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Abstract

Blood flow in an artery is a fluid-structure interaction problem. It is widely accepted that

aneurysm formation, enlargement and failure are associated with wall shear stress (WSS)

which is exerted by flowing blood on the aneurysmal wall. To date, the combined effect of

aneurysm size and wall elasticity on intra-aneurysm (IA) flow characteristics, particularly in

the case of side-wall aneurysms, is poorly understood. Here we propose a model of three-

dimensional viscous flow in a compliant artery containing an aneurysm by employing the

immersed boundary-lattice Boltzmann-finite element method. This model allows to ade-

quately account for the elastic deformation of both the blood vessel and aneurysm walls.

Using this model, we perform a detailed investigation of the flow through aneurysm under

different conditions with a focus on the parameters which may influence the wall shear

stress. Most importantly, it is shown in this work that the use of flow velocity as a proxy for

wall shear stress is well justified only in those sections of the vessel which are close to the

ideal cylindrical geometry. Within the aneurysm domain, however, the correlation between

wall shear stress and flow velocity is largely lost due to the complexity of the geometry and

the resulting flow pattern. Moreover, the correlations weaken further with the phase shift

between flow velocity and transmural pressure. These findings have important implications

for medical applications since wall shear stress is believed to play a crucial role in aneurysm

rupture.

Introduction

Brain aneurysms lead to almost 500,000 deaths per year [1]. Physiological flows, such as arte-

rial blood flow, are generally characterized by the transport of fluids in compliant tubes [2],

which involves complex fluid-structure interaction problems. The interplay of hemodynamics

and elastic arterial vessel walls (e.g. through wall shear stress (WSS) and blood pressure) is

believed to play a central role in the aneurysm initiation, growth and rupture [3–7].
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It is known that abnormal WSS drives degradation of the vascular wall [8–10]. Flow velocity

is one of the principal factors determining the magnitude of WSS. Compared with WSS, in

practice, flow velocity is easier to be measured and often acts as a proxy observable for WSS

[11–13]. In this work, we study how size, elastic deformation of the aneurysm and the wave-

form of transmural pressure determine the connection between flow velocity and wall shear

stress as an important hemodynamic factor.

Aneurysms can be classified into two major categories: fusiform and saccular aneurysms;

the latter is the most common type of aneurysm and the type most prone to rupture [14]. The

saccular aneurysm has two subtypes: end-wall and side-wall aneurysms [15].

Intra-aneurysm (IA) hemodynamics is sensitive to morphological factors such as shape and

size of the aneurysm [16–19]. It has been reported that an increase of aneurysm size leads to a

decrease of the average IA flow velocity, U , and wall shear stress, sw , in the case of side-wall-

type aneurysms [20, 21]. In these studies, the aneurysm wall is assumed to be rigid [20] or

modeled as a stiff hyperelastic wall [21]. To date, however, the effect of wall elasticity and the

resulting deformation is poorly studied.

Another objective of this work, therefore, is to investigate the combined effect of aneurysm

size and wall softness on the variations of the average IA flow velocity and WSS, centering on

the side-wall-type aneurysm.

We model the interaction of hemodynamics and wall elasticity in an idealized aneurysm

using the lattice Boltzmann method (LBM) for the fluid flow, the finite element method

(FEM) for the thin-walled vessel dynamics and the immersed boundary method (IBM) for the

fluid-structure interaction.

The paper is organized as follows. The physical model is introduced in Sect Physical model.

The numerical methods are presented in Sect Numerical methods, and benchmark tests are

shown in Sect Validation. Simulation results using a curved artery with a side-wall aneurysm

are presented and discussed in Sect Results and discussion, with a particular focus on the effect

of aneurysm softness on IA hemodynamics. Our work is concluded in Sect Conclusion.

Physical model

Physical ingredients

Aneurysms occur in different sizes and shapes, and their detailed properties depend on the

subject and progression state. According to [20, 21], the trends of the variations of flow

velocity and wall shear stress due to the effect of aneurysm size are not specific to any partic-

ular side-wall aneurysm geometry. Therefore, after benchmark studies of flow through a

straight cylindrical channel (Fig 1a), we use a representative model of a curved artery seg-

ment including a simple side-wall aneurysmal dome (Fig 1b and 1c). Without losing gener-

ality, this approach is similar to the simplification used in studies of the end-wall aneurysms

[22–24].

Vascular tissues are generally heterogeneous. Healthy arterial walls are normally strain-

hardening due to the existence of collagen fiber constituents; aneurysms, however, often

exhibit strain-softening behavior [27–30]. The arterial wall in our model is, therefore, divided

into different regions (Fig 1b and 1c) with different constitutive laws. Similar to Charalambous

et al. [31], we employ the strain-hardening Skalak (SK) model [26] for the healthy arterial wall:

oSK ¼
ks

12
I2

1
þ 2I1 � 2I2

� �
þ
ka
12

I2

2
: ð1Þ

We use the strain-softening Neo-Hookean (NH) law (a special case of the Mooney-Rivlin law)
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[25] to model the aneurysm dome:

oNH ¼
ks

6
I1 þ 2 �

1

I2 þ 1

� �

: ð2Þ

The SK and NH laws are described as areal energy densities ωSK and ωNH, respectively. Both

models have a surface elastic shear modulus κs, and the SK model has an area dilation modulus

κα (for the sake of simplicity, we choose κs = κα [31]). I1 and I2 are strain invariants depending

on the local principal in-plane stretch ratios λ1 and λ2 as I1 ¼ l
2

1
þ l

2

2
� 2 and I2 ¼ l

2

1
l

2

2
� 1.

