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Metabolic adaptation during Trypanosoma brucei’s life cycle

Trypanosoma brucei is a parasitic protist that causes significant health burden in sub-Saharan

countries endemic for the tsetse fly (Glossina spp.). During the bloodmeal of this insect vector,

the flagellate is transmitted to a variety of mammals, including humans, in which T. brucei
subs. gambiense and T. brucei subs. rhodesiense cause human African trypanosomiasis. During

its life cycle, T. brucei encounters and adapts to very diverse environments that differ in avail-

able nutrients. In the mammalian host, it exists in two major forms: the replicating long-slen-

der bloodstream form (LS-BSF) and the nondividing short-stumpy bloodstream form

(SS-BSF), the latter being pre-adapted to infect the insect vector [1]. While the BSF flagellates

primarily colonize the mammalian bloodstream and utilize the plentiful glucose for their

energy needs, they can also be found in the cerebrospinal fluid and in extracellular spaces of

several tissues, including the brain, adipose tissue, and skin [2,3]. In the insect vector, trypano-

somes occur in three major forms occupying different locations within the fly: the procyclic

form (PCF) resides in the midgut and proventriculus, while epimastigotes and metacyclic try-

pomastigotes are found in the salivary glands. During the fly’s bloodmeal, the latter form

infects the mammalian host. All three forms experience the glucose-poor and amino acid–rich

environment within the insect host. These drastic environmental changes encountered by T.

brucei during its development require significant morphological and metabolic changes and

adaptations [4,5].

The seminal work of Keith Vickerman led to the widely accepted model of a highly reduced

mitochondrial metabolism in the BSF [6,7]. Its single mitochondrion is incapable of oxidative

phosphorylation, and the active electron transport chain (ETC) is minimized to an alternative

pathway composed of glycerol-3-phosphate dehydrogenase (Gly-3-PDH) and the so-called

trypanosome alternative oxidase (AOX), which are linked to each other via a ubiquinol/ubi-

quinone pool [8]. The cytochrome-containing ETC is absent, and the mitochondrial trans-

membrane proton gradient is generated by the reverse activity of the FoF1-ATP synthase

complex at the expense of ATP [9–11]. The proton gradient across the mitochondrial inner

membrane is essential for protein import and transport of metabolites and ions so that vital

mitochondrial processes such as Fe-S cluster assembly [12], RNA editing and processing

[13,14], and cellular Ca2+ homeostasis are maintained [15,16]. The seemingly simplified bio-

chemical composition of the BSF organelle is underlined by its tube-shaped cristae-poor
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morphology, which is in striking contrast to the extensively reticulated cristae-rich mitochon-

drion of the PCF flagellates (Fig 1).

Because no indications have been obtained yet for the presence of a mitochondrial ATP-

producing system in the BSF, the entire cellular ATP pool is considered to be generated solely

by highly active glycolysis [17]. The glycolytic pathway in trypanosomes is unique in the sense

of sequestration of most of its enzymes within peroxisome-like organelles called glycosomes

[18]. Because the glycosomal membrane is impermeable to large solutes like NAD(H), the

essential reoxidation of glycolytically produced intraglycosomal NADH occurs by a shuttle

mechanism involving the oxidation of glycerol 3-phosphate to dihydroxyacetone phosphate by

the mitochondrial Gly-3-PDH [8].

Classical metabolic studies performed with trypanosomes purified from the blood of

infected rodents or with in vitro–cultured BSF supported the original hypothesis of a drasti-

cally simplified mitochondrial metabolism because under aerobic conditions, glucose is almost

completely catabolized to pyruvate that is excreted from the cells, indicating no need for the

mitochondrial enzymes of the tricarboxylic acid cycle. In the absence of oxygen or when AOX

is chemically inhibited, glycerol 3-phosphate is converted into glycerol that is produced in a

1:1 ratio with pyruvate [19,20]. Occasionally, the production of small amounts of other com-

pounds such as acetate, succinate, and alanine has been reported; however, these products

were instead attributed to the presence of a minor fraction of SS-BSF, a life cycle stage possess-

ing a more elaborated metabolism, with some traits characteristic of the metabolically complex

PCF [21].

