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Abstract

Objectives: To examine whether educational attainment and intelligence have causal

effects on risk of Alzheimer’s disease (AD), independently of each other.

Design: Two-sample univariable and multivariable Mendelian randomization (MR) to es-

timate the causal effects of education on intelligence and vice versa, and the total and in-

dependent causal effects of both education and intelligence on AD risk.

Participants: 17 008 AD cases and 37 154 controls from the International Genomics of

Alzheimer’s Project (IGAP) consortium.

Main outcome measure: Odds ratio (OR) of AD per standardized deviation increase in

years of schooling (SD¼ 3.6 years) and intelligence (SD ¼ 15 points on intelligence test).

Results: There was strong evidence of a causal, bidirectional relationship between intelli-

gence and educational attainment, with the magnitude of effect being similar in both direc-

tions [OR for intelligence on education ¼ 0.51 SD units, 95% confidence interval (CI): 0.49,

0.54; OR for education on intelligence ¼ 0.57 SD units, 95% CI: 0.48, 0.66]. Similar overall

effects were observed for both educational attainment and intelligence on AD risk in the

univariable MR analysis; with each SD increase in years of schooling and intelligence, odds

of AD were, on average, 37% (95% CI: 23–49%) and 35% (95% CI: 25–43%) lower, respec-

tively. There was little evidence from the multivariable MR analysis that educational

attainment affected AD risk once intelligence was taken into account (OR¼ 1.15, 95%
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CI: 0.68–1.93), but intelligence affected AD risk independently of educational attainment to a

similar magnitude observed in the univariate analysis (OR¼0.69, 95% CI: 0.44–0.88).

Conclusions: There is robust evidence for an independent, causal effect of intelligence in

lowering AD risk. The causal effect of educational attainment on AD risk is likely to be

mediated by intelligence.

Key words: Education, dementia, Alzheimer’s disease, Mendelian randomization

Introduction

Alzheimer’s disease (AD) is the leading cause of death in

England and Wales.1 Existing treatments are currently un-

able to reverse or delay progression of the disease. Thus,

strategies for reducing the incidence of the disease by inter-

vening on modifiable risk factors are important. Higher ed-

ucational attainment is associated with a lower risk of

dementia.2–5 However, the mechanisms underlying the

associations of educational attainment with AD risk are

uncertain and this has implications for intervention design.

In particular, what is the role of intelligence? The degree to

which education affects intelligence, vs intelligence being

largely fixed in early life and acting as a determinant of ed-

ucational attainment, has been debated for decades6–10

and studies have provided evidence of an effect in both

directions.8,11 If the principal direction of causality is intel-

ligence to educational attainment, intelligence would in-

duce confounding bias in the association between

educational attainment and AD. In this case, interventions

aiming to increase educational attainment (e.g. raising the

school leaving age to increase years of schooling) are un-

likely to affect AD risk, but alternative prevention strate-

gies such as cognitive training may prove effective. In

contrast, if the principal direction of causality is such that

greater educational attainment increases intelligence (i.e.

intelligence lies on the causal pathway from educational at-

tainment to AD risk), then interventions designed to pro-

long the duration of education may reduce AD risk, either

directly or indirectly through subsequently increasing

intelligence

.

Determining the relative contributions of education and

intelligence to AD risk is of clear importance for designing

appropriate policy interventions to reduce AD risk. Using

observational methods to unpick these associations is chal-

lenging due to bias from measurement error, confounding

and reverse causation. More recently, studies have

attempted to estimate causal effects of educational attain-

ment on AD risk using methods such as univariable

Mendelian randomization (MR). MR is a form of instru-

mental variable analysis, in which genetic variants are used

as proxies for a single environmental exposure.12 Due to

their random allocation at conception, genetic variants as-

sociated with a particular risk factor are largely indepen-

dent of potential confounders that may otherwise bias the

association of interest when using observational methods.

Genetic variants also cannot be modified by subsequent

disease, thereby eliminating potential bias by reverse cau-

sation. Thus, MR can be a useful tool for helping to estab-

lish whether the association between an exposure and an

outcome is likely to be causal. However, these methods

can be problematic with traits that are highly genetically

and phenotypically correlated (such as educational attain-

ment and intelligence).13,14 Figure 1 illustrates possible

models underlying the observed associations of educational

attainment and intelligence with AD risk. In all models

shown, causal effects for both exposures on AD risk would

be implied from univariable MR analyses. However,

depending on the underlying model, intervention targets

will differ. Multivariable MR is an extension of univariable

Key Messages

• Mendelian randomization (MR) estimates of the causal effect of education on risk of Alzheimer’s disease (AD) can

yield biased estimates with traits that are highly genetically and phenotypically correlated (such as education and

intelligence).

