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tion of the structural properties of neonatal brain.

e The information encoded in MSNs is predictive of chronological brain age

in the perinatal period.

e MSNs provide a novel data-driven method for investigating neuroanatomic

variation associated with preterm birth.
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Abstract

Multi-contrast MRI captures information about brain macro- and micro-struc-
ture which can be combined in an integrated model to obtain a detailed “fin-
gerprint” of the anatomical properties of an individual’s brain. Inter-regional
similarities between features derived from structural and diffusion MRI, includ-
ing regional volumes, diffusion tensor metrics, neurite orientation dispersion and
density imaging measures, can be modelled as morphometric similarity networks
(MSNs). Here, individual MSNs were derived from 105 neonates (59 preterm
and 46 term) who were scanned between 38 and 45 weeks postmenstrual age
(PMA). Inter-regional similarities were used as predictors in a regression model
of age at the time of scanning and in a classification model to discriminate
between preterm and term infant brains. When tested on unseen data, the re-
gression model predicted PMA at scan with a mean absolute error of 0.70 +
0.56 weeks, and the classification model achieved 92% accuracy. We conclude
that MSNs predict chronological brain age accurately; and they provide a data-
driven approach to identify networks that characterise typical maturation and

those that contribute most to neuroanatomic variation associated with preterm

*Correspondence: Paola Galdi, Queen’s Medical Research Institute, 47 Little France Cres-
cent, Edinburgh EH16 4TJ, UK. Email: paola.galdi@ed.ac.uk
IThese authors contributed equally to the work.
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Highlights

1. Multiple MRI features are integrated in a single model to study brain
maturation in newborns.

2. Morphometric similarity networks (MSNs) provide a whole-brain descrip-
tion of the structural properties of neonatal brain.

3. The information encoded in MSNs is predictive of chronological brain age
in the perinatal period.

4. MSNs provide a novel data-driven method for investigating neuroanatomic

variation associated with preterm birth.

1 1. Introduction

2 Preterm birth is closely associated with increased risk of neurodevelopmen-
3 tal, cognitive and psychiatric impairment that extends across the life course
+ (Nosarti et al., 2012; Anderson, 2014; Mathewson et al., 2017; Van Lieshout
s et al., 2018). Structural and diffusion MRI (sMRI and dMRI) support the con-
s ceptualisation of atypical brain growth after preterm birth as a process charac-
7 terised by micro-structural alteration of connective pathways due to impaired
s myelination and neuronal dysmaturation (Boardman et al., 2006; Anjari et al.,
o 2007; Counsell et al., 2008; Ball et al., 2013b; Back and Miller, 2014; Van Den
10 Heuvel et al., 2015; Eaton-Rosen et al., 2015; Thompson et al., 2016; Batalle
u et al., 2017; Telford et al., 2017; Batalle et al., 2018); this leads to a “dysconnec-
12 tivity phenotype” that could form the basis for long term functional impairment
13 (Boardman et al., 2010; Caldinelli et al., 2017; Keunen et al., 2017; Cao et al.,
1w 2017; Batalle et al., 2018b). However, there has not been a unified approach

15 that incorporates information from sMRI and dMRI to study brain maturation
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16 in the perinatal period so the set of image features that best capture brain
7 maturation, and support image classification, are unknown.

18 The majority of neonatal connectomics studies have used single modes of
1 data such as dAMRI tractography (Brown et al., 2014; Batalle et al., 2017; Blesa
20 et al., 2019) or resting-state functional connectivity (Ball et al., 2016; Smyser
z et al., 2016a). An alternative connectome model is the structural covariance
2 network (SCN) approach (Alexander-Bloch et al., 2013) in which covariance be-
23 tween regional measurements is calculated across subjects, resulting in a single
2 network for the entire population. Other approaches have constructed subject-
s specific SCNs (Li et al., 2017; Mahjoub et al., 2018) or higher order morpho-
s logical networks to model the relationship between ROIs across different views
2 (Soussia and Rekik, 2018), but these techniques have been restricted to the use
s of morphometric variables available through standard structural T1-weighted
2 MRI sequences and by using a single metric (e.g. cortical thickness) to assess
» the “connectivity” between nodes (Shi et al., 2012).

31 Based on observations that integrating data from different MRI sequences
» enhances anatomic characterization (Melbourne et al., 2014; Kulikova et al.,
1 2015; Ball et al., 2017; Thompson et al., 2018a), we investigated whether whole-
s brain structural connectomes derived from multi-modal data within a prediction
5 framework can capture novel information about perinatal brain development.
s We used morphometric similarity networks (MSNs) to model inter-regional cor-
s relations of multiple macro- and micro-structural multi-contrast MRI variables
s 4n a single individual. This approach was originally devised to study how hu-
s mail cortical networks underpin individual differences in psychological functions
w  (Seidlitz et al., 2018), and we adapted it to describe both cortical and subcor-
a tical regions in the developing brain. The method works by computing for
w2 each region of interest (ROI) a number of metrics derived from different MRI
43 sequences which are arranged in a vector. The aim is to obtain a multidimen-
4 sional description of the structural properties of the ROIs. The MSN is then
s built considering the ROIs as nodes and modelling connection strength as the

s correlation between pairs of ROI vectors, thus integrating in a single connectome
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«  the ensemble of imaging features. The pattern of inter-regional correlations can
4 be conceptualised as a “fingerprint” of an individual’s brain.

