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Highlights

• Multiple MRI features are integrated in a single model to study brain

maturation in newborns.

• Morphometric similarity networks (MSNs) provide a whole-brain descrip-

tion of the structural properties of neonatal brain.

• The information encoded in MSNs is predictive of chronological brain age

in the perinatal period.

• MSNs provide a novel data-driven method for investigating neuroanatomic

variation associated with preterm birth.
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Abstract

Multi-contrast MRI captures information about brain macro- and micro-struc-

ture which can be combined in an integrated model to obtain a detailed “fin-

gerprint” of the anatomical properties of an individual’s brain. Inter-regional

similarities between features derived from structural and diffusion MRI, includ-

ing regional volumes, diffusion tensor metrics, neurite orientation dispersion and

density imaging measures, can be modelled as morphometric similarity networks

(MSNs). Here, individual MSNs were derived from 105 neonates (59 preterm

and 46 term) who were scanned between 38 and 45 weeks postmenstrual age

(PMA). Inter-regional similarities were used as predictors in a regression model

of age at the time of scanning and in a classification model to discriminate

between preterm and term infant brains. When tested on unseen data, the re-

gression model predicted PMA at scan with a mean absolute error of 0.70 ±
0.56 weeks, and the classification model achieved 92% accuracy. We conclude

that MSNs predict chronological brain age accurately; and they provide a data-

driven approach to identify networks that characterise typical maturation and

those that contribute most to neuroanatomic variation associated with preterm

∗Correspondence: Paola Galdi, Queen’s Medical Research Institute, 47 Little France Cres-
cent, Edinburgh EH16 4TJ, UK. Email: paola.galdi@ed.ac.uk

1These authors contributed equally to the work.
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birth.
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Highlights

1. Multiple MRI features are integrated in a single model to study brain

maturation in newborns.

2. Morphometric similarity networks (MSNs) provide a whole-brain descrip-

tion of the structural properties of neonatal brain.

3. The information encoded in MSNs is predictive of chronological brain age

in the perinatal period.

4. MSNs provide a novel data-driven method for investigating neuroanatomic

variation associated with preterm birth.

1. Introduction1

Preterm birth is closely associated with increased risk of neurodevelopmen-2

tal, cognitive and psychiatric impairment that extends across the life course3

(Nosarti et al., 2012; Anderson, 2014; Mathewson et al., 2017; Van Lieshout4

et al., 2018). Structural and diffusion MRI (sMRI and dMRI) support the con-5

ceptualisation of atypical brain growth after preterm birth as a process charac-6

terised by micro-structural alteration of connective pathways due to impaired7

myelination and neuronal dysmaturation (Boardman et al., 2006; Anjari et al.,8

2007; Counsell et al., 2008; Ball et al., 2013b; Back and Miller, 2014; Van Den9

Heuvel et al., 2015; Eaton-Rosen et al., 2015; Thompson et al., 2016; Batalle10

et al., 2017; Telford et al., 2017; Batalle et al., 2018); this leads to a “dysconnec-11

tivity phenotype” that could form the basis for long term functional impairment12

(Boardman et al., 2010; Caldinelli et al., 2017; Keunen et al., 2017; Cao et al.,13

2017; Batalle et al., 2018b). However, there has not been a unified approach14

that incorporates information from sMRI and dMRI to study brain maturation15
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in the perinatal period so the set of image features that best capture brain16

maturation, and support image classification, are unknown.17

The majority of neonatal connectomics studies have used single modes of18

data such as dMRI tractography (Brown et al., 2014; Batalle et al., 2017; Blesa19

et al., 2019) or resting-state functional connectivity (Ball et al., 2016; Smyser20

et al., 2016a). An alternative connectome model is the structural covariance21

network (SCN) approach (Alexander-Bloch et al., 2013) in which covariance be-22

tween regional measurements is calculated across subjects, resulting in a single23

network for the entire population. Other approaches have constructed subject-24

specific SCNs (Li et al., 2017; Mahjoub et al., 2018) or higher order morpho-25

logical networks to model the relationship between ROIs across different views26

(Soussia and Rekik, 2018), but these techniques have been restricted to the use27

of morphometric variables available through standard structural T1-weighted28

MRI sequences and by using a single metric (e.g. cortical thickness) to assess29

the “connectivity” between nodes (Shi et al., 2012).30

Based on observations that integrating data from different MRI sequences31

enhances anatomic characterization (Melbourne et al., 2014; Kulikova et al.,32

2015; Ball et al., 2017; Thompson et al., 2018a), we investigated whether whole-33

brain structural connectomes derived from multi-modal data within a prediction34

framework can capture novel information about perinatal brain development.35

We used morphometric similarity networks (MSNs) to model inter-regional cor-36

relations of multiple macro- and micro-structural multi-contrast MRI variables37

in a single individual. This approach was originally devised to study how hu-38

man cortical networks underpin individual differences in psychological functions39

(Seidlitz et al., 2018), and we adapted it to describe both cortical and subcor-40

tical regions in the developing brain. The method works by computing for41

each region of interest (ROI) a number of metrics derived from different MRI42

sequences which are arranged in a vector. The aim is to obtain a multidimen-43

sional description of the structural properties of the ROIs. The MSN is then44

built considering the ROIs as nodes and modelling connection strength as the45

correlation between pairs of ROI vectors, thus integrating in a single connectome46
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the ensemble of imaging features. The pattern of inter-regional correlations can47

be conceptualised as a “fingerprint” of an individual’s brain.48

We investigated the utility of MSNs for describing brain maturation, and49

for patient classification. The edges of individual MSNs were used to train two50

predictive models: a regression model to predict postmenstrual age (PMA) at51

scan and identify the set of image features that best model chronological brain52

age; and a classification model to discriminate between preterm infants at term53

equivalent age and term neonates, and thereby identify the networks that explain54

neuroanatomic variation associated with preterm birth. We hypothesized that55

predictive models based on MSNs, which integrate information from multiple56

data modalities, would outperform models based on single metrics and single57

data modalities.58

2. Material and methods59

2.1. Participants and data acquisition60

Participants were recruited as part of a longitudinal study designed to in-61

vestigate the effects of preterm birth on brain structure and long term out-62

come. The study was conducted according to the principles of the Declaration63

of Helsinki, and ethical approval was obtained from the UK National Research64

Ethics Service. Parents provided written informed consent. One hundred and65

twelve neonates underwent MRI at term equivalent age at the Edinburgh Imag-66

ing Facility: Royal Infirmary of Edinburgh, University of Edinburgh, UK, and67

105 had multi-modal imaging suitable for MSN analysis (7 acquisitions did not68

yield usable datasets across all modalities due to motion or wakefulness during69

one or more sequences). The study group contained 46 term and 59 preterm70

infants (details are provided in Table 1). The distribution of PMA at scan for all71

participants, for the term and preterm groups, and the distribution by gender72

are shown in Fig. 1. Of the preterm infants, 12 had bronchopulmonary dyspla-73

sia, 3 had necrotising enterocolitis and 3 required treatment for retinopathy of74

prematurity.75
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Figure 1: Distribution of postmenstrual age at scan for all subjects. a) Age distribution for

the for term (blue) and preterm (orange) groups. b) Age distribution for male (blue) and

female (pink) participants.

