure S7). The other

metabolites showed mixed results. Kaempferol derivatives

strongly accumulated in transgenic fruits whereas concen-

trations of quercetin derivatives were not affected.

DISCUSSION

Xyloglucan endotransglucosylase/hydrolases (XTHs) are

cell wall-modifying enzymes that have been implicated in

fruit softening during ripening. Here, we functionally char-

acterized two phylogenetically related XTHs from F. vesca,

which are differently transcribed during fruit development.

FvXTH9 and FvXTH6 showed low transcript levels at the

early maturation stage of F. vesca (small green stage), the

highest levels at the large green stage and then a decrease

at the end of ripening (ripe stage) (Figure S3). This pattern

is comparable with FcXTH1 (F. chiloensis), with high levels

in large green (LG) and turning (T) stages (Opazo et al.,

2010). In kiwifruit, the genes AdXTH1 and AdXTH4 have a

‘down–up–down’ expression profile during softening

Figure 7. Metabolite analysis of Fra-

garia 9 ananassa fruit after agroinfiltra-

tion of FvXTH9 and FvXTH6. Relative

concentration of (a) pelargonidin-3-O-glu-

coside, (b) pelargonidin-3-O-(60-malonyl)-

glucoside, (c) cyanidin-3-O-glucoside (d)

cyanidin-3-O-(60-malonyl)-glucoside, (e)

citric acid and (f) ascorbic acid. The data

were calculated as & equivalent internal

standard of the dry weight (& equ.dw.)

from between four and six fruits (10 dpi)

for each sample. Control fruit were infil-

trated with Agrobacterium tumefaciens

AgL0 carrying pBI121 empty plasmid. The

asterisk indicates statistically significant

differences (P < 0.05) between agroinfil-

trated fruits with XTHs and the empty

plasmid.
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(Atkinson et al., 2009). In persimmon fruit, the expression

of DkXTH1, DkXTH4 and DkXTH5 was very high in imma-

ture growing fruit and peaked before the mature stage

(Han et al., 2015). Phylogenetic analysis revealed that

FvXTH9 and FvXTH6 belong to group I/II. The classification

of XTHs reflects the different biochemical mechanisms of

enzyme action (Rose et al., 2002). Members of group I/II

and IIIB predominantly exhibit XET activity alone (Nishitani

and Tominaga, 1992; Rose et al., 2002; Maris et al., 2011),

whereas members of group IIIA mainly exhibit XEH activity

(Fanutti et al., 1993; Baumann et al., 2007; Zhu et al., 2012;

Kaewthai et al., 2013). The XET activities of FvXTH9 and

FvXTH6 showed optima at pH 6.5 (Figure S6). The fact that

both enzymes have very similar pH–activity profiles is not

surprising, as they are phylogenetically very closely related

(Yokoyama and Nishitani, 2001; Baumann et al., 2007) and

acidic pH optima are typical of XTHs (Purugganan et al.,

1997; Campbell and Braam, 1999; Steele and Fry, 2000;

Maris et al., 2011). Root hair formation has been estab-

lished as a model to study the pH of the cell wall during

localized growth in plants, which is associated with cell

wall modification. In these studies it was shown that the

first morphological changes were accompanied by pH

changes of the initiation site from pH 5.0 to pH 4.5, and

during tip growth to pH 6.0, whereas the cytoplasmic pH

increased from pH 7.3 to pH 7.7 (Bibikova et al., 1998).

Therefore, XTHs show the highest activity in the cell wall

at the site of their substrates. Similarly, the root cap apo-

plast acidified from pH 5.5 to pH 4.5 within 2 min of grav-

istimulation, and the cytoplasmic pH increased from

pH 7.2 to pH 7.6 (Fasano et al., 2001).