49 We investigated the utility of MSNs for describing brain maturation, and
so for patient classification. The edges of individual MSNs were used to train two
s predictive models: a regression model to predict postmenstrual age (PMA) at
2 scan and identify the set of image features that best model chronological brain
53 age; and a classification model to discriminate between preterm infants at term
s equivalent age and term neonates, and thereby identify the networks that explain
55 neuroanatomic variation associated with preterm birth. We hypothesized that
ss  predictive models based on MSNs, which integrate information from multiple
s data modalities, would outperform models based on single metrics and single

s data modalities.

s 2. Material and methods

o0 2.1. Participants and data acquisition

61 Participants were recruited as part of a longitudinal study designed to in-
e vestigate the effects of preterm birth on brain structure and long term out-
es come. The study was conducted according to the principles of the Declaration
e of Helsinki, and ethical approval was obtained from the UK National Research
s Ethics Service. Parents provided written informed consent. One hundred and
s twelve neonates underwent MRI at term equivalent age at the Edinburgh Imag-
e ing Facility: Royal Infirmary of Edinburgh, University of Edinburgh, UK, and
¢ 105 had multi-modal imaging suitable for MSN analysis (7 acquisitions did not
e yield usable datasets across all modalities due to motion or wakefulness during
70 one or more sequences). The study group contained 46 term and 59 preterm
7 infants (details are provided in Table 1). The distribution of PMA at scan for all
7 participants, for the term and preterm groups, and the distribution by gender
7z are shown in Fig. 1. Of the preterm infants, 12 had bronchopulmonary dyspla-
u sia, 3 had necrotising enterocolitis and 3 required treatment for retinopathy of

75 prematurity.
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Postmenstrual age at scanning Postmenstrual age at scanning (by gender)
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Figure 1: Distribution of postmenstrual age at scan for all subjects. a) Age distribution for
the for term (blue) and preterm (orange) groups. b) Age distribution for male (blue) and

female (pink) participants.

Table 1: Participant characteristics. The last column reports the p values of the group dif-
ferences computed with the Wilcoxon rank-sum test for continuous variables and with the

chi-squared test for categorical variables.

preterm (N=59) = term (N=46) all (N=105) preterm vs. term

PMA at birth (weeks)  23.42-32.00 37.00-42.00 23.42-42.00 p=1.88x 10718
Birth weight (grams) 454-2100 2556-4560 454-4560 p=193x 1078
PMA at scan (weeks)  38.00-44.56 38.28-43.84 38.00-44.56  p = 0.0035
M:F ratio 29:30 26:20 55:50 p = 0.4532

PMA = Postmenstrual age, M = male, F = female.

A Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Health-
care Erlangen, Germany) and 16-channel phased-array paediatric head coil were
used to acquire: 3D T1l-weighted MPRAGE (T1w) (acquired voxel size = Imm
isotropic) with TI 1100 ms, TE 4.69 ms and TR 1970 ms; 3D T2-weighted
SPACE (T2w) (voxel size = lmm isotropic) with TE 409 ms and TR 3200 ms;
and axial dMRI. dMRI was acquired in two separate acquisitions to reduce the
time needed to re-acquire any data lost to motion artefact: the first acquisition
consisted of 8 baseline volumes (b = 0 s/mm? [b0]) and 64 volumes with b =
750 s/mm?, the second consisted of 8 b0, 3 volumes with b = 200 s/mm?, 6
volumes with b = 500 s/mm? and 64 volumes with b = 2500 s/mm?; an op-

timal angular coverage for the sampling scheme was applied (Caruyer et al.,
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& 2013). In addition, an acquisition of 3 b0 volumes with an inverse phase encod-
s ing direction was performed. All AMRI images were acquired using single-shot
& spin-echo echo planar imaging (EPI) with 2-fold simultaneous multislice and 2-
o fold in-plane parallel imaging acceleration and 2 mm isotropic voxels; all three
o diffusion acquisitions had the same parameters (TR/TE 3400/78.0 ms).

o Infants were fed and wrapped and allowed to sleep naturally in the scan-
s mner. Feeds were timed to increase the likelihood of post-prandial sleep, flexi-
u ble earplugs and neonatal earmuffs (MiniMuffs, Natus) were used for acoustic
s protection, and a soothing environment was created in terms of light and noise.
o Pulse oximetry, electrocardiography and temperature were monitored. All scans
o were supervised by a doctor or nurse trained in neonatal resuscitation. Each
e acquisition was inspected contemporaneously for motion artefact and repeated
oo if there had been movement but the baby was still sleeping; dMRI acquisitions
wo were repeated if signal loss was seen in 3 or more volumes. The majority of the
1w cohort had one or more sequences repeated in order to acquire the best possible
102 quality data for processing:

