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Eukaryotic cells synthesize enormous quantities of RNA from diverse

classes, most of which are subject to extensive processing. These processes

are inherently error-prone, and cells have evolved robust quality control

mechanisms to selectively remove aberrant transcripts. These surveillance

pathways monitor all aspects of nuclear RNA biogenesis, and in addition

remove nonfunctional transcripts arising from spurious transcription and a

host of non-protein-coding RNAs (ncRNAs). Surprisingly, this is largely

accomplished with only a handful of RNA decay enzymes. It has, therefore,

been unclear how these factors efficiently distinguish between functional

RNAs and huge numbers of diverse transcripts that must be degraded.

Here we describe how bona fide transcripts are specifically protected, par-

ticularly by 50 and 30 modifications. Conversely, a plethora of factors

associated with the nascent transcripts all act to recruit the RNA quality con-

trol, surveillance and degradation machinery. We conclude that initiating

RNAPII is ‘surveillance ready’, with degradation being a default fate for

all transcripts that lack specific protective features. We further postulate

that this promiscuity is a key feature that allowed the proliferation of vast

numbers of ncRNAs in eukaryotes, including humans.
1. Introduction
Almost all RNA species undergo elaborate maturation processes within the

nucleus. In the case of messenger RNAs (mRNAs), nascent transcripts are syn-

thesized by RNA polymerase II (RNAPII) as pre-mRNAs consisting of both

introns and exons (figure 1). Introns are removed and generally degraded,

while the intervening exons are spliced together to generate the mature

message. Further modifications are made to the ends of the transcript. An

inverted, 7-methylguanosine cap structure is added to the 50 end, and a poly-

adenylated (poly(A)) tail is synthesized at the 30 end. In parallel, RNA

binding proteins package the transcripts into export-competent mRNP par-

ticles, which are subsequently transported to the cytoplasm. These events are

coordinated by the repetitive carboxy-terminal domain (CTD) of RNAPII,

which acts as a general binding platform for RNA processing factors (reviewed

in [1]). The heptad repeats (26 in yeast and 52 in humans) of the CTD are dif-

ferentially phosphorylated throughout the transcription cycle, allowing distinct

sets of maturation factors to be recruited at the correct time and place.

The complexity of nuclear RNA processing makes it inevitable that some frac-

tion of nascent transcripts will fail to mature correctly. The accumulation of

aberrant or defective transcripts represents a significant potential problem,

because they could saturate the RNA processing machinery and impede the pro-

duction of functional products. For example, accumulation of cryptic RNAs in

yeast mutants with defective RNA degradation reduces the availability of the

nuclear cap binding complex, with pleiotropic effects on gene expression [2].

Antisense transcripts can hybridize to complementary sense RNA, forming

double-stranded RNAs that may enter the RNA interference pathway [3].

Excess RNA, particularly if poorly packaged, can also bind to homologous
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Figure 1. Processing and surveillance of pre-mRNAs. Multiple steps during mRNA transcription and processing are screened by surveillance activities. (a) Delayed or aberrant
capping leads to decay by nuclear 50 surveillance pathways. Degradation requires a pyrophosphatase activity (orange circle) to remove the triphosphate and a coupled 50 – 30

exonuclease (orange pacman). Correctly maturing transcripts are protected by the presence of the m7G cap and the cap binding complex (CBC; grey triangle). Following normal
transcript cleavage and polyadenylation, the 30 fragment of the nascent transcript is targeted by the 50 exonuclease in order to terminate RNAPII transcription. (b) Prematurely
terminated transcripts are 30 degraded by the nuclear exosome (blue pacman). Transcription termination and surveillance can involve either complete dissociation of the
polymerase (left) or polymerase backtracking to reveal the 30 end, providing an entry point for the exosome (right). (c) Unspliced transcripts are targeted by the surveillance
machinery. In normal mRNA biogenesis, introns are typically spliced cotranscriptionally. Excised introns must be constitutively degraded and features associated with splicing or
introns may act to recruit the nuclear surveillance machinery. When introns are not efficiently removed, these factors may facilitate degradation of the entire transcript.
(d ) Aberrant 30 end formation leads to surveillance by the nuclear exosome. In fission yeast, this can involve RNAPII stalling and backtracking downstream of the PAS
(centre). Alternatively, the budding yeast protein Reb1 (red circle) can terminate transcription by functioning as a roadblock (right). RNAPII is ubiquitinated and degraded,
and the released transcript is degraded by the nuclear exosome. Correctly terminated transcripts (left) are protected by a poly(A) tail appropriately packaged with poly(A)
binding proteins (green circles). (e) Transcripts with prolonged nuclear retention are subject to slow, default surveillance pathways. This process appears to be facilitated in part
by nuclear poly(A) binding proteins, which protect the transcript but can also stimulate decay through recruitment of the nuclear surveillance machinery.
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gene loci, forming harmful RNA:DNA hybrids that are associ-

ated with DNA double-strand breaks. In the cytoplasm,

aberrant mRNAs may encode truncated, nonfunctional or

even dominant negative proteins.
Historically, RNA quality control or ‘surveillance’ mech-