Xyloglucan is the preferred donor substrate for both

FvXTH9 and FvXTH6. Crude extract of yeast expressing

FvXTH9 also showed some enzyme activity using barley

MLG as well as HEC as donors (Figure 2c). FvXTH6 could

use HEC to some extent, whereas barley MLG was not tol-

erated as a donor substrate (Figure 2a), indicating that

FvXTH6 has no MXE activity. XTHs attack not only the

xyloglucan polymer but also some soluble artificial sub-

strates. A pure XTH isoenzyme from barley (HvXET5) could

react with xyloglucan (100% rate), HEC (44%), water sol-

uble cellulose acetate (WSCA) (5%) and carboxymethylcel-

lulose (CMC) (0.4%). HvXET5 had very low activity on MLG

as a donor (0.2% rate), and real (insoluble) cellulose was

not tested (Hrmova et al., 2007). For AtXTH12, 13, 17, 18,

and 19 enzymes, the non-xyloglucan polymers were pre-

ferred in the order WSCA > HEC > MLG > CMC (Maris

et al., 2011). Enzyme extracts from young shoots of Equise-

tum and the grass Holcus lanatus share similar donor–sub-
strate profiles, with relative activities on xyloglucan:WSCA:

HEC:CMC being 100:(20–24):(11–17):(0.4–1.5) (Fry et al.,

2008). In contrast to the predominant XET activity of

Equisetum, caused by standard XTH proteins, the MXE

activity of Equisetum was found to result from a unique

hetero-trans-b-glucanase (Fry et al., 2008; Simmons et al.,

2015).

The acceptor substrate preference was studied on a

selection of oligosaccharidyl [3H]alditols with various side

chains and backbones differing in the number of glucose

units. XET activity for FvXTH9 and FvXTH6 differ slightly in

their oligosaccharide acceptor-substrate preference. The

best acceptor substrate for FvXTH9 is XXXGol, in agree-

ment with the preference of the MXE-active Equisetum

enzyme, HTG (Simmons et al., 2015), followed by XXLGol,

whereas both XXLGol and XXFGol are preferred acceptor

substrates for FvXTH6, followed by XLLGol. FvXTH9 and

FvXTH6 showed lower activity with the doubly galactosy-

lated acceptor substrate (XLLGol) and also with the fucosy-

lated substrate (XXFGol). The fucosyl residues are

predicted to alter the conformation of the xyloglucan poly-

mer (Levy et al., 1997). This altered conformation may

reduce the binding of XTHs. The activity with the pentasac-

charide XXGol compound is relatively low for both

enzymes. Eight native XTH isoenzymes from Vigna and

Brassica have the consistent order of acceptor-substrate

preference: XLLGol > XXLGol > XXXGol > XXGol (XGol

was ineffective) (Steele and Fry, 2000). Acceptor prefer-

ences for XET activity were XXXGol > XXFGol > XXLGol >
XLLGol > XLFGol for A. thaliana AtXTH31 (which has much

higher XEH activity than XET activity) and XXXGol >
XLLGol > XLFGol > XXLGol > XXFGol for AtXTH15 (which

lacks XEH activity) (Shi et al., 2015).

Our results also showed that FvXTH9 (but not FvXTH6)

has not only XET activity but also MXE activity (15–20% of

XET) because barley b-glucan functioned as a donor sub-

strate. For MXE, FvXTH9 showed a strong preference for

XXXGol as the acceptor substrate, whereas all other com-

pounds tested were only inefficiently used (Figure 2f). The

order of the acceptor preference of MXE activity is slightly

different from that of XET activity, but the relative activities

of the less preferred substrates are considerably lower. In

the case of MXE activity of Equisetum (Fry et al., 2008;

Simmons et al., 2015), the best acceptor substrate was

XXXGol (with both XLLGol and XXGol being much less

effective), whereas XLLGol was the best acceptor substrate

for XET, followed by XXXGol and then XXGol.

The discovery that a strawberry transglucanase

(FvXTH9) can use MLG as a donor substrate was unex-

pected, as MLG does not occur in dicots; however, FvXTH9

shows sequence similarity and phylogenetic relationship

to EfHTG and BdXTH8, two characterised heterotransglyco-

sylases (Figures 1 and S8). In Equisetum, the protein

responsible for MXE activity (HTG) also possesses CXE

activity. We therefore tested whether strawberry XTHs also

have CXE activity, as the substrates in that case (cellu-

lose + xyloglucan) are ubiquitous in land plants. Indeed,

we found that FvXTH9 also mediates endotransglucosyla-

tion from cellulose to xyloglucan oligosaccharides (i.e.
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CXE activity). The CXE was 30–40% of the XET activity,

measured at various time points. This is a very high rela-

tive CXE activity for an angiosperm transglucanase, com-

parable with the ~45% reported for AtXTH3 (Shinohara

et al., 2017). It is highly plausible that FvXTH9 may catalyse

cellulose–xyloglucan grafting in the ripening strawberry as

a physiological reaction in addition to its better-known

xyloglucan–xyloglucan grafting. It is difficult to imagine

how CXE action (cellulose–xyloglucan grafting) could con-

tribute to fruit softening, however, as it might be envis-

aged to strengthen the cell walls (Simmons et al., 2015).