In preparation for differentiation into PCF, the SS-BSF up-regulates a subset of mitochon-

drial and other proteins [21]. Moreover, these cells are metabolically active, motile, regulate

their internal pH [22], and excrete end products of glucose metabolism in ratios different than

Fig 1. Pie charts showing distribution of mass spectrometry–identified mitochondrial proteins in PCF (left)

and BSF (right) trypanosomes in terms of molecular functions. A total number of 1,195 and 956 proteins were

assigned to PCF and BSF mitoproteome, respectively. Different colors show different metabolic pathways and

categories. See also S1 Table. IFA-mito in PCF (left) and in BSF cell (right). BSF, bloodstream form; Hsp70, heat

shock protein 70; IFA-mito, immunofluorescence analysis of a mitochondrial Hsp70; mitoproteome, mitochondrial

proteome; PCF, procyclic form.

https://doi.org/10.1371/journal.ppat.1006679.g001
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the LS-BSF and PCF cells [21]. Differentiation of LS-BSF into SS-BSF is triggered by the

stumpy-inducing factor, and only pleiomorphic strains (e.g., AnTat 1.1) are able to sense this/

these yet-to-be-identified molecule(s) [23]. Extended passaging of pleiomorphic parasites in in

vitro cultures or by syringe between laboratory animals leads to the loss of responsiveness to

the stumpy-inducing factor and thus a failure to differentiate into SS-BSF. Consequently, such

strains (e.g., Lister 427) are called monomorphic, i.e., they exist only as a single form [24].

Interestingly, recent analyses employing the monomorphic LS-BSF strain Lister 427 showed

that, in addition to pyruvate, appreciable amounts of other carbon products (i.e., alanine, ace-

tate, and succinate) are excreted into the cultivation medium [25], implying a need not only

for cytosolic and glycosomal but also for mitochondrial enzymes thus far considered to be

absent (Fig 2). An additional metabolomics study involving heavy-atom isotope-labeled glu-

cose determined that a substantial fraction of succinate, as well as metabolic intermediates

such as malate and fumarate, are glucose-derived and originate from phosphoenolpyruvate via

oxaloacetate. Importantly, phosphoenolpyruvate carboxykinase, a glycosomal enzyme respon-

sible for this conversion, is essential for the BSF parasites [26]. Moreover, the majority of

excreted alanine and acetate is also derived from glucose. Alanine is most likely produced

from pyruvate by the transamination reaction of alanine aminotransferase, a potentially essen-

tial enzyme [27], while glucose-derived acetate is produced from pyruvate by the mitochon-

drial pyruvate dehydrogenase (PDH) complex and additional subsequent enzymatic steps. A

fraction of the acetate produced this way is exported to the cytosol for the de novo synthesis of

fatty acids, which is an essential process (Fig 2) [25]. In addition to glucose, the BSF seems to

uptake and metabolize amino acids such as cysteine, glutamine, phenylalanine, tryptophan,

and threonine [28], implying the existence of an unexpectedly complex metabolic network in

their mitochondrion.

