

Edinburgh Research Explorer

Decision as a Service (DaaS)

Citation for published version:
Hasi, F, De Smedt, J, vanden Broucke, S & Asensio, ES 2020, 'Decision as a Service (DaaS): A service-
oriented architecture approach for decisions in processes', IEEE Transactions on Services Computing.
https://doi.org/10.1109/TSC.2020.2965516

Digital Object Identifier (DOI):
10.1109/TSC.2020.2965516

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Services Computing

Publisher Rights Statement:
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

https://doi.org/10.1109/TSC.2020.2965516
https://doi.org/10.1109/TSC.2020.2965516
https://www.research.ed.ac.uk/en/publications/aeb81dff-5f98-4fcc-9de6-8c6c398cce0d

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 1

Decision as a Service (DaaS): A Service-
Oriented Architecture Approach for

Decisions in Processes
Faruk Hasić, Johannes De Smedt, Seppe vanden Broucke, and Estefanı́a Serral

Abstract—Separating decision modelling from the processes modelling concern recently gained significant support in literature, as
incorporating both concerns into a single model impairs the scalability, maintainability, flexibility and understandability of both processes
and decisions. Most notably the introduction of the Decision Model and Notation (DMN) standard by the Object Management Group
provides a suitable solution for externalising decisions from processes and automating decision enactments for processes. This paper
introduces a systematic way of tackling the separation of the decision modelling concern from process modelling by providing a Decision
as a Service (DaaS) layered Service-Oriented Architecture (SOA) which approaches decisions as automated and externalised services
that processes need to invoke on demand to obtain the decision outcome. The DaaS mechanism is elucidated by a formalisation of
DMN constructs and the relevant layer elements. Furthermore, DaaS is evaluated against the fundamental characteristics of the SOA
paradigm, proving its contribution in terms of abstraction, reusability, loose coupling, and other pertinent SOA principles. Additionally,
the benefits of the DaaS design on process-decision modelling and mining are discussed. Finally, the DaaS design is illustrated on a
real-life event log of a bank loan application and approval process, and the SOA maturity of the design is assessed.

Index Terms—Decision Modelling, Decision Model and Notation, DMN, Process Modelling, Integrated Modelling, Decision Mining,
Integrated Mining, Service Discovery, Separation of Concerns, Service-Oriented Architecture.

F

1 INTRODUCTION

R ECENT business process management literature moves
towards accommodating decision management into the

paradigms of Separation of Concerns (SoC) [1]–[7] and Service-
Oriented Architecture (SOA). This implies externalising deci-
sions and encapsulating them into separate decision models,
hence implementing decisions as externalised services. Lit-
erature proposes several conceptual decision service plat-
forms and frameworks [8]–[11], as well as ontologies [12].
Industry has adopted this trend, as several decision service
management systems have appeared, e.g. SAP Decision
Service Management [13]. This separation of concerns pro-
vides a plethora of advantages regarding understandability,
maintainability, and flexibility of both the business process
and the decision models [1]–[6], [14], [15].

A recently introduced decision modelling standard, the
Decision Model and Notation (DMN) [16], has enjoyed
significant interest in literature [5], [17]–[19]. DMN consists
of two levels that are to be used in conjunction. First,
the decision requirement level represented by the Decision
Requirement Diagram (DRD) which depicts the require-
ments of decisions and the dependencies between elements

• F. Hasić and E. Serral are with the Department of Information Man-
agement, Modelling and Simulation, KU Leuven, Belgium. E-mail:
faruk.hasic; estefania.serralasensio@kuleuven.be

• J. De Smedt is with the Management Science and Business Economics
Group of the University of Edinburgh Business School, Scotland, UK.
E-mail: Johannes.DeSmedt@ed.ac.uk

• S. vanden Broucke is with the Department of Decision Sci-
ences and Information Management, KU Leuven, Belgium. E-mail:
seppe.vandenbroucke@kuleuven.be

Manuscript submitted on May 30, 2018; resubmitted on May 27, 2019.

involved in the decision model. Second, the decision logic
level, which presents ways to specify the underlying de-
cision logic. DMN aims at providing a clear and simple
representation of decisions in a declarative form and offers
no decision resolution mechanism of its own. Rather, the
invoking context, e.g. a business process, is responsible for
ensuring a correct invocation and enactment of the decision,
as well as ensuring data processing and the storage and
propagation of data and decision outcomes throughout the
process. This makes DMN particularly interesting for a
SOA, as DMN is independent of the applications and the
invoking context.