103 Conventional images were reported by an experienced paediatric radiologist
e (A.J.Q.) using a structured system (Leuchter et al., 2014; Woodward et al.,
s 2006), and none of the images included in the final sample (N = 105) showed
s evidence of focal parenchymal injury (defined as post-haemorrhagic ventricular
w7 dilatation, porencephalic cyst or cystic periventricular leukomalacia), or central

108 nervous system malformation.

w  2.2. Data preprocessing

110 All the following preprocessing steps, including maps calculation and quality
m  check, were performed using dem2niix, FSL, MRtrix, MIRTK, ANTs, Connec-
uz  tome Workbench and cuDIMOT (Smith et al., 2004; Avants et al., 2011; Marcus
us et al., 2011; Makropoulos et al., 2014; Li et al., 2016; Hernandez-Fernandez et al.,
1 2019; Tournier et al., 2019).

us First, all DICOM image files (dIMRI and sMRI) were converted to NIFTT (Li

us et al., 2016). Structural data were preprocessed using the developing Human
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17 Connectome Project ({HCP) minimal structural processing pipeline for neona-
us  tal data (Makropoulos et al., 2018). Briefly, the T1w image was co-registered
uo  to the T2w image, both were corrected for bias field inhomogeinities (Tustison
o et al., 2010) and an initial brain mask was created (Smith, 2002). Following this,
21 the brain was segmented into different tissue types (CSF: cerebrospinal fluid;
12 WM: white matter; cGM: cortical grey matter; GM: subcortical grey matter)
v using the Draw-EM algorithm (Makropoulos et al., 2014). Twenty manually
e labelled atlases (Gousias et al., 2012) were then registered to each subject us-
s ing a multi-channel registration approach, where the different channels of the
16 registration were the original intensity T2-weighted images and GM probability
12z maps. These GM probability maps were derived from an initial tissue segmenta-
s tion, performed using tissue priors propagated through registration of a preterm
wo  probabilistic tissue atlas (Serag et al., 2012). The framework produces several
130 output files, but for this study only the aligned T1w and the T2w images and
i the parcellation in 87 ROIs were used (Makropoulos et al., 2018). Note that
12 from these 87 ROIs six were removed: the background, the unlabelled brain
13 area (mainly internal capsule), the CSF, the lateral ventricles (left and right)
w  and the corpus callosum (see section 2.4).

135 Diffusion MRI processing was performed as follows: for each subject the two
s AMRI acquisitions were first concatenated and then denoised using a Marchenko-
w Pastur-PCA-based algorithm (Veraart et al., 2016,b); the eddy current, head
s movement and EPI geometric distortions were corrected using outlier replace-
w ment and slice-to-volume registration with TOPUP and EDDY (Andersson
w et al., 2003; Smith et al., 2004; Andersson and Sotiropoulos, 2016; Andersson
w et al., 2016, 2017); bias field inhomogeneity correction was performed by calcu-
12 lating the bias field of the mean b0 volume and applying the correction to all the
13 volumes (Tustison et al.; 2010). This framework only differs from the optimal
1s  pipeline for diffusion preprocessing presented in Maximov et al. (2019) in that
1 we did not perform the final smoothing or the gibbs-ring removal (Kellner et al.,
s 2016) due to the nature of the data (partial fourier space acquisition).

147 The mean b0 EPI volume of each subject was co-registered to their structural
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us  T2w volume using boundary-based registration (Greve and Fischl, 2009), then
us  the inverse transformation was used to propagate ROI labels to dMRI space,
10 with a modified bbrslope parameter of 0.5, which is used for neonatal data
51 (Toulmin et al., 2015).

152 For each ROI, two metrics were computed in structural space: ROI volume
153 and the mean T1w/T2w signal ratio (Glasser and Van Essen, 2011). The other
14 ten metrics were calculated in native diffusion space: five metrics derived from
155 the diffusion kurtosis (DK) model (Jensen et al., 2005) and five derived from the
15 Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang
w7 et al., 2012; Tariq et al., 2016).

s 2.8. Feature extraction

10 2.8.1. Structural metrics

160 ROI volumes were calculated without normalising for the whole brain vol-
11 ume, as they are used only to compiite inter-regional similarities within subjects.
12 The mean T1w/T2w signal ratio was calculated before the bias field correction.
163 The Tlw/T2w ratio was used because it enhances myelin contrast and math-
14 ematically cancels the signal intensity bias related to the sensitivity profile of

s radio frequency receiver coils (Glasser and Van Essen, 2011).

w6 2.3.2. Diffusion kurtosis metrics

167 The_diffusion kurtosis (DK) model is an expansion of the diffusion tensor
s model. In addition to the diffusion tensor, the DK model quantifies the degree
160 to which water diffusion in biological tissues is non-Gaussian using the kurtosis
wo tensor. The reason for this is that the Gaussian displacement assumption un-
wm  derlying the diffusion tensor breaks at high b-values (Jensen et al., 2005). On
2 the kurtosis component, we only focus on the mean value along all diffusion
w3 directions.

