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Learning from the 2018 heatwave in the context of

climate change: Are high-temperature extremes

important for adaptation in Scotland?
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Metzger1, S. N. Sparrow3, and S. F. B. Tett1

1 School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UK.

2 Department of Meteorology and Bolin Centre for Climate Research, Stockholm

University, Stockholm 106 91, Sweden.

3 Oxford e-Research Centre, University of Oxford, Oxford OX1 3QG, UK.

4 Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK.

5 Met Office Hadley Centre, Exeter EX1 3PB, UK.

E-mail: sabine.undorf@misu.su.se

Abstract. To understand whether high temperatures and temperature extremes are

important for climate change adaptation in Scotland, we place the 2018 heatwave in

the context of past, present, and future climate, and provide a rapid but comprehensive

impact analysis. The observed hottest day, 5-day, and 30-day period of 2018 and the

5-day period with the warmest nights had return periods of 5-15 years for 1950-2018.

The warmest night and the maximum 30-day average nighttime temperature were

more unusual with return periods of >30 years. Anthropogenic climate change since

1850 has made all these high-temperature extremes more likely. Higher risk ratios are

found for experiments from the CMIP6-generation global climate model HadGEM3-

GA6 compared to those from the very-large ensemble system weather@home. Between

them, the best estimates of the risk ratios for daytime extremes range between 1.2-

2.4, 1.2-2.3, and 1.4-4.0 for the 1-, 5-, and 30-day averages. For the corresponding
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Learning from the 2018 Scottish Heatwave 2

nighttime extremes, the values are higher and the ranges wider (1.5- >50, 1.5-

5.5, and 1.6- >50). The short-period nighttime extremes were more likely in 2018

than in 2017, suggesting a contribution from year-to-year climate variability to the

risk enhancement of extreme temperatures due to anthropogenic effects. Climate

projections suggest further substantial increases in the likelihood of 2018 temperatures

between now and 2050, and that towards the end of the century every summer might

be as hot as 2018. Major negative impacts occurred, especially on rural sectors, while

transport and water infrastructure alleviated most impacts by implementing costly

special measures. Overall, Scotland could cope with the impacts of the 2018 heatwave.

However, given the likelihood increase of high-temperature extremes, uncertainty about

consequences of even higher temperatures and/or repeated heatwaves, and substantial

costs of preventing negative impacts, we conclude that despite its cool climate, high-

temperature extremes are important to consider for climate change adaptation in

Scotland.

social media abstract Climate context & impacts of #Scotland summer 2018 show need

to consider #climateadaptation to #heat

key words climate change; temperature extremes; adaptation; summer 2018; heatwave

impacts; event attribution; UK climate

1. Introduction

Climate change adaptation is essential alongside mitigation given existing climate change

(IPCC , 2018), and urgent given the implementation time of measures. Prioritising limited

resources for adaptation measures requires a thorough understanding of both the projected

climate changes and the expected impacts. In the United Kingdom, and Scotland specifically,

the relevance of adaptation measures in general has been politically acknowledged (The UK

Government, 2008; The Scottish Government, 2009, 2014, 2019), and efforts were made to

inform projected changes in regional climate (Lowe et al., 2019).
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Learning from the 2018 Scottish Heatwave 3

High-temperature extremes can have significant impacts on the environment and

society (Smith et al., 2015). Globally, adaptation measures to cope with temperature

extremes are therefore important, especially in regions where present-day temperatures

are close to physiological limits to human heat tolerance. It remains unclear, however,

whether high-temperature events need to be considered in Scotland, where temperatures

are climatologically moderate but might show substantial relative changes in frequency and

magnitude of its extremes (O’Neill and Tett, 2019).

The societal impact of high temperatures can be understood by analysing observed

impacts of extreme events on people, ecosystems, and infrastructure. The year 2018 is a

good case study for Scotland, since it had anomalously high summer temperatures (Met

Office, 2018), and anecdotal evidence suggested substantial heatwave-related societal and

economic impacts. To understand the relevance of temperature extremes for adaptation in

Scotland, we place observed temperatures in the context of past, present, and future climate

and identify the observed impacts of the 2018 heatwave. Specifically, we show the observed

temperatures and discuss how anomalous they are; analyse the contribution of anthropogenic

forcings to the risk of these temperature extremes; evaluate impacts they had in Scotland;

and assess future changes in the likelihood of these events.