Table 1: Participant characteristics. The last column reports the p values of the group dif-

ferences computed with the Wilcoxon rank-sum test for continuous variables and with the

chi-squared test for categorical variables.

preterm (N=59) term (N=46) all (N=105) preterm vs. term

PMA at birth (weeks) 23.42-32.00 37.00-42.00 23.42-42.00 p = 1.88 × 10−18

Birth weight (grams) 454-2100 2556-4560 454-4560 p = 1.93 × 10−18

PMA at scan (weeks) 38.00-44.56 38.28-43.84 38.00-44.56 p = 0.0035

M:F ratio 29:30 26:20 55:50 p = 0.4532

PMA = Postmenstrual age, M = male, F = female.

A Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Health-76

care Erlangen, Germany) and 16-channel phased-array paediatric head coil were77

used to acquire: 3D T1-weighted MPRAGE (T1w) (acquired voxel size = 1mm78

isotropic) with TI 1100 ms, TE 4.69 ms and TR 1970 ms; 3D T2-weighted79

SPACE (T2w) (voxel size = 1mm isotropic) with TE 409 ms and TR 3200 ms;80

and axial dMRI. dMRI was acquired in two separate acquisitions to reduce the81

time needed to re-acquire any data lost to motion artefact: the first acquisition82

consisted of 8 baseline volumes (b = 0 s/mm2 [b0]) and 64 volumes with b =83

750 s/mm2, the second consisted of 8 b0, 3 volumes with b = 200 s/mm2, 684

volumes with b = 500 s/mm2 and 64 volumes with b = 2500 s/mm2; an op-85

timal angular coverage for the sampling scheme was applied (Caruyer et al.,86

7

                  



2013). In addition, an acquisition of 3 b0 volumes with an inverse phase encod-87

ing direction was performed. All dMRI images were acquired using single-shot88

spin-echo echo planar imaging (EPI) with 2-fold simultaneous multislice and 2-89

fold in-plane parallel imaging acceleration and 2 mm isotropic voxels; all three90

diffusion acquisitions had the same parameters (TR/TE 3400/78.0 ms).91

Infants were fed and wrapped and allowed to sleep naturally in the scan-92

ner. Feeds were timed to increase the likelihood of post-prandial sleep, flexi-93

ble earplugs and neonatal earmuffs (MiniMuffs, Natus) were used for acoustic94

protection, and a soothing environment was created in terms of light and noise.95

Pulse oximetry, electrocardiography and temperature were monitored. All scans96

were supervised by a doctor or nurse trained in neonatal resuscitation. Each97

acquisition was inspected contemporaneously for motion artefact and repeated98

if there had been movement but the baby was still sleeping; dMRI acquisitions99

were repeated if signal loss was seen in 3 or more volumes. The majority of the100

cohort had one or more sequences repeated in order to acquire the best possible101

quality data for processing.102

Conventional images were reported by an experienced paediatric radiologist103

(A.J.Q.) using a structured system (Leuchter et al., 2014; Woodward et al.,104

2006), and none of the images included in the final sample (N = 105) showed105

evidence of focal parenchymal injury (defined as post-haemorrhagic ventricular106

dilatation, porencephalic cyst or cystic periventricular leukomalacia), or central107

nervous system malformation.108

2.2. Data preprocessing109

All the following preprocessing steps, including maps calculation and quality110

check, were performed using dcm2niix, FSL, MRtrix, MIRTK, ANTs, Connec-111

tome Workbench and cuDIMOT (Smith et al., 2004; Avants et al., 2011; Marcus112

et al., 2011; Makropoulos et al., 2014; Li et al., 2016; Hernandez-Fernandez et al.,113

2019; Tournier et al., 2019).114

First, all DICOM image files (dMRI and sMRI) were converted to NIFTI (Li115

et al., 2016). Structural data were preprocessed using the developing Human116
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Connectome Project (dHCP) minimal structural processing pipeline for neona-117

tal data (Makropoulos et al., 2018). Briefly, the T1w image was co-registered118

to the T2w image, both were corrected for bias field inhomogeinities (Tustison119

et al., 2010) and an initial brain mask was created (Smith, 2002). Following this,120

the brain was segmented into different tissue types (CSF: cerebrospinal fluid;121

WM: white matter; cGM: cortical grey matter; GM: subcortical grey matter)122

using the Draw-EM algorithm (Makropoulos et al., 2014). Twenty manually123

labelled atlases (Gousias et al., 2012) were then registered to each subject us-124

ing a multi-channel registration approach, where the different channels of the125

registration were the original intensity T2-weighted images and GM probability126

maps. These GM probability maps were derived from an initial tissue segmenta-127

tion, performed using tissue priors propagated through registration of a preterm128

probabilistic tissue atlas (Serag et al., 2012). The framework produces several129

output files, but for this study only the aligned T1w and the T2w images and130

the parcellation in 87 ROIs were used (Makropoulos et al., 2018). Note that131

from these 87 ROIs six were removed: the background, the unlabelled brain132

area (mainly internal capsule), the CSF, the lateral ventricles (left and right)133

and the corpus callosum (see section 2.4).134

Diffusion MRI processing was performed as follows: for each subject the two135

dMRI acquisitions were first concatenated and then denoised using a Marchenko-136

Pastur-PCA-based algorithm (Veraart et al., 2016,b); the eddy current, head137

movement and EPI geometric distortions were corrected using outlier replace-138

ment and slice-to-volume registration with TOPUP and EDDY (Andersson139

et al., 2003; Smith et al., 2004; Andersson and Sotiropoulos, 2016; Andersson140

et al., 2016, 2017); bias field inhomogeneity correction was performed by calcu-141

lating the bias field of the mean b0 volume and applying the correction to all the142

volumes (Tustison et al., 2010). This framework only differs from the optimal143

pipeline for diffusion preprocessing presented in Maximov et al. (2019) in that144

we did not perform the final smoothing or the gibbs-ring removal (Kellner et al.,145

2016) due to the nature of the data (partial fourier space acquisition).146

The mean b0 EPI volume of each subject was co-registered to their structural147
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T2w volume using boundary-based registration (Greve and Fischl, 2009), then148

the inverse transformation was used to propagate ROI labels to dMRI space,149

with a modified bbrslope parameter of 0.5, which is used for neonatal data150

(Toulmin et al., 2015).151

For each ROI, two metrics were computed in structural space: ROI volume152

and the mean T1w/T2w signal ratio (Glasser and Van Essen, 2011). The other153

ten metrics were calculated in native diffusion space: five metrics derived from154

the diffusion kurtosis (DK) model (Jensen et al., 2005) and five derived from the155

Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang156

et al., 2012; Tariq et al., 2016).157

2.3. Feature extraction158

2.3.1. Structural metrics159

ROI volumes were calculated without normalising for the whole brain vol-160

ume, as they are used only to compute inter-regional similarities within subjects.161

The mean T1w/T2w signal ratio was calculated before the bias field correction.162

The T1w/T2w ratio was used because it enhances myelin contrast and math-163

ematically cancels the signal intensity bias related to the sensitivity profile of164

radio frequency receiver coils (Glasser and Van Essen, 2011).165

2.3.2. Diffusion kurtosis metrics166

The diffusion kurtosis (DK) model is an expansion of the diffusion tensor167

model. In addition to the diffusion tensor, the DK model quantifies the degree168

to which water diffusion in biological tissues is non-Gaussian using the kurtosis169

tensor. The reason for this is that the Gaussian displacement assumption un-170

derlying the diffusion tensor breaks at high b-values (Jensen et al., 2005). On171

the kurtosis component, we only focus on the mean value along all diffusion172

directions.173

The metrics obtained from the DK model for each ROI are the means of: the174

fractional anisotropy (FA), mean, axial and radial diffusivity (MD, RD, AD) and175

kurtosis (MK). The MK map quantifies the deviation from Gaussianity of water176
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molecule displacement and can reflect different degrees of tissue heterogeneity177

(Steven et al., 2014).178

2.3.3. NODDI metrics179

We included NODDI metrics alongside the more commonly adopted diffu-180

sion tensor measures as previous studies have shown that NODDI indices are181

sensitive to underlying biological changes in the brain and provide more spe-182

cific microstructural characteristics, in agreement with histology (Grussu et al.,183

2017; Batalle et al., 2018).184

For the NODDI measures, the Bingham distribution was employed (Tariq185

et al., 2016) as it allows extra flexibility by describing fibre dispersion along186

two orthogonal axes. From this NODDI implementation we obtain five metrics:187

intracellular volume fraction (υic), isotropic volume fraction (υiso), the orien-188

tation dispersion index along the primary and secondary directions (ODIP and189

ODIS) and the overall orientation dispersion index (ODITOT).190

One limitation of this model is that it requires fixing a value for the diffu-191

sivity along the axons. However, optimal values for this parameter are region-192

dependent (Karmacharya et al., 2018) and the default value may be suboptimal193

for the neonatal population as it has been optimised using an adult cohort194

(Zhang et al., 2012; Karmacharya et al., 2018). Several studies have been re-195

porting NODDI values for neonates using default (or unspecified) parameters196

(Batalle et al., 2018; Bastiani et al., 2018; Karmacharya et al., 2018) or modi-197

fied ones (Kunz et al., 2014; Jelescu et al., 2015). As our goal was not to report198

NODDI values for the different areas, and because of the lack of reference val-199

ues for this population, we calculated NODDI maps using default parameters200

(Batalle et al., 2018).201

2.4. Data Quality Control202

The parcellations obtained after the processing were visually inspected and203

parcels corresponding to CSF and background parcels were excluded because204

they do not represent brain tissue. We observed a poor segmentation of the205
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corpus callosum in part of the subjects, but we did not find any anomalies in the206

rest of the parcels. This effect could be caused by different factors: a) this area207

is problematic to segment due to the proximity to CSF and its small thickness208

(see for example Otsuka et al. (2019)); b) the framework we used was optimised209

for the dHCP data that have a very high resolution (0.5 mm3 isotropic) and210

data quality, making the partial volume effect more noticeable in data with211

a resolution of 1 mm3; c) or susceptibility artifacts. Instead of removing the212

subjects with a poor segmentation, we decided to remove the corpus callosum213

from the model, aiming at maximising the number of subjects. As a result of214

the whole quality check, we include the whole population (N = 105) and each215

network is composed of 81 nodes (ROIs).216

For the dMRI data we use eddy QC (Bastiani et al., 2019). The quality217

control is performed at subject level and group level. Eddy QC provides several218

measures related to the rotation, translation and outliers of the images. In ad-219

dition, it also computes the signal-to-noise (SNR) ratio maps of the b0 volumes220

and the contrast-to-noise (CNR) ratio maps for the different b-values. These221

maps can be used at group level to visualise the quality of the data (Bastiani222

et al., 2018). The results show that the overall quality of the data-set was good223

(Fig. 2). For eddy QC to work, we removed the b-value = 200 s/mm2 only224

from the quality control. This is because the low number of volumes with this225

b-value sometimes leads the Gaussian process performed by eddy to produce a226

perfect fit, which makes the CNR maps unrealistic.227

Fig. 2 shows two representative subjects, one from the top quartile of the228

SNR and CNR distributions (green star) and one from the bottom quartile (red229

star). In the first panel we can see where they are placed in terms of SNR and230

CNR over the overall population. The second panel shows the SNR maps (for231

the b0) and the CNR maps (for the rest of b-values). The bottom panel of the232

Fig. 2 shows the b0 before and after the processing of the selected subjects. It233

is possible to observe the effect of the different steps involved, such as the EPI234

geometric corrections or the bias field inhomogeneity correction. Supplementary235

Figs. S8 and S9 report the above results for the term and preterm population236
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Figure 2: Quality control results. a) Results for the overall population with two selected

subjects, one from the top quartile of the SNR and CNR distributions (green star) and the

other from the bottom quartile (red star). b) The SNR and CNR maps for the selected

subjects. c) The b0 of both subjects before and after the processing pipeline.

respectively.237

Following Bastiani et al. (2019), for each volume, motion is quantified by238

averaging voxel displacement across all voxels (computed as 3 translations and239

3 rotations around the x, y and z axes). Absolute displacement is computed240

with respect to the reference volume, while relative displacement is computed241

with respect to the previous volume. A summary measure for each subject is242

calculated as the average (absolute or relative) displacement across all volumes.243

In Supplementary Fig. S10 we show the distribution of absolute and relative244

motion for the term and the preterm groups. We compared the distributions245

with a Wilcoxon rank-sum test and found no difference between the relative246

motion scores (W = 1330, p = 0.43) and a significant difference between the247

absolute motion scores (W = 1720, p = 0.02). However, as the violin plot248

shows, this difference is driven by the presence of outliers.249
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2.5. Experimental design and statistical analysis250

The models and the analyses described in this section were implemented in251

Python (v3.6.4) using open source libraries and frameworks for scientific com-252

puting, including SciPy (v1.0.0), Numpy (v1.14.0), Statsmodels (v0.8.0), Pan-253

das (v0.22.0), Scikit-learn (v0.19.1) and Matplotlib (v2.1.2) (Jones et al., 2001;254