• We provide evidence that intelligence and education are likely to have causal effects on each other, with the magni-

tude of effect being similar in both directions.

• We show that the existing associations reported in the literature between greater educational and lower AD risk are

likely to be largely driven by intelligence, rather than there being an independent protective effect of staying in school

for longer.
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Figure 1. A non-exhaustive list of possible models underlying the observed causal effects of educational attainment, intelligence and risk of

Alzheimer’s disease. These are not intended to be directed acyclic graphs. IQ denotes intelligence. EA denotes educational attainment and AD

denotes Alzheimer’s Disease. G denotes a set of instruments that are drawn as a single node for visual simplicity. (a) Illustrates a model in which G is

identified in a GWAS of EA, because it is associated with EA indirectly through IQ. IQ has an independent effect on AD but EA does not. A spurious as-

sociation between EA and AD is induced due to confounding by IQ. Accounting for IQ in multivariable analysis would reveal no independent effect of

EA on AD risk and the intervention target should be IQ. (b) Illustrates a model in which G is identified in a GWAS of IQ because it is associated with IQ

indirectly through EA. EA has an independent effect on AD but IQ does not. A spurious association between IQ and AD is induced due to confounding

by EA. Accounting for EA in multivariable analysis would reveal no independent effect of IQ on AD risk and the intervention target should be EA. (c)

Illustrates a model in which the effect of EA on AD risk is entirely mediated by IQ (i.e. IQ lies on the causal pathway between EA and AD).

Multivariable analyses would reveal an independent effect of IQ on AD risk, but no independent effect of EA. The intervention target could be either

IQ or EA. (d) Illustrates a model in which the effect of IQ on AD risk is entirely mediated by EA (i.e. EA lies on the causal pathway between IQ and AD).

Multivariable analyses would reveal an independent effect of EA on AD risk, but no independent effect of IQ. The intervention target could be either

EA or IQ. (e) Illustrates a model in which there is full horizontal pleiotropy through IQ. Horizontal pleiotropy occurs when G has a causal effect on dis-

ease independently of its effect on the exposure. In this case, multivariate analyses would reveal an independent effect of IQ on AD risk, but no inde-

pendent effect of EA and the intervention target should be IQ. (f) Illustrates a model in which there is full horizontal pleiotropy through EA.

Multivariate analyses would reveal an independent effect of EA on AD risk, but no independent effect of IQ and the intervention target should be EA.

(g) Illustrates a model in which G independently effects all three traits, but the three traits have no causal effect on each other. Multivariable analysis

would show no independent effects of EA or IQ on AD risk. (h) Illustrates a model in which there are joint independent effects of both EA and IQ on

AD risk. Multivariate analysis would show independent effects of both IQ and EA and the intervention target could be either IQ or EA. Here, the bi-di-

rectional relationship between IQ and EA does not affect the qualitative interpretation.
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MR in which multiple exposures are included within the

same model. It can estimate causal effects of one trait, in-

dependently of another related trait. Thus, extending MR

analyses from the univariable to the multivariable setting

may be a useful tool for further disentangling these rela-

tionships and establishing the respective roles of both edu-

cation and intelligence in AD risk.13 In this study, we

estimated (i) the effect of educational attainment on intelli-

gence and vice versa, (ii) the overall effects of educational

attainment and intelligence on AD risk and (iii) the

independent effects of both education and intelligence on

AD risk (i.e. the effects of educational attainment and in-

telligence on AD risk that are independent of the other

trait).