2. Data and Methods

2.1. Observational climate/weather data

We characterise observed temperatures during summer 2018 using near-surface daily

minimum (nighttime) and maximum (daytime) temperature from the European gridded

observational dataset (E-OBS), version 19.0e spanning 1/1/1950-31/12/2018 at 0.25◦

resolution (Haylock et al., 2008; ECA&D, 2019). We further use daily minimum and

maximum temperature observed at the stations at Eskdalemuir (WIGOS station identifier
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Learning from the 2018 Scottish Heatwave 4

(WMO, 2015): 0-20000-0-03162; MIDAS source ID (Met Office, 2012): 1023) and

Auchincruive (MIDAS source ID: 1005). The atmospheric circulation is shown using daily

sea level pressure data at 0.75◦ resolution from the ERA-Interim reanalysis (Dee et al., 2011;

ECMWF , 2018).

2.2. Climate model data

To analyse the anthropogenic contribution to the observed temperatures, we use simulations

from the HadGEM3-GA6 model, which is the atmospheric component of the Met Office’s

Global Environment Model version 6 (HadGEM3-A hereafter; Walters et al., 2017). The

model has a horizontal resolution of 0.55◦x0.9◦ (N216; corresponding to about 60 km at

mid-latitudes), and the system has been evaluated for event attribution studies for Europe

(Ciavarella et al., 2018; Vautard et al., 2018). To study the sensitivity of the results to the

climate model used, we use simulations from weather@home (short: W@H; Massey et al.,

2015; Guillod et al., 2017) – a nested model setup within the distributed computing platform

climateprediction.net (Allen, 1999). This is a global atmospheric model (HadAM3P) at

1.25◦x1.875◦ resolution driving a regional model (HadRM3P) at 25 km resolution over a

European domain (Guillod et al., 2017, 2018).

For each model, we compare large-ensemble experiments representing the actual with

those representing a counterfactual, ’natural’ climate. Both ensembles, Historical2018 and

Natural2018 hereafter (referred to as ”HistoricalExt” and ”HistoricalNatExt” in Ciavarella

et al. (2018)), are pre-conditioned on the state of the ocean during 2018 by prescribing

estimates of observed sea surface temperatures (SST) and sea ice coverage (SIC) as boundary

conditions for the atmospheric models (see supporting information (SI)). For HadGEM3-A,

we also use analogous Historical2017 and Natural2017 simulations to examine the role of

SST and sea-ice variability. To estimate biases of the extreme indices from HadGEM3-A

and W@H, respectively, we use the historical 15- and 170-member ensembles described in
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Learning from the 2018 Scottish Heatwave 5

Ciavarella et al. (2018) and Sparrow et al. (2018) that include both anthropogenic and

natural forcings and span 1/1/1960-30/12/2013 and 1/1/1986-30/12/2017, respectively.

To assess projected changes in the likelihood of 2018 temperatures, we use the perturbed

parameter ensembles (PPEs) provided by the UK Met Office as part of the UK Climate

Projections 2009 and 2018 (UKCP09 and UKCP18, respectively). Members of PPEs are

derived from slightly different model variants between which a range of parameters are varied

to represent uncertainty in physical processes that are not resolved in the model. The initial-

condition ensembles used for the event attribution, in contrast, are derived from the same

model variant and only represent internal atmospheric variability. The UKCP18 12-member

PPE for 1980-2080 is based on the coupled HadGEM-GC3.1 model that uses version 7.1 of

the atmospheric model (Murphy et al., 2018; Walters et al., 2019) and assumes emissions

following the Representative Concentration Pathway (RCP) 8.5 (Moss et al., 2010). The

UKCP09 11-member PPE for 1950-2099 is based on the coupled HadCM3 model (Hadley

Centre for Climate Prediction and Research, 2008; Murphy et al., 2009) and uses the A1B

scenario (Nakicenovic and Swart, 2000; Murphy et al., 2009). A1B lies between RCP4.5 and

RCP 8.5 in terms of the anthropogenic radiative forcing since pre-industrial over the twenty

first century, and is very close to RCP8.5 until 2050 (Collins et al., 2013).