anisms have been difficult to examine in unperturbed

systems, as defective transcripts generally constitute only a

small proportion of any given endogenous mRNA species.
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Figure 2. Protective features in RNA stability. (a) Primary RNAPII transcripts are initially protected by the terminal 50 triphosphate, which blocks degradation by the
nuclear 50 – 30 exonucleases Rat1/Xrn2. Transcripts are generally rapidly modified by addition of an inverted GpppN cap structure. This is sensitive to removal by the
pyrophosphatases Rai1 and DXO, but undergoes m7G methylation and association with the cap binding complex (CBC), conferring pyrophosphatase resistance. (b)
Most mRNAs are shielded at their 30 end by a poly(A) tail packaged with poly(A) binding proteins. The non-polyadenylated, replication-dependent histone mRNAs
are protected by a terminal stem – loop structure bound to the stem – loop binding protein (SLBP). (c) Small nucleolar RNAs (snoRNAs) and small nuclear RNAs
(snRNAs) are shielded from exosome-mediated decay by specific proteins bound to the 30 end. snRNAs and many snoRNAs are protected at their 50 end by the
trimethylated m2,2,7G cap. (d ) The mature MALAT1 transcript contains a triple helix that sequesters the 30 end and prevents 30– 50 exonucleolytic decay.
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Most studies have, therefore, relied on mutations, either in

reporter transcripts or the RNA processing machinery, to arti-

ficially trigger surveillance. These analyses suggest that the

surveillance machinery monitors a wide range of processing

defects, including transcripts with defects in cap structure

[4]; inefficient polyadenylation [5]; aberrant splicing or 30

end formation; improper mRNP packaging [6]; or inefficient

nuclear export (figure 1). These defects have little in

common, but all apparently lead to recognition and destruc-

tion of the RNA by the surveillance machinery. Moreover, the

same core system degrades transcripts generated by RNA

polymerases I and III, which are significantly different in

structure and packaging from most RNAPII products.

Surveillance pathways also degrade RNAs that result

from pervasive transcription (reviewed in [7]). Eukaryotic

promoters generally drive transcription initiation in both

directions, but in most cases only one side results in pro-

ductive gene expression [8–11]. In part, directionality is

enforced through selective degradation of the upstream anti-

sense transcript [12–16]. These RNAs are referred to as

cryptic unstable transcripts (CUTs) in yeast, and promoter

upstream transcripts (PROMPTs) or upstream antisense

RNAs (uaRNAs) in mammalian cells. While bidirectional

promoters are a prominent source of transcriptional noise,

many or all active enhancer elements are also transcribed

and cryptic transcription can initiate from any nucleosome

free region [9]. The resulting transcripts are highly unstable

in wild-type cells but accumulate when the surveillance

machinery is inactive [13,16,17].

In organisms as diverse as yeast, plants and humans, RNA

surveillance depends on the nuclear exosome, a complex with

endonuclease and 30 exonuclease activity. The exosome, in

turn, relies on numerous cofactors to guide it to target tran-

scripts and help initiate decay. Interestingly, many of these

cofactors also function in RNA maturation, suggesting that

the exosome is recruited to nascent transcripts regardless of
their processing status. As discussed below, the exosome

appears to act as a general scavenger of 30 ends, potentially

degrading nuclear pre-mRNAs and other transcripts by

default. Correctly processed transcripts largely escape nuclear

surveillance through the deposition of specific RNA binding

proteins, particularly at the 30 end, which sterically hinder

exonucleolytic decay.

In this review, we discuss quality control mechanisms for

RNAPII transcripts in Saccharomyces cerevisiae and human cells,

with additional reference to RNAPI and studies in other species

as appropriate. We begin with an introduction to the major cel-

lular exonucleases and cofactors, highlighting their parallel roles

in mRNA biogenesis and surveillance. Subsequently, we review

mechanisms by which the exosome degrades aberrant tran-

scripts, with a particular focus on the connections between

transcription termination and surveillance.
2. Surveillance machinery
A striking feature of eukaryotic RNA degradation and surveil-

lance pathways is the preponderance of exonucleases, which

degrade RNAs from the 50 end (50 exonucleases) or 30 end (30 exo-

nucleases), rather than endonucleases that can cleave RNAs

internally. As a consequence, accessibility of the 50 or 30 ends of

the transcript for nuclease attack is likely to be a key feature in

determining susceptibility to degradation (figure 2).

2.1. 50 Exonucleases
The major 50 exonucleases in eukaryotes are the related

proteins Xrn1, which is predominantly cytoplasmic, and

Rat1 (Xrn2 in humans), which is predominantly nuclear.

The activities of both enzymes are largely blocked by the

presence of a 50 triphosphate [18], which is initially present

on all newly synthesized transcripts. This protection can be
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seen during degradation of the excised 50 external transcribed

sequence (50ETS) spacer of the pre-ribosomal RNA (pre-

rRNA). The 50 region, which carries the 50 triphosphate, is

degraded by the exosome (see below), whereas the 30

region, which is generated by cleavage and carries a 50 mono-

phosphate, is degraded by Rat1 [19,20]. Similarly, 30 cleavage

of the pre-rRNA allows entry of Rat1, which degrades the

downstream nascent transcripts. The pre-mRNA 30 cleavage

and polyadenylation machinery also leaves a 50 monophos-

phate, allowing Rat1/Xrn2 to degrade the downstream

nascent transcript [19–21]. Transcription is then terminated

by Rat1/Xrn2, presumably acting when it catches the

transcribing polymerase, in a phenomenon referred to as

‘torpedo’ termination [19–21].