The vessel wall is represented as a two-dimensional surface with zero thickness. However,

one important effect closely related to a finite vessel wall thickness is resistance to bending. In

order to account for this property in our membrane model, we explicitly introduce a local

bending energy with a bending constant κb, which can then give rise to forces normal to the

wall (for further details, please refer to [32]).

The two free parameters κα and κb are related to the Young’s modulus E, wall thickness d
and Poisson ratio ν according to [33]

ka ¼
Ed

2ð1 � nÞ
ð3Þ

Fig 1. Geometries studied in this work. The straight circular tube in (a) is used to benchmark the code via

comparisons with analytical solutions for both steady Poiseuille and pulsatile Womersley flows. Panels (b) and (c)

show a curved blood vessel containing a side-wall aneurysm with different sizes, differing by a factor of 2.5 in

aneurysm volume. Compared with the radius R of the parent vessel, the radii of the large (b) and small (c) aneurysm

are approximately 1.5R and R, respectively. The domain colored in blue in (b) and (c) is modeled via a strain-softening

Neo-Hookean law [25], while the remaining part of the vessel (red) obeys the strain-hardening Skalak law [26].

https://doi.org/10.1371/journal.pone.0227770.g001
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and

kb ¼
Ed3

12ð1 � n2Þ
: ð4Þ

Thus, given the two material coefficients, E and ν and the thickness of the tissue, d, it is pos-

sible to determine the parameters of our model such that it reproduces the properties of a real

vessel. This is explicitly shown below via a benchmark of the present study versus a 3D model.

Obviously, the inverse mapping from a two-parameter model to a three-parameter one is not

unique. This is not necessarily a drawback. Rather, it enhances the generic character of our

model and allows the results obtained within these simulations to be transferred to vessels with

different materials properties and wall thickness.

The transmural pressure Ptr is the pressure difference between the mean arterial pressure

and the intracranial pressure. It is generally believed that, given heterogeneity of elastic proper-

ties along the arterial wall, Ptr is mainly responsible for the wall deformation and plays a crucial

role in the progress of aneurysm growth as well as failure. Therefore, the transmural pressure

needs to be taken into account in our model.

Although blood is non-Newtonian, it is often treated as an incompressible Newtonian fluid

(e.g., [20, 21, 34–37]). Since the focus of this work is on the basic understanding of the effect of

aneurysm size and softness rather than making accurate predictions, we model blood as a

homogeneous Newtonian fluid with constant dynamic viscosity η.

Finally, we can assume the no-slip velocity boundary condition at the wall.

Hemodynamic observables

Wall shear stress (WSS) is a crucial factor for the development of aneurysms. The fluid stress

tensor includes pressure (isotropic stress) and viscous contributions (deviatoric stress):

Tab ¼ � pdab þ sab ð5Þ

where p denotes pressure and σ the viscous stress tensor. The traction vector τ is the projection

of the stress tensor onto the wall normal n:

ta ¼ Tabnb: ð6Þ

Here we are interested in the tangential (shear) component of τ whose magnitude is the WSS

(σw = |τk|):

tk
a
¼ ta � ðnbtbÞna ¼ sabnb � ðnbsbgngÞna: ð7Þ

Note that the projection of the normal stress −pδαβ onto the tangential is zero, therefore σw is a

function of σ, but not a function of p.

For the aneurysm dome O (Fig 1b and 1c) with corresponding surface area A and volume

V, we define the spatial WSS average

sw ≔
1

A

Z

@O

dA sw: ð8Þ

Similarly, the volume-averaged IA flow velocity is defined as

U ≔
1

V

Z

O

dV juj ð9Þ

where u is the fluid velocity.
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Dimensionless groups

Based on the known material and flow properties (Young’s modulus E, artery radius R, trans-

mural pressure Ptr, arterial flow velocity U and fluid viscosity η), we can define a series of

dimensionless groups characterizing the deformation of the arterial wall. The effect of trans-

mural pressure can be described by

Cp ¼
transmural pressure

elastic stress
¼

Ptr

E
: ð10Þ

Viscous stresses may also contribute to the wall deformation as quantified by the capillary

number

Ca ¼
viscous stress
elastic stress

¼
ZU
ER

: ð11Þ

Finally, inertial deformation effects can be described by the Weber number

We ¼
inertial stress
elastic stress

¼ Re Ca ¼
rU2

E
ð12Þ

where Re = 2ρUR/η is the Reynolds number and ρ is the fluid density. Note that in normal

arteries, U� 0.3 m/s and Ptr� 10 kPa, and, therefore, both viscous and inertial wall deforma-

tion effects are at least two orders of magnitude smaller than the transmural pressure contribu-

tion. This is in line with previous reports that the axial motion of vascular walls is negligibly

small [38, 39]. We can therefore safely assume that deformation of the vessel wall is mainly due

to the action of transmural pressure, rather than flow.

Numerical methods

We employ a computational scheme combining the lattice Boltzmann method (LBM), finite

element method (FEM) and immersed boundary method (IBM) [32] for a study of the coupled

hemodynamic-artery problem outlined in Sect. Physical model. This hybrid method has previ-

ously been applied to suspensions of deformable red blood cells [40–42].

Elastic wall model and force computation

The artery and aneurysm are modeled as thin elastic walls represented by a set of vertices and

flat triangular facets. There are four force contributions acting on each vertex: the in-plane

elastic shear force Fs, the normal bending force Fb, the transmural-pressure force Ftp and a

tether-like spring force Fsp.