2.3. Return period and event attribution method

We calculate area means over land between 53.5◦-61◦N; 10◦W-2◦E for daily maximum and

minimum temperature both for E-OBS and all model data. This region includes the Northern

British Isles (NBI hereafter; see box in Fig. 1) and is purposefully chosen to be larger than

the immediate area of interest in order to avoid selection bias. For E-OBS, HadGEM3-A,

and W@H, we weight the regional means by area size; for UKCP09 and UKCP18, we use

non-weighted means on the original rotated grid. For the model data, we use only grid

boxes with at least 75% land fraction in the models’ native grids. We then calculate the
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Learning from the 2018 Scottish Heatwave 6

annual summer (June to September, JJAS) maxima of daily (x) data as well as of 5-day

(5x) and 30-day (30x) centred running means for both maximum (Tx) and minimum (Tn)

near-surface temperature, resulting in the extreme indices Txx, Tx5x, Tx30x; Tnx, Tn5x,

and Tn30x. For each model, we correct for the difference in the observed and simulated

mean of each index during 1/1986-12/2009. For the UKCP datasets, we correct this bias for

each PPE member separately. Correcting for the mean of the distribution as done in previous

studies (e.g., Holmes et al., 2017) has disadvantages, e.g., could increase the mismatch in

the tail of skewed distributions (Fig. 3d). However, there is no clear evidence that other

methods would be more appropriate, and this method has the advantage of simplicity and

transparency.

We obtain return periods of the observed 2018 values in the 1950-2018 period by fitting

a generalised extreme value (GEV) distribution (Sparrow et al., 2018) to the E-OBS data.

The contribution of anthropogenic forcings to the likelihood of 2018 temperatures is

estimated by comparing the Historical2018 and Natural2018 ensemble experiments. For each

ensemble, we derive GEV fits to the distributions of the extreme indices to get the likelihood

of exceeding a given threshold. We then calculate the risk ratio as a function of a threshold’s

return period in E-OBS by dividing both values. Bootstrapping (Efron and Tibshirani , 1993,

1000 replications) gives the uncertainty in the GEV fits for Historical2018 and Natural2018

separately, and the uncertainty in the risk ratios is calculated from each combination of these

2x1000 distributions.

2.4. Identifying observed impacts

To understand the impacts of the hot weather on Scotland, we performed a media analysis

and interviewed individuals representing sectors that were potentially impacted. We used

thematic content analysis (Bryman, 2016) to examine patterns in the media coverage and

interview transcripts. Using a coding scheme, we thus identified both positive and negative
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Learning from the 2018 Scottish Heatwave 7

Table 1: Coding schedule and counts for impacts in Scotland reported in the media and in

the interviews. Each mention of an impact in the media coverage and interview transcripts

was assigned one of these six codes.

Negative impacts Positive impacts

[code] count – definition [code] count – definition

[N1] n=68 – Minor negative impact.

A negative impact occurred causing minor

disruption, delays, costs etc. These were

not considered severe and the response was

within normal operating procedures (e.g.

business continuity plans). There are only

minor cost/resource implications.

[P1] n=27 – Minor positive impact. A

positive impact occurred that led to minor

benefits. Although these were recognised,

they were not considered unusual or

significant in terms of normal operations

[N2] n=55 – Alleviated (avoided) neg-

ative impact. A negative impact occurred

that required a response to mitigate against

disruption, delays, damage etc. By imple-

menting extraordinary/special measures the

consequences were effectively managed to

avoid the worst impacts, although typically

with significant cost/resource implications.

[P2] n=6 – Unexploited (missed)

positive impact. There was potential

for a positive impact, but benefits were

not realised due to a lack of preparation,

capacity, resources etc. There was a missed

opportunity of what could have been a

significant benefit.

[N3] n=71 – Major (significant) nega-

tive impact. A negative impact occurred

causing disruption, delays, loss, damage etc.

Any measures taken were not sufficient to

avoid significant consequences. There will

be cost/resource implications during the

event and associated with recovery.

[P3] n=19 – Major (significant) posi-

tive impact. A positive impact occurred

that led to recognised benefits. There were

sufficient planning, resources, capacity etc.

in place to realise the main benefits. These

benefits were significant/notable in the con-

text of normal operations.

impacts, including alleviated negative impacts and unexploited positive impacts (Tab. 1).