The BSF mitoproteome

To map the BSF mitochondrial proteome (mitoproteome), we first used the available mass

spectrometry data of purified PCF mitochondria [29–37] in order to assemble a comprehen-

sive list of mitochondrial proteins. Next, we asked how many of these proteins were identified

in any mass spectrometry data obtained from BSF cells [38–43]. To our surprise, out of 1,195

constituents of the PCF mitoproteome, 956 were also identified in at least one study of the

BSF, suggesting that, when qualitatively measured, the corresponding mitoproteome is

reduced by only approximately 20% (Fig 1; S1 Table). The surprisingly high, approximately

80% overlap with the PCF mitoproteome might also be a consequence of the heterogeneity of

the examined BSF populations. The heterogeneity may be related to the experimental proto-

cols, the environmental variations (cells grown in vivo versus in vitro), or variations within the

cell cycle (e.g., ATP requirements vary between different cell cycle stages) as well as to the

form type (monomorphic versus pleiomorphic). Indeed, some authors analyzed monomor-

phic strains grown in vitro [40,41], and others examined the pleiomorphic AnTat 1.1 strain

grown either in immunosuppressed rats [43] or in vitro (S1 Table) [38]. Therefore, some

LS-BSF cells may have a mitochondrion that is close to the “classical” version, while a subset of

these flagellates may express an extended mitoproteome. However, no apparent differences

were detected between the mitoproteomes from the pleiomorphic and monomorphic BSF

cells, suggesting that, regardless of their status, a surprisingly large repertoire of mitochondrial

proteins is expressed in the BSF stage.

All proteins were then organized into groups based on their Kyoto Encyclopedia of Genes

and Genomes (KEGG) annotations. No striking qualitative differences were observed in the

categories “oxidative phosphorylation” and “core metabolic pathways” comprising many
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enzymes involved in the carbon, amino acid, and energy metabolism (Fig 1, S1 Table). Typical

examples are components of the tricarboxylic acid cycle and subunits of the ETC complexes,

most prominently of respiratory complexes III and IV (Fig 2, S1 Table). Nonetheless, when

quantitative information was available, these proteins were often present in much lower

amounts than in the PCF. While some of these proteins may not perform their expected func-

tion(s) under BSF steady state growth conditions, this finding strongly suggests that the para-

site is capable of swift alterations or adjustments of its metabolism in response to various

environments and differentiation cues. This ability can be exploited during environmental

changes, for example when the LS-BSF migrates from the peripheral blood circulation to other

Fig 2. Schematic representation of carbon source metabolism in the bloodstream form of T. brucei. Red arrows represent enzymatic steps that were

experimentally shown to be active in BSF. Green arrows represent enzymatic steps that might be active in BSF because the enzymes (in green) were identified

in BSF proteomic data. Glucose-derived metabolites (acetate, pyruvate, succinate, alanine, aspartate) are on a blue background. NADH molecules are on a

pink background. Dashed arrows indicate enzymatic steps for which no experimental proof exists. The glycosomal and mitochondrial compartments are

indicated. 2-OGDH, 2-oxoglutarate dehydrogenase; AAC, ADP/ATP carrier; AAT, amino acid transporter; ACH, acetyl-CoA thioesterase; AKCT, 2-amino-

3-ketobutyrate coenzyme A ligase; Ala TR, alanine transaminase; AOX, alternative oxidase; ASCT, acetate:succinate CoA-transferase; Asp TR, aspartate

transaminase; BSF, bloodstream form; cI, complex I (NADH:ubiquinone oxidoreductase); cII, complex II (succinate dehydrogenase); cIII, complex III

(cytochrome bc1 complex); cIV, complex IV (cytochrome c oxidase); cV, complex V (FoF1 ATPase); cyt, cytosolic; DHAP, dihydroxyacetone phosphate; FH,

fumarate hydratase (i.e., fumarase); FR, fumarate reductase; G3P, glyceraldehyde 3-phosphate; GluDH, glutamate dehydrogenase; gly, glycosomal; Gly3P,

glycerol 3-phosphate; Gly-3-PDH, glycerol-3-phosphate dehydrogenase; m, mitochondrial; MDH, malate dehydrogenase; PDH, pyruvate dehydrogenase;

PEP, phosphoenolpyruvate; PEPCK, phosphoenolpyruvate carboxykinase; PiC, phosphate carrier; ProDH, proline dehydrogenase.

https://doi.org/10.1371/journal.ppat.1006679.g002
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extravascular spaces (e.g., in adipose tissue, spinal and cerebral fluids) and during the differen-

tiation to SS-BSF. Therefore, the BSF trypanosomes may uptake different substrates from the

available nutrients according to their immediate needs and metabolize them via a variety of

pathways.