Methods

Mendelian randomization

MR is a form of instrumental variable analysis that uses ge-

netic variants to proxy for environmental exposures. Two-

sample MR15 is an extension in which the effects of the ge-

netic instrument on the exposure and on the outcome are

obtained from separate genome-wide association studies

(GWAS). This method is particularly useful for trying to

identify early life risk factors for later life diseases like AD,

because unlike in observational studies, rich longitudinal

data across the whole life course (which are scarce) are not

needed. MR is based on three key assumptions: (i) genetic

variants must be robustly associated with the exposure of

interest, (ii) genetic variants must not be associated with

potential confounders of the association between the expo-

sure and the outcome and (iii) there must be no effects of

the genetic variants on the outcome, that do not go via the

exposure (i.e. no horizontal pleiotropy).16 To-date, MR

studies have typically been univariable (i.e. examining the

effect of one exposure on an outcome), thereby estimating

the total effect of the exposure on the outcome through all

possible pathways. More recently, multivariable MR meth-

ods have been proposed to investigate the independent

effects of multiple traits on an outcome. Methods for con-

ducting a multivariable MR analysis have been published

elsewhere.13,17,18

Data

For educational attainment, we used the GWAS (discovery

and replication meta-analysis, n¼293 723)19 which identi-

fied 162 approximately independent genome-wide signifi-

cant (P< 5x10-8) single nucleotide polymorphisms (SNPs)

associated with years of schooling. SNP coefficients were

per standard deviation (SD) units of years of schooling

(SD¼ 3.6 years). For intelligence, we used the largest

(n¼ 248 482) and most recent iteration of the Multi-Trait

Analysis of Genome-wide association studies,20 which

identified 194 approximately independent (r2 threshold

<0.01 within a 10 mb window using 1000 genomes refer-

ence panel21) genome-wide significant SNPs. SNP coeffi-

cients were per one SD increase in the intelligence test

scores (SD¼ 15 points on the intelligence test score).

Tables S1 and S2, available as Supplementary data at IJE

online detail each SNP used from the education and intelli-

gence GWAS along with the chromosome, gene position,

effect and other alleles, effect allele frequency and the asso-

ciations of each SNP with the exposure and the outcome. F

statistics provide an indication of instrument strength22

and are a function of R2 (how much variance in the trait is

explained by the set of genetic instruments being used), the

number of instruments being used and the sample size. The

F statistics for the educational attainment and intelligence

instruments are 43.5 and 50.45, respectively (F>10 indi-

cates the analysis is unlikely to suffer from weak instru-

ment bias).23 For the outcome (AD) we used the large-scale

GWAS of AD conducted by the International Genomics of

Alzheimer’s Project (IGAP, n¼ 17 008 AD cases and

37 154 controls).24 SNP coefficients were log odds ratios

(ORs) of AD. Ethical approval was granted for each of the

original GWAS studies and details can be found in the re-

spective publications.

Estimating the bidirectional association

between intelligence and educational

attainment

After (i) excluding non-independent SNPs, (ii) excluding

SNPs that overlapped between the two GWAS and (iii)

harmonization across both GWAS, there were 148

genome-wide significant SNPs for educational attain-

ment and 180 for intelligence available for these analy-

ses. Full details of the harmonization procedure are

available as Supplementary data at IJE online.

Univariable MR was used to estimate the total effect of

intelligence on educational attainment, and educational

attainment on intelligence. This was done using inverse-

variance-weighted (IVW) regression analysis.25 Briefly,

IVW regression is where causal effect estimates for each

genetic variant are averaged using an inverse-variance

weighted formula (taken from the meta-analysis litera-

ture) to provide an overall causal estimate of the expo-

sure on the outcome.26 In this regression, the intercept is

constrained to zero, which makes the assumption of no

horizontal pleiotropy. Results are presented in SD units

to enable a comparison of the magnitude of effect across

both exposures.
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Estimating the total and independent effects of

education and intelligence on Alzheimer’s disease

There were 142 genome-wide significant SNPs for educa-

tional attainment and 185 for intelligence available for

these analyses, after excluding non-independent SNPs and

harmonization across both GWAS (full details of harmoni-

zation are available as Supplementary data at IJE online).

Univariable MR was used to estimate the total effects of

both intelligence and educational attainment (separately)

on AD risk, through all possible pathways, using in an

IVW regression analysis (described above).25 As mentioned

previously, this univariable method has been shown to

yield biased effect estimates if the genetic instruments be-

ing used are non-specific for the hypothesized expo-

sure.13,14 Thus, to demonstrate these effects as they would

be observed in a typical univariable analyses, we did not

exclude the 9 SNPs that overlapped across education and

intelligence GWAS. We then used multivariable MR to es-

timate the effects of educational attainment and intelli-

gence on AD risk, independently of each other, by

including both exposures within the same model.13 After

clumping the full list of SNPs from both the education and

intelligence GWAS (to ensure only independent SNPs are

included) and restricting to those SNPs (or proxies) found

in the AD GWAS, a total of 231 SNPS were available for

the multivariable MR analyses (84 for education and 156

for intelligence, 9 of which overlap between both GWAS).