Hunter, 2007; Seabold and Perktold, 2010; McKinney et al., 2010; Pedregosa255

et al., 2011; Van Der Walt et al., 2011).256

2.5.1. Network Construction257

The MSN for each subject was constructed starting from 81 ROIs; each of the258

ROI metrics was normalised (z-scored) and Pearson correlations were computed259

between the vectors of metrics from each pair of ROIs. In this way, the nodes of260

each network are the ROIs and the edges represent the morphometric similarity261

between the two related ROIs (Fig. 3). In the following, the terms “edge”,262

“connection” and “inter-regional similarity” are used interchangeably to refer263

to the correlation between the regional metrics of a pair of ROIs.264

2.5.2. Confounding variables265

Early exposure to the extrauterine environment due to preterm birth ex-266

poses infants to several processes that are known to impact brain maturation267

(e.g. specific co-morbidities such as bronchopulmonary dysplasia and necrotis-268

ing enterocolitis (Barnett et al., 2018)), and other processes and diseases that269

can modify brain maturation (for example gestational age at birth, chorioam-270

nionitis, fetal growth restriction, nutritional insufficiency, pain and medication271

exposures (Duerden et al., 2016; Anblagan et al., 2016; Barnett et al., 2018;272

Schneider et al., 2018; Duerden et al., 2018; Blesa et al., 2019)). In addition,273

there may be as yet unknown environmental risks to brain structural connec-274

tivity and genomic and epigenomic factors may interact with gestational age at275

birth to confer risk (Batalle et al., 2017, 2018b; Boardman et al., 2014; Sparrow276

et al., 2016; Krishnan et al., 2017). Therefore, it is not possible to define a277

preterm infant cohort without any exposures to processes that could influence278
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sMRI dMRI

Vol + T1/T2 DKI NODDI

apply parcellation 

a COMPUTE MSN FOR EACH SUBJECT b TRAIN PREDICTIVE MODEL

PMA
MSNs

TRAINING DATA TARGET

predict on test data

compute correlations

Figure 3: a) Individual MSN construction. Different metrics are extracted from dMRI and

sMRI data. The same parcellation is applied to all image types and the average metric

values are computed for each ROI. A MSN (represented here as a connectivity matrix) is

built by computing the Pearson correlation between the vectors of metrics of each pair of

ROIs. b) Training of a predictive model (here for PMA at scan) from individual MSNs. The

inter-regional correlations are used as predictor variables in a machine learning model. The

performance of the model is evaluated on an independent test set.
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brain maturation. As our intention was to develop an integrated approach for279

characterising dysmaturation in a study group representative of the target pop-280

ulation, rather than to investigate possible drivers of dysmaturation, we did not281

control for any of the above factors.282

We did however find that the preterm group was characterised by higher in-283

scanner motion than the term-group, hence we considered absolute displacement284

as a confounder (section 2.4). We also observed a positive correlation (ρ =285

0.27, p = 0.0048) between PMA at scan and PMA at birth and a negative286

correlation (ρ = −0.22, p = 0.0233) between PMA at scan and gender (coded as287

a binary variable where 0 indicates female infants and 1 male infants), implying288

that in our sample term subjects and female subjects tend to have their scan289

acquired at a later age (see also fig. 1). To control for potential bias, we290

used these confounders as predictors and compared their predictive performance291

with our network-based features. We tested the interaction between gender and292

prematurity in a linear regression model of PMA at scan, but the interaction293

term was not significant (p = 0.9634). Birthweight was not included explicitly294

as a confounder due to its collinearity with PMA at birth.295

2.5.3. Regression model for age296

We trained a linear regression model with elastic net regularisation to pre-297

dict PMA at scan – i.e. chronological brain age – in both preterm and term298

infants starting from individual MSNs. This model was chosen for its ability to299

cope with a high number of features (Zou and Hastie, 2005). For each subject,300

the edges of the MSN (inter-regional correlations) were concatenated to form a301

feature vector to be given as input to the regression model. Since the connec-302

tivity matrix representing the MSN is symmetric, we considered only the upper303

triangular matrix for each subject. Gender and age at birth were included in the304

model to control for their possible confounding effects. The prediction perfor-305

mances were evaluated with a leave-one-out cross-validation (LOOCV) scheme,306

by computing the mean absolute error (MAE) averaged across subjects. Within307

each fold of the LOOCV, the parameters of the elastic net were selected with308
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a nested 3-fold cross-validation loop; the folds were stratified in percentiles to309

include samples covering the whole age range in each of the folds. Permutation310

testing was used for the statistical validation of the model performance: the null311

distribution was built by running the age prediction analysis on 1000 random312

permutation of the PMA.313

2.5.4. Classification model314

A Support Vector Machine (SVM) classifier with linear kernel was trained315

to discriminate between preterm and term infants. As per the regression model,316

the input for each subject consisted of inter-regional connections taken from the317

upper triangular connectivity matrix and the performances were evaluated with318

LOOCV. Age at the time of scanning, gender and motion were included as ad-319

ditional covariates.While in the case of regression the elastic net regularisation320

performs automatically a variable selection step, recursive feature elimination321

(RFE) was applied in combination with SVM to select the best subset of con-322

nections. Model selection was implemented using nested cross validation: an323

outer 3-fold cross-validation loop was used to select the SVM parameters and324

an inner 4-fold cross-validation loop was used for RFE. Folds were stratified to325

include the same proportion of term and preterm subjects. The accuracy of326

the model was computed as the number of correctly classified subjects across327

the leave-one-out folds over the total number of subjects in the test set. The328

null distribution was built by repeating the exact same analysis 1000 times after329

randomly assigning subjects to the term and the preterm group.330

2.5.5. Feature selection331

After the preprocessing phase, twelve different metrics were available for each332