To increase rigour and consistency two co-authors (JH & MM) independently coded all

interviews and articles and reconciled divergent interpretations.

The media analysis consisted of querying Scottish publications in the LexisNexis

database (LexisNexis, 2019) for the keywords (”heatwave” or ”hot” or ”heat” or ”warm”

or ”temperature”) and ( ”health” or ”water” or ”air” or ”soil” or ”infrastructure” or

”agriculture”) and (”Scotland”) during 1/5/2018-1/11/2018. We removed duplicate
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Learning from the 2018 Scottish Heatwave 8

articles, resulting in the selection of 223 articles, of which we discarded 65 because they

did not discuss impacts in Scotland, leaving 158 articles from 16 news sources for analysis

(Tab. S1).

Using our professional networks and snowball sampling – whereby participants help

identify and recruit further participants – we conducted 25 short semi-structured interviews

with individuals working in three sectors identified by the Climate Ready Clyde Climate

Change Risk and Opportunity Assessment (England et al., 2018): natural environment and

assets (12); infrastructure (5); and people and the built environment (8). Each interview

lasted 10-30 minutes and asked whether and how the interview partners’ organisations were

affected by the heatwave, and if so, whether and how they responded to these impacts.

3. Results

3.1. How anomalous were the 2018 temperatures?

Averaged over the NBI, day- and nighttime temperatures exceeding the 1960-2018 95%

range were observed on days in spring, early summer, and July 2018 (Fig. 1). The daytime

temperature peaks in June and July recorded in station observations from Western Scotland

are even more pronounced. Daily maximum temperature in Eskdalemuir was 29.9◦C on

28/6/2018, which was the highest on record (spanning 1/1/1954-29/6/2019). The minimum

temperature was 15.8◦C, which was the 4th-highest following 16.7◦C, 16.3◦C, and 16.0◦C

on 25/8/1959, 9/8/2004, and 10/8/2004, respectively.

Daily maximum temperature (Tx) thus exceeded the threshold of 28◦C in Eskdalemuir,

and minimum temperature (Tn) that of 15◦C repeatedly in station data and even in the

large-area mean. These thresholds were not exceeded for two days in a row as would be

considered critical by the health system for triggering heatwave action in the climatologically

most similar English region (Public Health England et al., 2019). Note however, that the
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Learning from the 2018 Scottish Heatwave 9
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(a)

Eskdalemuir station
Auchincruive station
E-OBS average over the Northern British Isles
with daily 5-95% 1950-2018 range
extreme indices (Txx etc) in E-OBS average
NHS thresholds

Glasgow

(b)

13 15 17 19 21 23 25 27 29 31

Tx5x [ ◦C ]

Figure 1: Observed 2018 temperatures. (a): Time series of (top) maximum and (bottom)

minimum daily temperatures at the Scottish weather stations (blue) Eskdalemuir and (dark

blue) Auchincruive as well as (black) the gridded observational dataset E-OBS averaged

over the Northern British Isles (NBI; land areas within the dashed box in b). Also shown are

where the E-OBS area-means have the (red dot) single-hottest day, the (orange line) hottest

5-day period, and the (yellow line) hottest 30-day period, which are the extreme indices

used in Figs. 3-4. The purple lines at 15◦C) and 28◦C indicate the temperature thresholds

that might be relevant for health impacts if sustained over at least two consecutive days

(Public Health England et al., 2019). (b) Spatial map of (colour shading) daily maximum

temperature from E-OBS and (contour lines; for numbers see Fig. S1a) sea level pressure

(SLP) from reanalysis data (ERA-Interim), both averaged over the 5-day period with the

highest maximum temperature in 2018 (late June; upper orange line in a). The blue dots

indicate the location of the weather stations used in a).
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Learning from the 2018 Scottish Heatwave 10

station data, which are also the basis of the E-OBS dataset, are sparse, and the urban

centre of Glasgow is expected to have had higher temperatures than those measured at the

rural station sites due to heat island effects (Mitchell , 1961; Emmanuel and Krüger , 2012;

Goddard and Tett, 2019).