The XET catalytic properties of the purified recombinant

FvXTH9 and FvXTH6 proteins towards tamarind xyloglucan

and XXXGol were studied and produced classical hyper-

bolic Michaelis–Menten curves (Figure 4). FvXTH9 showed

a higher affinity for XXXGol (Km = 43 lM) than did FvXTH6

(Km = 89 lM). These Km values for XXXGol of both

enzymes are within the range of Km values with other

XTHs. Arabidopsis XTH15 and XTH31 had Km values of 31

and 86 lM, respectively (Shi et al., 2015), whereas XET

from Equisetum and barley showed Km values of 80 lM
(Fry et al., 2008) and 40 lM (Hrmova et al., 2009), respec-

tively. In contrast, the unique hetero-transglycanase,

Equisetum HTG, has an extremely high affinity for XXXGol

(~0.5–1.0 lM; Simmons et al., 2015).

The calculation of the catalytic properties of FvXTH9

towards xyloglucan revealed a Km of 0.90 mg ml�1, indicat-

ing a higher affinity than with FvXTH6 (Km = 3.0 mg ml�1).

These results were comparable with other XETs. XET activ-

ity Km values for xyloglucan were reported in Equisetum

(Km = 0.35 mg ml�1; Fry et al., 2008), in kiwifruit

(Km = 0.6 mg ml�1; Schr€oder et al., 1998), in Arabidopsis

(XTH22; Km = 1.8 and 0.6 mg ml�1 for fucosylated and non-

fucosylated xyloglucans, respectively; Purugganan et al.,

1997; and XTH15, Km = 2.87 mg ml�1; Shi et al., 2015).

There was no decrease in the rate of 3H incorporation at the

highest concentrations of non-radioactive xyloglucan, indi-

cating that 4.5 mg ml�1 polysaccharide (�5 lM) did not

appreciably compete with [3H]XXXGol as the acceptor sub-

strate.

The prediction of subcellular localization revealed local-

ization to the secretory pathway, or to organelles associ-

ated with the secretory pathway, for both FvXTH9 and

FvXTH6. This was confirmed by confocal microscopy of

tobacco leaves agroinfiltrated with YFP-tagged versions of

FvXTH9 and FvXTH6, which localize to the vesicle of the

secretory pathway and the cell membrane (Figure 5a,b).

The full-length AtXTH31-GFP fusion protein was targeted

to the plasma membrane by an N-terminal signal peptide

(Zhu et al., 2012). AtXTH33 was also localized to the

plasma membrane (Ndamukong et al., 2009). As xyloglu-

can is synthesized in the Golgi and transported via exocy-

tosis to undergo transglycosylation immediately upon

release into the cell wall (Thompson and Fry, 2001),

FvXTH9 and FvXTH6 may be well positioned for catalysing

this process on newly secreted xyloglucan.

To confirm whether FvXTH9 and FvXTH6 are involved in

fruit ripening and softening, overexpression of the target

genes in strawberry fruit was performed. qPCR analysis

indicated that XTH genes were successfully overexpressed

in both FvXTH6- and FvXTH9-agroinfiltrated fruits. In con-

trast, significantly lower transcript levels of FvXTH9 and

FvXTH6 were detected in control pBI121 fruits. The expres-

sion patterns of both genes increased from 8 to 12 dpi and

then decreased significantly by 14 dpi (Figure 6e,f).

Overexpression of gene products in plants may change

the phenotypes. The results showed that fruits infiltrated

with FvXTH9 and FvXTH6 exhibited accelerated colour

change and ripened faster compared with the control

pBI121 (Figure 6a–d). To support this finding, the differ-

ences in fruit firmness at 12 dpi were recorded. Compared

with control pBI121 fruit, the FvXTH9 and FvXTH6 infil-

trated fruits showed decreased firmness (Figure 6g). The

texture analysis supports the observation that fruits of both

transgenics ripened faster than the control fruit. Similarly,

overexpression of DkXTH8 in tomato fruit led to acceler-

ated colour change and decreased firmness, compared

with wild-type fruit (Han et al., 2016), whereas UV-C irradi-

ation of tomato fruit reduced the activity of cell wall-de-

grading enzymes and delayed the ripening of tomato fruit.