The surface elastic shear energy Ws =
R

dAωs corresponding to the energy densities in Eq

(1) or Eq (2) is computed via

Ws ¼
Xfacets

i

Að0Þi o
s
i ð13Þ

where i runs over all facets of the vessel wall, Að0Þi is the undeformed area of facet i and ωs is

either ωSK or ωNK, depending on whether the facet i belongs to the healthy artery section or

the aneurysmal dome.
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The present model includes a bending resistance to avoid buckling of the arterial wall. The

total bending energy of the artery is numerically approximated by

Wb ¼
kbffiffiffi

3
p
X

ji;jj

ðyij � y
ð0Þ

ij Þ
2

ð14Þ

where θij is the angle between neighbouring facet normals (i.e. facets i and j sharing two verti-

ces), y
ð0Þ

ij is the angle for the same pair of facets in the undeformed case and κb is the bending

modulus [43].

Given the surface elastic shear energy Ws and the bending energy Wb, the in-plane force Fs
i

and bending force Fb
i acting on vertex i at position xi can be computed via the principle of vir-

tual work:

Fs
i ¼ �

@WsðfxigÞ

@xi
; Fb

i ¼ �
@WbðfxigÞ

@xi
: ð15Þ

The transmural pressure Ptr is known to be one of the main factors dominating the enlarge-

ment and rupture of aneurysms [44–46]. There are basically two ways of modeling the trans-

mural pressure. The most obvious one is to treat the transmural pressure as different pressures

on either side of the arterial wall. This approach, however, poses a major challenge when com-

bined with the immersed boundary method. We follow an alternative approach, introducing a

transmural-pressure-based force Ftp acting on each facet i along its normal direction:

Ftp
i ¼ PtrAini ð16Þ

where Ai is the current area of facet i and ni the outward facing unit normal vector of the facet.

Ftp acts as a pressure drop across the wall without the necessity of having different pressures

on either side of the wall in the numerical model. Note that Ftp tends to dilate the artery if Ptr is

positive. We emphasize that the transmural pressure has to be imposed, and it is generally a

function of time: Ptr(t). Fluid dynamics inside the deforming artery leads to additional spatio-

temporal pressure fluctuations. This means that the local pressure drop across the arterial wall

consists of a homogeneous term Ptr(t) and a fluctuating term Pfluc which emerges from the

simulation.

The fourth force contribution is a spring force Fsp which is used to tether the ends of the

artery:

Fsp
i ¼ � kspΔxi ð17Þ

where κsp represents the spring constant, i denotes those vertices forming the open ends of the

vessel segment and Δxi is the displacement of these vertices from their desired positions.

Flow solver and fluid-structure interaction

In order to solve the incompressible Navier-Stokes equations, we employ a standard LBM on a

D3Q19 lattice with the multiple-relaxation-time (MRT) collision operator for improved stabil-

ity and accuracy [47–49]. Forces are included according to the Guo’s forcing scheme [50]. The

viscous stress tensor is computed from the non-equilibrium populations according to [51].

Peskin’s IBM is used to couple the arterial wall and fluid dynamics [52]. Elastic forces calcu-

lated for each vertex i are spread to surrounding lattice nodes where they are used as input for

the LBM. After the updated fluid velocity field has been obtained, fluid velocities are interpo-

lated at the vertex positions via IBM. A tri-linear stencil with 23 lattice nodes for each vertex is

Effects of size and elasticity on relation between flow velocity and wall shear stress in side-wall aneurysms
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used during spreading and interpolation. The forward-Euler scheme is used to update all ver-

tex positions. Further details can be found in [32].

Interaction-related elastic energy

In addition to parameters such as maximum pressure difference along the blood vessel, which

drives the flow, and size as well as flexibility of the aneurysm, the dynamics of the aneurysm

wall may also strongly influence the IA flow field and thus lead to significant variations of the

wall shear stress. In order to address this aspect, we will monitor the rate of variation of the

elastic energy and investigate its correlations with WSS. The rate of elastic energy variation

due to fluid-wall interactions can be calculated as

_Fel ¼

Z

@O

_�el dA ¼ �
Z

@O

Fel � u dA ¼ �
Z

@O

ðFs þ Fb þ FspÞ � u dA ð18Þ

where the integration is performed over the entire aneurysm wall and _�el is the rate of change

of the areal elastic energy density. For further reference and comparison, it is useful to also

define a volume-averaged rate of elastic energy variation via _�el ¼ _Fel=V .

Validation

To validate the present model, we perform two different types of simulations: (i) steady and

unsteady flow in a rigid tube and (ii) steady flow in an elastic tube.

Steady and unsteady flows in rigid tube

We consider three-dimensional flow in a stiff tube with circular cross-section (Fig 1a). With

the analytical solutions known for steady Poiseuille and pulsatile Womersley flows, this test

allows a quantitative analysis of our model. All relevant simulation parameters are given in

Table 1.

A body force F along the axis of the tube is applied on all fluid nodes inside the tube to

drive the flow. For Poiseuille flow, F is equivalent to the constant pressure gradient −p0 along

the axis. For Womersley flow, the body force is given by F(t) = −p0 cos(ωt) where ω = 2π/T is

the angular frequency and T is the sampling period.

Table 1. Simulation parameters for Poiseuille and Womersley flow benchmarks. Ptr: transmural pressure; p0: pres-

sure gradient; ρ: fluid density; η: dynamic viscosity; ηB: bulk viscosity; R: tube radius; κs: elastic shear modulus; κα: area

dilation modulus; κb: bending modulus; κsp: spring modulus. Apart from the period T, parameters are the same in

both flow tests. Using the maximum values of the velocities in the Poiseuille and Womersley flow, the Reynolds num-

bers are 178 and 125, respectively. The Womersley number is 2.48 in the case of pulsatile flow.