The hottest day and the warmest night of summer 2018 in the NBI occurred in different

months, with above-average minimum temperatures throughout July (Fig. 1a). In terms of

the 1-day, 5-day, and 30-day period with the highest values for daily minimum and maximum

temperatures separately, comparison with the baseline climate (1950-2018) shows that the

daytime extremes were moderately rare (return periods of about 5-15 years; grey lines in

Figs. 2 and S2). Some of the nighttime extremes, in contrast, were more rare: The return

period for the single-warmest night has a best estimate of >30 years, and the warmest 30-day

period was even rarer and the second-hottest ever.

The high temperatures in the early summer were preceded by low rainfall in May across

Scotland (<50% of 1981-2010 average), with average to low rainfall in June and July

(Met Office, 2019). During the hottest 5-day period (Tx5x) in late June, a high-pressure

system was located over the Northern UK and the North Sea (Fig. 1b; S1), causing high

temperatures (Fig. 1b) and sunshine (>150% of 1981-2010 average of sunshine duration;

Kendon et al., 2019) especially around the Irish Sea.

3.2. How much has anthropogenic forcing changed the risk of extreme temperatures?

We performed an event attribution study using the CMIP6-generation global climate model

HadGEM3-A, and compared the results with those from the very large ensemble W@H system

(Fig. 2). Both models show that anthropogenic forcings and the ensuing SST warming and

sea-ice reductions have made all extreme temperature indices over the NBI more likely (risk

ratios >1) at the 90% confidence level over many return times.

The magnitude of these risk ratios varies substantially between both models, with the
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Figure 2: Risk ratios for high-temperature extremes over the NBI due to anthropogenic

forcings. The summer maxima of (a,d) daily, (b,e) 5-day mean, and (c,f) 30-day mean of

(a-c) maximum temperature and (d-f) minimum temperature are shown. The x axes show

the (top) temperature index values and the (bottom) corresponding return periods in the

1950-2018 observations (Fig. S2), with the value of the 2018 observations indicated by the

vertical grey line. The (lines) best estimates for the risk ratios for the (red) HadGEM3-

A model and (blues) the W@H system for different SST patterns are shown. The W@H

experiment with the MMM SST pattern is highlighted with thick blue lines, while the other

experiments are shown as thin, faint blue lines. Shadings represent uncertainty bounds (90%

confidence) for HadGEM3-A (red) and minimum and maximum of the respective bounds

from each individual W@H SST experiment (blue).
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Figure 3: Simulated and observed distributions of high-temperature extremes over the NBI for

1986-2009. Shown are the GEV fits to the simulated distributions from the (red) HadGEM3-

A model and the (orange) W@H system before (dashed line) and after (solid line) correcting

the mean of the data with respect to that from (black) E-OBS observations. The observed

2018 values are shown as vertical grey lines.

estimates derived from HadGEM3-A consistently higher than those from W@H; for Tnx

and Tn30x, which were particularly rare in 2018 (Section 3.1 and Fig. S2), the 90%

confidence ranges do not even overlap (Fig. 2). Model validation is difficult since the

common historical period, for which both W@H data (1986-2017) and HadGEM3-A data

(1960-2013) are available, is only 24 years. This is very short, causing uncertainties in the

observed distributions of temperature indices to be large. We tentatively conclude, however,

that W@H has larger biases than HadGEM3-A, both in the mean (which we correct for)

and the tail of the distribution (Fig. 3)‡. This suggests that the higher risk ratios derived

from HadGEM3-A might be more realistic than the lower ones from W@H, which gives

‡ The warm bias in W@H is thought to be partly related to land-surface biases (Guillod et al., 2017)

that are a common issue also in other models (Davin et al., 2016; Donat et al., 2018; Ukkola et al.,

2018). The W@H bias is smallest over Britain and Ireland than over any other European region (Guillod

et al., 2017).
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Learning from the 2018 Scottish Heatwave 13

a conservative estimate. For multi-day daytime extremes in the HadGEM3-A ensemble the

uncertainty range widens and the best estimates of the risk ratio fall for return periods above

10 years (Fig. 2b-c). This is because the HadGEM3-A distribution is narrow and rare events

are far in the tail of the distribution (Fig. S3) for which few events are simulated giving

large uncertainties. For W@H, this is less of an issue due to the wider distribution and larger

ensemble size.

