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Abstract: The preservation of genome integrity in the mammalian female germline from primordial 
follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive 
success. As oocytes are formed before birth and may remain dormant for many years, it is essential 
that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog 
of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a 
major signalling pathway governing primordial follicle recruitment and growth. This pathway also 
contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. 
Accelerated primordial follicle activation through this pathway may result in a compromised DNA 
damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less 
efficient with ageing. This review considers DNA damage surveillance mechanisms and their links 
to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of 
primordial follicles, and in ovarian ageing. Targeting DDR mechanisms within oocytes may be of 
value in developing techniques to protect ovaries against chemotherapy and in advancing clinical 
approaches to regulate primordial follicle activation. 

Keywords: PTEN/PI3K/Akt; follicle activation; DNA damage response (DDR); ageing 
 

1. Introduction 

In mammalian females, oocytes are formed before birth and are surrounded by somatic cells 
(granulosa cells) to form structures known as follicles. Oocytes have entered meiosis and are arrested 
at the dictyate stage of prophase I with the most immature stage (primordial follicles) forming the 
store of female germ cells that will be utilised throughout reproductive life (reviewed in [1]). The pool 
of primordial follicles is progressively reduced with age leading to reproductive senescence [2–4]. 
Follicles are gradually lost from the pool either through death or by activation of the growth pathway. 
Therefore the rates of activation and degeneration determine the size of the pool and the time to onset 
of menopause [5]. Once follicles are recruited into the growing pool, pre-granulosa cells differentiate 
to form a single layer of cuboidal cells surrounding the oocyte. In parallel, the oocyte increases in size 
and undergoes further growth and maturation whilst still being maintained in meiotic arrest. These 
processes are referred to as primordial follicle activation [6]. Primordial follicles may be quiescent for 
many years and in humans for several decades, highlighting the importance of potential DNA 
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damage accumulation [7] that may threaten genomic integrity. In this context, a robust surveillance 
mechanism is essential to ensure that oocytes with DNA damage have it repaired or are eliminated 
with prevention of further growth and development [8,9], thus maintaining the quality of oocyte and 
any resulting embryo throughout the reproductive lifespan [10]. 

The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (PKB, Akt) pathway is one of the major non-gonadotropic insulin signalling 
pathways that coordinates the activation, growth and differentiation of follicles [6,11]. The pathway 
functions to control a myriad of cellular functions involving cell metabolism, proliferation and 
survival [12,13]. There is evidence to support the existence of crosstalk between the PI3K/Akt 
signalling pathway and the DNA damage response (DDR) in cells [14–16], indicating the importance 
of the consequences of interference with one of these pathways on the other. High PI3K/Akt activity 
is linked to a decline in the number of primordial follicles and ovarian ageing [17,18]. Ovarian ageing 
is associated with impaired DDR within oocytes [19–22] and this can also be induced following 
exposure to DNA damaging agents [23–28]. Nevertheless, taking advantage of PI3K/Akt signalling 
pathway effects on follicular recruitment, PTEN inhibition, as a central negative regulator of the 
pathway, has been widely used to activate primordial follicles in a range of species [18,29–33]. Most 
importantly, pregnancies have been achieved in women following transplantation of small fragments 
of ovarian cortex after exposure to pharmacological inhibitors of PTEN [34]. Recent studies suggest 
that activation of follicles by these methods may be damaging to subsequent growth and survival of 
follicles [35–37], indicating that further investigation is required to fully understand the impact and 
implications of follicle activation using pharmacological manipulation of this pathway.  

A great deal of evidence, discussed below, suggests that the PI3K/PTEN/Akt pathway is 
essential in regulating cell-cycle checkpoint initiation and DNA repair and that the lack of PTEN in 
cells may cause genomic instability [38,39]. The ability to respond to such damage is crucial to ensure 
primordial follicle survival and to support the production of mature oocytes with a minimised risk 
of meiotic abnormalities against the adverse effects of age (reviewed in [40]) and ultimately to 
maintain reproductive lifespan. Surveillance mechanisms within oocytes to ameliorate DNA damage 
are essential as, during reproductive life, oocytes (and granulosa cells) can be subjected to DNA 
damage: this mainly occurs in the long-lived primordial follicles as a consequence of external and 
internal insults [21]. DNA double strand-breaks (DSBs) do not occur as frequently as other lesions, 
but persistent unrepaired DNA DSBs are the most severe type of damage and may lead to genomic 
instability [21,41–43]. 

In this review, we will limit the discussion to the DNA damage/DSBs repair pathway, and 
primarily focus on the mechanisms used by oocytes within primordial follicles to protect themselves 
against DNA damage throughout their lifespan. The DDR mechanism in granulosa cells will be 
discussed where relevant. Crosstalk between the PI3K/PTEN/Akt pathway and DDR has been linked 
to increased DNA damage and impaired DNA repair protein interactions in ovarian follicles 
activated in vitro [29]. Such findings will be important in elucidating the impact of pharmacological 
activation of primordial follicles by manipulation of the PI3K/PTEN/Akt pathway and its impact on 
DDR. 

2. Methods 

Published articles including original research, peer-reviewed and reviews were searched 
systematically in PubMed (Medline) database using specific terms such as ‘DNA damage’, ‘oocytes’, 
‘primordial follicle activation’, ‘PI3K/Akt’, ‘ovarian ageing’ and ‘chemotherapy’. Abstracts and 
conferences proceeding were not included. The search yielded 757 relevant references of English 
language literature. Article selection was conducted using Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines [44]. The references in these articles were searched 
manually to retrieve additional articles, and an additional 19 articles were included. These were then 
screened for duplication, to ensure only articles related to DNA damage repair mechanism in 
primordial follicles were included. Only original research articles meeting the following eligibility 
criteria were included in the final search results: original research articles published from 1990 to 
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2019, full articles available, articles in English and not symposia proceeding. Manuscripts were 
selected concerning primordial follicle activation in association with PI3K signalling pathway, 
ovarian ageing and DDR in oocytes of immature follicles. A total of 52 published full-text articles 
were included after cross-referencing, and 40 articles were analysed qualitatively (Figure 1). 

 
Figure 1. Flow chart following Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines to determine the study included into qualitative analysis. 