Physical units Lattice units

Ptr 0 0

p0 8.44 Pa/cm 9.57 � 10−8

T 1 s 224000

ρ 1.055 g/cm3 1.0

η 4.22 mPa s 0.0006

ηB 11.7 mPa s 0.1665

R 2 mm 11.459

κs = κα 13.6 N/m 0.05

κb 3.5 � 10−8 N m 0.004

κsp 24 N/m 0.09

https://doi.org/10.1371/journal.pone.0227770.t001
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The analytical Poiseuille solution is

uxðrÞ ¼ �
p0

4Z
r2 � R�2
� �

ð19Þ

where x is the flow direction, r is the radial distance from the central axis, and R� is the tube

radius. For Womersley flow driven by the force F(t) above, the analytical solution is [53]

uxðr; tÞ ¼ <
� p0

iro
1 �

J0 ai3=2
r
R�

� �

J0ðai3=2Þ

2

4

3

5eiot

8
<

:

9
=

;
: ð20Þ

Here, <{�} is the real part of a complex number, and J0(�) is the Bessel function of first kind

and order zero. The Womersley number, which characterizes the oscillatory flow, is

a≔R�
ffiffiffiffiffiffiffiffiffiffiffi
or=Z

p
. The viscous shear stress is sðrÞ ¼ Z @ux

@r . Note that
@J0ðcrÞ
@r ¼ � cJ1ðcrÞ, where c is a

coefficient and J1(�) is the first-order Bessel function of the first kind. We use a Python script

to solve the Womersley flow field.

The simulated flow velocities and shear stresses agree well with the corresponding analytical

predictions in the two flow tests (Figs 2 and 3). However, an extrapolation-based correction

scheme is necessary to reach good agreement near the wall. The velocity and stress in direct

wall vicinity are affected by the diffuse nature of the immersed boundary method. The basic

idea behind the correction scheme is to enforce the no-slip condition in the diffuse interface

IBM [54]. Specifically, fluid velocity and stress at the fluid nodes near the wall (i.e., at |r/R�| =

11/11.035 in Figs 2 and 3) are corrected using a second-order Lagrange extrapolation from

corresponding information of their extrapolation points (i.e., at |r/R�| = 10/11.035, 9/11.035

and 8/11.035). For general geometries, the extrapolation points may be off lattice lines. In such

cases, fluid quantities (denoted by f) on each extrapolation node are computed by a linear

interpolation of information at neighboring lattice nodes as f = (∑i fi/ℓi)/(∑i 1/ℓi) where ℓi indi-

cates the distance between the extrapolation node and its neighboring lattice node i. For the

sake of stability, when the extrapolation point is very close to a lattice node (e.g., ℓ< 0.0001),

the value at that node is taken (f = fi). With this correction approach, the maximum relative L2

error of the shear stress σ is reduced from 31.2% to 2.2% in the Poiseuille flow and from 32.7%

to 3.5% in the Womersley flow.

Note that the wall location as recovered from the simulation is not exactly where it is

expected to be. Due to the diffuse nature of the IBM, the location of zero velocity (as obtained

from a quadratic extrapolation from the interior solution) is shifted with respect to the location

of the Lagrangian markers. We treated the tube radius as fit parameter to obtain the best agree-

ment with the simulated velocity profile. For our simulation parameters the apparent tube

radius is R� = 11.035Δx compared to the input value of R = 11.459Δx. Similar deviations have

been reported in the literature [55–57] and are acceptably small.

Steady flow in elastic tube

In order to show that the numerical model can faithfully reproduce flow in flexible three-

dimensional geometries, we simulate steady flow in an elastic tube with a circular cross section

(Fig 1a). In contrast to the steady Poiseuille flow, we consider the transmural pressure and the

radial deformation of the tube walls. We use the well-developed software SimVascular [58] to

generate reference results. SimVascular employs a simple linear elastic model for the walls.

To compare results from two different software tools, we need to ensure that the material

models and properties used are identical. SimVascular requires the Young’s modulus E, the

wall thickness d, and the Poisson ratio ν as input parameters. In the present model, the input
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parameters are the surface elastic shear modulus κs, the area dilation modulus κα, and the

bending modulus κb. Both sets of parameters are related according to Eqs (3) and (4). For the

sake of stability of simulations with a certain resolution, small values of Young’s modulus E
and transmural pressure Ptr are utilized. Nevertheless, it is Cp, rather than Ptr or E alone, that

dominates the wall deformation. Typical values used in SimVascular are E = 0.05 MPa,

d = 0.15 mm and ν = 0.45. To match these parameters we set κs = 0.025, κα = 0.025 and κb =

0.002 in simulation units. The other simulation parameters are listed in Table 1. The length-

diameter aspect ratio of the tube is 7.5. In all simulations, the ends of the tube are tethered and

thus the deformation is not homogeneous along the tube axis; the radial displacements are

zero at the ends and maximum in the middle region where the diametric strains (ΔR/R) are

measured.

The combined effect of transmural pressure and elasticity on wall deformation is expressed

by the dimensionless parameter Cp, see Eq (10). We vary Cp by changing the transmural

Fig 2. Poiseuille benchmark results. The simulation results (symbols) of fluid velocity ux and shear stress σ are

compared with the analytical steady solution of Poiseuille flow (black lines). Green squares and red circles, respectively,

denote results without and with the extrapolation-based correction scheme. The data are taken along the z-coordinate

axis. The difference is visible near the walls (r/R� ! 1) and is caused by the diffuse nature of the immersed boundary

method. In particular the shear stress benefits from the correction scheme.

https://doi.org/10.1371/journal.pone.0227770.g002
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pressure Ptr in the present test case. Specifically, Ptr varies from 5.1 Pa to 153.2 Pa (i.e.,

0.0001� Cp� 0.003) in SimVascular simulations. Correspondingly, Ptr in our model ranges

from 3.3 � 10−6 to 1 � 10−4 in simulation units. The radial strain ΔR/R of the wall is linearly pro-

portional to Cp in SimVascular simulations due to the underlying linear elastic model. In

order to investigate the strain-hardening behavior of the tube in the present model, five addi-

tional simulations with Ptr up to 6.5 � 10−4 in simulation units are carried out.