ROI. To study which combination of features produced better performance in333

the prediction tasks, we implemented a sequential backward-forward feature334

selection scheme. Starting from the full set of features, at each iteration we335

compare the performances of different models built by removing in turn each of336

the features from the current set of candidate features. We then exclude from337
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the next iteration the feature whose subtraction caused the least increase in338

prediction error (down to three features, for a total of 73 combinations). The339

rationale behind this scheme is to explore the space of possible models without340

enumerating all possible solutions, thus reducing the computational demands341

compared to an exhaustive search. The procedure was performed separately for342

the regression and the classification models.343

2.5.6. Cross-validation strategy344

We adopted LOOCV to select the best performing model in both the age345

prediction and the classification tasks as this scheme enabled maximum size346

of the training set and therefore best use of available data, but this strategy347

might induce high variance in the estimation of prediction accuracy (Kohavi,348

1995; Efron, 1983). In the context of brain decoding (i.e. predictions from349

brain images or signals), LOOCV was shown to produce overly optimistic esti-350

mates of prediction accuracy in the within-subject setting (i.e. when all sam-351

ples are highly correlated because they come from the same subject). In the352

between-subject setting (as in this work), the performance of LOOCV is sim-353

ilar to schemes involving random splits and mostly determined by sample size354

(Varoquaux et al., 2017; Varoquaux, 2018). To assess the stability of our results355

with respect to the chosen cross-validation scheme, we report the prediction356

accuracy computed with a 10 repeated stratified 5-fold scheme (10-5-fold) for357

all the models selected with LOOCV.358

2.5.7. Comparison with individual metrics and single data modalities models359

We compared the performances of the best performing models based on360

MSNs with three classes of baseline models: a) models based on single global361

brain metrics (total brain volume and median FA in the WM); b) models based362

on individual metrics, where instead of similarities, predictors are the concate-363

nation of all regional values for each of the individual metrics used to build364

MSNs; c) single data modality MSNs, i.e. models built on structural features365

only (Volume and T1/T2), on DKI features only, and on NODDI features only.366
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Figure 4: Histograms of the performance of the 73 models compared in the backward feature

selection scheme for the age prediction task (a) and for the classification task (b). Bars are

grouped by the number of modalities included in the models.

2.6. Data and code availability367

Source code implementing the methods described in this paper is available368

upon request to the corresponding author. The preprocessed and anonymised369

data used in the analyses can be requested through the Brains Image Bank370

(https://www.brainsimagebank.ac.uk/) (Job et al., 2017).371

3. Results372

3.1. Feature selection373

In Fig. 4 we report two histograms summarising the LOOCV performance of374

the 73 different models compared per each task in the backward feature selection375

scheme. In both cases, we can observe that the models based on all three data376

modalities achieved better results in terms of prediction accuracy. The perfor-377

mances of each of the compared model are reported in Supplementary Figs. S1378

and S3 for the age prediction and for the classification models, respectively.379

The best performing model for age prediction, which was adopted for all sub-380

sequent analyses, was based on seven features (Volume, FA, MD, AD, MK, υiso,381

ODIP). Fig. 5a shows the average MSN matrix computed across all subjects for382

the selected set of features and the matrix of correlation between inter-regional383

similarities and PMA at scan across subjects. The average MSN matrix shows384
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four main blocks that correspond roughly to positive correlations between ROIs385

within GM and between ROIs within WM, and to negative correlation between386

WM ROIs and GM ROIs, indicating that ROIs within GM (and within WM)387

share similar structural properties, while GM and WM regional descriptors tend388

to be anti-correlated. The four-block structure is recognisable also in the matrix389

reporting correlations with chronological age: with increasing age regions within390

GM or within WM become more similar with each other, while the dissimilari-391

ties between GM and WM ROIs increases.392

The best classifier model was based on eleven out of the twelve features (all393

except ODIS), so compared to the age prediction model, four additional features394

were included: T1/T2, RD, υic and ODITOT. The average MSN computed with395

the selected features and the matrix of correlation with PMA at birth is shown396

in Fig. 5 (panels b and c). Comparing panel b and d of Fig. 5, it is apparent397

that while the patterns of correlation with PMA at scan and at birth are similar398

within GM and WM, subcortical ROIs show an opposite trend: with increasing399

PMA at scan subcortical ROIs tend to become more similar to WM ROIs and400

more dissimilar to GM ROIs, but the similarity between subcortical ROIs and401

cortical GM is positively correlated to age at birth.402

3.2. Prediction results403

The best regression model selected with LOOCV predicted chronological age404

(PMA at scan) with a MAE of 0.70 ± 0.56 weeks on the test data, and a corre-405

lation between the predicted and the actual age equal to r = 0.78 (p = 1.71 ×406

10−22) (Supplementary Fig. S5). The results of the permutation test are shown407

in Fig. 6 and Supplementary Fig. S6. The confounding variables (gender and408

age at birth) were not selected by the internal feature selection procedure, hence409

the predictions were based on network features alone. To test whether there410

was any systematic difference in the predicted age between the term and the411

preterm group, we compared the error distributions with a Wilcoxon rank-sum412

test, but the result was not significant (W = 1108, p = 0.1085). For compari-413

son, we evaluated the predictive performance of a linear regression model using414
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Figure 5: a) Average MSN computed across all subjects using the combination of features

selected through the backward feature selection scheme for the age prediction task (Volume,

FA, MD, AD, MK, υiso, ODIP). b) Correlation between each connection weight (inter-regional

similarity) shown in (a) and PMA at scan across subjects. c) Average MSN computed across

all subjects using the combination of features selected through the backward feature selection

scheme for the classification task (Volume, T1/T2, FA, MD, AD, RD, MK, υic, υiso, ODIP,

ODITOT). d) Correlation between each connection weight (inter-regional similarity) shown in

(c) and PMA at birth across subjects. Connections that were identified as predictive features

by the models are highlighted in black. ROIs are ordered as in Supplementary Table S1.
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only gender and PMA at birth as independent variables, that achieved a MAE415

of 1.03 ± 0.88 weeks. A Wilcoxon signed-rank test confirmed that the latter416

model achieved a significantly greater error (W = 1633, p = 0.0001). Also mod-417

els based on single global metrics and single-modality MSNs models provided418

poorer predictive performance than the selected multi-modality MSNs model419

(brain volume: MAE= 0.93 ± 0.68, R = 0.58; median FA: MAE= 0.88 ± 0.63,420

R = 0.58; structural: MAE= 1.08 ± 0.79, R = 0.32; DKI: MAE= 0.94 ± 0.70,421

R = 0.57; NODDI: MAE= 0.88 ± 0.69, R = 0.61) and this was confirmed by422

a Wilcoxon signed-rank test (brain volume: W = 1813, p = 0.0019; median423

FA: W = 2045, p = 0.0184; structural: W = 1361, p = 2.76 × 10−06; DKI:424

W = 1734, p = 0.0004; NODDI: W = 1811, p = 0.0009). Conversely, the425

baseline model based on the ensemble on individual metrics used to build the426

best performing MSN model achieved similar performances (MAE: 0.72±0.56,427

R = 0.77). A scatter plot of the residuals of the two models (Supplementary428

Fig. S11) showed a linear trend, indicating that the two models share a similar429

information content.430

Supplementary Fig. S2 shows the results computed with 10-5-fold cross-431

validation in. All compared models performed similarly under the 10-5-fold432

scheme, and in general worse than with the LOOCV scheme, with the selected433

model achieving a MAE of 1 ± 0.2 weeks (Supplementary Fig. S7).434

To study which connections contributed the most to chronological age pre-435

diction, we selected only edges which were assigned a non-zero coefficient in at436

least 99% of cross-validation folds. These edges are shown in the chord diagram437

in Fig. 7 (realised with Circos, Krzywinski et al. (2009)), and are colour coded438

to distinguish between inter-regional similarities that increase or decrease with439

age, to highlight networks of regions whose morphological properties are con-440

verging (gray) or that tend to differentiate with increasing age (red). Intuitively,441

these edges connect ROIs whose anatomical and micro-structural properties are442

changing more than others between 38 and 45 weeks PMA, making the ROIs443

more or less similar. In other words, it is the relative timing of maturation444

of different brain tissues to determine the relevance of a connection in the age445
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prediction task. The selected connections are located in both cortical (frontal,446

temporal, parietal and occipital lobes; insular and posterior cingulate cortex)447

and subcortical regions (thalamus, subthalamic and lentiform nuclei), in the448

brain stem and in the cerebellum. These areas have been previously associated449

with age-related changes and preterm birth (Boardman et al., 2006; Ball et al.,450