3. DNA Damage Repair Pathway within Primordial Follicles  

The DNA of a cell is continuously threatened by various types of damage that may cause a 
reduction in cellular function, cell cycle progression and DNA repair [45]. Exogenous sources of DNA 
damage include environmental agents such as ultraviolet, radiation and chemotherapeutic drugs 
[24]. Reactive oxygen species (ROS) are also an endogenous source of damage within somatic cells 
[46] and oocytes [20,47]. DNA damage constitutes a significant issue in non-dividing or slowly 
dividing cells as a large amount of DNA damage may accumulate over time. Any damage that does 
not cause cell cycle arrest will tend to induce replication errors leading to mutations [20]. However, 
all cells are endowed with the capacity to ameliorate the threats to DNA, which occurs mainly at the 
G1/S and G2/M-phase transition. Cells with DNA damage respond in various ways to activate an 
appropriate DDR pathway. A mild injury may not result in serious consequences as it can be repaired 
directly without cell cycle arrest. While severe DNA damage may result in cell cycle arrest, allowing 
sufficient time to repair DNA damage. During this time, a sequence of DDR proteins is activated and 
the cell’s fate depends on its capacity to repair the damage [48]. 
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DNA DSBs can be repaired by two main mechanisms: non-homologous end-joining (NHEJ) [49], 
and homologous recombination (HR) [20,50]. NHEJ is error-prone since it mediates the direct re-
ligation of the two ends of broken DNA and is not based on a complementary DNA template. Given 
its error-prone nature, NHEJ is commonly accompanied by deletion or insertion of base pairs [51,52]. 
NHEJ primarily occurs at the G0/G1 phase [53] and can be independent of the cell cycle [54]. NHEJ 
is the most common type of DNA damage repair in mitotic cells. In contrast, HR is largely error-free 
and is functionally dominant at S and G2/M phases of the cell cycle when sister chromatids are 
available as a template for accurate DNA repair [55]. In this context, HR is the primary mode of DNA 
DSBs repair in meiotic cells. Both pathways are evident and can be functionally active in mammalian 
oocytes [56,57], although HR predominates in oocytes at all stages of development [10,48,58–62]. 
Given that primordial follicles are arrested at G2/M and accurate repair is a prerequisite to conserve 
genetic information [63], HR appears to be the pathway of choice for oocytes within primordial 
(immature) follicles [10,48,58,59]. While NHEJ can occur in the late stage of oocyte development 
[49,60,64]. 

HR requires the recognition of the DNA DSBs by the meiotic recombination 11 (MRE11)-Rad50-
nijmegen breakage syndrome 1 (NBS1) (MRN) complex. The binding of MRN complex to DSB free 
ends allows the NBS1 protein to interact with ataxia telangiectasia mutated (ATM) dimers leading to 
autophosphorylation of ATM at a serine residue (367, 1893 and 1981) [65]. Detection of DNA damage 
attracts ATM kinase to the DNA DSB sites, through direct interaction between ATM and the C-
terminal region of NBS1 [66]. It has been reported that ovaries from MRE11 mutant mice showed a 
marked increase in unrepaired DSBs, with primordial follicle loss and infertility although the number 
of mature follicles did not differ between wild type and mutant mice [67]. However, meiotic 
progression in mutant mice was delayed with only 5% of oocytes being able to complete synapsis 
[67], suggesting a key role of MRE11 in oocyte DDR. 

ATM in turn phosphorylates a specific histone protein, H2AX, at the C-terminal serine 139 to 
generate γH2AX, which binds specifically to the DNA damage sites and controls the recruitment of 
DNA repair proteins. The critical role of ATM in DDR is demonstrated by a study using mouse 
ovaries in culture exposed to phosphoramide mustard (PM), a metabolite of cyclophosphamide (CP). 
Increased γH2AX in oocytes occurred 24 h after exposure and consequently induced substantial 
follicle loss. Interestingly, the administration of the ATM inhibitor KU55933, reduced the adverse 
impact of PM on follicle depletion, emphasising the importance of ATM in the DDR [68]. 
Phosphorylation of γH2AX initiates a downstream pathway resulting in DNA repair or cell cycle 
arrest (reviewed in [20]). γH2AX is extensively phosphorylated from minutes to hours following the 
detection of DNA breaks, quantitatively reflecting the severity of the damage [69–71]. Mediator DNA 
damage checkpoint protein (MDC1) is then activated and bound to γH2AX, mediated by breast 
cancer susceptibility gene 1 (BRCA1; Figure 2A). MDC1 forms foci that co-localise with γH2AX within 
minutes after the damage occurs and provides positive feedback, recruiting additional MRN 
complexes and thus leading to propagation of γH2AX at sites of DNA breaks [72]. 

Phosphorylation of ATM is the first step in the initiation of G2 checkpoint activation in the DNA 
damage repair pathway [73]. Activation of ATM upregulates downstream pathways leading to 
effective DNA repair through HR/NHEJ (HR in oocytes of primordial follicle, Figure 2A), initiation 
of checkpoint kinase 2 (Chk2, Figure 2A) or apoptosis (through activation of TAp63α, Figure 2B,C, 
and discussed in detail below) [20,74]. Activation of HR generates single-strand DNA (ssDNA) at 
multiple steps and requires a specific factor, replication protein A (RPA). In oocytes, the ssDNA 
binding protein complex RPA is replaced by Rad51 and meiotic cDNA1 (Dmc1). BRCA2 mediates 
the interaction between Rad51, Dmc1 and ssDNA to form the meiotic presynaptic nucleofilament, 
resulting in the initiation of HR (Figure 2A). Dmc1 deficiency in mouse oocytes leads to synapsis 
failure, which is HR-dependent and ultimately reduces follicle survival [75].  

The role of Rad51 is of paramount importance in the final step of HR and in preventing oocyte 
death, as is evident from studies in mouse and bovine [48,62,76]. Inhibition of Rad51 prior to 
irradiation exposure increases damage to DNA, whereas enhancing Rad51 expression by injecting 
recombinant Rad51 is sufficient to prevent DNA damage [48,76]. 
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In the presence of DSBs, Chk2 activation delays the cell cycle transiently to provide sufficient 
time for DNA repair [77]. DNA damage checkpoints are primarily expressed when oocytes are in 
meiotic arrest. Their expression persists at this stage leading to increased sensitivity of oocytes in 
primordial follicles to DNA damage-inducing agents [75]. Activation of Chk2 simultaneously inhibits 
cell division cycle (Cdc) phosphatases including Cdc25a, Cdc25b and Cdc25c. This in turn activates 
cyclin-dependent kinase (Cdk) and consequently blocks the cell cycle progressing from G1 to S and 
G2/M phase (reviewed in [50]). The activation of p53 family members is another downstream target 
of ATM and functions to maintain checkpoint activation at G1/S of the cell cycle [53,78]. Inhibition of 
ATM in mouse oocytes exposed to irradiation results in a failure to activate p63, which then blocks 
the apoptosis pathway and prevents oocyte death [79].  

4. A Unique p63 Pathway Links DNA Damage and Apoptosis in Oocytes within Primordial 
Follicles 

In conditions resulting in severe DNA damage or with ineffective DNA repair, DNA DSBs 
accumulation is more likely to initiate the activity of p53 family members. This process is critical to 
abolish oocytes with unrepaired DNA damage and safeguard against germline mutations. The 
apoptosis process of oocytes within primordial follicles is mediated by a distinct cell surveillance 
mechanism involving N-terminal transactivation domain p63 (TAp63α) [24,80–82], a p53 family 
member [83]. TAp63α functions to respond to DNA damage primarily after prophase 1 of meiosis 
and is constitutively active only in female germ cells once DNA breaks occur [81]. The essential role 
of TAp63α in the apoptosis process makes it an essential regulator in follicle loss during 
chemotherapy, which may result in a reduced primordial follicular pool. Oocytes in the quiescent 
state demonstrate a high TAp63α expression. Wild-type mice exposed to radiation show primordial 
follicle loss (without loss of growing preantral follicles), whilst TAp63-deficient mice are insensitive 
to irradiation-induced apoptosis, confirming the indispensable role of TAp63α in the DDR of the 
oocyte within primordial follicles [80]. 