We find that simulation results using our model compare well with those obtained from

SimVascular within the small strain regime (Fig 4a). In the large strain range, however, the

strain-softening and strain-hardening features of the Neo-Hookean and Skalak models,

respectively, become dominant and deviate from the behavior of the linear elastic model used

in SimVascular.

Our simulation results also compare well with the so-called tube law (Fig 4b). In cases of

wall expansion (A/A0 > 1), the tube law is [59, 60]

Ptr=Kp ¼ kðA=A0 � 1Þ ð21Þ

Fig 3. Womersley benchmark results. The simulation results (symbols) of fluid velocity ux and shear stress σ are

compared with the analytical solution of Womersley flow (lines). Only extrapolation-corrected results are shown. Each

curve represents a different time step. Due to the correction scheme, the shear stress at the wall matches the analytical

solution well.

https://doi.org/10.1371/journal.pone.0227770.g003

Effects of size and elasticity on relation between flow velocity and wall shear stress in side-wall aneurysms

PLOS ONE | https://doi.org/10.1371/journal.pone.0227770 January 16, 2020 10 / 25

https://doi.org/10.1371/journal.pone.0227770.g003
https://doi.org/10.1371/journal.pone.0227770


where, Kp is a constant proportional to bending resistance and can be expressed as Kp = κb/

R3 = E(d/R)3/[12(1 − ν2)] (see Eq (4)). A0 and A are the reference and deformed cross-sectional

areas. The constant κ can be calculated as κ = 1.5(2R/d)2.

Results and discussion

In the following, the combined effect of aneurysm size and wall softness on the flow character-

istics within the side-wall aneurysm dome is investigated, to our best knowledge, for the first

time. Brief introductions to both characteristic parameters and simulation setup are given

before results are reported.

Characteristic parameters

Blood and artery properties show variations among patients, but reference values based on a

reasonable number of measurements have been reported. In general, the radius R of the cere-

bral artery ranges from 1.5 to 2.5 mm [21, 61, 62]. Young’s modulus E and Poisson’s ratio ν of

the healthy cerebral artery are approximately 1–2 MPa and 0.45, respectively [21, 63]. The wall

thickness is between 0.03 and 0.2 mm in most aneurysms, and is here assumed to be uniform

and 0.15 mm, as adopted by [63]. There is no uniform ideal value for the transmural pressure

Ptr. However, its range lies roughly between 50 and 70 mmHg (i.e., between 6.7 and 9.3 kPa).

Blood density ρ and dynamic viscosity η are within the range of 1–1.06 g/cm3 and 3–4 mPa s,

respectively [21, 63]. The flow velocity u in cerebral arteries ranges from 0.1 to 1.0 m/s, and

those in the common carotid and middle cerebral arteries are approximately 0.4 and 0.6 m/s,

respectively [64–67].

In order to better highlight the effects arising from the interplay between elasticity, com-

plex geometry and the time-dependent forces acting on the wall and on the fluid, it is useful

to express physical quantities in such a way that trivial effects such as quadratic dependence

of the maximum flow velocity and the linear dependence of maximum shear stress on tube

radius as well as their linear dependence on the applied pressure gradient are “divided out”.

A way to achieve this goal is to divide the quantities of interest such as flow velocity, u, wall

shear stress, σw, and viscous dissipation rate, _�, by their corresponding characteristic values

Fig 4. Benchmark of the elastic wall model. (a) The diametric strain, ΔR/R, versus Cp (the ratio of transmural

pressure to Young’s modulus). SimVascular uses a linear elastic model and thus predicts ΔR/R/ Cp. We use both the

strain-hardening Skalak law and the strain-softening neo-Hookean model for the straight circular tube (Fig 1a). The

parameters of these models are related via Eqs (3) and (4). As seen from the inset, in the limit of small strains (ΔR/

R� 0.1), these models produce the same linear behavior. (b) Validation of the model used in this work with the

analytical result of reference [60]. The plot shows transmural pressure Ptr (normalized by Kp) as a function of the cross-

sectional area A (normalized by A0). As expected, simulation results using the Skalak model are in good agreement

with the theoretical prediction, Eq (21).

https://doi.org/10.1371/journal.pone.0227770.g004
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in a straight cylindrical channel subject to a stationary Poiseuille flow, u�, s�w and _��.

Throughout the paper, we will use the following reference values to make the corresponding

quantities dimensionless: u� = −p0R2/(4η) = 0.355 m/s, s�w ¼ � p0R=2 ¼ 1:42 Pa, and

_�� ¼ ðs�wÞ
2
=ð2ZÞ ¼ 252 W=m3. In this estimate, we used the values of the mean pressure

gradient, p0 = 14.2 Pa/cm (Fig 5), vessel radius, R = 2 mm and dynamic blood viscosity,

η = 4 � 10−3 Pa s.

Simulation setup

We consider pulsatile flow in seven different cases:

1. Reference channel: straight cylindrical artery (Fig 1a) with elastic Young’s modulus E0 = 2

MPa. In the following, we will refer to this choice of E0 as the “Normal Elastic” (NE) case.