2013a; Batalle et al., 2017). For comparison, we report in Supplementary Table451

S2 the regional metrics selected as most predictive of age in the baseline model452

based on individual metrics.453
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Figure 6: Null distributions computed over 1000 random permutations of the target variable

for the age prediction (a) and the classification tasks (b). The red dotted lines indicate the

performances of our models.

The best classifier discriminated between term and preterm infants with a454

92% LOOCV accuracy (Fig. 6). None of the confounders were included among455

the selected features. A logistic regression model built on age at scan and gender456

did not achieve significant accuracy (56%, p = 0.091), while adding motion to457

the predictors produced a 61% accuracy, slightly above chance level (p = 0.03),458

but it should be noted that a model based on motion only was 59% accurate459

(p = 0.02). Models based on global features achieved 55% accuracy for total460

brain volume and 56% accuracy for median FA. Models built on single data461

modalities attained 65% accuracy for structural features only, 89% accuracy462

for DKI features only, and 88% accuracy for NODDI features only. Results463

computed with 10-5-fold cross-validation are shown in Supplementary Fig. S4.464
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The best classifier selected with LOOCV also achieved top accuracy with 10-5-465

fold (accuracy 90%, Supplementary Fig. S7).466

The network of regions that showed the most divergent pattern of structural467

brain properties in preterm versus term infants comprised the brain stem, the468

thalamus and the subthalamic nucleus; WM regions in the frontal and insu-469

lar lobes; GM regions in the occipital lobe; both WM and GM regions in the470

temporal and parietal lobes and in the posterior cingulate cortex. The chord471

diagram of edges selected by 99% of the models is shown in Fig. 8, in red where472

inter-regional similarities are greater in the term group and in gray where they473

are greater in the preterm group. For comparison, Supplementary Table S3 lists474

the regional metrics selected by the baseline model based on individual metrics,475

that obtained a 94% accuracy.476

3.3. Testing for asymmetry477

In both chord diagrams (Figs. 7 and 8) we observed more edges in the right478

hemisphere than in the left one. Both elastic net and SVM models perform a479

feature selection step to exclude features that are correlated and that carry re-480

dundant information in order to improve prediction performance, hence it might481

be the case that the models selected the right connections and discarded the482

left ones precisely because they had a similar information content. Additionally,483

in the leave-one-out cross-validation scheme the training sets only differ by two484

samples in each fold, hence models might be similar across folds.485

To test the hypothesis that the two hemispheres carry a different information486

content, we performed two experiments. First, we repeated the same analyses487

extracting inter-regional similarities from either the right or the left hemisphere.488

We compared the performance obtained with the regression and classification489

models on the different subsets of features used in the backward feature se-490

lection scheme in the main analyses. We found that for the age prediction491

model a Wilcoxon signed-rank test testing the hypothesis that the prediction492

error was higher using only connections from the left hemisphere was significant493

(W = 156, p = 2.57 × 10−11), while there was no statistically significant differ-494
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Figure 7: Chord diagram showing MSN edges used for age prediction in at least 99% of re-

gression models in the cross-validation folds. Connections shown in gray are inter-regional

similarities that increase with chronological age, while connections in red are inter-regional

similarities that decrease with chronological age. The edge width is proportional to the corre-

lation between inter-regional similarities and PMA. The left side of the diagram corresponds

to the left side of the brain. Abbreviations for ROI names are explained in Supplementary

Table S1.
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Figure 8: MSN edges showing a divergent pattern of morphological properties in term and

preterm infants in at least 99% of classification models in the cross-validation folds. Gray

connections indicate inter-regional similarities that are greater in the preterm group, while red

connections are greater in the term group. The edge width is proportional to the correlation

between inter-regional similarities and prematurity. The left side of the diagram corresponds

to the left side of the brain. Abbreviations for ROI names are explained in in Supplementary

Table S1.
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ence in the case of the classification model. These results replicated also when495

using 10-5-fold cross-validation (age prediction: W = 160, p = 2.98 × 10−11; no496

significant difference in classification). We also compared the residuals obtained497

using either the right or the left hemisphere for age prediction with the set498

of features selected with backward feature selection (Supplementary Fig. S11)499

and found that the residuals of the fitted models are linearly correlated, sug-500

gesting that the two hemispheres do carry a similar information content, but501

one presents clearer signal than the other. We then used permutation testing to502

test the “interchangeability” of right and left regions: starting from the subsets503

of imaging metrics selected in the main analyses for the age prediction and clas-504

sification models, we generated two null distributions by randomly swapping a505

subset of homotopic brain regions between the right and left hemisphere, and506

then repeating the exact same analyses 1000 times. We then counted how many507

times in the random models there was a disproportion of inter-regional similar-508

ities selected in the right hemisphere equal or greater than the one we observed509

with our models. If the right and left are “interchangeable”, the number of inter-510

regional similarities selected should remain the same on average. We found that511

in the age prediction task, under the null distribution, the disproportion of pre-512

dictive connections in the right hemisphere was associated with a p = 0.036,513

while in the classification task the disproportion was not significant (p = 0.166).514

This implies that at least for age prediction the two hemispheres are not inter-515

changeable, suggesting again that the right hemispheres has a stronger signal.516