The p63 gene encodes two major isoforms of TAp63, one with the transactivation (TA) domain 
and the other, ∆N-p63 (N-terminal truncated), lacking the TA domain [84]. TAp63α is the main p63 
isoform expressed in the nuclei of oocytes within primordial follicles [80,81,83]. TAp63α is 
maintained in inactive dimeric form by the transcriptional inhibitory domain (TID) and further 
stabilised by the interaction of N-terminal transactivation (TAD) with TID and the oligomerization 
domain. In the dimeric state, the transactivation of TAp63α is suppressed by decreasing its DNA 
binding affinity and repressing the activity of the domain responsible for the transcriptional process 
[85]. Exposure to genotoxic agents such as radiation trigger a conformation change in TAp63α to its 
active tetrameric state, which in turn increases its DNA binding affinity and may ultimately cause 
apoptosis [85–87] and elimination of damaged oocytes (Figure 2C). The presence of TAp63α in 
oocytes of immature follicles highlights the need for adequate surveillance mechanism to ensure only 
oocytes with complete DNA damage repair are recruited to ovulation [80,81,84].  

Mouse oocytes within primordial follicles also express all necessary kinases required to trigger 
p63 activation. Once DNA damage ensues, it may activate p63 directly, resulting in enhanced oocyte 
sensitivity to DNA damage compared to granulosa cells [88]. This vulnerability of oocytes to DNA 
damage is confirmed by a study using a low dose irradiation treatment in mice that is sufficient to 
induce oocyte death while the surrounding cells of the ovaries are not affected [79]. TAp63α is also 
expressed in oocytes within primary and preantral follicles, but expression is downregulated with 
oocyte growth [80,81], resulting in growing oocytes being less sensitive to DNA damage. The 
sensitivity to DNA damage diminishes once follicles reach the antral stage owing to complete loss of 
TAp63α expression at this stage [88]. 

TAp63 activation in oocytes within primordial follicles requires consecutive phosphorylation by 
Chk2 at serine 582 [89]. TAp63α is not phosphorylated in Chk2 deficient mice following exposure to 
irradiation [75] with ineffective oocyte elimination, whereas the entire primordial follicle pool in wild 
type mouse ovary is eradicated [75]. Transcriptional activation of BH3-only pro-apoptotic BCL-2 
family members PUMA (p53 upregulated modulator of apoptosis) and NOXA [24] are critical 
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downstream targets of oocytes apoptosis mediated by TAp63 [82]. PUMA and NOXA trigger 
apoptosis by binding and suppressing the pro-survival B-cell lymphoma 2 (Bcl2) activity, an anti-
apoptotic protein implicated in repairing mitochondrial permeability. PUMA and NOXA binding to 
Bcl-2 unleashes the pro-apoptotic protein B-cell lymphoma (Bcl)-associated X (BAX), precipitating an 
imbalance between BAX and Bcl2, which then activates apoptosis [90] (Figure 2B). It has been 
reported that oocytes of PUMA and NOXA deficient mice are not affected by γ-irradiation and are 
capable of producing healthy offspring [24]. Primordial follicle loss is also much reduced in PUMA 
knockout mice treated with CP and cisplatin [26]. Alternatively, upregulation of p53 elicits p21 
transcription that directly prevents Cdk2 and Cdk4 transcription and eventually induces cycle arrest 
(reviewed in [50,91]), thus allowing DNA repair [90]. 

 
Figure 2. DNA double-strand breaks (DSBs) response pathway. (A) Homologous recombination (HR) 
repair pathway to combat DNA DSBs. Detection and recognition of DNA DSBs by the meiotic 
recombination 11-Rad50-nijmegen breakage syndrome 1 (MRN) complex (MRE11-RAD50-NBS1) 
triggers phosphorylation of ataxia telangiectasia mutated (ATM). Activation of ATM results in the 
phosphorylation of several DNA damage response (DDR) kinases such as histone protein, H2A 
variant, H2AX, at Serine 139 to generate γH2AX, checkpoint kinase 2 (Chk2) and p53 (TAp63α in 
primordial oocytes), mediating the effects of ATM on DNA damage repair, cell-cycle arrest and 
apoptosis. p63 induces cell-cycle arrest by activating the transcription of p21, which may hinder cell 
cycle progression through inhibition of cyclin-dependent kinase 2 (Cdk2) and Cdk 4 activity. 
Mediator DNA damage checkpoint protein 1 (MDC1) binds to γH2AX via breast cancer susceptibility 
gene 1 (BRCA1) and forms foci that co-localise with γH2AX. In oocytes, the DNA strand resection is 
activated and leads to homologous recombination (HR). Activation of HR generates single-strand 
DNA (ssDNA) at multiple steps and requires a specific factor, replication protein A (RPA). The 
ssDNA binding protein complex RPA in oocytes is replaced by Rad51 and meiotic cDNA1 (Dmc1). 
(B) Activated Chk2 promotes degradation of cell division cycle (Cdc25) and ultimately provokes cell 
cycle arrest through phosphorylation of Cdk2 and 4. Alternatively, in response to excessive or 
irreparable DNA damage, p63 may induce a cascade of apoptotic signalling pathway that requires 
transcriptional induction of p53 upregulated modulator of apoptosis (PUMA) and NOXA [24,92]. 
Apoptosis is controlled by the balance between pro-apoptosis B-cell lymphoma 2 (Bcl2) and anti-
apoptosis B-cell lymphoma (Bcl)-associated X (BAX) activity. (C) An interplay of dimeric to the 
tetrameric formation of TAp63α. Phosphorylation of TAp63α ultimately transforms the inactive 
dimeric form of TAp63α to the active tetrameric form (figure adapted from [84,85,87]). 

5. The PI3K/Akt Pathway Links Primordial Follicle Growth and the DDR 
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The regulation of recruitment of primordial follicles to grow is strictly controlled by a delicate 
balance between inhibitory and stimulatory factors to preserve the primordial follicle pool from 
premature exhaustion. Evidence from genetically modified mice supports the central role of the 
PTEN/PI3K/Akt signalling pathway in controlling the initiation of primordial follicle growth [93]. 
Thus, the size of the primordial follicle pool is determined by the dynamic activity of this pathway 
[17,18]. Accordingly, many studies involving pharmacological and non-pharmacological 
manipulation of this pathway have been conducted to investigate the activation of primordial follicles 
in vitro and in vivo [18,31,33,36,94–99]. 

Upregulation of the PI3K/Akt signalling pathway within the oocyte triggers a cascade of 
reactions that ultimately initiates activation of primordial follicles [6]. PI3K is comprised of a 
heterodimer of the p85 regulatory subunit and p110 catalytic subunit. In response to growth factors, 
all regulatory subunits of PI3K interact with the insulin receptor substrate, and thereby activate the 
catalytic subunit. The interaction induces the phosphorylation of membrane phospholipid 
phosphatidylinositol 4,5-biphosphonate (PIP2). PIP2 is converted to phosphatidylinositol 3,4,5-
trisphosphate (PIP3), which then serves as a second messenger to enable phosphoinositide-
dependent kinase 1 (PDK1) activation. PTEN, expressed by the oocyte, reverses this process by 
converting PIP3 to PIP2. PIP3 binds to Pleckstrin homology (PH) domain of PDK1 and Akt and 
recruits these two kinases to the subcortical area. This in turn activates PDK1 and subsequent Akt 
phosphorylation at threonine 308. Akt is further phosphorylated by mammalian target of rapamycin 
complex 2 (mTORC2) at serine 473 for its full activation, which then regulates a number of 
downstream targets [6]. 