174 The metrics obtained from the DK model for each ROI are the means of: the
ws  fractional anisotropy (FA), mean, axial and radial diffusivity (MD, RD, AD) and
ws  kurtosis (MK). The MK map quantifies the deviation from Gaussianity of water

10
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17 molecule displacement and can reflect different degrees of tissue heterogeneity

ws  (Steven et al., 2014).

e 2.3.8. NODDI metrics

180 We included NODDI metrics alongside the more commonly adopted diffu-
181 sion tensor measures as previous studies have shown that NODDI indices are
12 sensitive to underlying biological changes in the brain and provide more spe-
13 cific microstructural characteristics, in agreement with histology (Grussu et al.,
s 2017; Batalle et al., 2018).

185 For the NODDI measures, the Bingham distribution was employed (Tariq
s et al., 2016) as it allows extra flexibility by describing fibre dispersion along
w7 two orthogonal axes. From this NODDI implementation we obtain five metrics:
s intracellular volume fraction (vi.), isotropic volume fraction (vis,), the orien-
10 tation dispersion index along the primary and secondary directions (ODIp and
w ODIg) and the overall orientation dispersion index (ODItor).

101 One limitation of this model is that it requires fixing a value for the diffu-
12 sivity along the axons. However, optimal values for this parameter are region-
13 dependent (Karmacharya et al., 2018) and the default value may be suboptimal
14 for the neonatal population as it has been optimised using an adult cohort
s (Zhang et al., 2012; Karmacharya et al., 2018). Several studies have been re-
s porting NODDI values for neonates using default (or unspecified) parameters
vy (Batalle et al., 2018; Bastiani et al., 2018; Karmacharya et al., 2018) or modi-
s fied ones (Kunz et al., 2014; Jelescu et al., 2015). As our goal was not to report
19 NODDI values for the different areas, and because of the lack of reference val-
200 ues for this population, we calculated NODDI maps using default parameters

21 (Batalle et al., 2018).

200 2.4. Data Quality Control

203 The parcellations obtained after the processing were visually inspected and
24 parcels corresponding to CSF and background parcels were excluded because

25  they do not represent brain tissue. We observed a poor segmentation of the

11
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206 corpus callosum in part of the subjects, but we did not find any anomalies in the
a7 rest of the parcels. This effect could be caused by different factors: a) this area
28 is problematic to segment due to the proximity to CSF and its small thickness
20 (see for example Otsuka et al. (2019)); b) the framework we used was optimised
20 for the dHCP data that have a very high resolution (0.5 mm? isotropic) and
an data quality, making the partial volume effect more noticeable in data with
2 a resolution of 1 mm?; ¢) or susceptibility artifacts. Instead of removing the
a3 subjects with a poor segmentation, we decided to remove the corpus callosum
21 from the model, aiming at maximising the number of subjects. As a result of
25 the whole quality check, we include the whole population (N = 105) and each
a6 network is composed of 81 nodes (ROIs).

217 For the dMRI data we use eddy QC (Bastiani et al., 2019). The quality
218 control is performed at subject level and group level. Eddy QC provides several
20 measures related to the rotation, translation and outliers of the images. In ad-
20 dition, it also computes the signal-to-noise (SNR) ratio maps of the b0 volumes
a1 and the contrast-to-noise (CNR) ratio maps for the different b-values. These
22 maps can be used at group level to visualise the quality of the data (Bastiani
23 et al., 2018). The results show that the overall quality of the data-set was good
2 (Fig. 2). For eddy QC to work, we removed the b-value = 200 s/mm? only
»s  from the quality control. This is because the low number of volumes with this
26 b-value sometimes leads the Gaussian process performed by eddy to produce a
27 perfect fit, which makes the CNR maps unrealistic.

28 Fig. 2 shows two representative subjects, one from the top quartile of the
20 SNR and CNR distributions (green star) and one from the bottom quartile (red
20 star). In the first panel we can see where they are placed in terms of SNR and
an CNR over the overall population. The second panel shows the SNR maps (for
22 the b0) and the CNR maps (for the rest of b-values). The bottom panel of the
23 Fig. 2 shows the b0 before and after the processing of the selected subjects. It
2 is possible to observe the effect of the different steps involved, such as the EPI
255 geometric corrections or the bias field inhomogeneity correction. Supplementary

26 Figs. S8 and S9 report the above results for the term and preterm population

12



Journal Pre-proof

a SNR(avg) CNR (avg)
7
100 &
6 I
N
80 ] |
5 i\ I
Bk
60 4 [
1)
40 8 \\:
ok
2 \E
20 /
1 \
0 0 U -
b-voalue s00 b-v7aslge 2500 b=0 b=500 b=750 b=2500

Figure 2: Quality control results. a) Results for the overall population with two selected
subjects, one from the top quartile of the SNR and CNR distributions (green star) and the
other from the bottom quartile (red star). b) The SNR and CNR maps for the selected
subjects. ¢) The b0 of both subjects before and after the processing pipeline.