Irradiated fruit were firmer than control fruit (Barka et al.,

2000). Overexpression of AtXTH9 (which is closely related

to FvXTH9) caused pronounced cell expansion and stem

growth (Shin et al., 2006). The genes FvXTH9 and FvXTH6

might promote strawberry fruit softening through involve-

ment in cell wall restructuring. Metabolite analysis sup-

ported the hypothesis of accelerated fruit ripening as a

result of overexpression of FvXTH9 and FvXTH6. The level

of anthocyanins such as pelargonidin-3-O-glucoside and

pelargonidin-3-O-(60-malonyl)-glucoside was significantly

higher in the infiltrated fruits (Figure 7a,b), similar to citric

acid and ascorbic acid (Figure 7e,f). These metabolites are

known to accumulate during strawberry fruit ripening

(Griesser et al., 2008; Zhang et al., 2011; Ornelas-Paz et al.,

2013). Interestingly, kaempferol glucoside and glucuronide

showed higher concentrations in transgenic fruits, whereas

levels of quercetin derivatives remained unchanged. This

confirmed the observation that the concentration of

kaempferol glucoside increased significantly in the final

stages of strawberry fruit ripening, whereas the quercetin

derivative showed only a moderate increase (Griesser

et al., 2008).

In conclusion, two functional xyloglucan endotransglu-

cosylase/hydrolases, FvXTH9 and FvXTH6, were identified

from F. vesca. FvXTH9 is highly expressed in immature

fruits and then the transcript levels decrease until full

maturity. The recombinant FvXTH9 and FvXTH6 proteins

showed XET activity. In addition, FvXTH9 also has MXE
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activity and CXE activity. Overexpression of FvXTH9 and

FvXTH6 resulted in accelerated fruit softening in straw-

berry fruit. Thus, FvXTH9 and probably also FvXTH6 are

likely to be capable of modifying the structure of xyloglu-

can in the cell wall.

EXPERIMENTAL PROCEDURES

Plant material and reagents

Octoploid strawberry plants (F. 9 ananassa cv. Elsanta) and diploid
(F. vesca cv. Hawaii 4) were obtained from Kraege Beerenpflanzen
(https://kraege.de). Strawberry plants were grown under glass-
house conditions (16-h light/8-h dark) in D€unast, Freising, Ger-
many. Nicotiana tabacum cv. Samsum was grown at 25°C with a
16-h photoperiod under artificial light at 120 lmol m�2 sec�1 irradi-
ance, provided by Osram Fluora lamps (Osram, https://www.osra
m.com/cb). Chemicals and solvents were obtained from Sigma-
Aldrich (https://www.sigmaaldrich.com), Carl Roth (https://www.
carlroth.com), VWR International (https://www.vwr.com) and
J.T. Baker (now part of Avantor, https://www.avantorsciences.
com), unless otherwise noted. Tamarind seed xyloglucan was a
generous gift from Dr K. Yamatoya, Sumitomo Dainippon Pharma
Co., Ltd. (https://www.ds-pharma.com). Non-radioactive XXXGol
and medium-viscosity barley MLG were obtained from
Megazyme (https://www.megazyme.com). Tritiated XXXGol (speci-
fic activity 720 MBq lmol�1), XXGol (19 MBq lmol�1), XLLGol
(53 MBq lmol�1), XXLGol (53 MBq lmol�1) and XXFGol
(27 MBq lmol�1), prepared by NaB3H4 reduction of the correspond-
ing reducing oligosaccharides (Hetherington and Fry, 1993), were
obtained from EDIPOS (http://fry.bio.ed.ac.uk//edipos.html).