Complex metabolic pathways in the BSF mitochondrion: Does

presence equal activity?

The current metabolic model for BSF excludes a role of the mitochondrion in the ATP produc-

tion by either oxidative or substrate-level phosphorylation [44]. In contrast to this premise,

succinyl-CoA synthase (SCoAS), an enzyme responsible for substrate-level phosphorylation of

ADP to ATP, has been detected in BSF cells, and more importantly, its RNA interference

(RNAi)–mediated silencing produced a severe growth phenotype [45]. This enzyme can be

involved in two ATP-producing pathways. The first one includes activity of 2-oxoglutarate

dehydrogenase (2-OGDH) producing succinyl-CoA from 2-oxoglutarate that originates from

amino acids such as proline and glutamine or can result from transamination reactions by

mitochondrial alanine and aspartate transaminases (Fig 2). While all the enzymes involved in

these reactions were detected in the LS-BSF mitoproteome (Fig 2 and S1 Table), the activity of

2-OGDH remains contradictory because some authors failed to detect it in the pleiomorphic

cells [46], while others recorded its low activity in culture-adapted monomorphic LS-BSF cells

[47]. Puzzlingly, the 2-OGDH subunits E1 and E2 were shown to be essential in BSF not

because of their role in carbon metabolism but rather due to their moonlighting roles in glyco-

somes and mitochondrial DNA maintenance [46,48]. However, in an untargeted metabolo-

mics study using isotope-labeled glucose, up to 30% of excreted succinate remained unlabeled,

supporting its nonglucose origin [26] and making the occurrence of this substrate-level phos-

phorylation reaction even more plausible (Fig 2).

The second phosphorylation pathway includes the acetate:succinate CoA transferase/

SCoAS cycle that contributes to acetate production in the BSF mitochondrion. A substrate for

this reaction—acetyl-CoA—is produced by PDH, an enzymatic complex that is present and

active in the BSF mitochondrion [15,25]. Moreover, PDH was shown to be indispensable for

BSF cells but only in the absence of threonine because under these artificial conditions, PDH

was the only system supplying acetyl-CoA for the essential acetate production [25]. Nonethe-

less, the mitochondrial pyruvate transporter was demonstrated to be essential for BSF in vivo,

supporting PDH’s vital role for the parasite [49]. These results imply that the BSF mitochon-

drion may become an ATP producer under certain conditions, perhaps just for intramito-

chondrial needs (Fig 2).

The presence and potential activity of the aforementioned dehydrogenases that produce

NADH within the mitochondrion imply that the organelle would require reoxidation of this

cofactor. Several possible scenarios for such a capacity can be deduced from the available data

(S1 Table). Although complex I (NADH:ubiquinone oxidoreductase) was shown to be neither

essential for BSF nor contributing to the observed NADH:ubiquinone oxidoreductase activity

[50], it is still assembled in the BSF mitochondrion and may participate in NADH reoxidation

under certain conditions. Reoxidation of reduced NADH molecules can also be achieved by

the activity of the alternative dehydrogenase 2 (Ndh2), an enzyme shown to be important but

not essential for maintaining the mitochondrial redox balance [51]. Last but not least, another

scenario includes the activities of the mitochondrial malate dehydrogenase, fumarate hydra-

tase (i.e., fumarase), and NADH-dependent fumarate reductase, with all three being present in

the BSF mitoproteome (Fig 2, S1 Table). These enzymes reduce glucose-derived oxaloacetate

via malate and fumarate to succinate. Indeed, 3-carbon–labeled succinate was identified in an
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untargeted metabolomics study, implying that this pathway might be active [26]. Still, it should