However, there is no clearly and formally defined SOA
design dealing with DMN decision services in business
processes. This lead to violations against the SoC and
SOA paradigms in previously produced models in research,
where decisions tend to be embedded or hard-coded within
the process, and where decision logic tends to be duplicated
in both the process and decision models. This paper aims at
bringing DMN to the service-orientation paradigm in order
to exploit the benefits of SOA characteristics in terms of
maintainability, scalability, understandability, and flexibility.
Thus, the contribution of this paper is a layered design
framework and a formalisation of its key concepts to aid in
exteriorising the decisions and the decision logic from the
process flow according to the SoC [1] and SOA paradigms.
The layered architecture consists of a process layer, a service
layer, and a decision layer. The two latter are connected
to the former through a decision service interface. The
evaluation of the contribution is fourfold:

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 2

1) The proposed DaaS design is assessed in terms of
fundamental SOA principles, proving its merit in terms
of service discoverability, loose coupling, standardis-
ation, location transparency, abstraction, statelessness,
longevity, reusability, and composability.

2) The implications of the DaaS design on process and de-
cision modelling and mining are conferred in terms of
scalability, maintainability, flexibility and understand-
ability of both the processes and the decisions.

3) Additionally, we illustrate the DaaS design on an event
log containing information on a real-life bank loan
application and approval process. We show from the
real-life event log that decisions are invoked as services,
in compliance with the principles of SOA and that
the DaaS design aids in conducting decision service
compliance verification for processes.

4) Finally, we assess the maturity of the DaaS SOA design
using a state-of-the-art SOA maturity model.

This paper is structured as follows. Section 2 constitutes
a related work section while Section 3 outlines the method-
ology of the paper. Section 4 provides formal definitions
for key concepts needed for the understanding of the lay-
ered SOA. In Section 5 the layered architecture design is
established and elucidated and in Section 6 the proposed
Decision as a Service architecture is evaluated against the
core characteristics of SOA design. In Section 7 the impli-
cations of the proposed design for integrated process and
decision modelling and mining are discussed in terms of ad-
vantages and disadvantages. Section 8 illustrates the DaaS
approach on a real-life enriched event log, thus providing
opportunities for decision service compliance verification.
Next, Section 9 assesses the maturity of the proposed design
according to a state-of-the-art SOA maturity model. Section
10 discusses limitations of the approach and finally, Section
11 concludes and provides future research directions.

2 MOTIVATION AND RELATED WORK

The SoC paradigm is already well-established in the soft-
ware modelling and design domains [1], [20], [21]. With
the introduction of DMN, the paradigm is introduced in
the Business Process Management (BPM) domain as well,
effectively shifting the domain towards a SOA, by repre-
senting business decisions as externalised services. Most
modelling and mining approaches in literature still breach
the SoC between process control flow on the one hand, and
data and decision aspects on the other. Consequently, is-
sues concerning maintainability, scalability, reusability, and
understandability arise [5], [22], given the fact that most
decisions are hard coded within the process flow [2]. These
issues can be avoided by externalising decision constructs
to a dedicated decision model and setting decisions up as
a service to be invoked by the process. The intersection be-
tween data and processes, classical data mining and process
mining is rapidly gaining traction in literature [4], [23]–[27].
Separating multi-perspective modelling and mining tasks
proves to be beneficial in multiple ways, as long as the
separation and interaction between the models is conducted
in a sound and consistent way [3]–[5], [22]. Some literature
on decision service platforms exists. In [9] decisions are
approached from an organisational process control flow