27 respectively.

238 Following Bastiani et al. (2019), for each volume, motion is quantified by
20 averaging voxel displacement across all voxels (computed as 3 translations and
20 3 rotations around the x, y and z axes). Absolute displacement is computed
2 with respect to the reference volume, while relative displacement is computed
a2 with respect to the previous volume. A summary measure for each subject is
23 calculated as the average (absolute or relative) displacement across all volumes.
24 In Supplementary Fig. S10 we show the distribution of absolute and relative
25 motion for the term and the preterm groups. We compared the distributions
26 with a Wilcoxon rank-sum test and found no difference between the relative
2z motion scores (W = 1330, p = 0.43) and a significant difference between the
2 absolute motion scores (W = 1720, p = 0.02). However, as the violin plot

29 shows, this difference is driven by the presence of outliers.

13
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w0 2.5. Experimental design and statistical analysis

251 The models and the analyses described in this section were implemented in
52 Python (v3.6.4) using open source libraries and frameworks for scientific com-
253 puting, including SciPy (v1.0.0), Numpy (v1.14.0), Statsmodels (v0.8.0), Pan-
e das (v0.22.0), Scikit-learn (v0.19.1) and Matplotlib (v2.1.2) (Jones et al., 2001;
»s  Hunter, 2007; Seabold and Perktold, 2010; McKinney et al., 2010; Pedregosa
26 et al.,, 2011; Van Der Walt et al., 2011).

w7 2.5.1. Network Construction

258 The MSN for each subject was constructed starting from 81 ROIs; each of the
20 ROI metrics was normalised (z-scored) and Pearson correlations were computed
%0 between the vectors of metrics from each pair of ROIs. In this way, the nodes of
s each network are the ROIs and the edges represent the morphometric similarity
%2 between the two related ROIs (Fig. -3). In the following, the terms “edge”,
%3 “connection” and “inter-regional similarity” are used interchangeably to refer

x4 to the correlation between the regional metrics of a pair of ROIs.

%5 2.5.2. Confounding variables

266 Early exposure to the extrauterine environment due to preterm birth ex-
27 poses infants to several processes that are known to impact brain maturation
xs  (e.g. specific co-morbidities such as bronchopulmonary dysplasia and necrotis-
20 ing enterocolitis (Barnett et al., 2018)), and other processes and diseases that
a0 can modify brain maturation (for example gestational age at birth, chorioam-
on nionitis, fetal growth restriction, nutritional insufficiency, pain and medication
o exposures (Duerden et al., 2016; Anblagan et al., 2016; Barnett et al., 2018;
a3 Schneider et al., 2018; Duerden et al., 2018; Blesa et al., 2019)). In addition,
o there may be as yet unknown environmental risks to brain structural connec-
a5 tivity and genomic and epigenomic factors may interact with gestational age at
a6 birth to confer risk (Batalle et al., 2017, 2018b; Boardman et al., 2014; Sparrow
o et al., 2016; Krishnan et al., 2017). Therefore, it is not possible to define a

s preterm infant cohort without any exposures to processes that could influence

14
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a COMPUTE MSN FOR EACH SUBJECT b TRAIN PREDICTIVE MODEL

SMRI | | dMRI |

Vol +T1T2| | DKI | | NODDI |
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observed

predicted

Figure 3: a) Individual MSN construction. Different metrics are extracted from dMRI and
sMRI data. The same parcellation is applied to all image types and the average metric
values are computed for each ROI. A MSN (represented here as a connectivity matrix) is
built by computing the Pearson correlation between the vectors of metrics of each pair of
ROIs. b) Training of a predictive model (here for PMA at scan) from individual MSNs. The
inter-regional correlations are used as predictor variables in a machine learning model. The

performance of the model is evaluated on an independent test set.

15
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79 brain maturation. As our intention was to develop an integrated approach for
x0 characterising dysmaturation in a study group representative of the target pop-
;s ulation, rather than to investigate possible drivers of dysmaturation, we did not
2 control for any of the above factors.