Nascent RNAPII transcripts are further protected by

addition of a 7-methylguanosine (m7G) cap to the 50 tripho-

sphate end of the RNA. This reaction occurs shortly after

transcription initiation, usually within the first 50 nt. Capping

defects can be induced by inactivation of the capping machin-

ery itself, or indirectly through mutations in RNAPII [22].

Rat1 forms a complex with the pyrophosphatase Rai1 and

transcripts that fail to be capped, or on which the cap is not

7-methylated, are rapidly decapped and dephosphorylated

by Rai1 [23]. This exposes the transcript to degradation by

Rat1 [19,22,24–26]. Capped transcripts are further protected

by the nuclear cap binding complex (CBC), comprising

Cbc1–Cbc2 in yeast and CBP80–CBP20 in humans. CBC

directly blocks access to the 50 cap by the decapping

enzyme Dxo1, which is homologous to Rai1 and can also

initiate degradation [27,28].

Since decapping leaves a 50 monophosphate, it seems

likely that RNAPII will also be subject to torpedo termination

by Rat1 when capping is defective. Notably, the sensitivity of

degradation systems to 50 nucleotide status is conserved in

evolution, because the major bacterial endonuclease RNase

E is active only on substrates with a 50 monophosphate [29].

2.2. The exosome
In eukaryotes, the major 30 exonuclease activity during RNA

surveillance is supplied by the nuclear exosome complex. The

exosome was originally defined for its role in the processing

of precursors to stable RNAs; rRNA, small nucleolar RNA

(snoRNA) and small nuclear RNA (snRNA) are all processed

at least in part by the exosome [30,31]. Subsequently, the exo-

some was shown to target a wide variety of transcripts,

including defective pre-rRNAs, pre-tRNAs, aberrant

mRNAs and transcripts arising from pervasive transcription

[13,16,17,32–36]. Exosome structure and function is the

subject of several excellent reviews [37–39], and will be

discussed only briefly here.

The exosome consists of a central hexameric ring compris-

ing six proteins, with an additional three subunits layered on

top. These nine proteins are arranged in a barrel surrounding

a central channel just wide enough to accommodate single-

stranded RNA. Collectively, this complex is referred to as

the exosome core, and is structurally conserved in Archaea.

In eukaryotes, catalytic activity is supplied by the associated,

highly processive 30 to 50 exonuclease Dis3/Rrp44. Dis3 is

positioned at the base of the barrel, and approximately

30 nt of single-stranded RNA must be threaded through the

central channel to reach the active site [40,41]. Dis3 has

an additional PIN endonuclease domain, but the range of
in vivo targets for this endonuclease activity is unclear; the

only confirmed targets are the 50ETS and pre-5.8S regions

of the pre-rRNA. The nuclear exosome can also associate

with the distributive 30 to 50 exonuclease Rrp6, assisted by

its cofactor Rrp47 (C1D in human cells) [42–44]. Dis3 and

Rrp6 show some functional specialization, but there is

considerable overlap in their target sets [32,33].

2.3. Nuclear exosome cofactors; TRAMP, NNS, NEXT
The eukaryotic exosome core is relatively inactive, making its

function heavily reliant on cofactors. A well-studied cofactor

is the Trf4/5–Air1/2–Mtr4 polyadenylation (TRAMP)

complex. In S. cerevisiae, TRAMP consists of a poly(A) poly-

merase (PAP) (either Trf4 or Trf5), a zinc-finger, RNA

binding protein (Air1 or Air2) and the RNA helicase Mtr4

[16,45,46]. Trf4/5 adds a short oligo(A) tail to the transcript

end, which Mtr4 threads into the exosome central channel.

Air1 and Air2 are thought to aid in substrate binding.

In vivo cross-linking experiments with Dis3 reveal a high

fraction of reads with non-templated A-tails, suggesting

that TRAMP-mediated polyadenylation generally precedes

exosome-mediated decay [33]. Indeed, TRAMP plays an

essential role in the degradation of nearly all surveillance

targets of the exosome in yeast, including defective, hypo-

modified pre-tRNAi
Met [47], defective pre-rRNAs [48] and

cryptic RNAPII transcripts [16].

The role of Mtr4 and the exosome in ribosome production

is complex. Mtr4 acts in ‘constitutive’ pre-rRNA processing

steps: 30 trimming of the pre-5.8S rRNA and turnover of the

excised 50ETS spacer. Specific adaptor proteins, the ribosome

biogenesis factors Nop53 and Utp18, interact with the arch

domain of Mtr4 during recruitment to the pre-5.8S rRNA

and 50ETS, respectively [49]. Notably, both the arch domain

of Mtr4 and the arch-interacting motif of Nop53 are con-

served in higher eukaryotes. When ribosome synthesis is

proceeding normally, exosome activity is terminated at the

50 end of the pre-rRNA or close to the mature 30 end of the

5.8S rRNA. However, on pre-rRNAs that fail to undergo

cotranscriptional cleavage, recruitment of the exosome leads

to degradation of the entire pre-rRNA.

There is little evidence that the pre-rRNA processing steps

involve the TRAMP complexes, which probably function

only in pre-rRNA surveillance. Consistent with this, loss of

Trf5 was shown to partially rescue ribosome synthesis in

several different pre-ribosome assembly mutants [50,51].