PDK1 is indispensable in maintaining primordial follicle survival and preserving reproductive 
lifespan. It seems likely that both PTEN and PDK1 loss leads to premature ovarian failure (POF) but 
through different mechanisms. PTEN loss is associated with excessive primordial follicle activation 
and subsequent follicular atresia, whereas PDK1 deficiency instigates accelerated clearance of 
primordial follicles straight from their quiescent state [17]. Both types of primordial follicle loss are 
suggested to underlie ovarian ageing [17]. However, PTEN deletion in oocytes of primary and late 
stages of growing follicles does not reveal any significant effects on follicular growth [18]. 

mTORC1 is a further downstream substrate of Akt. mTORC1 is upregulated by the 
destabilisation of the heterodimeric complex of tuberous sclerosis complex 1 (TSC1) and 2 (TSC2). 
mTORC1 phosphorylates S6 protein kinase (S6K1), which promotes cell growth and proliferation and 
activates ribosomal protein S6 (rpS6), which increases protein translation [6] (Figure 3). The lack of 
TSC1 and TSC2 in mouse oocytes instigates massive primordial follicle activation, leading to POF 
[100]. Forkhead transcription factor FOXO3 (forkhead box O3) is a key target of the PTEN/PI3K/Akt 
pathway. Once activated, FOXO3 is shuttled from the nucleus to the cytoplasm, which then 
suppresses its transcriptional function leading to primordial follicle activation [93,101]. The FOXO3 
deleted mouse model displays global primordial follicle activation at the neonatal stage leading to 
primordial follicle loss and POF [102,103]. Conversely, overexpression of constitutively active FOXO3 
in the nucleus of mouse oocytes preserves them in a dormant state [104]. FOXO3 can thus be 
considered as a guardian of the primordial follicle pool, enhancing the ovarian reserve and 
maintaining reproductive capacity [102–104]. 

PI3K-related protein kinases (PIKKs) are considered to be the main regulators of DNA damage 
repair capacity of cells. Akt activation implicates the cell cycle checkpoint kinase 1 (Chk1), which has 
an important role in the DNA damage repair mechanism as it delays the cell cycle progression in S 
and G2 phase to correct an error of DNA damage before cell division [105]. PTEN is a tumour 
suppressor gene and is an essential factor in promoting normal cell proliferation and coordinating 
oocyte growth alongside granulosa cell proliferation [18,30]. Oocyte-specific PTEN deletion increases 
primordial follicle activation and prevents follicles from undergoing apoptosis but may be associated 
with accelerated clearance of follicles leading to primordial follicle pool exhaustion and POF [17,18].  

Hyperactivation of Akt due to PTEN inhibition may impair HR activity leading to genomic 
instability. Notably, a high endogenous level of Akt may be of significant importance in the pathology 
of cancer as Akt inhibits apoptosis and increases cell proliferation [15]. In cancer cells, excessive Akt 
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activation has also been linked to suppressed NHEJ and DNA DSB repair [106]. PI3K/Akt signalling 
compromises DNA DSB repair by inactivating the G2 checkpoint [107], with increased Chk1 
phosphorylation [108] or cytoplasmic sequestration of BRCA1 [15]. In addition, lack of PTEN in the 
cell leads to deficient DNA DSBs repair capacity and high incidence of spontaneous DNA breaks [16]. 
A study using a mouse model has shown that the expression of γH2AX was upregulated by seven-
fold in PTEN-null mouse embryonic fibroblasts [109]. Furthermore, PTEN deletion is sufficient to 
markedly reduce the level of Rad51 that in turn leads to chromosomal instability [110,111]. In normal 
cells, increased Akt and DNA damage accumulation due to inefficient DNA repair are associated 
with Ras-induced senescence [112]. Crosstalk between PTEN/PI3K/Akt signalling pathway and DNA 
damage repair interactions is summarised in Figure 3. 

Despite the role of PI3K/Akt in the pathology of cancer, the modulation of this pathway has been 
adopted as a potential approach for women with premature ovarian insufficiency (POI) and 
pregnancies have been achieved [34,113]. However, it has become increasingly evident that this 
pharmacological approach may be detrimental to oocyte/follicle development [29,35–37]. We have 
demonstrated that dipotassium bisperoxo (5-hydroxypyridine-2-carboxyl) oxovanadate 
(bpv(HOpic)), a potent PTEN inhibitor, compromises the growth of apparently healthy human 
preantral follicles [36]. Likewise, the use of alginate scaffold and polyethylene glycol (PEG)-
fibrinogen to culture human ovarian cortical strips in the presence of 100 µM bpv(HOpic) did not 
support follicular development [35]. Furthermore, constitutive PI3K activation in the perinatal period 
in transgenic mouse oocytes leads to lack of co-ordination between oocyte and granulosa cell growth, 
leading to enlarged oocytes surrounded by immature pre-granulosa cells. These mice are 
anovulatory, but follicles develop, and oocytes are meiotically competent. The inability to ovulate is 
likely the result of endocrine factors due to unregulated follicle growth [114]. PI3K over-activation in 
mouse oocytes has also been associated with granulosa cell tumour (GCT), characterised by excessive 
granulosa cell proliferation [115]. 

 
Figure 3. Crosstalk between primordial follicle activation and DDR pathway. Receptor protein 
tyrosine kinase (RPTK) Kit and its ligand activate phosphoinositide 3-kinase (PI3K) and as a response 
to this activation, the catalytic subunits of PI3K, p85 and p110, will be activated. In turn, it converts 
phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-bisphosphate (PIP3), 
which then serves as the second messenger to enable phosphoinositide-dependent kinase-1 (PDK1) 
activation. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) reverses this process 
and increases PIP2 expression. PDK1 and Akt are recruited through binding of their pleckstrin 
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homology (PH) domains to PIP3, leading to phosphorylation of protein kinase B (Akt) by PDK1. Akt 
activation consequently triggers phosphorylation of forkhead box O3 (FOXO3) resulting in 
cytoplasmic localisation of this transcription factor. Increased in Akt activity also induces 
phosphorylation of mammalian target of rapamycin complex I (mTORC1) through inactivation of 
tuberous sclerosis complex 1 and 2 (TSC 1, 2). S6 protein kinase (S6K) activity is then upregulated and 
simultaneously triggers phosphorylation of ribosomal protein S6 (rpS6). Meanwhile, high 
intracellular levels of Akt have been reported to increase DNA damage, repress nuclear translocation 
of breast cancer susceptibility gene 1 (BRCA1) and compromise homologous recombination (HR) in 
breast cancer cells. 