283 We did however find that the preterm group was characterised by higher in-
s scanner motion than the term-group, hence we considered absolute displacement
25 as a confounder (section 2.4). We also observed a positive correlation (p =
6 0.27,p = 0.0048) between PMA at scan and PMA at birth and a negative
27 correlation (p = —0.22,p = 0.0233) between PMA at scan-and gender (coded as
28 a binary variable where 0 indicates female infants and 1 male infants), implying
20 that in our sample term subjects and female subjects tend to have their scan
20 acquired at a later age (see also fig. 1). To control for potential bias, we
201 used these confounders as predictors and compared their predictive performance
22 with our network-based features. We tested the interaction between gender and
203 prematurity in a linear regression model of PMA at scan, but the interaction
24 term was not significant (p = 0.9634). Birthweight was not included explicitly

25 as a confounder due to its collinearity with PMA at birth.

w6 2.5.3. Regression model for age

207 We trained a linear regression model with elastic net regularisation to pre-
208 dict PMA at scan — i.e. chronological brain age — in both preterm and term
209 infants starting from individual MSNs. This model was chosen for its ability to
w0 cope with a high number of features (Zou and Hastie, 2005). For each subject,
sn the edges of the MSN (inter-regional correlations) were concatenated to form a
s feature vector to be given as input to the regression model. Since the connec-
33 tivity matrix representing the MSN is symmetric, we considered only the upper
s triangular matrix for each subject. Gender and age at birth were included in the
s model to control for their possible confounding effects. The prediction perfor-
w6 mances were evaluated with a leave-one-out cross-validation (LOOCV) scheme,
sr by computing the mean absolute error (MAE) averaged across subjects. Within

ws each fold of the LOOCV, the parameters of the elastic net were selected with
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a0 a nested 3-fold cross-validation loop; the folds were stratified in percentiles to
s include samples covering the whole age range in each of the folds. Permutation
s testing was used for the statistical validation of the model performance: the null
sz distribution was built by running the age prediction analysis on 1000 random

sz permutation of the PMA.

s 2.5.4. Classification model

ats A Support Vector Machine (SVM) classifier with linear kernel was trained
a6 to discriminate between preterm and term infants. As per the regression model,
a7 the input for each subject consisted of inter-regional connections taken from the
sis upper triangular connectivity matrix and the performances were evaluated with
sis LOOCV. Age at the time of scanning, gender and motion were included as ad-
a0 ditional covariates.While in the case of regression the elastic net regularisation
2 performs automatically a variable selection step, recursive feature elimination
2 (RFE) was applied in combination with SVM to select the best subset of con-
3 nections. Model selection was implemented using nested cross validation: an
24 outer 3-fold cross-validation loop was used to select the SVM parameters and
»s an inner 4-fold cross-validation loop was used for RFE. Folds were stratified to
w6 include the same proportion of term and preterm subjects. The accuracy of
27 the model was computed as the number of correctly classified subjects across
»s  the leave-one-out folds over the total number of subjects in the test set. The
229 null distribution was built by repeating the exact same analysis 1000 times after

s randomly assigning subjects to the term and the preterm group.

s 2.5.5. Feature selection

332 After the preprocessing phase, twelve different metrics were available for each
s ROL. To study which combination of features produced better performance in
s the prediction tasks, we implemented a sequential backward-forward feature
a5 selection scheme. Starting from the full set of features, at each iteration we
s compare the performances of different models built by removing in turn each of

;37 the features from the current set of candidate features. We then exclude from
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18 the next iteration the feature whose subtraction caused the least increase in
s prediction error (down to three features, for a total of 73 combinations). The
a0 rationale behind this scheme is to explore the space of possible models without
s enumerating all possible solutions, thus reducing the computational demands
s compared to an exhaustive search. The procedure was performed separately for

a3 the regression and the classification models.

s 2.5.6. Cross-validation strategy

345 We adopted LOOCYV to select the best performing model in both the age
us prediction and the classification tasks as this scheme enabled maximum size
ar  of the training set and therefore best use of available data, but this strategy
ss  might induce high variance in the estimation of prediction accuracy (Kohavi,
s 1995; Efron, 1983). In the context of brain decoding (i.e. predictions from
30 brain images or signals), LOOCV was shown to produce overly optimistic esti-
s mates of prediction accuracy in the within-subject setting (i.e. when all sam-
s ples are highly correlated because they come from the same subject). In the
33 between-subject setting (as in this work), the performance of LOOCV is sim-
e ilar to schemes involving random splits and mostly determined by sample size
s (Varoquaux et al., 2017; Varoquaux, 2018). To assess the stability of our results
6 with respect to the chosen cross-validation scheme, we report the prediction
7 accuracy computed with a 10 repeated stratified 5-fold scheme (10-5-fold) for
s all the models selected with LOOCV.

w0 2.5.7. Comparison with individual metrics and single data modalities models

360 We compared the performances of the best performing models based on
s1 - MSNs with three classes of baseline models: a) models based on single global
sz brain metrics (total brain volume and median FA in the WM); b) models based
33 on individual metrics, where instead of similarities, predictors are the concate-
s nation of all regional values for each of the individual metrics used to build
sss  MSNs; c¢) single data modality MSNs, i.e. models built on structural features
s only (Volume and T1/T2), on DKI features only, and on NODDI features only.
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Figure 4: Histograms of the performance of the 73 models compared in the backward feature
selection scheme for the age prediction task (a) and for the classification task (b). Bars are

grouped by the number of modalities included in the models.