perspective rather than a data and decision management
perspective. Other works recognise that decision logic and
process logic should indeed be separated, as application
logic is specified in terms of processes while decision rules
specify conditions to adapt the application behaviour [8],
[11]. However, these works consider simple decisions and
business rules, rather than holistic and intertwined decision
models. Furthermore, the works discuss general require-
ments and solutions, rather than a standardised approach
towards decision management. In [10] on the other hand,
the authors advocate for DMN as a standard for decision
services for the purpose of decision automation. However, a
formalised framework on how to organise decision services
for processes is still lacking. Decisions did receive attention
in the process mining domains, as researchers have utilised
DMN to automatically discover decisions from event logs
that are compatible with the discovered processes. However,
these works employ a rather narrow definition of a decision,
confining decisions to specific locations within a process
known as decision points, i.e. exclusive gateways splitting
the control flow of a process [28], [29]. Seminal work on
mining decisions independently from process control flow
is presented in [25], where decisions can span across the
entire process execution span rather than being embedded
in a single decision point of the process. This leads to the
discovery of a holistic decision model that is decomposable
and reusable across the process, thus, introducing a form
of decision modularity and composition that is inherent to
service-orientation.

Externalising decisions and setting them up as services
is not the first example of adapting the SoC and SOA
paradigms in the domain of processes: SOAs were already
applied for business processes and for the interaction be-
tween business rules and processes [12], [13], [30]–[35]. With
DMN, a comparable approach can be appied to decisions
by implementing decisions as externalised services, which
we call Decision as a Service (DaaS). Processes, or other
concerns, can invoke those decision services on demand by
providing the relevant input data to the service through an
interface. We call this Decision on Demand (DoD). Such an
approach aims at capitalising on the benefits of SOA, such
as loose coupling, service standardisation, abstraction, and
composability.

3 METHODOLOGY

This paper follows a design science approach [36], struc-
tured along three different cycles to obtain an artifact, being
the SOA-based Decision as a Service (DaaS) design. Figure
1 provides an overview of the followed methodology.

First of all, during the relevance cycle we have identified
the problem of inefficient use of decisions within processes
and as a result the issues that arise regarding maintainabil-
ity, scalability, flexibility, and complexity and understand-
ability of both decisions and processes in Sections 1 and
2. We have argued that these are the relevant issues tackled
when separating concerns in modelling endeavours through
the use of the separation of concerns and SOA paradigms.
Based on previous work of the authors, as outlined in the
related work section above, and relevant literature - both
academic and from industry - it was noted that there is

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 3

Relevance Design Rigour
• Maintainability
• Flexibility
• Scalability
• Complexity
• Lack of formalisation

• Decision as a Service (DaaS)
• Separation of Concerns
• Service-Oriented Architecture

• Adherence to SOA principles
• Implications for modelling
• DaaS in a real-life event log
• DaaS SOA maturity level

Figure 1: Overview of the followed cycles of the design science methodology.

no clearly and formally defined approach towards decision
services in processes, and that from previously produced
models in research multiple violations towards the sepa-
ration of concerns and SOA paradigms were committed.
Thus, we have developed the solution artifact in the form
of a Decision as a Service (DaaS) SOA Design during the
design cycle (Sections 4 and 5). Next, the artifact, i.e. the
proposed Decision as a Service (DaaS) design, which will
be outlined in Section 5, was validated according to the
rigour cycle against the key principles of Service-Orientation
(Section 6). Additionally, the effects of the proposed solution
were evaluated against the key problems identified in the
relevance cycle (Section 7). Furthermore, this work aims at
bringing the proposed design to the body of literature on
decision and process modelling and mining by exhibiting
the artifact on a real-life enriched event log from industry,
i.e., an enriched event log pertaining to a bank loan applica-
tion and allocation process. It is demonstrated in Section 8
that decision data propagation within the log of a process
indeed exhibits the invocation of decision logic through
variable shifts throughout the process. As a final evaluation,
the design was assessed in terms of its maturity in a state-
of-the-art SOA maturity model.

4 PRELIMINARIES

In this section, we provide a formalisation for key DMN
concepts needed for the understanding of the Decision
as a Service architecture, which will be discussed in the
following sections. We adhere to the definitions provided in
[22] and extend them to represent decision services as well.
The DMN standard employs rectangles to depict decisions
and subdecisions and ovals to represent data input. The
decision logic is usually represented in decision table form.