Gene expression analysis

Total RNA was extracted from F. vesca Hawaii 4 fruit (Liao et al.,
2004). First-strand cDNA was synthesized by reverse transcription
with 1 lg of total RNA, random hexamer primer and M-MLV
reverse transcriptase (Promega, https://www.promega.com). RT-
PCR was performed in a StepOnePlusTM real-time PCR system
(Applied Biosystems, now ThermoFisher Scientific, https://www.
thermofisher.com). The qRT-PCR data for FvXTHs were normal-
ized against the expression levels of the interspacer 26S–18S RNA
housekeeping gene. Gene-specific primers and interspacer (IS) pri-
mers were used to amplify the target gene and the IS gene,
respectively (Table S2). The RT-PCR mixture was 10 ll of 29
Power SYBR Green Mix, 0.8 ll of forward primer (10 lM), 0.8 ll of
reverse primer (10 lM), 2 ll of cDNA and 6.8 ll of ultrapure H2O.
The dilutions of cDNA for target gene and IS gene were 209 and
80009, respectively. The absence of unspecific amplicon was con-
firmed by melting curve profiles. Three technical and two or three
biological replicates of each sample were performed. The results
were calculated using the DDCt method.

Cloning and expression

FvXTH9 (882 bp) and FvXTH6 (880 bp) were amplified from
F. vesca cDNA using specific primers. For FvXTH6, the forward
primer was FP_FvXTH6_PYES2 and the reverse primer was
RP_FvXTH6_PYES2. For FvXTH9, the forward and reverse primers
were FP_FvXTH9_PYES2 and RP_FvXTH9HIS_PYES2, respectively
(Table S2). Denaturation was carried out at 95°C for 45 sec,
annealing at 55°C for 30 sec and elongation at 72°C for 1 min, in
35 cycles. Cloning was conducted using the pYES2 vector. Trans-
formation was performed in two steps, first using Escherichia coli

NEb 10 cells for maintaining recombinant plasmid and subse-
quently S. cerevisiae INVSc1 cells for protein expression. The con-
structs obtained were sequenced to confirm the absence of error
introduced by cDNA synthesis and/or PCR. Galactose induction
was used to induce the expression of the protein of interest from
the GAL1 promoter. A single colony of INVSc1 containing the
pYES2 construct was inoculated into 15 ml of SC-U medium con-
sisting of 0.67% yeast nitrogen base (without amino acids), 2%
carbon source [D-glucose, 0.01% (adenine, arginine, cysteine, leu-
cine, lysine, threonine, tryptophan, uracil], 0.005% (aspartic acid,
histidine, isoleucine, methionine, phenylalanine, proline, serine,
tyrosine, valine) and incubated overnight at 30°C at 2000 g. Next
day, the OD600 of the overnight culture was determined and
diluted to obtain an OD600 of 0.4 in 50 ml of induction medium
(SC-U medium containing 2% galactose). The cells were pelleted
by centrifugation at 1500 g for 5 min at 4°C and then inoculated
into 50 ml of induction medium. The cells were grown at 30°C,
2000 g. Cells were pelleted by centrifugation at 1500 g for 5 min at
4°C. Extracts from S. cerevisiae cells were prepared using
breaking buffer (50 mM sodium phosphate, pH 7.4), 1 mM

ethylenediaminetetraacetic acid (EDTA), 5% glycerol and 1 mM

phenylmethylsulfonyl fluoride (PMSF), following the general pro-
tocol for small-scale preparation of cell lysates using acid-washed
glass beads (Invitrogen, now ThermoFisher Scientific). Purification
was carried out using a HisTrap FF column 5 ml (Invitrogen, now
ThermoFisher Scientific) in a fast protein liquid chromatography
(FPLC) system (€AKTA system; GE Healthcare, https://www.gehea
lthcare.com). The column was equilibrated in his-tag wash/bind
buffer (50 mM sodium phosphate, pH 7.4, 0.3 M NaCl and 30 mM

imidazole) and delivered at a flow rate of 0.5 ml min�1 for 30 min.
The elution of target protein was performed using an isocratic gra-
dient elution of 19 His elution buffer (50 mM NaPi, pH 7.4, 0.3 M

NaCl, 250 mM imidazole) for 20 min with a flow rate of
0.5 ml min�1. Fractions (2 ml) were collected for enzyme assays.