Compared with the inter-model differences, the effect of assuming different patterns of

SST change since 1850 in the W@H model on the risk ratios is smaller, but still considerable

especially for long periods of warm nights (Fig. 2f). Similar to Sparrow et al. (2018), results

differ in the first order because of the different global-mean SST changes rather than pattern

differences (Fig. 2), with the experiments that assume a larger global-mean change since

pre-industrial times showing higher risk ratios (not shown).

Regardless of model and SST pattern, the risk ratios for the nighttime extremes are

higher than those for the daytime extremes. For the hottest single day, 5-day mean, and

30-day mean, the best estimates of the risk ratios range within 1.2-2.4, 1.2-2.3, and 1.4-4.0

respectively (Fig. 2a-c). For the corresponding nighttime extremes, the ranges are 1.5- >50,

1.5-5.5, and 1.6- >50 (Fig. 2d-f).

In addition to anthropogenic forcings, natural climate variability might have contributed

to the observed 2018 temperature extremes. This is tested by comparing results from

the ensembles forced with SST and SIC patterns from 2017 rather than 2018. For

daytime extremes the distributions are similar with no significant differences between the

two ensembles (risk ratio uncertainty range includes 1 and best estimate is close to 1; Fig.

S4a-c). For short-duration nighttime extremes (Tnx and Tn5x) the risk is significantly larger

in 2018 than in 2017 at all timescales, but not for Tn30x representing longer periods (Fig.

S4d-f). Both 2017 and 2018 were neutral in terms of El-Niño-Southern Oscillation (Blunden
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Learning from the 2018 Scottish Heatwave 14

et al., 2018; WMO, 2019), though they differed in their Atlantic SST patterns and sea ice:

In addition to anomalously cold SSTs south of Greenland in both June 2017 (NCEI , 2019a)

and 2018 (NCEI , 2019b), June 2018 was also cool in the eastern sub-tropical Atlantic, while

June 2017 experienced warm anomalies more uniformly. More detailed analysis is needed to

understand the mechanisms by which year-to-year SST variability can drive the changes in

the risk of nighttime extremes.

3.3. Which impacts occurred in Scotland?

Our assessment provides a nuanced picture of the impacts of the hot weather experienced in

Scotland in summer 2018. We coded 194 instances of negative impacts, of which 55 were

alleviated (code N2), while 68 constituted minor and 71 major negative impacts (codes N1

and N3, respectively). There were considerably fewer positive impacts reported (52 coded):

27 minor, 19 major, and 6 unexploited positive impacts (P1, P2 and P3 respectively). We

summarise the results below, and provide the full detail of both media analysis and interviews

in the SI (Tabs. S1 and S2).

There was extensive media coverage of people enjoying the warm weather with busy

beaches, parks, and swimming pools and an increase in ‘staycations’ (P1, P2). This provided

an associated boosts in the sale of garden furniture, barbecues, and fans, and benefited

outdoor recreation businesses and ice cream sales (P1, P3). Meanwhile, foreign holiday

operators and indoor recreation businesses suffered (N1), as did fashion retailers who reported

profit drops due to lowers sales of coats and jumpers (N1). Blue algae prevented outdoor

swimming in some lochs§ (N1) and there were negative impacts related to increases in

pests (wasps, jelly fish, mosquitoes; N1), while there was a reported drop in midge and tick

numbers (P1).

Rural businesses had difficulties coping with the hot weather, with many reports of feed

§ lakes
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Learning from the 2018 Scottish Heatwave 15

shortages and the early sale of livestock at unfavourable prices (N3); lower pea, broccoli,

potato and cauliflower yields due to water shortages and pests (N3); and soft fruit ripening

too quickly and left to rot unpicked (N3), in part due to a lack of available labour (P2).

Some negative impacts could also be avoided, e.g. by increasing supplementary feed (N2),

while in wetter parts of Scotland the warmer and drier weather resulted in an excellent grass

harvest for silage (P3). A larger number of wild fires caused damage to newly planted trees

and local biodiversity (N1, N3) but could generally be contained by sustained intervention

(N2). There was however a significant impact on grouse numbers due to lack of food, water,

and weak health, and on wild salmon and trout due to oxygen depletion affecting shooting

and angling businesses (N3). There were also reports of losses in the seafood sector with

harvests stopped several weeks early due to early spawning of mussels and oysters (N3).