be noted that it is so far impossible to discriminate between the mitochondrial, glycosomal,

and cytosolic derivations of this metabolite and that only a systematic deletion of the corre-

sponding enzymatic isoforms followed by metabolomics would illuminate the cellular com-

partment in which this glucose-derived succinate is produced. To sum up, the collective

activity of the aforementioned reoxidation enzymes is most likely responsible for the mito-

chondrial NADH regeneration. Possibly, RNAi silencing of the mitochondrial malate dehy-

drogenase and fumarate reductase in the background of complex I and Ndh2 null mutants

would shed light on the quantitative role of each of these enzymes in mitochondrial NADH

reoxidation.

The possible occurrence of the mitochondrial substrate-level phosphorylation reactions

raises an interesting question regarding the mitochondrial bioenergetics of BSF and questions

the origin of ATP that is needed by mitochondrial FoF1 ATPase in order to maintain the mito-

chondrial membrane potential. The classical model presumes that ATP is imported into the

organelle via the activity of the ATP/ADP carrier [52,53]. However, the available data—such as

low sensitivity of BSF to treatment with bongkreic acid, an inhibitor of this carrier—raise

some doubts about this assertion. Interestingly, the BSF does not respire when the mitochon-

drial transmembrane proton gradient is dissipated upon treatment with the FoF1 ATPase

inhibitor oligomycin or by addition of carbonyl cyanide-4-(trifluoromethoxy)phenylhydra-

zone (FCCP). However, when treated with bongkreic acid, which should halt the activity of

FoF1 ATPase by restraining its substrate, the parasite consumes oxygen at the same rate as

untreated cells [54,55]. On one hand, it is possible that the mitochondrial inner membrane

harbors another ATP/ADP carrier; on the other hand, it is a plausible speculation that, when

specific conditions emerge, the BSF mitochondrion has the capacity to employ its complex

enzymatic network to produce ATP by substrate-level phosphorylation to power the FoF1

ATPase.

Concluding remarks

Combined, the available data reveal that the metabolic flexibility and adaptability of the BSF

mitochondrion are much larger than appreciated so far. Mitochondrial metabolism appears to

be controlled at various levels; a developmental program seems to be a major contributor, but

recent advances in the field suggest that other cues may also play a role through fine-tuning

mechanisms. However, the triggers and signaling pathways of these mechanisms remain to be

identified. Furthermore, it should be realized that almost all metabolic studies have been per-

formed with strains well adapted to laboratory conditions. While the proteomic data do not

show any significant differences between the monomorphic and pleiomorphic strains, future

work combining proteomics and metabolomics with functional genomics should be extended

to the mitochondrion of trypanosomes isolated not only from blood but also from other tissues

to determine whether their metabolism is tissue specific and, if so, what is/are the mechanism

(s) that control(s) the changes. Therefore, the virtually unexplored array of pathways and

enzymes begs for attention because it may have important implications for drug target identifi-

cation and future novel chemotherapeutics. Moreover, a decreased morphological complexity,

which is apparently not reflected in metabolic complexity, is an interesting and novel phenom-

enon that can now be efficiently addressed with emerging, increasingly sensitive methods.

Supporting information

S1 Table. List of mitochondrial proteins that were identified in proteomic analysis of PCF

cells (columns F, G, and H) and of BSF cells (columns I, J, K, L, M, and N). The column
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color coding is green for PCF, dark grey for monomorphic BSF, and light gray for pleio-

morphic BSF cells.

1, identified; 0, not identified; BSF, bloodstream form; PCF, procyclic form.