Sequence alignment and phylogenetic tree

Full-length amino acid sequences of XTHs were obtained from the
genome sequence of F. vesca ssp. vesca accession Hawaii 4 (Shu-
laev et al., 2011). The phylogenetic tree was constructed by the
neighbour-joining method with 5000 bootstrap replications using
MEGA 7. The amino acid sequence alignment of group-I XTHs was
compiled using ALIGNX VECTOR NTI ADVANCE 11.5.

XET, MXE and CXE assays of FvXTH9 and FvXTH6

Endotransglucosylase assays were based on the method
described by Fry et al. (1992). In brief, radiochemical XET activity
assays were performed in a reaction volume of 64 ll that con-
tained 100 mM succinate (Na+) buffer, pH 5.5, 0.5% (w/v) tamar-
ind xyloglucan, 1 kBq [3H]XXXGol (giving a final concentration
of 22 nM) and 4 ll of FvXTH enzyme extract. After incubation for
various time periods at 25°C, the reaction was stopped by the
addition of 20 ll 90% (v/v) formic acid. The reaction mixtures
were then spotted on a 4 9 4-cm square Whatman 3MM filter
paper, air dried, washed under running tap water overnight and
dried again in an oven at 60°C. For 3H scintillation counting, the
dry paper was rolled into a cylinder with the loaded side facing
outwards and placed into a 20-ml scintillation vial, which was
subsequently wetted with approximately 2 ml of scintillation cock-
tail (Wallac OptiPhase; Perkin Elmer, https://www.perkinelmer.
com). The measurement of blanks was performed in an identical
fashion.

Various acceptor substrates, including [3H]XXXGol, [3H]XXLGol,
[3H]XLLGol, [3H]XXFGol and [3H]XXGol (each at 1 kBq per assay;
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thus final concentrations 22–820 nM), and also various donor sub-
strates, such as tamarind xyloglucan, barley mixed-linkage b-glu-
can (MLG) and hydroxyethylcellulose (each at a final
concentration of 0.5% (w/v) in the assay), were used to determine
the substrate specificity of the enzymes. The impact of the pH
level was investigated with reactions containing 1 kBq [3H]
XXXGol as the acceptor substrate and 0.5% (w/v) of tamarind
xyloglucan as the donor substrate. Different buffers were used as
follows: 100 mM acetate buffer (Na+, pH 3.6, pH 4.0, pH 4.6 and
pH 5.2), 100 mM succinate buffer (Na+, pH 5.0, pH 5.5, pH 6.0 and
pH 6.5) and 100 mM phosphate buffer (Na+, pH 6.2, pH 7.0, pH 7.4
and pH 8.0). For MXE assays, the above method was used, but the
donor substrate was 0.5% (w/v) medium-viscosity barley MLG.
CXE assays were performed in a final reaction volume of 30 ll
that contained 100 mM succinate (Na+) buffer, pH 5.5, 0.33% (w/v)
BSA, 0.17% (w/v) chlorobutanol, 2 kBq [3H]XXXGol (thus 93 nM

XXXGol), 24 mg NaOH-treated Whatman No. 1 cellulose
(1.3 9 1.3 cm; 1.7 cm2) and 10 ll of FvXTH enzyme extract. The
paper was thoroughly washed in water for 72 h and re-washed in
6 M NaOH at 100°C for 30 min, then again under running tap water
overnight and assayed for 3H, as in the XET assays.

Kinetic assay of FvXTH6 and FvXTH9

TheXET kinetic parameters of the purified recombinant FvXTH9
and FvXTH6 were determined using radioactive assays, according
to Fry et al. (1992). The Km and Vmax values for XXXGol were
determined using 1% (w/v) tamarind xyloglucan as the donor sub-
strate. As the acceptor substrate for XET activity assays, 1 kBq
[3H]XXXGol of high specific activity (720 MBq lmol�1) diluted
with various concentrations (0–357 lM) of unlabelled XXXGol was
used. The Km and Vmax values for xyloglucan were determined
using [3H]XXXGol at a concentration of 43 lM for FvXTH9 and
89 lM for FvXTH6, with various concentrations (0–4.55 mg ml�1)
of the polysaccharide.