The warm weather and drought led to a reported 30% increase in water demand, and

it required major effort from the national utility company to maintain supply by increasing

pumping from reservoirs, distributing water with 30 tankers, and encouraging consumers to

lower consumption (N2). Nevertheless, private water supplies ran dry causing discomfort to

many (N1) and significant disruption to several businesses (N3). There were also reports

of whisky distilleries closing for longer periods than normal due to low stream flow in rivers

used for cooling (N3).

The weather also directly affected infrastructure and the built environment. There are

many reports of complaints from workers, students, and patients that buildings were too

warm (N1), and of higher electricity bills due to cooling (N2, N1). The roof of the Glasgow

Science Centre and asphalt on roads around the country were reportedly melting (N1) and

there was disruption to rail services due to buckling rails and signalling faults (N1). Rails

were painted white to reduce heating and trains had to run at lower speeds to maintain a

reduced service (N2).
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Learning from the 2018 Scottish Heatwave 16

Finally, the extended warm and dry weather also impacted on Scotland’s cultural

heritage. Dry soils and low water levels revealed previously unrecorded archaeology, including

ancient settlements, burial sites, and waterways (P3), and the remains of a stone drovers’

bridge was revealed when levels of a 60-year old reservoir dropped. There were also concerns

that Scottish children would not be able to play the traditional game of conkers in the

autumn due to heat stress preventing fruiting of horse chestnut trees (N1).

While these findings confirm a diversity of heatwave impacts, the information available

through our rapid assessment does not allow us to distinguish to what extent these impacts

are due to extreme temperature alone. For example, many of the most negative impacts,

e.g. on agriculture and water supply, were exacerbated by low rainfall throughout spring

and summer. Nevertheless, the assessment provides strong evidence of negative impacts,

along with examples of positive impacts – many related to recreation and retail – and

existing adaptive capacity to cope with extreme temperatures. Furthermore, several of the

interviewed stakeholders suggested increased adaptation needs if more than one summer

with 2018 temperatures occurred in a row.

3.4. How likely are these temperatures in the future?

We assess the relevance of these impacts for adaptation to future climate change using the

UK climate projections UKCP09 and UKCP18. Rather than extrapolating the impacts to

events with even higher temperatures and/or a longer duration, we focus on the projected

change in frequency of summers with 2018 temperatures. Both projections agree on an

increase in the likelihood of all temperature extremes (Fig. 4).

There are substantial differences between the two projection datasets, with UKCP18

consistently showing higher likelihoods than UKCP09 from about 2040. A comparison of

projected summer temperature change over Northern Scotland by Lowe et al. (2019) suggests

that these might be explained to similar extents by the different models and emission scenarios
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Figure 4: Projected likelihood per year of temperature extremes over the NBI hotter than

those observed in 2018. Shown are the fractions of ensemble members from the (red)

UKCP18 and (blue) UKCP09 regional perturbed physics ensembles that after bias correction

are high or higher than the observed 2018 values of the extreme indices (abbreviations as in

Fig. 3) as 11-year running means. This is interpreted as the likelihood of a summer with at

least one period (lasting 1 day, 5 days, or 30 days) with temperatures as high or higher as

in 2018.

(cp. Section 2). With UKCP09 based on the same model as W@H, its smaller projected

probabilities for 2020 are consistent with the lower risk ratios derived for W@H (Section

3.2); and the UKCP09’s PPE members, representing variants of the model, tend to also

have larger biases than the UKCP18 ones with distributions wider than observed in 1986-

2009 (not shown).

Regardless of dataset and extreme index, the projections show a substantial increase

in the likelihood of 2018 temperatures between the present day and 2050. By 2050, two

out of three summers are projected to have at least one 5- and 30-day event with nighttime

temperatures higher than in 2018, and one out of three summers at least one 1- and 5-day

event with such daytime temperatures. Towards the end of the century, every summer might
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Learning from the 2018 Scottish Heatwave 18

have extremes as hot as in 2018; for nighttime extremes, this could be reached by 2080.

4. Discussion and Conclusion

In summer 2018 Scotland experienced anomalously high temperatures, and a range of

impacts of this heatwave were reported by news media. This study places the 2018 heatwave

in the context of past, present, and projected future climate, and provides a rapid but

comprehensive analysis of the heatwave impacts to understand the need for Scotland –

as a climatologically colder country – to invest in adaption measures to cope with high-

temperature extremes.