A similar trend was observed under the 10-5-fold cross-validation scheme, but in517

this case we could not reject the null hypothesis that inter-regional similarities518

are selected with the same frequency from both hemispheres (p = 0.098).519

4. Discussion520

These results show that the information encoded in MSNs is predictive of521

chronological brain age in the neonatal period and that MSNs provide a novel522

data-driven method for investigating neuroanatomic variation associated with523
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preterm birth. MSNs were built by combining features from different imaging se-524

quences that describe complementary aspects of brain structure that have been525

previously studied in isolation (Makropoulos et al., 2016; Batalle et al., 2017)526

and the resulting predictive models achieved a high accuracy for age prediction527

and classification. By comparing the performance of MSNs features with basic528

demographic information (age at birth and gender) and simple metrics such as529

total brain volume and median white matter FA, we also showed that integrat-530

ing imaging data provides relevant additional information to characterise brain531

age. Although we cannot exclude the possibility that some of the variability532

shared with age at birth, gender or brain volume is encoded in the imaging vari-533

ables, the comparative analysis and the permutation testing results showed that534

the observed variance cannot be completely explained by demographic variables535

or simpler metrics alone. However, a high accuracy is not the only goal of the536

proposed method: once we have determined that the model is able to learn a537

relationship between the MSN features and age or prematurity, we can inter-538

rogate it to find out which features, regions and structures are involved in the539

predictions, thus allowing for further inferences.540

We anticipate that the main clinical and research utilities of MSNs will be541

to investigate divergent maturational patterns in the context of perinatal envi-542

ronmental, genetic and clinical exposures, leading to improved understanding543

of antecedents to, and consequences of, atypical brain development. For these544

purposes a prediction tool with average 5 days error is highly precise compared545

with other methods for assessing brain maturation, which usually rely upon546

simple linear regression, use single image features, or broad classifications of547

prematurity (Toews et al., 2012; Brown et al., 2017; Batalle et al., 2018; Deprez548

et al., 2018; Bouyssi-Kobar et al., 2018; Ouyang et al., 2018).549

The regions identified as most predictive have been previously associated550

with age-related changes and preterm birth (Boardman et al., 2006; Ball et al.,551

2013a; Batalle et al., 2017; Bouyssi-Kobar et al., 2018). These data suggest that552

to fully describe morphological variation in the developing brain it may be ad-553

vantageous to adopt a holistic approach, leveraging the additional information554
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that can be derived from integrating multi-contrast MRI data. The main moti-555

vation for using a network-based approach is to obtain a whole-brain description556

of a developmental pattern. By using topologically integrated features instead557

of single metrics it is possible to access an additional layer of information that558

is not explicitly encoded in the individual metrics, i.e. how the relationships559

between metrics vary in different parts of the brain. Working with correlations560

instead of an ensemble of heterogeneous metrics also aids interpretation, as the561

focus is shifted from the values of single metrics across the brain, each influ-562

enced by disparate factors, to similarities between brain regions, which is a more563

relatable concept. Additionally, the adoption of a network model has proven564

to be a useful abstraction to capture the modular organisation of the brain: in565

the original work introducing MSNs to study microscale cortical organization in566

adults, the authors demonstrated that regions that were similar in MSNs were567

more likely to belong to the same cytoarchitectonic class, to be axonally con-568

nected and to have high levels of co-expressions of genes specialised for neural569

functions (Seidlitz et al., 2018). Another reason for working with similarities570

instead of single regional metrics is methodological: computing edge weights as571

inter-regional similarities enables an integrated representation of several met-572

rics in a single network; to work with the original features directly would mean573

either working with several networks (thus requiring a further step to integrate574

them and aggravating the problems related with the “curse of dimensionality”)575

or concatenating all the features in a single predictive model (thus excluding576

the interactions between metrics from the model).577

Table 2: Results from previous works in the age prediction task.

Age span Model Error/Accuracy

Brown et al. 2017 27-45 weeks PMA FA-weighted structural connectivity MAE = 1.6 weeks

Ouyang et al. 2019 31.5-41.7 weeks PMA cortical FA and MK (mean kurtosis) FA: r = .92; MK: r = .63

spatio-temporal growth models for myelin-like Thalami: MAE = 1.41 weeks
Deprez et al. 2018 29-44 weeks PMA

signals in the thalami and brainstem Brainstem: MAE = 2.56 weeks

Toews et al. 2012 8-590 days from birth scale-invariant T1w features MAE = 72 days

Wu et al. 2019 14-48 days from birth cortical measures MAE = 11.1 ± 0.3 days

PMA = postmenstrual age, MAE = mean absolute error, r = Pearson’s coefficient between actual and predicted age.
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Our data are consistent with previous studies of perinatal brain age predic-578

tion based on a single type of data or a single metric. For example, Brown et al.579

(2017) used dMRI tractography to predict brain dysmaturation in preterm in-580

fants with brain injury and abnormal developmental outcome and found that al-581

tered connectivity in the posterior cingulate gyrus and the inferior orbitofrontal582

cortex were associated with a delayed maturation; both of these regions are in-583

cluded in the networks identified by our model. Regional FA, MD, MK, and υic584

are each predictive of age (Genc et al., 2017; Karmacharya et al., 2018; Ouyang585

et al., 2019), and the first three measures were selected in our age predicition586

model. Growth of the thalami and brainstem, defined in terms of myelin-like587

signals from T2-weighted images, successfully predicted age between 29 and 44588

weeks (Deprez et al., 2018) and these regions are included in the networks most589

predictive of age in the current study. In Toews et al. (2012), scale-invariant590

image features were extracted from T1-weighted MRI data of 92 subjects over591

an age range of 8-590 days to build a developmental model that was used to592

predict age of new subjects; and Ceschin et al. (2018) proposed a deep learning593

approach to detect subcortical brain dysmaturation from T2-weighted fast spin594

echo images in infants with congenital hearth disease. Wu et al. (2019) used595

cortical features extracted from structural images to predict age of 50 healthy596

subjects with 251 longitudinal MRI scans from 14 to 797 days; in accordance597

with our results, the regions reported to be important for age prediction were598

bilateral medial orbitofrontal, parahippocampal, temporal pole, right superior599

parietal and posterior cingulate cortex. Although our results are not directly600

comparable with the above works because of the heterogeneity of employed601

models, validation techniques and population variation (different age ranges),602

our prediction error is among the lowest reported (see Table 2 for a summary of603

previous results), but it should be noted that there is a strong positive correla-604

tion between the reported MAEs and the age range of the samples. In addition,605

many works have identified imaging biomarkers associated with preterm birth,606

such as brain tissue volume (Alexander et al., 2018; Gui et al., 2019), myelin607

content (Melbourne et al., 2016), and diffusion tensor metrics (Anjari et al.,608

30

                  



2007; Bouyssi-Kobar et al., 2018).609

The connections most predictive of age revealed that brain maturation is610

characterised by morphological convergence of some networks and divergence611

of others (Fig. 7). These connections mostly involve fronto-temporal and sub-612

cortical ROIs, which suggests that the micro- and macro-structural properties613

of these regions are highly dynamic between 38-45 weeks. Among these, inter-614

regional similarities within GM and WM increase with age, similarities between615

cortical GM and WM decrease, while subcortical ROIs become more similar616

to WM and more dissimilar to cortical GM. This is consistent with previous617

findings on the different trends in development of the thalamus and the cortex618