Sensitivity analyses

Firstly, in the bidirectional analysis between educational

attainment and intelligence, we endeavoured to rule out

the possibility that the genetic instruments used to proxy

for educational attainment are actually instruments for in-

telligence and vice versa (i.e. we wanted to test that the hy-

pothesized causal direction was correct for each SNP

used). To do this we performed Steiger filtering27 for each

SNP to examine whether it explains more variance in the

exposure than it does in the outcome (which should be true

if the hypothesized causal direction from exposure to out-

come is correct). We then re-ran analyses excluding those

SNPs for which there was evidence that it explained more

variance in the outcome than the exposure. Secondly, to

check that the SNPs do not exert a direct effect on the out-

come apart from through the exposure (which would vio-

late a key MR assumption of no horizontal pleiotropy12)

we compared results from all univariable (both the bidirec-

tional education on intelligence analyses and the analysis

of education and intelligence on AD risk) and multivari-

able IVW regressions to those obtained with MR-Egger re-

gression. In MR-Egger regression, the intercept is not

constrained to zero, thus, the assumption of no horizontal

pleiotropy is relaxed.16,26,28 The estimated value of the in-

tercept in MR-Egger regression can be interpreted as an es-

timate of the average pleiotropic effect across the genetic

variants. An intercept term that differs from zero is there-

fore indicative of horizontal pleiotropy, and the causal ef-

fect estimate obtained from an MR-Egger regression is

adjusted for the degree of pleiotropy detected.16 Full

details of the MR-Egger regression analyses are available

as Supplementary data at IJE online. Thirdly, we con-

ducted a leave-one-out analysis for the univariable models

in which we systematically removed one SNP at a time to

assess the influence of potentially pleiotropic SNPs on the

causal estimates.29 If any single SNP was invalid, there

would likely be distortion in the distribution of the causal

effects estimates. Fourth, in all univariable analysis, we

assessed whether causal estimates from different genetic

variants were comparable (i.e. heterogeneity) using

Cochran’s Q statistic.16 Considerable heterogeneity would

imply that the MR assumptions may not be valid for all

the variants included in the analysis. Finally, funnel plots

were generated to enable the visual assessment of the ex-

tent to which pleiotropy is balanced across the set of

instruments used in each analysis. Symmetry in these plots

provides evidence against directional pleiotropy.

Results

Bidirectional effects of intelligence on educational

attainment and their influences on AD risk

Using 180 and 148 genetic instruments for intelligence and

educational attainment, respectively (and no overlapping

SNPs), we found strong evidence of causal effects both of

intelligence on educational attainment, and of educational

attainment on intelligence (Table 1). However, the magni-

tude of the effect was over two-fold greater for educational

attainment on intelligence compared with intelligence on

educational attainment. Per SD increase in intelligence (i.e.

per 15 points on the intelligence test), years of schooling

increased by 0.51 SD [95% confidence interval (CI): 0.49

to 0.54]. Per SD increase in years of schooling (i.e. per

3.6 years of schooling), intelligence increased by 1.04 SD

(95% CI: 0.99 to 1.10).

The main IVW regression using all SNPs from the edu-

cational attainment GWAS showed that, with each SD

more years of schooling (i.e. �3.6 years), the odds of AD

were, on average, 37% lower (95% CI: 23–49%). Per one

SD higher intelligence test score, the odds of AD were, on

average, 35% lower (95% CI: 25–43%, Fig. 2 and Table

S3, available as Supplementary data at IJE online).
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Multivariable analysis of education and

intelligence on AD

When both intelligence and educational attainment were

included within a single multivariable model, there was lit-

tle evidence of an effect of educational attainment on AD

risk, independent of intelligence (Fig. 2 and Table S3,

available as Supplementary data at IJE online, OR for the

effect of a one SD increase in years of schooling on AD ¼
1.15, 95% CI: 0.68–1.93). There was, however, evidence

that higher intelligence lowers AD risk, independently of

educational attainment. On average, after accounting for

educational attainment, odds of AD were 38% lower

(95% CI: 12–56%) per one SD higher intelligence test

score (Fig. 2 and Table S3, available as Supplementary

data at IJE online).