A recent finding from our lab utilising bovine ovarian cortical fragments exposed to the PTEN 
inhibitor bpv(HOpic) for 24 h showed increased primordial follicle activation after six days of culture. 
However, γH2AX expression in oocytes was upregulated and not associated with increased 
expression of the DNA repair enzymes ATM and Rad51. A low dose of bpv(HOpic) did not affect 
BRCA1 and 2 expression and more follicles in this group survived after six days of culture compared 
to high doses of bpv(HOpic). Nevertheless, a marked decrease in BRCA1 and 2 expression was 
observed after exposure to high doses suggesting a compromised DDR. Interestingly, despite high 
γH2AX expression being observed in granulosa cells of secondary stage follicles, DNA repair capacity 
of these cells was not significantly affected, as indicated by increased MRE11, ATM and Rad51 
expression and a non-significant decline of BRCA1 and 2 [29] (Figure 4). Although the mechanism by 
which PI3K/Akt upregulation induces DNA damage in oocytes has not been elucidated, accelerated 
primordial follicle growth has been linked to decreased estradiol production indicating impaired 
granulosa cell function, whilst lowering the activation rate results in normal estradiol production 
[37]. This suggests that the rapid growth may be associated with a disordered intrafollicular oocyte 
and somatic cell relationship [116]. This condition may lead to uncoordinated oocyte and granulosa 
cell growth, as reported in mice [114]. 

 
Figure 4. Potential effects of phosphoinositide 3-kinase /protein kinase B (PI3K/Akt) activation on 
DNA damage and DNA repair response of oocytes in vitro. Inhibition of PTEN by low dose 
Dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl) oxovanadate (V) (bpv(HOpic)) is sufficient to 
induce primordial follicle activation. However, gamma H2AX (γH2AX) increases and DNA repair 
proteins meiotic recombination 11 (MRE11), ataxia telangiectasia mutated (ATM) and Rad51 are 
downregulated, as are breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility 
gene 2 (BRCA2). 
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Several publications utilising mouse models have provided evidence that oocytes within resting 
follicles may be directly targeted by chemotherapy treatments, including CP, cisplatin and 
doxorubicin [24,26,117,118]. It has also been proposed that primordial follicle depletion following 
chemotherapy may be induced by the loss of growing follicles with an increase in primordial follicle 
activation [119,120]. A study investigating the mechanism by which cisplatin induced ovarian failure 
showed that cisplatin reduced PTEN expression in oocytes leading to primordial follicle activation. 
Once follicles were activated to grow, they became more vulnerable to apoptosis with a loss of 
luteinising hormone (LH) receptor expression resulting in decreased oocyte meiotic competence and 
ovulation failure [23]. These direct and indirect effects of chemotherapy treatments on primordial 
follicles can form the basis to develop potential methods to protect ovaries against the adverse 
impacts of chemotherapy [121]. 

In addition to chemotherapy, another clinical problem that is linked to DNA damage, PI3K/Akt 
signalling pathway and ovarian ageing is endometriosis. Increased PI3K/Akt activity has been 
suggested in endometriosis [122–127], with loss of nuclear PTEN [128]. Primordial follicle loss in 
endometriosis has been associated with PI3K/Akt upregulation in mice and human [125] and is 
suggested to be responsible for ovarian ageing [129]. A diminished ovarian reserve in endometriosis 
occurs concomitantly with increased DNA damage and compromised DSB repair mechanism, 
indicated by low Rad51 and BRCA1 expression [130]. Experimental studies in rats indicate that an 
mTOR inhibitor is effective to suppress the growth of endometriotic implants, supporting the 
engagement of this pathway [131]. 

The effects of PI3K/Akt/mTOR on primordial follicle activation following chemotherapy 
treatment have led to research utilising this mechanism to reduce the adverse impact of 
chemotherapy on the ovary. In human, as mTOR hyperactivation is a common feature of cancers, 
mTOR inhibitors are becoming a therapeutic target in certain type of cancers. In a study utilising 
mouse embryonic fibroblast cell lines, constitutive mTOR activation enhanced apoptosis triggered by 
chemotherapy through persistent DNA damage as was shown by the upregulation of γH2AX. In 
parallel, the absence of both PTEN and TSC2 upregulates γH2AX expression. Intriguingly, mTOR 
inhibition prior to treatment is able to protect cells from etoposide-induced apoptotic cell death [132]. 
Substrates that inhibit mTOR have been shown to reduce excessive primordial activation and 
maintain the primordial follicle pool [133–135]. This positive effect is due to mTOR downregulation 
during chemotherapy and subsequently reduced Akt and S6K phosphorylation resulting in 
decreased primordial follicle loss and maintenance of the ovarian reserve and fertility [136]. Studies 
investigating the PI3K/Akt pathway are detailed in Table 1. 

 



Cells 2020, 9, 200 11 of 27 

Table 1. Recent studies investigating the impact of phosphatase and tensin homolog deleted on chromosome 10/phosphoinositide 3-kinase/protein kinase 
B/mammalian target of rapamycin complex (PTEN/PI3K/Akt/mTORC) pathway either as a part of genetic modification/pharmacological activation, chemotherapy 
treatment or ovotoxicity exposure on primordial follicle activation, follicular growth and survival. 

Agents Used/Compounds/Concentration 
Mechanism of 

Action Species/Methods 
Effects on Follicular 

Growth/Survival 
Specific Effects on 

Granulosa Cells/Oocyte Study 

1 and 10 µM Dipotassium bisperoxo (5-
hydroxypyridine-2-carboxyl) oxovanadate (V) 

(bpv(HOpic)) for 24 h/ PTEN inhibitors. 

Increase 
PI3K/Akt  

Bovine/ovarian cortical 
fragments cultured. 

Decreases in higher dose. 
Compromises DNA damage 

response (DDR). 
[29] 

20, 40, 60, 80, 120 and 140 µM diazinon (DZN) 
Inhibit 

PI3K/Akt 
Porcine isolated 
granulosa cells. 

Granulosa cells death 

Increase DNA damage, 
mRNA level of Ataxia 
telangiectasia mutated 

(ATM), Rad51 and breast 
cancer susceptibility gene1 

(BRCA1) increase p53 leading 
to granulosa cell death. 

[137] 

30 μM bpv (HOpic) + 150 μg/mL 740Y-P for 24 and 
48 h or 100 nM everolimus. 

Increase 
PI3K/Akt and 
inhibit mTOR 

activation 
respectively 

Cryopreserved human 
ovarian cortical 

fragments cultured 

Lowering the rate of 
activation improves 

follicular growth.  

PTEN inhibition 
compromises granulosa cell 

estradiol production. 
[37] 

Cyclophosphamide (CP) 75 mg, 100 mg, 150 mg 
per kg body weight and 5 mg/kg body weight per 

day 1 week before and after CP administration. 

PI3K/Akt 
activation 

Mice, in vivo 

CP induces non-growing 
and growing follicle loss. 
Rapamycin prevents CP 

induced primordial follicle 
activation. 

Anti-mullerian hormone 
(AMH) expression decreases 

after CP exposure. 
[133]  

Transgenic mouse model 

Increase PI3K 
activation in 
transgenic 
mice, Cre+ 

Transgenic mice, Cre+ 
and Cre− 

Normal secondary follicles, 
granulosa cell tumour 

(GCT) in primordial and 
primary follicles. 

Bilateral GCT due to 
increased activin A. 

[115] 

440 μM bisphenol A(BPA). 
Increases 
PI3K/Akt 
activation 

Rat ovarian fragment 
culture exposed to BPA. 