Transient expression in N. tabacum leaves

To study the subcellular localization of FvXTH9 and FvXTH6 in
N. tabacum leaves, full-length genes of FvXTH6 and FvXTH9
were cloned into pGWR8 (Rozhon et al., 2010) plasmid and then
fused with the YFP gene. Primers of FP_FvXTH9_pGWR8 and
RP_FvXTH9_pGWR8 were used to amplify FvXTH9, whereas
FP_FvXTH6_pGWR8 and RP_FvXTH6_pGWR8 were used to
amplify FvXTH6 (Table S2). The constructs were transformed
into A. tumefaciens GV3101/pSoup cells. A single colony of
recombinant A. tumefaciens GV3101 was inoculated in 5 ml of
Luria-Bertani (LB) medium with kanamycin and rifampicin, and
incubated at 28°C, 2000 g for overnight. Overnight culture
(100 lL) was transferred into 20 ml of AB medium [1 g L�1

NH4Cl, 0.3 g L�1 MgSO4 9 7H2O, 0.15 g L�1 KCl, 0.01 g L�1

CaCl2 9 2H2O, 0.0025 g L�1 FeSO4 9 7H2O, 0.27 g L�1 KH2PO4,
10 g L�1 glucose, 3.90 g L�1 2-(N-morpholino) ethanesulfonic
acid (MES), adjusted with KOH to pH 5.6, sterilized by autoclav-
ing and supplemented with acetosyringone to a final concentra-
tion of 100 lM) and incubated at 28°C, 2000 g overnight. The cell
pellet was resuspended in infiltration buffer (10 mM MgSO4,
10 mM MES, 100 lM acetosyringone, pH 5.5) to an OD600 of
0.8 � 0.1. The suspension was used for infiltration of the bottom
side of tobacco leaves using a blunt-ended 1-ml syringe. After
3 days, the infiltration area was investigated using an Olympus
FV1000/IX81 laser scanning confocal microscope with a UPlan-
SApo 960/1.20 objective (Olympus, https://www.olympus-global.
com) and laser wavelength of 515 nm. Images were obtained and
processed using FLUOVIEW.

Transient expression in F. 3 ananassa fruit

The PCR fragments cut by BamHI and SacI were cloned into the
binary vector pBI121 digested with the same enzymes. This
placed the insert under control of the CaMV 35S promoter.
Specific primers were used as follows: FP_FvXTH9_pBI121 and
RP_FvXTH9_pBI121 for FvXTH9 amplification; FP_FvXTH6_pBI121
and RP_FvXTH6_pBI121 for FvXTH6 amplification (Table S2). The
constructs were transformed into E. coli NEb10 cells and the
absence of errors confirmed by sequencing. Correct clones were
transformed into A. tumefaciens AGL0. The A. tumefaciens
strain AGL0 (Lazo et al., 1991) containing the recombinant
pBI121 was grown at 28°C in LB medium with kanamycin and
rifampicin antibiotics. When the culture reached an OD600 of
about 0.8, Agrobacterium cells were harvested and washed
twice with 30 ml MMA medium (Murashige and Skoog salts,
10 mM MES, pH 5.6, 20 g L�1 sucrose, according to Spolaore
et al., 2001). Finally, the cell pellet was resuspended in 10 ml of
MMA medium. The agrobacterium suspension was evenly
injected into entire white fruits (14 days after pollination) that
were still attached to the plant by using sterile 1-ml hypodermic
syringes. Infiltrated fruits were harvested on 8, 10, 12 and
14 dpi.

Fruit firmness and LC_MS analysis

The firmness was measured using a texture analyser (TA.XT2i;
Stable Micro Systems, https://www.stablemicrosystems.com) fit-
ted with a 5-mm flat probe. Each fruit was penetrated to 5 mm in
depth at a speed rate of 0.5 mm sec�1 and the maximum force
developed during the test was recorded in Newton (N). Each fruit
was measured twice at opposite sides of its equatorial zone. LC-
MS was performed using an Agilent 1100 HPLC/UV system (Agi-
lent Technologies, https://www.agilent.com) with a reverse-phase
column (Luna 3u C18(2) 100A, 150 9 2 mm; Phenomenex, https://
www.phenomenex.com) and connected to a Bruker esquire3000-
plus ion-trap mass spectrometer (Bruker, https://www.bruker.
com). LC-MS analysis was performed according to the protocol
described by Ring et al. (2013). The values were expressed as per
mil (&) equivalent internal standard per dry weight using biocha-
nin as internal standard.
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