Moreover, hyperadenylated pre-rRNAs accumulate on

depletion of Mtr4 [52], showing that the Trf–Air module of

TRAMP can be recruited independently of Mtr4 and,

presumably, of the exosome [51,52].

Notably, the processing roles of Mtr4 and exosome take place

in the context of a specific, on-pathway pre-ribosomal particle, in

which the interactions have presumably been fine-tuned

through evolution. During surveillance, in contrast, TRAMP,

Mtr4 and the exosome must respond to a multitude of different,

off-pathway particles with diverse defects in RNA processing,

RNA folding and RNA–protein interactions. Similar issues

must arise during surveillance of other RNA classes; the list of

defects that could potentially arise seems almost endless. We

therefore predict that the surveillance system is keyed to recog-

nize ‘generic’ attributes, and uses general adaptor proteins,

rather than recruitment by specific features of any particular,

misassembled RNA–protein complex.
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TRAMP-mediated surveillance of RNAPII transcripts is

usually coupled to transcription termination by the Nrd1–

Nab3–Sen1 (NNS) complex [14,15,53]. Nrd1 and Nab3 are

RNA binding proteins that each bind a short consensus

motif [54,55]. However, these sequence elements are abun-

dant throughout the genome and usually insufficient to

drive binding [56]. Nrd1–Nab3 recruitment is aided by a

physical interaction between Nrd1 and phosphorylated

serine 5 (Ser5-P) within the CTD of RNAPII [57,58]

(figure 3). Ser5-P is ubiquitously present during early tran-

scription and, probably as a result, Nrd1 and Nab3 are

broadly recruited to the 50 ends of nascent transcripts

[54–56,59]. Once bound, Nrd1 and Nab3 can engage Sen1, an

ATP-dependent, 50 –30 RNA and DNA helicase. Sen1 is the puta-

tive transcription termination factor, which may displace

polymerase and free the nascent transcript for degradation by

the TRAMP–exosome complex [14,15,53,60–62]. Termination

by NNS is further promoted by interactions with histone

H3 modified by lysine 4 trimethylation (H3K4me3) [63],

a hallmark of the 50 regions of protein-coding genes.

The NNS pathway also participates in the maturation of

snoRNAs [64], promoting 30 processing rather than complete

degradation. This is possible because specific snoRNA-

binding proteins mark the mature 30 end and block further

degradation by the exosome.

The NNS pathway seems to be unique to budding yeasts;

there are apparent human homologues of Nrd1 (SCAF8/

RBM16) and Sen1 (Senataxin), but these are not known to

form a complex with a Nab3 homologue. By contrast, the

TRAMP complex is well conserved [65], but human

TRAMP is confined to the nucleolus, where it presumably

participates in pre-rRNA surveillance [66]. hMtr4 is distribu-

ted more broadly throughout the nucleus, and can also

associate with the RNA binding proteins RBM7 and

ZCCHC8 to form the nuclear exosome targeting (NEXT)

complex [66]. Both RBM7 and ZCCHC8 are restricted to the

nucleoplasm, and NEXT participates in surveillance of

RNAPII transcripts, including the degradation of cryptic

transcripts. Additionally, NEXT facilitates the termination

and 30 end processing of human snRNAs [66,67]. NEXT is

recruited to target transcripts through interactions with the

nuclear CBC [68] and, therefore, binds promiscuously

during early RNAPII transcription (figure 3). Subsequently,

the CBC–NEXT complex triggers early termination and

degradation of target transcripts [69]. These features are ana-

logous to the NNS pathway, despite the lack of sequence

homology between the individual components.
3. Surveillance throughout the transcription
cycle

3.1. Transcription elongation
During transcription elongation, the 30 end of the nascent

transcript is buried within the active site of RNAPII and

inaccessible to 30 exonucleases. It seems likely that exo-

some-mediated surveillance will first require transcription

termination and dissociation of the polymerase. Indeed, this

appears to be the mechanistic basis for the NNS and NEXT

pathways. There is, however, another potential pathway

that might allow the exosome access to the 30 ends of nascent

transcripts. When transcription elongation is impeded, the
polymerase can backtrack—sliding backwards along the

DNA and extruding the 30 end of the nascent transcript

from the catalytic site (reviewed in [70]). Backtracked

RNAPII is generally rescued by transcription factor IIS

(TFIIS; Dst1 in yeast) [71], which activates the intrinsic hydro-

lytic activity of RNAPII. This cleaves the nascent transcript

and realigns the 30 end within the active site, allowing

transcription to resume.

In principle, extended backtracking might also lead to the

extruded 30 end projecting from the polymerase to a sufficient

extent to allow binding of the surveillance machinery. This

could provide an entry point for the nuclear exosome to

degrade the nascent transcript, displacing RNAPII in the pro-

cess [72]. Consistent with this model, depletion of Dis3 in the

fission yeast Schizosaccharomyces pombe results in extended

transcripts with elevated RNAPII occupancy downstream of

the poly(A) site [72]. RNAPII is known to pause downstream

of the poly(A) site, allowing time for cotranscriptional cleav-

age and polyadenylation [73,74]. This pause is proposed to

favour backtracking, leading to transcription termination

via the exosome [72]. For transcripts that are rapidly cleaved

and polyadenylated prior to transcription termination, the

exosome would degrade only the sequence downstream of

the poly(A) site. The remainder of the transcript would be

protected due to its separation from the elongation complex

by 30 cleavage. Were RNA cleavage delayed, the exosome

could destroy the entire transcript, providing quality control

for timely 30 end formation. RNAs lacking bona fide polyade-

nylation signals or transcripts which fail to correctly assemble

the cleavage and polyadenylation complex would then be

degraded by default (figure 1). This model might also ration-

alize observations from S. cerevisiae which implicate the

exosome in mRNA transcription termination [32,75]. Back-

tracking has also been invoked to explain transcription

termination in human cells [76].