(XLSX)
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37. Zı́ková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD (2009) The F(0)F(1)-ATP synthase com-

plex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog 5:

e1000436. https://doi.org/10.1371/journal.ppat.1000436 PMID: 19436713

38. Dejung M, Subota I, Bucerius F, Dindar G, Freiwald A, et al. (2016) Quantitative proteomics uncovers

novel factors involved in developmental differentiation of Trypanosoma brucei. PLoS Pathog 12:

e1005439. https://doi.org/10.1371/journal.ppat.1005439 PMID: 26910529

39. Butter F, Bucerius F, Michel M, Cicova Z, Mann M, et al. (2013) Comparative proteomics of two life

cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite’s

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006679 December 21, 2017 8 / 9

http://www.ncbi.nlm.nih.gov/pubmed/13445679
https://doi.org/10.1128/EC.00091-09
https://doi.org/10.1128/EC.00091-09
http://www.ncbi.nlm.nih.gov/pubmed/19542311
http://www.ncbi.nlm.nih.gov/pubmed/10601846
https://doi.org/10.1111/mmi.12949
http://www.ncbi.nlm.nih.gov/pubmed/25630552
http://www.ncbi.nlm.nih.gov/pubmed/15463248
https://doi.org/10.1371/journal.pntd.0002587
http://www.ncbi.nlm.nih.gov/pubmed/24367711
https://doi.org/10.1371/journal.ppat.1004689
http://www.ncbi.nlm.nih.gov/pubmed/25775470
https://doi.org/10.1111/j.1742-4658.2009.07432.x
http://www.ncbi.nlm.nih.gov/pubmed/19895576
https://doi.org/10.1128/AAC.00044-13
http://www.ncbi.nlm.nih.gov/pubmed/23571546
https://doi.org/10.1002/pmic.200800477
https://doi.org/10.1002/pmic.200800477
http://www.ncbi.nlm.nih.gov/pubmed/19105172
https://doi.org/10.1002/pmic.200900354
http://www.ncbi.nlm.nih.gov/pubmed/19834910
https://doi.org/10.1074/mcp.M700490-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/18364347
https://doi.org/10.1074/mcp.M700430-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/18073385
https://doi.org/10.1074/mcp.M112.023093
http://www.ncbi.nlm.nih.gov/pubmed/23221899
https://doi.org/10.1038/ncomms15272
http://www.ncbi.nlm.nih.gov/pubmed/28485388
https://doi.org/10.1128/EC.00204-08
http://www.ncbi.nlm.nih.gov/pubmed/18776036
https://doi.org/10.1371/journal.ppat.1000436
http://www.ncbi.nlm.nih.gov/pubmed/19436713
https://doi.org/10.1371/journal.ppat.1005439
http://www.ncbi.nlm.nih.gov/pubmed/26910529
https://doi.org/10.1371/journal.ppat.1006679


host adaptation machinery. Mol Cell Proteomics 12: 172–179. https://doi.org/10.1074/mcp.M112.

019224 PMID: 23090971

40. Urbaniak MD, Martin DM, Ferguson MA (2013) Global quantitative SILAC phosphoproteomics reveals

differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages

of Trypanosoma brucei. J Proteome Res 12: 2233–2244. https://doi.org/10.1021/pr400086y PMID:

23485197

41. Urbaniak MD, Guther ML, Ferguson MA (2012) Comparative SILAC proteomic analysis of Trypano-

soma brucei bloodstream and procyclic lifecycle stages. PLoS ONE 7: e36619. https://doi.org/10.1371/

journal.pone.0036619 PMID: 22574199

42. Urbaniak MD, Mathieson T, Bantscheff M, Eberhard D, Grimaldi R, et al. (2012) Chemical proteomic

analysis reveals the drugability of the kinome of Trypanosoma brucei. ACS Chem Biol 7: 1858–1865.

https://doi.org/10.1021/cb300326z PMID: 22908928

43. Gunasekera K, Wuthrich D, Braga-Lagache S, Heller M, Ochsenreiter T (2012) Proteome remodelling

during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass

spectrometry. BMC Genomics 13: 556. https://doi.org/10.1186/1471-2164-13-556 PMID: 23067041
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