BPA induces DNA damage 
both in oocytes and 

granulosa cells. PI3K 
signalling pathway 

involved in BPA-induced 
DNA damage. 

Primordial follicle is 
activated to replace the 
larger follicle depletion. 

[138] 

Transgenic mouse model 
Increase PI3K 
activation in 

Transgenic mice, Cre+ 
and Cre− 

Increases follicles survival  
Asynchronous oocytes and 

granulosa cells growth. 
[114] 
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transgenic 
mice, Cre+ 

100 μM bpv(HOpic) for 25 h 
Increase 
PI3K/Akt 
activation 

Human ovarian cortical 
fragments cultured. 

No damage to the follicular 
growth. 

Enhance estradiol production 
without any damage to 

follicles compared to control 
group. 

[33] 

200 μM phosphatidic acid (PA) and 50 μM 
propranolol (PRO) for 24 h in mice; 

bpv(HOpic)(100 μM) /740Y-P (250 μM /mL) for 24 
h, 740Y-P (250 μM /mL) only for another 24 h; PA 

(100 mM)/740Y-P (200 μM)/PRO (50 μM) for 24 h in 
human. 

Increase 
PI3K/Akt 
/mTOR 

activation. 

Mice and human ovaries 
transiently incubated in 

mTOR activators 
followed by grafting into 

female mice. 

No damage to the follicular 
growth. NA [139] 

30 μM of bpv(HOpic), and 150 μM /mL of 740YP 
for 24 h followed by incubation with 740YP alone 

for another 24 h 

Increase 
PI3K/Akt 

activation. 

Human ovarian cortical 
fragments 

transplantation 
following in vitro 
activation (IVA). 

Autografting of ovarian 
fragments following in vitro 
activation (IVA) procedure 

to infertility related primary 
ovarian insufficiency (POI) 

patients. 

NA [34] 

1 µM bpv(HOpic) and 10 and 100 µM bpv(HOpic) 
(unpublished) 

Increase 
PI3K/Akt 
activation 

Human ovarian cortical 
fragments and isolated 

preantral follicle culture. 

Higher dose compromises 
follicular growth. The lower 

dose is associated with 
deleterious effects on 
subsequent growth of 

preantral follicles. 

NA [36] 

Cisplatin, once daily at doses of 0.5, 1.0, 1.5 and 2.0 
mg/ kg for 5 to 14 days  

Activation of 
PI3K/Akt 

Intraperitoneal injection 
of cisplatin in mice 

Increases the proportion of 
growing follicles. 

Induces ovarian failure. [23] 

100 μM bpv(HOpic) and 500 μM /mL 740Y-P for 24 
and 48 h  

Increase 
PI3K/Akt 

activation. 

Human ovarian cortical 
fragments cultured in 
polyethylene glycol 

(PEG)-fibrinogen 
hydrogels. 

Compromises follicle 
survival. 

NA [35] 

30 μM bpv(HOpic) and 150 μg/mL 740YP for 24 h 
Increase 
PI3K/Akt 

activation. 

Mice ovarian 
transplantation and 

human ovarian 
fragments 

transplantation 
following IVA.  

Promotes primordial follicle 
activation both in mice and 

human.  
NA [113] 
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Female mice deficient in PTEN 
Increase 
PI3K/Akt 
activation 

PTEN knockout mice 

Rapamycin reduces the 
primordial follicles 
activation in PTEN 

knockout mice. 

Rapamycin prevents global 
primordial follicles activation 

induced by the absence of 
PTEN. 

[134] 

1 μM bpv(HOpic) for 24 h 
Increase 
PI3K/Akt 
activity. 

Mice cortical fragments 
IVA followed by 

transplantation and 
bpv(HOpic) directly 

injected to female mice. 

Does not compromise 
follicular health. 

More mature and fertilised 
oocytes in PTEN inhibition 

group.  
[32] 

100 μM bpv(HOpic) and/or 500 μg/mL 740Y-P for 
48 h or bpv(HOpic) plus 740Y-P together with the 

Akt inhibitor SH-550 μM or the PI3K inhibitor 
Wortmannin 25 μM. 

Increase 
PI3K/Akt, Akt 

inhibitor 
decreases the 

activation. 

Mice and human cortical 
fragments incubated in 
Akt activators followed 

by xenografting. 

Increases in the number of 
secondary and antral stage 

follicles following 
xenografting and does not 

affect follicular health. 

No malignancy observed 
after long term ovarian 

transplantation. 
[140] 

Mice lacking Tuberous sclerosis complex 1 (TSC1), 
PTEN; TSC1 and PTEN; Phosphatidylinositol-

dependent kinase 1 (PDK1) and PDK1 and TSC1 in 
oocytes. 

Enhances 
mTOR 

activation. 
Mutant female mice 

Degenerated activated 
primordial follicles (short 

term), diminished follicular 
health (long term).  

Rapamycin prevents global 
primordial follicle activation. 

Activation does not cause 
tumour development. 

[100] 

Homozygous mutant female mice deficient 
Tuberous sclerosis complex 2 (TSC2) in oocytes.  

Enhances 
mTOR 

activation. 
Mutant female mice. Massive primordial follicle 

activation. 
Depletion of follicle reserve.  [93] 

Female mice lacking PTEN, PDK1 and ribosomal 
protein S6 kinase (rpS6) 

Increases 
PI3K/Akt 

Mutant female mice. 

Follicles with degenerating 
oocytes in PDK1 deletion 
and enlarged oocytes in 

PTEN deletion. 

The absence of PTEN causes 
Primary Ovarian 

Insufficiency (POI) that can 
be reversed by PDK1 

deletion. 

[17] 

PTEN deletion in mice. 
Increases 
PI3K/Akt PTEN mutant mice 

Tends to be normal follicle 
morphology but with 
enlarged oocytes and 

flattened granulosa cells. 

PTEN deletion leads to 
excessive primordial follicle 

activation. 
[18] 

NA: Not available. 
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6. DNA Damage Associated with Ovarian Ageing, a Crosstalk between PI3K/Akt/PTEN 
Signalling, Ageing and DNA Damage Response 

Ovarian ageing as a physiological process varies substantially among women depending on the 
number of primordial follicles and the rate of follicle loss [141,142]. It is also very closely associated 
with reduced oocyte quality [143]. A link between these is suggested by the increasing rate of 
primordial follicle activation with age [144] with PI3K/Akt signalling pathway being a key regulator 
of this growth activation [17,18]. Compromised DNA repair protein interactions as a consequence of 
ovarian ageing has been connected to increase PI3K/Akt activity [19–22]. 

There is increasing evidence of an association between DNA damage and repair capacity of 
oocytes and maternal age, with DNA repair becoming less efficient with ageing [19–21,58]. A study 
in non-human primates confirmed a lack of DNA repair efficiency with advancing age, with 
cytoplasmic sequestration of BRCA1 in oocytes [22]. Although DNA damage and repair mechanisms 
in granulosa cells are not the main focus of this review, it is worth mentioning that γH2AX expression 
in granulosa cells of growing follicles was not different between old and young mice [22]. This finding 
may suggest less effective DNA repair in oocytes within primordial follicles compared to 
surrounding somatic cells. Accordingly, mouse oocytes of all follicle types exhibit high expression of 
γH2AX with increasing age. At the same time, the oocyte appears to have an ineffective DNA repair 
mechanism as was shown by a profound drop in BRCA1, MRE11 and ATM but not BRCA2. 
Mutations in BRCA1 but not BRCA2 perturb ovarian stimulation leading to smaller litter size. 
Interestingly, DNA damage was not evident in pre-granulosa cells within primordial follicles [21]. In 
line with these findings, the mRNA level of BRCA1, Rad51 and H2AX were reduced in aged female 
rat and buffalo oocytes within primordial follicles [19,58]. 