Definition 1. A decision requirement diagram DRD is a tu-
ple (Ddm, ID, IR) consisting of a finite non-empty set of
decision nodes Ddm, a finite non-empty set of input data
nodes ID, and a finite non-empty set of directed edges
IR representing the information requirements such that
IR ⊆ (Ddm ∪ ID) × Ddm, and (Ddm ∪ ID, IR) is a
directed acyclic graph (DAG).

According to the DMN standard, a decision requirement
graph can be an incomplete or partial representation of the
decision requirements in a decision model. The set of all
DRDs in the decision model constitutes the exhaustive set
of requirements. The information contained in this set can
be combined into a single DRD representing the decision
requirements level as a whole. The DMN standard refers

to such a DRD as a decision requirement graph (DRG). We
expand the notion of a DRG, in such a way that a DRG
is a DRD which is self-contained, i.e. for every decision in
the diagram all its requirements are also represented in the
diagram.

Definition 2. A decision requirement diagram DRD is a
decision requirement graph DRG if and only if for every
decision in the diagram all its modeled requirements,
present in at least one diagram, are also represented in
the diagram.

The term decision can have a number of meanings. Ac-
cording to the DMN specification a decision is the logic
used to determine an output from a given input. Meanwhile,
in process modelling a decision is an activity or the act of
using the decision logic, e.g. the business rule task in BPMN.
Another common meaning is that a decision is the actual
result, which we call the output of a decision, or simply
the decision result. For the case of Decision as a Service, a
decision is defined as follows:

Definition 3. A decision d ∈ Ddm is a tuple (Id, Od, L),
where I ⊆ ID is a set of input symbols, O a set of output
symbols and L the decision logic defining the relation
between symbols in Id and symbols in Od.

In case of decision tables, I and O contain the variables
of the input and output elements respectively, and L is the
table itself, i.e. the set of decision rules present in the table.

In DRDs these decisions di are represented by the de-
cision nodes Di ∈ Ddm. We will use D to refer to both
a decision and its representing node in a DRD. From the
definition of DRGs, it is clear that every decision D in that
model has a unique decision requirement graph DRGD

with D as its single top-level decision. A DRG contains ex-
actly all information requirements of its top level decisions.
Hence, only one DRG exists with D as its single top-level
decision. We use DRGD to denote this DRG. Furthermore,
all the decisions in the DRG, except the top level decision,
are consequently subdecisions of the top level decision. In
other words, the top level decision requires these lower level
subdecisions.

5 DECISION AS A SERVICE (DAAS)
Separating the decision modelling concern from the process
modelling concern implies modelling in two separate mod-
els or layers [5], [6], [22]. In Figure 2, the Decision as a
Service layered architecture is presented through an exam-
ple of a customer acceptance process with its corresponding

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 4

customer acceptance decision model. The bottom layer de-
picts the processes layer, while at the top the decision layer is
represented. In the service-oriented approaches, the services
are implemented offering a single decoupled point of entry
to the services. That way, the bottom layer, i.e. the process
layer, only needs the information regarding the point of
entry, or more specifically the interface, in order to invoke
the higher level layers. This single point of entry provides
a plethora of advantages, such as flexibility, maintainability,
automation and scalability [5], [11].

In Figure 2 the service layer is implemented as the con-
nection between the process layer and the decision layer. The
communication between the process layer and the service layer
is bridged by the interface. Consequently, the processes are
only aware of the interface and agnostic about the underlying
service layer and decision layer. Thus, to invoke the services
and the decisions the processes simply need to keep infor-
mation regarding the interface and not regarding the higher
level layers.