Sensitivity analyses

The Steiger filtering provided evidence that all intelligence

SNPs explained more variance in intelligence than educa-

tional attainment, suggesting they were all in the correct

causal direction (i.e. from intelligence to education).

However, there was evidence that 125 (85%) of the 148

education SNPs explained more variance in intelligence

than educational attainment, suggesting the hypothesized

causal direction is incorrect and is more likely to go from

intelligence to education. This left 23 education SNPs.

When using only these 23 education SNPs, there was still

strong evidence of a causal effect of educational attainment

on intelligence (standardized b¼ 0.57, 95% CI: 0.48–0.66,

Table S4, available as Supplementary data at IJE online),

but the magnitude attenuated so that it was comparable to

the effect of intelligence on educational attainment (as op-

posed to the main analysis which showed >2-fold greater

magnitude of effect for education on intelligence than vice

versa). There was some evidence of horizontal pleiotropy

only in the estimate of the total effect of intelligence on AD

risk (Tables S3 and S5, available as Supplementary data at

IJE online). However, for all univariable and multivariable

analyses (including the bidirectional effects of intelligence

on educational attainment), MR-Egger effect estimates

adjusting for pleiotropy were consistently comparable to

those from the IWV regressions (Tables S3 and S5, avail-

able as Supplementary data at IJE online). As expected the

standard errors were much larger for MR-Egger estimates,

because MR-Egger regression provides estimates of two

parameters (i.e. both an intercept and a slope) compared

with the single parameter in the IVW regressions (i.e. only

the slope). The MR-Egger estimate for the total effect of in-

telligence on AD risk went in the opposite direction to the

IVW estimate (i.e. greater rather than lower odds of AD

per SD increase in the intelligence score); however, the CIs

were very wide, and the effect estimate could plausibly go

in either direction (OR: 1.36, 95% CI: 0.75, 2.48). There

was no distortion in the leave-one-out plots for univariable

analyses (Figures S1–S4, available as Supplementary data

at IJE online), suggesting that no single SNP was driving

the observed effect from any analysis. There was evidence

of heterogeneity in the causal effect estimates from all uni-

variable analyses (P values for all analyses <0.02, Tables

S3 and S5, available as Supplementary data at IJE online).

However, provided the pleiotropic effects of genetic var-

iants are equally likely to be positive or negative (i.e. no di-

rectional pleiotropy), the overall causal estimate based on

all genetic variants is likely to be unbiased and the funnel

Table 1. Bidirectional effect of intelligence on years of schooling; results are interpreted per one standard deviation increase

years of schooling and intelligence test scores

Causal effect estimates

Total effects SNPs, n Standardized b (95% CI) P

Intelligence on years of schooling 180 0.51 (0.49, 0.54) 1.77e-95

Years of schooling on intelligence 148 1.04 (0.99, 1.10) 9.36e-80

b, beta coefficient.

Figure 2. Forest plot showing (i) total effect estimates for years of

schooling (in standard deviations) and intelligence (in standard devia-

tions) on odds of AD and (ii) independent effect estimates for both years

of schooling and intelligence on odds of AD, when each exposure is ad-

justed for the other.
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plots showed little evidence of departure from symmetry

(Supplemental Figures S5–S8, available as Supplementary

data at IJE online).

Discussion

Bidirectional causal effects in the relationship

between of educational attainment and

intelligence

In this study we examined the bidirectional effects of intel-

ligence on educational attainment. We found that the rela-

tionship between intelligence and educational attainment

is indeed likely to be bidirectional in nature (i.e. there is ev-

idence of an effect in both directions), with the magnitude

of effect being similar in both directions. A recent meta-

analysis of quasi-experimental studies of educational

effects on intelligence provides evidence that supports our

MR findings. Across 142 effect sizes from 42 data sets in-

volving over 600 000 participants, the authors reported

consistent evidence for beneficial effects of education on

cognitive abilities of �1–5 IQ points (contingent on study

design, inclusion of moderators and publication-bias cor-

rection) for an additional year of education.11 These find-

ings are similar to ours with respect to magnitude of effect.