Women with BRCA2 mutations do not show a reduced response to ovarian stimulation [145]. 
However, BRCA2 deficient mice are able to produce competent and fertilised oocytes but more 
abnormal embryos are observed [146], indicating an important role of BRCA2 in the oocyte. In 
women, complete loss of BRCA2 function leads to ovarian dysgenesis resulting in primary 
amenorrhea, with reduced Rad51 function in HR indicated by low Rad51 expression at the site of 
DNA damage [147]. A genome-wide association study (GWAS) analysis also shows association 
between DNA damage repair and age at menopause [148], particularly highlighting links with 
BRCA1. Likewise, a diminished ovarian reserve mirrored by low AMH levels in women with BRCA1 
but not BRCA2 mutations [149] supports findings from a transgenic mouse model [21]. In addition, 
primordial follicles with BRCA1 mutations are more susceptible to DNA damage accumulation, as 
shown by high γH2AX expression in primordial follicles [25]. 

As ageing is thus associated with a reduction in DNA repair capacity, oocytes from older women 
may be more susceptible to genotoxic insults with increased primordial follicle loss due to apoptosis 
[10]. It is evident that the degree of doxorubicin induced DNA damage is independent of age, but 
apoptotic events are more apparent in oocytes of old mice. This may be related to the finding that 
oocytes from young mice have a greater DNA repair capacity [48]. Qualitative analysis of recent 
findings of studies in DNA damage and ovarian ageing are summarised in Table 2. 

ROS accumulation in mitochondria can be an underlying factor in ageing, by increasing 
oxidative damage leading to a gradual decrease in follicle quality [150]. Increased ROS activity due 
to senescence parallels diminished activity of the oxidative defence system and may lead to increased 
lipid peroxidation, oxidative stress and damage to macromolecules including DNA with either 
single-strand breaks (SSBs) or DSBs [151]. High ROS expression in follicular fluid of patients 
undergoing in vitro fertilisation (IVF) has been linked to reduced oocyte fertilisation and poor 
embryo quality [152]. Mitochondria have been hypothesised to be the first organelle affected by ROS 
since they are the source of oxygen radical production; ageing is also associated with increased 
mitochondrial DNA (mtDNA) deletions [153,154]. PTEN upregulation, through modulation of the 
PI3K/Akt pathway, decreases ROS production in cells (reviewed in [155,156]). Increased ROS 
concentration in mitochondria due to ageing may inhibit PTEN leading to accumulation of PIP3, 
which then increases Akt activation and further increases ROS production. This pathway suggests a 
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positive feedback loop between PTEN, PIP3 and ROS [157]. The impact of ageing on the PI3k/Akt 
signalling pathway, DDR and resting pool depletion is summarised in Figure 5. 

 
Figure 5. Molecular relationship between phosphoinositide 3-kinase/protein kinase (PTEN/Akt) 
activation, DNA damage and decreased ovarian reserve. Breast cancer susceptibility gene 1 (BRCA1) 
mutation may lead to compromised DNA repair pathway and eventually primordial follicle 
apoptosis leading to follicle loss and decreased ovarian reserve. In addition, mitochondria can be one 
of the major sources of DNA damage. Excessive reactive oxygen species (ROS) production may harm 
macromolecules in the cells including DNA leading to single-stand breaks (SSBs) or double-strand 
breaks (DSBs). High ROS expression in mitochondria may lead to PTEN inhibition and increase Akt 
activation. This may eventually further increase ROS production due to inactivation of forkhead box 
O3 (FOXO3).
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Table 2. Summary of recent clinical and experimental studies providing evidence linking DNA damage response (DDR), ovarian ageing and ovarian reserve. 

Study Focus Study Type DDR Pathway Affected Main Outcomes References 
Oocyte maturation rate of breast cancer patient 

with breast cancer susceptibility gene 1 
(BRCA1) and Breast cancer 2 (BRCA2) 

mutation. 

Retrospective 
cohort study.  BRCA1 and BRCA2 

The number of mature oocytes resulted from in 
vitro maturation (IVM) procedure is not different 
between women with BRCA1 and without BRCA 

mutation. 

[158] 

Ovarian reserve of patients with BRCA 
mutation carriers and non-carriers with or 

without malignancy. 

Retrospective 
cohort study. BRCA1 and BRCA2 

Patients with BRCA mutation carriers and 
noncarriers show comparable ovarian reserve and 

number of oocytes yield following ovarian 
stimulation.  

[159] 

The role of BRCA2 in ovarian development 
and puberty onset.  

A case control 
study in human. 

BRCA2 and Rad51 Lack of BRCA2 reduces Rad51 recruitment during 
homologous recombination. 

[147] 

Ovarian reserve in patients with BRCA1 
mutation. 

Case-control 
study. 

γH2AX, BRCA1 and 
BRCA2 

DNA double-strand breaks (DSBs) increase in 
BRCA1 mutation group but not BRCA2. DNA 

damage increases with age in BRCA1/2 mutation. 
[25] 

Oocyte yield following ovarian stimulation in 
patients with BRCA1/2 mutation. 

Retrospective 
cohort study. 

BRCA1 and BRCA2 
The number of oocytes produced by women with 

BRCA mutation is lower than without BRCA1 
mutation. 

[160] 

DNA damage and repair capacity of aged and 
young buffalo ovaries.  

Experimental 
study in buffalo 

ovaries. 

BRCA1, γH2AX, MRE11, 
Rad51 and ATM  

mRNA expression of BRCA1, meiotic recombination 
11 (MRE11), Rad51 and ataxia telangiectasia 

mutated (ATM) decline significantly in aged buffalo 
ovaries. 

[58] 

The effects of BRCA mutation on anti-
Mullerian hormone (AMH) serum level.  

Prospective 
cohort study 

BRCA1 and BRCA2 Patients with BRCA2 mutations exhibit a lower 
AMH level compare to low-risk control patients. 

[161] 

Anti-mullerian hormone (AMH) serum level 
in patients with BRCA1/2 mutation. 

Cross-sectional 
study 

BRCA1 and BRCA2 
AMH serum level of patients with BRCA1/2 

mutation carriers does not significantly different 
from non-carriers. 

[162] 

AMH serum level in women with BRCA1 and 
BRCA2 mutation.  

Cross-sectional 
study 

BRCA1 and BRCA2 BRCA1 but not in BRCA2 mutation carriers have a 
lower AMH level. 

[149] 

Ovarian ageing effects on DNA damage repair 
response in rat ovaries.  Experimental 

γH2AX, BRCA1, MRE11, 
Rad51, ATM, BRCA1 and 

BRCA2 

DNA repair proteins BRCA1, Rad51, ATM and 
γH2AX in aged rat primordial follicles declined 

compared to immature rats. 
[19] 

Comparison of proteins profile of primordial 
follicles isolated from immature rat and aged 

rat. 
Experimental 

Heat shock cognate 71kDa 
(Hsp71C), calreticulin, Bcl-

2-related ovarian killer 
protein (BOK) 

Protein expression for DSBs response decreases 
significantly in aged rats. 