To formally define the interface and the decision services
we first need to define the input requirement set of a
decision as follows:
Definition 4. The decision input requirement set dirsD of a

decision D is the set of all sets of input data which are
sufficient to invoke D. dirsD contains sets of input data
directly or indirectly required by D. The largest set in
dirsD is the set of all input data nodes for which there
exists a path to D in DRGD . The smallest set in dirsD is
D’s input set ID .
dirsD is constructed inductively by the following rules:
• ID ∈ dirsD
• For all s ∈ dirsD if there is an i ∈ s such that i ∈ OD′

for some D′ in DRGD , then s \ {i} ∪ ID′ ∈ dirsD .

Each decision in a DRD has its own output set, as
formalised in Definition 3. As seen in Figure 2, a decision
service is used to invoke a decision from the decision model.
Definition 5. A decision service DSD of a decision D is a

tuple (sD, OD), where sD ∈ dirsD is a set of input data
sufficient to invoke the decision D and OD the output
set representing the decision outcomes of D.

Note that multiple decision services can be de-
fined for a single decision D, depending on which in-
put data set sD is used to access the decision layer.
Consider the decision model in the decision layer of
Figure 2. For Decision Background Check two de-
cision services can be defined: DSBC1 with tuple
({OCIV , pr}, OBC) where OCIV is the output of Subdeci-
sion Customer Identity Verification, which serves
as the input for Decision Background Check and pr
is the Public Records input file; and DSBC2 with tuple
({cid, pr}, OBC) where cid is the Customer ID input data
object required for the decision enactment of Subdecision
Customer Identity Verification and consequently
the Background Check decision, and pr, i.e. the Public
Records input data object. Which decision service will be
activated depends on the input data set provided through
the interface by the process in the process layer. Hence,
the interface will steer the information towards the suitable
service that is able to invoke the required decision based

on the input data set received from the process. Thus, a
decision service’s interface is the combination of its input
requirement set and its output set. Decision interfaces can
be defined as in Definition 6.
Definition 6. The interface IFD of a decision service DSD is

defined as a tuple (dirsD, OD), where dirsD is the input
requirement set and OD the output set of the underlying
decision D.

Now we have formally defined the decision layer, the
service layer and the interface layer present in Figure 2.
What is left is to define how the process layer and the
different interactions with the service interface. Decisions
in processes do not surface solely as the driver of control
flow. Rather, they both encompass the routing, i.e. because
of decision outcomes that steer toward a certain activity
tailored towards supporting its output, and the changes in
the data layer of the process as well. The latter introduces
numerous types of activities that are representatives of the
decision model in the process model:
Definition 7. The input and output data variables of busi-

ness activities are defined as follows:
• I : A → V , function assigning activities which receive

input of a certain variable,
• O : A → V , function assigning activities which deliver

output for a certain variable.

This enables the construction of the following activity
types:

1) Operational activities ((no) inputs, no outputs): do not
have any influence on the process’ decision dimension
and only act as a performer of a specific action that is
tied to that specific place in the control flow. They might
serve as the end of a decision. They are provided with
the decision inputs needed, which are not used further
in the process,
Ao = {a ∈ A | O(a) = ∅, }.

2) Administrative activities (no inputs, outputs): have
the purpose to introduce decision inputs into the pro-
cess,
Aa = {a ∈ A | I(a) = ∅ ∧ O(a) 6= ∅}.

3) Decision activities (inputs, outputs): serve a true au-
tonomous decision purpose as they transform decision
inputs into a decision outcome,
Ad = {a ∈ A | I(a) 6= ∅ ∧O(a) 6= ∅}.

Note that it holds that Aa ∪ Ao ∪ Ad = A.
With the activity classification in mind, we can now

make the connection with decisions in business processes
and decision models. A decision in a business process can
be defined as follows:
Definition 8. A decision in a process model, da ∈ Ddm is a

tuple (Ida
, Oda

, Lda
), where a ⊆ Ad, Ida

⊆ I(a), Oda
⊆

O(a), and Lda
⊆ L.

This last definition connects a decision activity with a de-
cision and it shows than one decision activity can be tied
with multiple decisions. The latter implies that, within an
event log, the same activity can make different decisions,
i.e., changes in variable values, and can be represented as
different decision nodes within a decision model, as well as
different activity types. This interpretation of how activities

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 5

are present in process models is the main difference with
other decision mining and modelling techniques, who keep
the one-to-one mapping of activities and decisions.