(Eaton-Rosen et al., 2015). Additionally, in a study of early development of619

structural networks (Batalle et al., 2017), connections to and from deep grey620

matter are reported to show the most rapid developmental changes between621

25-45 weeks, while intra-frontal, frontal to cingulate, frontal to caudate and622

inter-hemispheric connections are reported to mature more slowly.623

Conversely, the inter-regional similarities selected by the SVM classifier to624

discriminate between term and preterm (Fig. 5) are more distributed across625

cortical GM and WM and are for the most part greater in the preterm group.626

The fact that in the term group these cortical ROIs are less homogeneous in627

terms of structural properties could be interpreted as a sign that in term infants628

these regions are at a different stage of maturation where their morphological629

profile is consolidating along specialised developmental trajectories. It has been630

previously suggested that the rapid maturation of cortical structures occurring631

in the perinatal period is vulnerable to the effects of preterm birth (Kostović632

and Jovanov-Milošević, 2006; Ball et al., 2011, 2013b; Smyser et al., 2016b).633

The differences between networks identified for age prediction and for preterm634

classification indicate that atypical brain development after preterm birth is not635

solely a problem of delayed maturation, but it is characterised by a specific sig-636

nature. Indeed, while the age prediction networks capture changes occurring in637

both the preterm and the term group, the classification networks highlight where638

there are group-wise differences, and they do not match: in the case of a delayed639
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maturation we would have observed differences in the same regions undergoing640

age-related changes. MSN variations associated with preterm birth affected641

brain stem, thalami, sub-thalamic nuclei, WM regions in the frontal and insular642

lobes, GM regions in the occipital lobe, and WM and GM regions in the tempo-643

ral and parietal lobes and in the posterior cingulate cortex. This distribution of644

structural variation is consistent with previous reports of regional alteration in645

brain volume and dMRI parameters based on single contrasts (Boardman et al.,646

2006; Bonifacio et al., 2010; Ball et al., 2013a; Brown et al., 2017; Batalle et al.,647

2017; Alexander et al., 2018; Thompson et al., 2018b; Bouyssi-Kobar et al.,648

2018). Furthermore, compared to the age prediction model, the MSNs used649

for preterm classification are based on four additional metrics: T1/T2, related650

to myelination; RD, measuring water dispersion; υic describing neurite density;651

and ODITOT, associated with the fanning of WM tracts. All these metrics con-652

tribute to characterise the micro-structural alterations associated with preterm653

birth (Eaton-Rosen et al., 2015; Melbourne et al., 2016; Batalle et al., 2018;654

Thompson et al., 2018b; Bouyssi-Kobar et al., 2018).655

We observed a disproportion in the distribution of the connections selected656

by our models, with a preference for the right hemisphere, hinting at the ex-657

istence of lateralization in the maturational process. An asymmetry in the658

development of the right hemisphere in neonates was previously reported in659

Dubois et al. (2010); Yap et al. (2011); Wu et al. (2019), and our experiments660

(section 3.3) partially supported the hypothesis that the right hemisphere plays661

a relevant role in the context of age prediction.662

4.1. Limitations663

This work has some limitations. First, compared with the original work664

on MSNs (Seidlitz et al., 2018), we did not have a multi-parametric mapping665

sequence (Weiskopf et al., 2013); however, because the model is extensible, in-666

formation from other contrasts could be added and evaluated for their effect on667

prediction. The MSN model could also be applied to study the properties of cor-668

tical gray matter (such as thickness, sulcal depth or curvature), that have been669
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previously reported to be predictive of age in children (Brown et al., 2012) and670

could contribute significantly in characterising the newborn brain. However,671

metrics that only apply to selected structures (e.g. the cortex) cannot be used672

in a whole brain analysis, as to compute inter-regional similarities each region673

needs to be described by the same set of metrics. This particular study was674

designed based on prior knowledge that typical development and atypical devel-675

opment associated with preterm birth are characterised by global changes (Ball676

et al., 2013a; Anderson, 2014; Eaton-Rosen et al., 2015; Melbourne et al., 2014),677

and MSNs integrating dMRI and sMRI data were chosen to study generalised678

processes across the whole brain.679

Second, we used a motion correction technique that attenuates the impact680

of head motion on structural connectivity (Andersson and Sotiropoulos, 2016;681

Baum et al., 2018), and we found that scanner motion was not contributing682

significantly to prediction accuracy; however we cannot rule out a possible con-683

founding effect of motion on the estimation of regional metrics.684

Third, the preterm study population was representative of survivors of mod-685

ern neonatal intensive care in terms of gestational age range and prevalence of686

co-morbidities of preterm birth that may influence brain maturation, but it is687

still possible that the results were influenced by biological variability specific688

to the cohort. A replication study will be required to determine whether the689

patterns of dysmaturation we found are generalisable.690

Finally, we assessed the performance of our models with both LOOCV and691

10-5-fold schemes in order to investigate the stability of our findings with respect692

to the chosen cross-validation scheme and we observed some variability in the693

general trends of the results. The disagreement we found might derive from694

the limited size of the training set in the case of the repeated-5-fold scheme (all695

models tended to perform worse, suggesting there were not enough samples for696

learning), and this was indeed the reason why our first choice was the leave-697

one-out scheme. As it is always the case when working with machine learning,698

increasing the sample size would increase the power of the models, thereby699

reducing the margin of error and the risk of overfitting, with the result that700
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both schemes should converge to similar findings.701

4.2. Conclusions702

Combining multiple imaging features in a single model enabled a detailed de-703

scription of the morphological properties of the developing brain that was used704

inside a predictive framework to identify two networks of regions: the first, pre-705

dominantly located in subcortical and fronto-temporal areas, that contributed706

most to age prediction: the second, comprising mostly frontal, parietal, tem-707

poral and insular regions, that discriminated between preterm and term born708

infant brains. Both predictive models performed best when structural, diffu-709

sion tensor-derived and NODDI metrics were combined, which demonstrates710

the importance of integrating different biomarkers to generate a global picture711

of the developing human brain. The achieved accuracy supports the hypothesis712

that studying the interaction between regional metrics can shed light on the713

mechanics of development.714

Morphology, structural connectivity and maturation are all influenced by715

genetics, co-morbidities of preterm birth, and nutrition (Boardman et al., 2014;716

Anblagan et al., 2016; Sparrow et al., 2016; Krishnan et al., 2016; Ball et al.,717

2017; Alexander et al., 2018; Blesa et al., 2019). In future work MSNs could718

offer new understanding of the impact of these factors on integrated measures of719

brain development, and the relationship between neonatal MSNs and functional720

outcome could bring novel insights into the neural bases of cognition and be-721

haviour, by identifying networks of regions associated with later development.722

MSNs could also enable a direct comparison with functional networks extracted723

from fMRI, to explore how structure and function interplay in the neonatal pe-724

riod, and study how well the two network models together explain individual725

variability in developmental outcome.726
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