The observed hottest day, 5-day, and 30-day period of 2018 and the 5-day period with

the warmest nights averaged over the Northern British Isles (NBI) corresponded to 1950-

2018 return periods between 5 and 15 years. The warmest night and the 30-day period

with the warmest nights were more unusual with return periods of more than 30 years.

The Eskdalemuir station measured its highest temperature on record, and in population

centres such as Glasgow, urban heat island effects will likely have increased nighttime

temperatures, too. It is unclear whether temperature thresholds that might be relevant

for health impacts were locally crossed. An open question remains as to whether significant

changes in percentile thresholds, as assessed commonly in scientific studies (Seneviratne

et al., 2012), are meaningful in terms of impacts in colder countries such as Scotland.

Absolute temperature thresholds that seem meaningful based on impacts in other parts of

the UK with similar infrastructure (e.g., South East England), are historically too rare to

allow an assessment of the anthropogenic contribution to changes in their likelihood in colder

Scotland.

Anthropogenic climate change has made all high-temperature extremes more likely.

Higher risk ratios were found for experiments from the CMIP6-generation global climate
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Learning from the 2018 Scottish Heatwave 19

model HadGEM3-A compared those from the very large ensemble weather@home. From

larger biases in the simulated distribution during 1986-2009, we tentatively concluded that

the higher risk ratios from HadGEM3-A might be more realistic, while the W@H experiments

provide a conservative estimate. Compared to the inter-model differences, the effect of

assuming different SST and sea-ice pattern change since pre-industrial times was found to

be of secondary importance. The risk ratios from both models were higher for nighttime than

for daytime extremes. While the reasons for this are not clear yet, possibly larger changes in

nighttime extremes -as also visible in the future projections shown here- might have to be

considered in adaptation planning especially in urban areas, where the effectiveness of typical

countermeasures like the introduction of high-albedo materials or tree canopy (Stone et al.,

2012; Seto et al., 2014; Emmanuel and Loconsole, 2015) depends on daytime temperatures

(e.g., Imran et al., 2019).

These findings are based on model simulations that include a variety of anthropogenic

changes since pre-industrial times; we have not disentangled the contribution from

various forcings, nor whether the attributed contribution is just by means of a shift to

higher temperatures or due to other factors, too. Those other factors could include

an anthropogenic impact on the frequency of circulation patterns that favour higher

temperatures over the NBI. The circulation can itself be considered a driver of temperature

variations including extremes – our comparison with simulations for 2017 instead of 2018

suggested that higher short-duration nighttime extremes were more likely in 2018, which

may indicate an additional role for natural climate variability. A more thorough analysis of

this was beyond the scope of the study, but a follow-up study investigating potential changes

in the dynamic drivers of temperature extremes over the region is underway. Besides, there

may be other non-anthropogenic drivers that warrant further investigation.

The assessment of observed impacts of the 2018 heatwave provides a nuanced picture
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Learning from the 2018 Scottish Heatwave 20

of impacts across sectors. Major negative impacts were identified, especially on rural

sectors, while transport and water infrastructure just about alleviated most impacts by

implementing costly special measures to avoid significant consequences. Unsurprisingly,

there was widespread media reporting of positive impacts related to outdoor recreation and

related retail opportunities (e.g. barbecues and ice creams). The media coverage is, however,

likely to have inherent biases, and may over-represent major impacts, as they are considered

more newsworthy. It should also be noted that the observed impacts are not caused by

temperature extremes in isolation, and that for some sectors dry weather throughout spring

and summer has exacerbated the observed impacts (e.g. due to dry soils and lower water

levels). Overall, these results suggest that despite widespread disturbances, Scotland could

cope with the impacts of the 2018 heatwave.

However, given the substantial increased in the likelihood of future temperature extremes

similar to the 2018 heatwave (Fig. 4), it would be wrong to suggest that Scotland should

ignore extreme temperatures in its adaptation planning. Multiple interviewed stakeholder

noted that repeated summers with extreme temperatures would greatly exacerbate negative

impacts, and it is unclear from our analysis how close different sectors were to more severe

impacts. Furthermore, there are many lessons to be learned from the negative impacts –

and the costs of alleviating impacts – to conclude that despite its cool climate, extreme

temperatures are important to consider for climate change adaptation in Scotland.
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