Assuming a SD of 15 for IQ (as described in the meta-

analysis11) intelligence was, on average, up to one-third of

a SD higher per year of schooling. In our study we show an

average of 0.57 SD higher in intelligence per SD (3.6 years)

increase in years of schooling, which equates to 0.16 SD

higher intelligence per one additional year of schooling. It

is worth nothing that in the quasi-experimental policy re-

form studies, levels of prior intelligence (or underlying gen-

eral cognitive ability) will be similar among individuals

who left school before and after the policy reforms, making

confounding by prior intelligence unlikely. Similarly, in the

MR analyses, we endeavoured to exclude any SNPs for ed-

ucation for which there was evidence that they explained

more variance in intelligence than education, making it un-

likely that our findings for the effect of education on intel-

ligence are a result of all genetic instruments being

associated with intelligence and not educational attain-

ment. Thus, both genetic and non-genetic instruments

(which contain different sources of bias) provide consistent

evidence that educational attainment affects later

intelligence.

Longitudinal observational studies have previously

reported associations between early-life intelligence and

educational attainment.8 However, we are unaware of any

longitudinal studies that have compared the magnitude of

effect for baseline intelligence on educational attainment,

with educational attainment on subsequent intelligence in

the same sample. One previous study has examined the

association between education and lifetime cognitive

change after controlling for childhood IQ. Authors

reported that (after controlling for childhood IQ score) ed-

ucation was positively associated with IQ at ages 70 and

79 (with the two outcome ages being in different samples),

and more strongly for participants with lower initial IQ

scores. Education, however, showed no significant associa-

tion with processing speed, measured at ages 70 and 83

(again, with the two ages being in different samples).30

Another study examined associations between father’s oc-

cupation, childhood cognition, educational attainment,

own occupation in the 3rd decade, and self-reported liter-

acy and numeracy problems in the 4th decade in 1946 and

1958 Birth Cohorts.31 The authors report inverse associa-

tions between childhood cognition, educational attainment

and adult literacy and numeracy problems. Some studies

have looked at genetic overlap between the two traits20,32

and reported correlations of up to 0.720,33 but to date,

none have explicitly tried to examine the direction of the

association using genetic variants that are associated with

each of them. As mentioned previously, the largest and

most robust evidence to date comes from a recent meta-

analysis of quasi-experimental studies of educational

effects on intelligence.11

Effects of educational attainment and intelligence

on AD risk

We also examined the total effects of education and intelli-

gence on AD risk, and the effects of each exposure on AD

risk independent of the other exposure. Our findings imply

that the existing associations reported in the literature be-

tween greater educational attainment and lower AD risk

are likely to be largely driven by intelligence, rather than

there being an independent protective effect of staying in

school for longer. This provides evidence against the un-

derlying models illustrated in Fig. 1b, d, f and h (i.e. mod-

els in which there is an independent effect of educational

attainment on AD risk). There are then four main possible

explanations for our finding. The first is that prior intelli-

gence is a confounder and induces a spurious association

between education and AD risk (i.e. Fig. 1a). However,

given the evidence supporting an effect of education on

later intelligence from instrumental variable analyses using

policy reforms to increase the school leaving age (in which

prior intelligence is randomly distributed among instru-

ment arms and thereby cannot confound), the model in

Fig. 1a is unlikely. The second and third explanations re-

late to horizontal pleiotropy (either a pathway through IQ

as in Fig. 1e, or independently effecting all traits as in

Fig. 1g). Given that our causal effect estimates were com-

parable when using methods to quantify and adjust for
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horizontal pleiotropy, these models are also unlikely to

fully explain our findings. The fourth explanation is that

there is an effect of educational attainment on AD risk, but

it is largely mediated by its effects on later intelligence (i.e.

Fig 1c). Given the existing evidence supporting an effect of

education on later intelligence from quasi-experimental

studies,11 and from our own MR analyses, this explanation

seems most plausible.