3.2. Splicing
Unspliced pre-mRNAs are very rapidly degraded when spli-

cing is delayed, indicating active surveillance. However, the

mechanism and factors involved remain obscure. In yeast

and humans, splicing generally occurs cotranscriptionally,
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so introns and splicing factors are usually removed before the

30 end is exposed by transcription termination. Since excised

introns must always be degraded, or trimmed to release

internal snoRNAs, it is possible that features or factors associ-

ated with splicing would act to specifically recruit the RNA

degradation system. When splicing is delayed, the 30 end is

no longer protected by the transcription elongation complex

and these factors could facilitate degradation of the entire

transcript. Degradation could be induced through direct

recruitment of the exosome by one or more splicing factors,

or through specific decay-promoting sequences within

introns. The clearest example is the binding of Mmi1 to fis-

sion yeast introns [77]. Mmi1 recruits the exosome to a

subset of unspliced introns, facilitating degradation of the

entire RNA. However, these transcripts will generally be ter-

minated by the canonical cleavage machinery, so degradation

either outcompetes polyadenylation or is able to overcome

the protection a poly(A) tail would normally confer. Whether

additional intron-associated factors participate in surveillance

is unclear, so this model remains somewhat speculative.

However, if multiple exosome recruitment pathways exist,

loss of a single factor might not have dramatic effects.

3.3. Termination
Eukaryotic pre-mRNAs are generally terminated following

cotranscriptional endonuclease cleavage downstream of the

open reading frame. In nearly all instances, pre-mRNA clea-

vage is coupled to the addition of a poly(A) tail. In contrast

to alternative termination mechanisms, pre-mRNA cleavage

and polyadenylation is not clearly associated with exosome-

mediated processing or decay. This is usually attributed to

the protective effects of poly(A) binding proteins (poly(A)

BPs), which coat the nascent poly(A) tail during its synthesis

and are thought to fend off exonuclease attack [78]. This

hypothesis has been most directly tested in S. cerevisiae,

where rapid depletion of the nuclear poly(A) BP Nab2 dra-

matically destabilizes newly synthesized, polyadenylated

mRNAs [79]. This phenotype is alleviated when the exosome

is also inactivated, indicating that Nab2 protects poly(A)

tailed transcripts from the nuclear exosome (figure 1).

Whether this role for nuclear poly(A) BPs is conserved in

higher eukaryotes remains uncertain. Human cells encode

multiple, potentially redundant, nuclear poly(A) BPs and

their roles in mRNA stability remain to be clarified.

In contrast to the protective effects of canonical cleavage

and polyadenylation, transcripts terminated by alternative

mechanisms are generally highly unstable. The clearest

example is NNS-mediated termination, which usually facili-

tates termination early in the transcription cycle. However,

even full-length transcripts are destabilized if termination is

not coupled to polyadenylation and poly(A) BP binding. In

S. cerevisiae, binding sites for the DNA-binding protein

Reb1 are enriched in intergenic regions downstream of

poly(A) sites [80]. DNA-bound Reb1 acts as an orientation-

sensitive roadblock for RNAPII, which stalls and is ultimately

ubiquitinated to induce transcription termination [80]. The

nascent RNA is released with a 30 monophosphate, and

rapidly degraded by the TRAMP–exosome complex. In

alternative pathways, readthrough pre-mRNA transcripts

can be terminated by the NNS complex or following tran-

script cleavage in double-stranded regions by the RNase III

homologue Rnt1 [81,82]. In each case, the terminated
transcripts lack a poly(A) tail and are rapidly degraded by

the nuclear exosome.

Underlining the importance of 30 protection, stable but

non-polyadenylated RNAPII transcripts all carry specialized

30 structures and/or specific RNA 30-end binding proteins

(figure 2). The major form of the highly expressed human

long noncoding RNA (lncRNA) MALAT1 has a 30 terminus

that is generated by RNase P cleavage at a tRNA-like element

[83]. The resulting transcript ends in an A-rich stretch that

interacts with two upstream U-rich elements to form a triple-

helix structure, which sequesters the 30 end of the transcript

from exonucleases [84,85]. Interestingly, triple-helix formation

can also be used to protect a canonical poly(A) tail. For

example, the viral noncoding and nuclear-retained RNA

PAN carries internal U-rich elements that sequester the

poly(A) tail within a triple helix [86] and protect it from exo-

some-mediated decay [87,88]. Similar structures have been

identified in other transcripts, suggesting triple helices could

be a widespread mechanism to protect the poly(A) tails

of nuclear-retained transcripts [89,90].

In metazoans, the majority of histone proteins are

encoded by replication-dependent histone genes (reviewed

in [91]). These histone mRNAs are synchronously up-regu-

lated during S phase to support DNA replication. The

transcript 30 end is formed through endonucleolytic cleavage

of the pre-mRNA by CPSF73, guided by the U7 snRNA.