2. LA/stiff: large aneurysm (Fig 1b) with Ptr = 0

3. LA/NE: large aneurysm (Fig 1b) with normal elasticity E0

4. LA/RE: large aneurysm (Fig 1b) with reduced elasticity E0/3

5. SA/stiff: small aneurysm (Fig 1c) with Ptr = 0

6. SA/NE: small aneurysm (Fig 1c) with normal elasticity E0

7. SA/RE: small aneurysm (Fig 1c) with reduced elasticity E0/3

The initial (equilibrium) volume of the large aneurysm is approximately twice as large as

that of the small aneurysm. The cases with zero transmural pressure mimic nearly rigid walls

and allow to focus on the effects of size and deformability separately. All relevant parameter

values used in the following simulations are given in Table 2.

Pulsatile flow is generated by applying a time-dependent body force (equivalent to the pres-

sure gradient p0) at the inlet. The transmural pressure is applied on the entire wall. In reality, it

Fig 5. Imposed waveforms of pressure gradient, p0, and transmural pressure, Ptr, over one period. The driving

force is applied at the inlet as a force density, f = −p0. The transmural pressure is realized as a constant force per unit

area of the wall acting in the direction of its normal vector. The profiles are taken from [46, 68].

https://doi.org/10.1371/journal.pone.0227770.g005
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is challenging to obtain both pressure gradient (or flow velocity) and transmural pressure

waveforms from the same underlying mechanism (heart beat). Therefore, they are fed sepa-

rately into the present model.

In practice, fluid velocity is often used as a proxy observable for wall shear stress [11–13].

While obvious in the case of a straight cylindrical channel, the complex shape of the aneurysm

and its deformability introduce new aspects whose effects on the connection between flow

velocity and wall shear stress needs a thorough investigation. Here, we address this issue via

two different classes of spatially and temporally resolved simulations using the present hybrid

model.

1. First we employ realistic waveforms (Fig 5) for both the pressure gradient and the trans-

mural pressure. Given the chosen input parameters, the Reynolds, Womersley and Cp val-

ues inside the parent artery region with normal elasticity are approximately 350, 3 and

0.005, respectively. Within the aneurysm dome, the Reynolds number is almost 10 times

smaller and Cp changes according to the variation of aneurysmal wall elasticity.

2. In the second class of simulations, to simplify the analysis, we assume sinusoidal waveforms

for the pressure gradient, p0(t) = p0(0) sin(2πt/T), and the transmural pressure, Ptr(t) =

Ptr(0) sin(θ + 2πt/T). We introduce a phase shift θ between both waveforms in order to

quantify the individual contributions of both waveforms to the flow field.

Simulations are repeated for six cycles, which is sufficient to reach a time-periodic flow

field. In all the simulations whose results are reported below, the open ends of the blood vessel

are tethered. A body force (equivalent to pressure gradient p0 in Fig 5) is imposed at the inlet,

and periodic boundary conditions are applied along the vessel axis.

Realistic waveforms: Effect of aneurysm softness

Fig 6 shows the time evolution of the space-averaged WSS and flow velocity in the straight

artery (reference case). A comparison with the imposed waveforms in Fig 5 reveals that the

time evolution of the hydrodynamic observables in the reference case basically follow the pres-

sure gradient and transmural pressure. This is to be expected since the straight artery does not

have complex geometrical features that could affect the flow. The average flow velocity and

WSS are similar to those obtained for the corresponding steady Poiseuille flow.

The time evolution of the intra-aneurysm (IA) WSS and flow velocity for the large (LA)

and small (SA) aneurysm cases are shown in Fig 7. Similar to the straight tube case, the key

Table 2. Simulation parameters for pulsatile flow in artery with/without aneurysm. Nx, Ny, Nz: size of simulation

box; see Fig 5 for waveforms of pressure gradient p0 and transmural pressure Ptr; see Table 1 for other parameters. The

values of κs, κα and κb correspond to E0 = 2 MPa. For the softer aneurysm (E0/3), their values become three times

smaller.

Physical units Lattice units

(Nx, Ny, Nz) – (128, 64, 100)

T 1 s 427657

ρ 1.055 g/cm3 1.0

η 4 mPa s 0.0003

ηB 22.2 mPa s 0.1666

R 2 mm 11.634

κs = κα 272.7 N/m 0.278

κb 7.05 � 10−7 N m 0.024

κsp 98 N/m 0.1

https://doi.org/10.1371/journal.pone.0227770.t002
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features of the temporal variations of WSS and flow velocity stem from the pulsatility of flow

rather than the existence of the aneurysm (compare Figs 5 and 7). However, both the aneu-

rysm size and wall softness impact the finer details of the IA hemodynamic characteristics as

will be discussed in the following.

For the small-deformation cases (normal elasticity, LA/NE and SA/NE, and non-deform-

able, LA/stiff and SA/stiff), we find that the spatial average wall shear stress, sw , and flow

velocity, U , decrease with increasing the aneurysm size. In these cases the IA flow can be

approximated by flow in a rigid cavity. The larger aneurysm has more potential to result in

flow regions of recirculation and stagnation which are generally accompanied by lower WSS.

This is in line with reported results in [20] and [21].

In real aneurysms, arterial wall stiffness may decrease due to tissue degradation. For the

softer aneurysm (cases SA/RE and LA/RE), we find that sw and U increase with aneurysm size

(solid and dashed red lines in Fig 7). Note that the size of the initially larger aneurysm (LA)

always remains larger than that of the smaller aneurysm. The variation of aneurysm volume

(i.e., volumetric strain) directly follows the time evolution of the transmural pressure in Fig 5.