Together, these findings suggest that increasing educa-

tion attainment (for example, by increasing years of

schooling) may have beneficial consequences for future AD

incidence. As such, they offer support to the most recent

change in school policy in the UK (in 2013), which requires

young people to remain in at least part-time education un-

til age 18 years (as opposed to 16 years). Our findings also

suggest that there may potentially be other ways of reduc-

ing AD risk by improving various aspects of intelligence

(e.g. with cognitive training), which may be particularly ef-

fective in those with lower educational attainment or in

populations where increasing years of schooling is not fea-

sible (e.g. older populations). However, it is worth nothing

that it is not clear what type of training (if any) would be

beneficial or when in the life course (and indeed disease

course) such training would confer protection.

Limitations

There are a number of limitations to our study. Firstly, in

two-sample MR, ‘winner’s curse’ (i.e. where the effect sizes

of variants identified within a single sample are likely to be

larger than in the overall population, even if they are truly

associated with the exposure) can bias causal estimates to-

wards the null. However, we used SNPs identified in the

meta-analysis of the discovery and replication samples of

the educational attainment GWAS19 making it unlikely

that the estimate of the independent effect of education is

biased to the null. Secondly, in the presence of weak instru-

ments (i.e. SNPs that are not associated with the exposure

at the genome-wide significance level), sample overlap in

two-sample MR can bias estimates towards the con-

founded observational estimate.34 There were no overlap-

ping samples in the analysis of educational attainment and

intelligence on AD risk, but there was considerable overlap

in the samples used for the bidirectional educational attain-

ment on intelligence analysis. Given that all instruments

used in the analysis were strong (associated with the expo-

sure at P< 5x10-08), any bias should be minimal. Thirdly,

it is currently not possible to estimate the F statistic (a mea-

sure of instrument strength) for multivariable MR in a

two- or three-sample setting. Thus, we are unable to assess

the conditional strength of our instruments for each expo-

sure, once the SNP effect on the other exposure is taken

into account.13 Fourth, the estimated effect of an exposure

on an outcome, that are both associated with mortality,

may be susceptible to survival bias.35 For example, if indi-

viduals with lower educational attainment are more likely

to die before the age of onset of AD, bias may occur be-

cause those individuals with a genetic predisposition for

higher educational attainment are likely to live longer, thus

having greater risk of being diagnosed with AD. This may

induce a non-zero causal effect estimate even if no true bio-

logical association exists. In a previous study, we per-

formed simulations to investigate whether our estimates of

the effect of educational attainment on AD risk may be bi-

ased by survival and found no evidence to suggest this was

the case.5 Fifth, the phenotype used in the GWAS of intelli-

gence was typically brief (a 2-min, 13-item test) and het-

erogeneous. Thus, results may be different if a more

precise measure of intelligence was available for GWAS

studies. Finally, the educational attainment GWAS only

assessed years of full-time academic training from primary

education through to advanced qualifications (e.g. degree).

Therefore, it remains unclear whether the same genetic var-

iants would be associated with other aspects of education

(for example, vocational courses or completing part-time

as opposed to full-time courses). It is worth noting that

there is a larger GWAS of family history of Alzheimer’s

disease.36 In that study, the phase 3 GWAS meta-analysis

includes only AD-by-proxy cases from the UK Biobank

(i.e. there are no diagnosed cases). AD-by-proxy cases were

defined as a positive response to the question ‘Has your

mother or father ever suffered from Alzheimer’s disease/de-

mentia’. We had several concerns about using this data for

MR analysis. Firstly, participants defined as cases have not

themselves been diagnosed with AD. Secondly, the ques-

tion does not specify Alzheimer’s disease but asks about

any form of dementia. Lastly, the question does not ask if

family members were diagnosed by a doctor. These issues

are likely to introduce measurement error in the outcome,

which may mitigate any power gained by the increased

sample size of that GWAS, over the IGAP GWAS used in

our MR analyses.24 Given that we have sufficient power to

test our hypotheses, we opted to use the IGAP GWAS

which, although it has a smaller sample size, it has a more

precise phenotype.

Conclusions

Our findings imply that there is a bidirectional effect of in-

telligence on educational attainment and that the magni-

tude of effect is likely to be similar in both directions.

There is robust evidence for an independent, causal effect

of intelligence in reducing AD risk. The implications of this

are uncertain, but it potentially increases support for a role
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of cognitive training interventions to improve various

aspects of fluid intelligence. However, given that greater

educational attainment also increases intelligence, there is

potentially also support for policies aimed at increasing

length of schooling in order to lower incidence of AD.

Supplementary data

Supplementary data are available at IJE online.
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