2.6. Data and code availability

Source code implementing the methods described in this paper is available
upon request to the corresponding author. The preprocessed and anonymised
data used in the analyses can be requested through the Brains Image Bank

(https://www.brainsimagebank.ac.uk/) (Job et al., 2017).

3. Results

8.1. Feature selection

In Fig. 4 we report two histograms summarising the LOOCV performance of
the 73 different models compared per each task in the backward feature selection
scheme. In both cases, we can observe that the models based on all three data
modalities achieved better results in terms of prediction accuracy. The perfor-
mances of each of the compared model are reported in Supplementary Figs. S1
and S3 for the age prediction and for the classification models, respectively.

The best performing model for age prediction, which was adopted for all sub-
sequent analyses, was based on seven features (Volume, FA; MD, AD, MK, vig,
ODIp). Fig. 5a shows the average MSN matrix computed across all subjects for
the selected set of features and the matrix of correlation between inter-regional

similarities and PMA at scan across subjects. The average MSN matrix shows
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ss  four main blocks that correspond roughly to positive correlations between ROIs
s within GM and between ROIs within WM, and to negative correlation between
s7- WM ROIs and GM ROls, indicating that ROIs within GM (and within WM)
s share similar structural properties, while GM and WM regional descriptors tend
0 to be anti-correlated. The four-block structure is recognisable also in the matrix
w0 reporting correlations with chronological age: with increasing age regions within
s GM or within WM become more similar with each other, while the dissimilari-
2 ties between GM and WM ROIs increases.

303 The best classifier model was based on eleven out of the twelve features (all
s except ODIg), so compared to the age prediction model, four additional features
s were included: T1/T2, RD, vie and ODItor. The average MSN computed with
s the selected features and the matrix of correlation with PMA at birth is shown
s7 in Fig. 5 (panels b and ¢). Comparing panel b and d of Fig. 5, it is apparent
s that while the patterns of correlation with PMA at scan and at birth are similar
s within GM and WM, subcortical ROIs show an opposite trend: with increasing
wo  PMA at scan subcortical ROIs tend to become more similar to WM ROIs and
w1 more dissimilar to GM ROIs, but the similarity between subcortical ROIs and

w2 cortical GM is positively correlated to age at birth.

ws  3.2. Prediction results

404 The best regression model selected with LOOCYV predicted chronological age
ws  (PMA at scan) with a MAE of 0.70 £ 0.56 weeks on the test data, and a corre-
ws lation between the predicted and the actual age equal to r = 0.78 (p = 1.71 x
wr 10722) (Supplementary Fig. S5). The results of the permutation test are shown
ws in Fig. 6 and Supplementary Fig. S6. The confounding variables (gender and
w0 age at birth) were not selected by the internal feature selection procedure, hence
a0 the predictions were based on network features alone. To test whether there
a1 was any systematic difference in the predicted age between the term and the
a2 preterm group, we compared the error distributions with a Wilcoxon rank-sum
a3 test, but the result was not significant (W = 1108, p = 0.1085). For compari-

aa  son, we evaluated the predictive performance of a linear regression model using
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Figure 5: a) Average MSN computed across all subjects using the combination of features
selected through the backward feature selection scheme for the age prediction task (Volume,
FA, MD, AD, MK, viso, ODIp). b) Correlation between each connection weight (inter-regional
similarity) shown in (a) and PMA at scan across subjects. ¢) Average MSN computed across
all subjects using the combination of features selected through the backward feature selection
scheme for the classification task (Volume, T1/T2, FA, MD, AD, RD, MK, vjc, viso, ODIp,
ODItor). d) Correlation between each connection weight (inter-regional similarity) shown in
(c) and PMA at birth across subjects. Connections that were identified as predictive features

by the models are highlighted in black. ROIs are ordered as in Supplementary Table S1.
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a5 only gender and PMA at birth as independent variables, that achieved a MAE
s of 1.03 4+ 0.88 weeks. A Wilcoxon signed-rank test confirmed that the latter
s model achieved a significantly greater error (W = 1633, p = 0.0001). Also mod-
s els based on single global metrics and single-modality MSNs models provided
a0 poorer predictive performance than the selected multi-modality MSNs model
#20 (brain volume: MAE= 0.93 £+ 0.68, R = 0.58; median FA: MAE= 0.88 £ 0.63,
w21 R = 0.58; structural: MAE= 1.08 £0.79, R = 0.32; DKI: MAE= 0.94 4+ 0.70,
2 R = 0.57; NODDI: MAE= 0.88 £+ 0.69, R = 0.61) and this was confirmed by
w23 a Wilcoxon signed-rank test (brain volume: W = 1813, p = 0.0019; median
w2a FA: W = 2045, p = 0.0184; structural: W = 1361, p = 2.76 x 107%; DKI:
o W = 1734, p = 0.0004; NODDI: W = 1811, p = 0.0009). Conversely, the
w26 baseline model based on the ensemble on individual metrics used to build the
27 best performing MSN model achieved similar performances (MAE: 0.72+0.56,
o R = 0.77). A scatter plot of the residuals of the two models (Supplementary
20 Fig. S11) showed a linear trend, indicating that the two models share a similar
a0 information content.