CPSF73 is also required for canonical cleavage and polyade-

nylation, but these histone mRNAs are not polyadenylated.

Instead, a highly conserved, terminal stem–loop sequence

is specifically bound by the stem–loop binding protein

(SLBP), which confers protection against 30 degradation [83].

In yeast, 30 processing of most snRNAs or snoRNAs is

initiated by cotranscriptional cleavage by the endonuclease

Rnt1, a homologue of RNase III, which cleaves both sides

of a stem–loop structure. The cleaved pre-sn(o)RNA is prob-

ably initially protected by 30 binding of the La protein

homologue Lhp1 and/or the Lsm2-8 complex to oligo(U)

tracts [92–95], allowing time for assembly of the sn(o)RNP

complexes. Loss of the proteins that bind the snRNA or

snoRNA 30 terminus leads to complete degradation of the

mature sn(o)RNA region [95,96] (figure 2).

3.4. mRNP packaging
In principle, poorly packaged transcripts which remain bound

to chromatin could base pair with the complementary DNA

strand. For example, exosome inactivation in human cells

leads to the accumulation of enhancer-associated ncRNAs

(eRNAs), which generate RNA:DNA hybrids (R-loops) [97].

In both yeast and humans, R-loops are associated with

genome instability but are efficiently removed by the RNase

H endonuclease [98–100]. RNase H selectively cleaves RNA

that is base-paired with DNA, and presumably provides an

entry point for 50 and 30 exonucleases to degrade the entire

RNA molecule. Thus, RNase H may function as an additional

layer of RNA surveillance to ensure transcript quality.
4. Dual roles of nuclear poly(A) binding
proteins in stability and decay

Despite its role in mRNA stability (see above), Nab2 has also

been implicated in RNA surveillance pathways. Nab2 directs
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Figure 4. Major classes of noncoding RNA. The regions surrounding eukaryotic protein-coding genes generate a set of ncRNAs in addition to the mRNA transcript. These
include: (1) short divergent promoter associated transcripts from the nucleosome-free promoter region, (2) antisense (as) transcripts from the nucleosome-depleted
terminator region, (3) enhancer-associated eRNAs. In addition, (4) a range of ncRNAs are transcribed from intergenic locations. h, human; Sc, Saccharomyces cerevisiae.
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the degradation of pre-mRNAs by Rrp6 [101,102] and

autoregulates the NAB2 mRNA by recruiting the TRAMP–

exosome complex [103,104]. Nab2 was also proposed to

target CUTs, which generally lack polyadenylation signals

and are not polyadenylated [105]. Notably, while Nab2 is

enriched at the poly(A) tail, it binds promiscuously through-

out transcripts at non-poly(A) sites [105]. These observations

indicate that Nab2 can stimulate degradation when not

associated with the poly(A) tail.

The human nuclear protein PABPN1 is not related to

Nab2 in sequence, but plays an analogous role in nuclear sur-

veillance, targeting a wide range of nuclear substrates. These

include spliced genes that encode snoRNAs but no protein

product, cryptic transcripts arising from divergent promoters,

intronless transcripts and partially spliced mRNAs [88,106–

109]. In contrast to Nab2, PABPN1 targets full-length and

polyadenylated transcripts, suggesting that PABPN1 stimu-

lates decay while bound to the poly(A) tail. This activity

may be enabled by PABPN1’s additional role in polyadenyla-

tion (reviewed in [78]). On long poly(A) tails, PABPN1

facilitates the distributive extension of the tail by PAP [110],

perhaps creating a free 30 end accessible to the exosome. Con-

sistent with this notion, PAP activity is apparently required

for efficient degradation [109].

In addition, PABPN1 has been reported to recruit the zinc-

finger protein ZFC3H1, which acts together with Mtr4 to

stimulate exosome degradation of the transcript [108,111].

This surveillance pathway is apparently absent from budding

yeast but conserved in fission yeast. Red1 is the homologue of

ZFC3H1 and works with Mtr4-like 1 (Mtl1) to process snoR-

NAs and degrade CUTs, some pre-mRNAs, and meiotic

mRNAs, which must be eliminated in mitotic cells [112]. The

Mtl1–Red1 core (MTREC) complex is directed to target tran-

scripts by a variety of adaptors, including the PABPN1

homologue Pab2 and the PAP Pla1 [112–117]. The MTREC

complex also associates with another 30 end formation factor

Hrp1/Nab4 [117]. In budding yeast Hrp1 is required for pre-

mRNA cleavage, binding an upstream UAUAUA sequence

[118]. However, like Nab2, Hrp1 also binds at alternative

sites and contributes to ncRNA degradation [105] (figure 3).