The maximum volumetric strains are 61% and 86% in the cases SA/RE and LA/RE, respec-

tively. Apparently, the aneurysm size no longer dominates the IA WSS and flow velocity

behavior if the aneurysm is sufficiently soft. We can, therefore, conclude that there are at least

two independent mechanisms controlling the IA flow properties: (i) size and (ii) deformability

of the aneurysm dome.

Focusing on either the large or the small aneurysm, Fig 7 demonstrates that, the softer the

aneurysm, the larger the IA WSS and the flow velocity, all averaged within the aneurysm

domain. In order to gain more insight into the problem, a detailed view of the velocity field is

shown in Fig 8 for three choices of a non-deformable (rigid) wall (indicated as stiff in the plot),

a membrane with an intermediate (‘normal’) elastic constant, E0, and a soft aneurysm tissue

with reduced elasticity. The plot shows that the flow velocity within the soft aneurysm reaches

higher values than the two other cases. This observation may be rationalized as follows. Since

the velocity of fluid at the wall is equal to that of the wall (stick boundary condition), a rigid

Fig 6. Space-averaged wall shear stress and flow velocity in a straight artery (reference case). Both WSS, sw , and

flow velocity, U , are averaged over a circular cross section in the midway between inlet and outlet and normalized by

their reference values s�w and u�, respectively (see subsection Characteristic parameters).

https://doi.org/10.1371/journal.pone.0227770.g006
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and immobile vessel acts like a sink with respect to fluid momentum and thus decelerates the

flow. A deformable tissue, on the other hand, can move under the action of transmural pres-

sure and thus represents a less severe obstacle to the flow. In fact, depending on the phase of

the flow with respect to the motion of the membrane, a partial enhancement of the fluid veloc-

ity is also possible. One possibility here would be that an elastic wall can store energy during

one period of a cycle and release it during a different period again. This effect becomes stron-

ger as the membrane softens further and its deformability increases.

Such correlation between wall softness and flow parameters may, however, be reduced or

even violated to some extent when effects of input waveforms become significant, as will be

discussed in the following section.

Fig 7. Time evolution of space-averaged wall shear stress and flow velocity inside the aneurysmal dome. Both (a)

WSS, sw , and (b) flow velocity, U , are normalized by their reference values in a straight cylindrical tube (see subsection

Characteristic parameters). Acronyms in the legends: SA = Small Aneurysm; LA = Large Aneurysm; NE = Normal

Elasticity (using E0); RE = Reduced Elasticity (using E0/3) (see subsection Simulation setup).

https://doi.org/10.1371/journal.pone.0227770.g007
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From the viewpoint of energy, the effect of wall softness can be indicated by the variation of

elastic energy. The elastic energy follows the transmural pressure (Fig 9a) since the shear and

inertial contributions are relatively negligible (at least two orders of magnitude smaller) com-

pared with the transmural-pressure contribution. As expected, the elastic contribution disap-

pears in the case of a stiff wall (zero transmural pressure) (Fig 9a).

Fig 8. Flow field analysis. Upper row: (a) A view of the flow domain. The green plane shows the 2D cut through the aneurysm

(Fig 1b) within which the flow field is visualized. (b) Average velocity (rescaled by u� = 0.355 m/s) within the aneurysm for

three different choices of wall elasticity. Acronyms refer to: LA = Large Aneurysm; NE = Normal Elasticity (using E0 as given

in subsection Simulation setup); RE = Reduced Elasticity (using E0/3); stiff = non-deformable. The three lower rows illustrate

the velocity field (again rescaled by u� = 0.355 m/s) within aneurysm at different stages of a cycle as indicated by vertical lines

in (b). White arrows indicate velocity vectors. Green line represents the aneurysm wall. It is clearly visible that the fastest flow

develops within the softest aneurysm. An animation of the velocity field is available in S1 Appendix.

https://doi.org/10.1371/journal.pone.0227770.g008
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In the case of side-wall aneurysms with realistic waveforms, we find a linear correlation

between the rate of elastic energy variation and the wall shear stress (Fig 9b). No clear relation

between the IA flow velocity and the rate of change of elastic energy has been found, though.

Note, however, that it might be impossible to find a universal correlation between elastic

energy rate and wall shear stress for all types of aneurysm geometries and input signals because

the hemodynamics in aneurysms is sensitive to a number of conditions, including shape

parameters such as inflow angle.

Naively, the IA WSS should follow the imposed pressure gradient. The deformation of

the aneurysm, largely caused by the transmural pressure waveform, however, modifies the

Fig 9. Elastic energy variation and correlation with wall shear stress. (a) Time evolution of volume-averaged

variation rate of elastic energy, _�el , and (b) its relation to wall shear stress, sw , inside the aneurysmal dome. Both _�el

and sw are computed as averages over the entire aneurysm region and are normalized by their reference values in a

straight cylindrical tube (see subsection Characteristic parameters). Acronyms in the legends: SA = Small Aneurysm;

LA = Large Aneurysm; NE = Normal Elasticity (using E0); RE = Reduced Elasticity (using E0/3) (see subsection

Simulation setup).

https://doi.org/10.1371/journal.pone.0227770.g009
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flow field in the aneurysm, which in turn affects the WSS. In order to investigate this

effect, we consider sinusoidal input waveforms for the large aneurysm (Fig 1b) in the

following.