[59] 
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The association between DNA DSBs in 
granulosa cells and ageing.  

Experimental 
γH2AX, BRCA1, Telomeric 

repeat binding factor 
(TRF2) 

Increased γH2AX and decreased BRCA1 expression 
in all follicle types with age. 

[22] 

The association between AMH serum level 
and BRCA mutation.  

Cross-sectional 
study BRCA1 and BRCA2 

AMH serum level of patients with a BRCA1 
mutation is lower than without BRCA1 mutation. [163] 

The effect of ovarian ageing on DNA DSBs of 
oocytes and granulosa cells.  Experimental 

γH2AX, BRCA1, MRE11, 
Rad51, ATM, BRCA1 and 

BRCA2 

Increased DNA damage and decreased DDR 
capacity with advancing age. [21] 

Time to menopause in BRCA1 and 2 mutations 
carriers.  

Case control 
study. BRCA1 and BRCA2 

Both BRCA1 and 2 mutation patients experience 
menopause earlier than control. [164] 

Doxorubicin effects on ovarian ageing. Experimental γH2AX, ATM and 
activated caspase 3 

γH2AX expression is higher in ovarian tissue 
exposed to doxorubicin in vitro. 

[118] 

Transactivation p73 (TAp73) expression in 
young and aged female oocytes. 

Experimental TAp73 TAp73 is downregulated in older women’s oocytes. [165] 

The effects of age on the occurrence of 
aneuploidy in mouse oocytes.  

Experimental BRCA1 BRCA1 expression is decreased in oocytes of aged 
mice. Aneuploidy increases in aged oocytes. 

[166] 

The role of BRCA2 in male and female 
gametogenesis.  

Experimental BRCA2 
BRCA2 deficiency in mice leads to infertility. 

 
[146] 
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7. Conclusions and Future Directions 

It is clear that mammalian oocytes have distinct DNA damage surveillance mechanisms. There 
is evidence linking the regulation of primordial follicle growth activation through the PI3K pathway 
with increased DNA damage/reduced repair, and this provides a model for the development of new 
approaches to the investigation and potentially therapeutic intervention in both these key aspects of 
oocyte biology. Evidence from both genetic mouse models and the culture of mammalian ovarian 
cortical fragments supports the contention that imbalance in signalling events between oocytes and 
granulosa cells may contribute to impaired follicle function after aberrant primordial follicle growth 
activation. 

Data reviewed here explore the links between the regulation of primordial follicle growth 
activation and DNA damage repair pathways. The primordial follicle and particularly the oocyte 
within it has unique physiological challenges, being required to maintain genomic integrity and 
quality from birth over several decades without cell growth or replication. Thus, the opportunity for 
repeated DNA surveillance during cell division is absent, and oocyte-specific pathways from DNA 
damage to apoptosis exist. There is increasing research activity linking follicle growth regulation with 
oocyte DNA damage and repair capacity in the context of potential prevention of ovarian damage 
against chemotherapy, radiation or environmental toxicants. The elucidation of the possibility to 
confer resistance against chemotherapy through identification of key factors in the oocyte apoptotic 
pathway may lead to clinical trials building on the differences in these pathways between the oocyte 
and somatic cells. 

Rad51, a critical protein involved in oocyte resilience to apoptosis, is a feasible candidate to 
promote DNA repair capacity in oocytes and ultimately conserve fertility in women undergoing 
cancer treatment. Administration of recombinant Rad51 into mouse oocytes has been demonstrated 
to increase DDR, prevent apoptosis, improve the defective DNA repair capacity in oocyte and restore 
embryo development [48,76]. Future investigation into the safety and efficacy of modulating Rad51 
as a clinical application to preserve functional germ cells may be beneficial to improve oocyte and 
embryo development following chemotherapy exposure and in ageing. 

Targeting the PI3K/PTEN/Akt/mTOR pathway, mTOR inhibition with rapamycin [133] and 
everolimus [136] have also been investigated as a means to protect ovaries during exposure to 
chemotherapy in mice. Melatonin and ghrelin have also been proposed to protect the ovaries against 
cisplatin and may also affect this pathway, though perhaps indirectly. Both ghrelin and melatonin 
suppress cisplatin-mediated PI3K/Akt pathway upregulation and inhibit FOXO3 nuclear shuttling, 
thus preserving the primordial follicle pool [167]. This is a promising avenue, though it will be 
essential to ensure that the effects of chemotherapy on cancer cells are not compromised [10]. 

It has been shown that either complete loss of PUMA or partial loss of TAp63 in mice oocytes 
could retain the primordial follicle pool following CP and cisplatin exposure. This is a promising 
approach to reduce the negative effects of chemotherapy on the ovaries [26,117] as the salvage process 
exclusively occurs within the oocyte without interfering with the cancer treatments [10]. 

An intriguing novel approach to the protection of ovaries against chemotherapy has been 
suggested by a recent study introducing microRNAs (miRNAs) [168]. It is reported that miRNAs are 
differentially expressed in mouse postnatal ovaries exposed to 4-hydroperoxy-cyclophosphamide (4-
HC), some of which have been implicated in DDR and apoptosis and affect cellular susceptibility to 
DNA damaging agents [169]. MiRNAs can be effective techniques as their expression can be adjusted 
with their microenvironment during chemotherapy treatment, thus minimising off-target toxicity. 
Lethal 7 (let-7a) mimic is an example of a new miRNA based therapeutic to minimise follicle injury 
following chemotherapy treatment [170]. However, this work is at an early stage, with challenges 
including how to deliver miRNAs to a specific target organ with minimum side effects. 

In vitro activation (IVA) methods have generated controversy regarding efficacy and safety with 
in vitro studies indicating that manipulating activation by pharmacological methods has an impact 
on subsequent quality of oocytes [35–37]. Pharmacological primordial activation utilising a PTEN 
inhibitor has been associated with increased DNA damage and impaired DNA repair capacity 
particularly in oocytes [29]. While an IVA protocol utilising both PI3K/Akt and Hippo signalling 
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pathways prior to ovarian tissue transplantation may have major negative consequences on follicle 
health [119,171,172], the PI3K/Akt signalling pathway may also be a potential target to prevent follicle 
activation and loss following ovarian tissue transplantation, maximising the longevity of the 
transplanted tissue. A recent study showed that short exposure to a specific inhibitor of mTORC1 
partially hindered follicular activation while improving follicle survival and steroidogenesis [37]. 
Since precocious follicular growth in vitro has been a major constraint in developing in vitro follicle 
growth systems, lowering the activation rate by using an mTORC inhibitor may have additional 
value as a promising strategy for the derivation of mature oocytes in vitro. Finally as the canonical 
PI3K/Akt signalling pathway is interconnected with many feedback loops that are essential for 
optimal cell function during ageing [157], future research investigating the potential of manipulation 
of PTEN and PI3K to reduce ROS accumulation and thus damage in ageing oocytes will be essential. 
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