The dual nature of nuclear poly(A) binding proteins in

RNA stability and decay may reflect distinct roles during

mRNA biogenesis. Following transcription through the clea-

vage site, mRNAs are rapidly polyadenylated, a process

which is coupled to packaging by poly(A) BPs. Delayed

poly(A) binding will expose the 30 end to exosome-mediated

degradation before the transcript can be exported to the cyto-

plasm. However, because nuclear poly(A) BPs also recruit the
exosome, any transcript with significantly delayed nuclear

export will eventually be degraded by default, albeit with

much slower kinetics (figure 1). In this respect, it is notable

that errors in splicing frequently prevent export, and that

Nab2, Pab2 and PABPN1 each target intron-containing

mRNAs [101,109,112,113]. In human cells, sensitivity to

PABPN1-mediated decay is indeed correlated with prolonged

nuclear retention [109,119].
5. Controlling pervasive transcription
Arguably the most significant role of the nuclear surveillance

machinery is the removal of huge numbers of different RNAs

that arise from pervasive transcription. This term was initially

coined in response to the unexpected finding that a large frac-

tion of the human genome is transcribed into unstable RNAs

with little or no protein-coding potential [120]. Subsequently,

several different classes of ncRNA have been defined and

included under this general heading (figure 4). In general,

noncoding regions diverge rapidly during evolution, present-

ing clear problems for their efficient recognition by highly

conserved, protein-based surveillance systems. As we discuss

below, the surveillance machinery seems to recognize

common features of ncRNA biogenesis rather than sequence.

Genome-wide studies indicate that eukaryotic promoters

are intrinsically bidirectional [8–11,121]. At many promoters,

polymerase initiates transcription equally in both directions,

but transcripts in the ‘upstream’ direction are quickly elimi-

nated by the nuclear surveillance machinery. In both yeast

and humans, this surveillance is intimately linked to the

mechanism of premature transcription termination.

In S. cerevisiae, promoter-associated ncRNA transcription

is terminated through the NNS pathway, and the resulting

transcripts are degraded by the TRAMP–exosome complex.

Nrd1 and Nab3 binding motifs are enriched in transcripts

generated upstream of bidirectional promoters, also termed

NUTs, and depleted within protein-coding transcripts [53].

This asymmetry presumably favours NNS-dependent ter-

mination in upstream regions, but whether it is sufficient to

explain the difference in stability between CUTs/NUTs and

mRNAs is less clear. Nrd1 and Nab3 binding elements are

of low complexity and generally abundant even in protein-

coding genes [54–56]. Moreover, cross-linking experiments

suggest Nrd1 and Nab3 bind promiscuously to most

RNAPII transcripts [53–56].

An additional determinant may be the phosphorylation

status of RNAPII. Early transcription is characterized by
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high Ser5 and low Tyr1, Ser2 and Ser7 phosphorylation levels

along the CTD [122,123]. This combination of marks, termed

‘initiation state’, helps recruit the NNS complex to nascent

transcripts [57,58,122]. For most genes, RNAPII remains in

initiation state through the first approximately 150 nt of

RNA, roughly corresponding to the first nucleosome [123].

Within this window, polymerase is particularly prone to

premature termination and surveillance [105,123]. As tran-

scription continues, the CTD is gradually reconfigured to

an elongation state [123]. Most notably, Ser5 phosphorylation

is reduced, rendering the transcript less prone to NNS

recruitment and transcription termination. Simultaneously,

an increase in Ser2 phosphorylation facilitates the recruitment

of canonical cleavage and polyadenylation factors [124].

Remarkably, this transition apparently fails to take place

during CUT transcription, with polymerase instead remain-

ing stuck in initiation state [123], providing an extended

window for NNS-dependent termination. Moreover, the fail-

ure to transition to elongation state prevents the recruitment

of factors that might otherwise facilitate termination at cryp-

tic poly(A) signals and yield a stable transcript. These factors

imply that CUTs are in some sense ‘fated’ for degradation by

the surveillance machinery.

Analogous mechanisms control divergent transcription in

humans. Regions upstream of bidirectional promoters are

enriched for consensus poly(A) signal (PAS) motifs, aiding

early termination by the conventional cleavage and polyade-

nylation machinery [12,125]. These prematurely terminated

transcripts are rapidly degraded by the nuclear exosome,

typically in concert with the NEXT complex [66,68]. When

present in the sense direction, PAS motifs are usually sup-

pressed by the presence of U1 snRNP along the RNA

[125,126]. Together, these features constitute the ‘U1–PAS

axis’ [125], and help enforce transcription directionality.

However, even sense transcripts are sometimes subject to

premature cleavage and degradation [127].

At first glance, it is surprising that conventional termin-

ation should be coupled to decay. However, despite being

processed by the canonical cleavage and polyadenylation

machinery, uaRNAs are often not polyadenylated [108].

This suggests divergent transcripts are targeted soon after

transcript cleavage, perhaps during an early, distributive

phase of polyadenylation when the transcript is still unpro-

tected by nuclear poly(A) BPs. This raises the obvious

question of why mRNAs are not also susceptible to NEXT-

mediated decay. The answer has been proposed to relate to

differences in transcript length between uaRNAs and

mRNAs [108]. NEXT is recruited by the CBC and, like

NNS, preferentially localizes near the 50 ends of nascent

RNAs [68,69]. Cleavage in this region could favour decay

triggered by NEXT and thus disfavour polyadenylation.

Consistent with this hypothesis, NEXT is most active on tran-

scripts shorter than 2 kb [108]. When transcript cleavage

happens far downstream, as is usually the case for mRNAs,

polyadenylation should be favoured.