Sinusoidal waveforms: Correlations between WSS and fluid velocity

Using sinusoidal waveforms for both pressure gradient p0 and transmural pressure Ptr, together

with a phase shift θ for the latter, we consider the following cases:

1. θ = −π/2: cosine-type Ptr, i.e., p0 and Ptr are uncorrelated

2. θ = 0: sine-type Ptr, i.e., p0 and Ptr are positively correlated

3. θ = π: sine-type Ptr with inverse amplitude, i.e., p0 and Ptr are negatively correlated

We begin with an analysis of the flow in the parent vessel before moving on to the aneurys-

mal dome. Well away from the aneurysm, flow velocity and WSS are governed by the input

pressure gradient, and the phase shift between this driving force and the transmural pressure

does not play any significant role (Fig 10). The cross-sectional average values of the flow veloc-

ity and wall shear stress are linearly correlated in the parent vessel (Fig 11a). There also exists a

linear correlation between maximum velocity and average WSS and between maximum veloc-

ity and maximum WSS (the corresponding data is very similar to Fig 11a and is thus not

shown). This strong correlation is also reflected in a high Pearson correlation coefficient,

which turns out to be close to unity outside the aneurysm domain for all the investigated cases:

0.98, 0.99, 0.99 for θ = 0, −π/2 and π, respectively. Other combinations of size and transmural

pressure give similarly large correlation coefficients: 0.99 (LA/NE/θ = π), 0.96 (LA/stiff) and

0.98 (SA/stiff). For the fluid outside the aneurysm, therefore, one can safely use the flow veloc-

ity as a proxy for wall shear stress.

Within the aneurysmal domain, however, the flow has a more complex pattern so that a

one-to-one correspondence between characteristic flow velocity and wall shear stress is no lon-

ger ensured. This is particularly the case for different values of the phase shift θ between pres-

sure gradient and transmural pressure waveforms (Fig 12). From Fig 11b it is evident that the

correlation between the velocity and WSS within the aneurysm is deteriorating with increasing

phase shift angle θ. In terms of Pearson correlation coefficient, one obtains 0.91 (θ = 0), 0.76

(θ = −π/2), 0.67 (θ = π), 0.84 (LA/NE/θ = π), 0.72 (LA/stiff) and 0.93 (SA/stiff). One contribut-

ing factor to this deterioration is that the transmural pressure directly controls the aneurysm

wall motion, which in return affects the IA flow and WSS.

Results shown in Fig 11b also reveal effects of the aneurysm size on the correlations between

flow velocity and WSS. It can be seen from this data that the proxy role of flow velocity as an

estimate of WSS is less justified in the case of larger and more flexible domes. This finding is of

great practical importance as serious pathological cases are often associated with large aneu-

rysm sizes and an advanced state of degradation, which leads to a weak elasticity and hence

large deformability.

Conclusion

In this work, an immersed-boundary-lattice-Boltzmann-finite-element method is employed to

simulate three-dimensional viscous flow in an elastic vessel containing a side-wall aneurysm,

with a special focus on the relevance of the aneurysm deformability. Accuracy of the method is

shown through steady Poiseuille and pulsatile Womersley flow tests in a circular rigid tube.

Furthermore, the deformation behavior of an elastic pipe under the effect of transmural
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pressure is studied using the present model and validated by comparisons to both SimVascular

and the tube law.

Hemodynamic quantities, such as flow velocity and wall shear stress (WSS), play a crucial

role in the development and failure of aneurysms. Using the above described simulation tool,

we investigate the combined effect of aneurysm size and wall softness on intra-aneurysm (IA)

flow parameters. Under the rigid wall assumption, the IA flow velocity and WSS decrease with

increasing aneurysm size. However, the situation becomes more complex when the aneurysm

deformation becomes important.

Fig 10. Time evolution of wall shear stress and flow velocity in parent vessel. The cross-sectional averages of (a)

WSS, sw , and (b) flow velocity, U , are computed in the parent vessel region (i.e., sufficiently far from the aneurysm)

and normalized by their reference values in a circular tube (see subsection Characteristic parameters). The flow is

driven by a simple sine-type pressure gradient, p0. Transmural pressure, Ptr, is also a sine wave but has a phase shift, θ,

with respect to p0 as indicated. Acronyms in the legends: SA = Small Aneurysm; LA = Large Aneurysm; NE = Normal

Elasticity (using E0) (see subsection Simulation setup).

https://doi.org/10.1371/journal.pone.0227770.g010
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The central result of our investigation concerns the connection between WSS and flow

velocity, the latter often used as a proxy observable to estimate the former. While an indirect

evaluation of the WSS via the flow velocity is a reliable method for regular geometries (planar

or cylindrical), the present study reveals that the correlation between the two quantities deteri-

orates within the aneurysmal domain. The situation becomes more problematic in the case of

large and easily deformable aneurysms.

In aneurysms, arterial wall stiffness can significantly decrease due to tissue degradation.

This is often accompanied by an increase of the aneurysm’s size. Our results suggest that, in

such serious pathological cases, fluid velocity is no longer a reliable proxy for WSS.

Fig 11. Relation between wall shear stress and flow velocity. The spatial averages of WSS, sw , and flow velocity, U ,

are computed (a) outside and (b) within the aneurysmal region. Acronyms in the legends: SA = Small Aneurysm;

LA = Large Aneurysm; NE = Normal Elasticity (using E0); RE = Reduced Elasticity (using E0/3) (see subsection

Simulation setup). For fluid in the parent vessel, the Pearson correlation coefficients between the average flow velocity

and WSS in different cases are close to unity (� 0.95; see text for more details). For the fluid inside the aneurysm,

however, the Pearson correlation coefficients can become as small as 0.7. The WSS sw and velocity U are normalized

by the characteristic value s�w and u�, respectively.

https://doi.org/10.1371/journal.pone.0227770.g011
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Supporting information

S1 Appendix. Temporal variation of fluid velocity field within a planar cut of the aneu-

rysm.
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