31 Supplementary Fig. S2 shows the results computed with 10-5-fold cross-
a2 validation in. All compared models performed similarly under the 10-5-fold
w3 scheme, and in general worse than with the LOOCYV scheme, with the selected
s model achieving a MAE of 1 + 0.2 weeks (Supplementary Fig. S7).

435 To study which connections contributed the most to chronological age pre-
w6 diction, we selected only edges which were assigned a non-zero coefficient in at
v least 99% of cross-validation folds. These edges are shown in the chord diagram
s in Fig. 7 (realised with Circos, Krzywinski et al. (2009)), and are colour coded
a0 to distinguish between inter-regional similarities that increase or decrease with
wo age, to highlight networks of regions whose morphological properties are con-
w1 verging (gray) or that tend to differentiate with increasing age (red). Intuitively,
w2 these edges connect ROIs whose anatomical and micro-structural properties are
w3 changing more than others between 38 and 45 weeks PMA, making the ROIs
s more or less similar. In other words, it is the relative timing of maturation

ws  of different brain tissues to determine the relevance of a connection in the age
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us  prediction task. The selected connections are located in both cortical (frontal,
w7 temporal, parietal and occipital lobes; insular and posterior cingulate cortex)
ws and subcortical regions (thalamus, subthalamic and lentiform nuclei), in the
wo  brain stem and in the cerebellum. These areas have been previously associated
w0 with age-related changes and preterm birth (Boardman et al., 2006; Ball et al.,
1 2013a; Batalle et al., 2017). For comparison, we report in Supplementary Table
2 S2 the regional metrics selected as most predictive of age in the baseline model
53 based on individual metrics.

a b

Permutation testing (age prediction) Permutation testing (classification)
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Figure 6: Null distributions computed over 1000 random permutations of the target variable
for the age prediction (a) and the classification tasks (b). The red dotted lines indicate the

performances of our models.

454 The best: classifier discriminated between term and preterm infants with a
s 92% LOOCV accuracy (Fig. 6). None of the confounders were included among
w6 the selected features. A logistic regression model built on age at scan and gender
»s7 did not achieve significant accuracy (56%,p = 0.091), while adding motion to
ss  the predictors produced a 61% accuracy, slightly above chance level (p = 0.03),
9 but it should be noted that a model based on motion only was 59% accurate
wo (p = 0.02). Models based on global features achieved 55% accuracy for total
w1 brain volume and 56% accuracy for median FA. Models built on single data
w2 modalities attained 656% accuracy for structural features only, 89% accuracy
w3 for DKI features only, and 88% accuracy for NODDI features only. Results

ws computed with 10-5-fold cross-validation are shown in Supplementary Fig. S4.
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w5 The best classifier selected with LOOCYV also achieved top accuracy with 10-5-
ws fold (accuracy 90%, Supplementary Fig. S7).

a67 The network of regions that showed the most divergent pattern of structural
w8 brain properties in preterm versus term infants comprised the brain stem, the
w0 thalamus and the subthalamic nucleus; WM regions in the frontal and insu-
a0 lar lobes; GM regions in the occipital lobe; both WM and GM regions in the
a1 temporal and parietal lobes and in the posterior cingulate cortex. The chord
2 diagram of edges selected by 99% of the models is shown in Fig. 8, in red where
a3 inter-regional similarities are greater in the term group and in gray where they
s+ are greater in the preterm group. For comparison, Supplementary Table S3 lists
a5 the regional metrics selected by the baseline model based on individual metrics,

w6 that obtained a 94% accuracy.

a1 3.3. Testing for asymmetry

478 In both chord diagrams (Figs. 7 and 8) we observed more edges in the right
a9 hemisphere than in the left one. Both elastic net and SVM models perform a
w0 feature selection step to exclude features that are correlated and that carry re-
sr  dundant information in order to improve prediction performance, hence it might
w2 be the case that the models selected the right connections and discarded the
w3 left ones precisely because they had a similar information content. Additionally,
wa  in the leave-one-out cross-validation scheme the training sets only differ by two
w5 samples in each fold, hence models might be similar across folds.

486 To test the hypothesis that the two hemispheres carry a different information
w7 content, we performed two experiments. First, we repeated the same analyses
s extracting inter-regional similarities from either the right or the left hemisphere.
w0 We compared the performance obtained with the regression and classification
w0 models on the different subsets of features used in the backward feature se-
s lection scheme in the main analys