As with yeast, it is unlikely that any one characteristic is

sufficient for the mammalian surveillance machinery to dis-

tinguish mRNAs from transcriptional noise. Another

important feature may be splicing, which has long been associ-

ated with RNA stability and surveillance. In mammalian cells,

intronless transcripts tend to be weakly expressed and unstable

[119] and, while nearly all mammalian mRNAs are spliced, the

vast majority of divergent transcripts are not. The connection
between a lack of splicing and uaRNA instability may be

direct, because splicing deposits the mRNA export factor

REF on nascent transcripts, where it physically interacts with

CBC [128]. Notably, REF directly competes with Mtr4 for

access to CBC [129], indicating that the export machinery

antagonizes nuclear surveillance. Moreover, REF overexpres-

sion is sufficient to protect some divergent transcripts from

exosome-mediated decay [129]. Somewhat surprisingly, these

effects are independent of the NEXT complex, suggesting

Mtr4 can also act independently or with other exosome

adaptors to degrade divergent transcripts. A plausible candi-

date is the PABPN1–PAP–ZFC3H1 pathway, which helps to

degrade a subset of uaRNAs [107–109].
6. Slow, default decay for nuclear-retained
transcripts?

In addition to CUTs, yeast also produce stable unannotated

transcripts (SUTs). Whereas CUTs are only observable

when the surveillance machinery is compromised, SUTs are

readily detectable in wild-type cells [9]. The greater stability

of SUTs might be explained by ‘mRNA-like’ processing

[105], because they undergo 30 cleavage and polyadenylation,

with recruitment of Nab2 and/or Pab1 to the poly(A) tail.

However, unlike most mRNAs, SUTs are not extensively

bound by the export factor Mex67 or the cytoplasmic localiz-

ation protein Hek2 [105]. These observations suggest SUTs

are predominantly restricted to the nucleus, and perhaps tar-

geted nonspecifically by nuclear RNA decay pathways.

Consistently, SUTs are stabilized in strains lacking a func-

tional nuclear exosome [32,130]. A subset of SUT-like RNAs

are exported and strongly stabilized in the absence of the

cytoplasmic exonuclease Xrn1, resulting in the designation

of Xrn1-sensitive unstable transcripts (XUTs) [130].

SUT biogenesis appears homologous to nuclear lncRNAs

in higher eukaryotes. Mammalian lncRNAs bear a striking

resemblance to mRNAs; both classes are capped and polyade-

nylated, sometimes spliced, and similar in length [131].

However, lncRNAs usually lack the strong export and trans-

lation signals typical of most mRNAs, and are more

frequently confined to the nucleus [132]. Only a small pro-

portion of lncRNAs have defined functional roles, and few

show any meaningful evolutionary conservation [119].

Like SUTs, nuclear lncRNAs are significantly less stable

than their cytoplasmic mRNA counterparts [119]. The relative

instability of SUTs and nuclear lncRNAs is commonly attrib-

uted to their inefficient processing and export, rather than

specific recognition by quality control pathways. In general,

species that take longer to exit the nucleus should be more

susceptible to nuclear degradation. This ‘kinetic competition’

model has also been invoked to explain mRNA surveillance.

In both yeast and humans, mistakes in splicing, 30 end for-

mation or mRNP packaging can inhibit nuclear export. In

this way, some aberrant mRNAs may be degraded by default

on account of their prolonged nuclear retention (figure 1).
7. Conclusion and perspectives
RNAs carry out diverse functions within cells, providing both

the machinery for protein production and the information to

programme its activity. In order to function in these distinct
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activities, all RNAs undergo elaborate maturation processes

within the nucleus. During these complex processing and

assembly pathways, defects inevitably arise in some RNA

transcripts and RNA–protein complexes, which must be sys-

tematically removed by quality control pathways. In this

review, we proposed that the identification and degradation

of defective RNAs, and enormous numbers of spurious tran-

scripts, does not require recognition of specific ‘bad’ features.

Rather the surveillance system will, by default, target almost

all RNAs. Transcripts that undergo correct and timely matu-

ration acquire protective features that help them evade the

activities of the surveillance system. This model potentially

explains how eukaryotes can tolerate the synthesis of huge

numbers of diverse ncRNA transcripts, which are constantly

cleared by rapid degradation. Moreover, it has been proposed,

on thermodynamic grounds, that pervasive transcription is an

inevitable feature of eukaryotic genomes [133]. The develop-

ment of a surveillance ready transcription system may,

therefore, have been a prerequisite for the evolution of the

very large genomes found in many higher eukaryotes.

Although our understanding of these surveillance

pathways is rapidly expanding, many questions remain un-

answered. In particular, a quantitative description of RNA

surveillance is needed. Discrimination between normal and
defective transcripts must require an input of energy, in order

to avoid violating the second law of thermodynamics. This

energy input could be supplied by ATP-dependent RNA

helicases, potentially explaining why helicases such as Mtr4

are critical components of essentially all surveillance pathways.

However, a mechanistic understanding of the connection

between ATP expenditure and RNA surveillance remains elu-

sive. An additional avenue for future research is the role of

RNA modifications such as m6A and m1A, which in recent

years have been implicated in multiple aspects of the mRNA

life cycle [134]. Nascent mRNAs must presumably be screened

for the ‘correct’ combination of methylation marks, but how

this is achieved is still unclear. In the future, the application

of new techniques such as CRISPR, cross-linking-immunopreci-

pitation and single-RNA fluorescence microscopy will enable

these questions and others to be addressed.
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