We have formally defined elements from all three layers
in the DaaS design in Figure 2: the decision layer, the
decision service layer, the decision service interface, and the
constructs from the process layer that are relevant for deci-
sion services and decision enactment in processes. Whether
a process will correctly call upon a decision service depends
on the information that the process itself provides to the
decision service interface. In order to invoke a decision ser-
vice successfully and unambiguously the input data objects
needed for the invocation of the underlying decision need to
be both complete and correct. This is defined in the decision
Service Adherence Criterion (SAC) in Definition 9, which
states when a process is compliant to the decision service it
wishes to invoke.

Definition 9. The Service Adherence Criterion (SAC): A
process fully adheres to the decision service DSD of
decision D if and only if at the time of invocation,
the process has internally produced and/or externally
received all x ∈ sD with sD ∈ dirsD and provided all
x ∈ sD to the decision service interface IFD. Only then
will the decision service DSD of decision D be able to
provide a decision outcome o ∈ OD to decision activity
d ∈ Ad that called upon the decision service DSD.

In summation, a process can call upon a decision by
providing a data input set that is required for the enactment
of the decision to the decision interface. The interface will
steer the information provided by the process towards the
suitable decision service. Subsequently, the decision service
will invoke the requested decision from the decision model.
Consequently, the decision model will enact the decision,
reach a decision outcome, and output it to the decision
service. The decision service will forward the outcome back
to the interface, and through the interface the outcome of the
decision will finally reach the process layer. This mechanism
is illustrated in Figure 2. The SOA design provided in the
figure makes it possible to define decisions as services,
which we call Decision as a Service (DaaS). These decisions
and services can be invoked on demand by information
systems, e.g. processes, through a well-defined interface.

With the design provided in Figure 2, the SoC paradigm
between processes and decisions can easily be respected,
as the process is included in the bottom layer, while the
decision model is situated in the top layer. Caution is still
necessary when modelling the process and decision models:
information regarding decisions and decision logic should
not be implemented in the bottom process layer, but rather
externalised and encapsulated in the decision layer [2], [3],
[5], [22], [25].

We link the main elements present in the DaaS example
in Figure 2 to the formalisation of the DaaS design and
DMN constructs as elaborated upon in the current and the
previous sections. We use the abbreviations of the names
given to elements in Figure 2 in the subscript of the symbols
to refer to those elements for a compact notation as well as
the abbreviations of the data object elements (pertaining to
both the process layer and the decision layer) in lower case
letters to reference them.

Decision activities: Ad = {aV I , aDRL, aAC}.
aV I is a tuple (cid, iv, LDCIV

);
aDRL is a tuple ({fs, iv, fi, pr}, raf, LDRL

);
aAC is a tuple (raf, cf, LDAC

).
Decision services: DS = {DSCIV , DSRL, DSCA}.

DSCIV is a tuple (cid,OCIV)
with sCIV = {cid} ∈ dirsCIV ;

DSRL is a tuple ({fs, iv, fi, pr}, ORL)
with sRL = {fs, iv, fi, pr} ∈ dirsRL ;

DSCA is a tuple (raf,OCA)
with sCA = {raf} ∈ dirsCA.

Service interfaces: IF = {IFCIV , IFRL, IFCA}.
IFCIV is a tuple (dirsCIV , OCIV);
IFRL is a tuple (dirsRL, ORL);
IFCA is a tuple (dirsCA, OCA).

Decisions: Ddm = {DCIV , DBC , DFPC , DRL, DCA}.
DCIV is a tuple (cid,OCIV , LCIV);
DBC is a tuple ({oCIV , pr}, OBC , LBC)

with oCIV ∈ OCIV ;
DFPC is a tuple ({fs, fi}, OFPC , LFPC);
DRL is a tuple ({oBC , oFPC}, ORL, LRL)

with oBC ∈ OBC and oFPC ∈ OFPC ;
DCA is a tuple (oRL, OCA, LCA)

with oRL ∈ ORL.

6 COMPLIANCE WITH THE PRINCIPLES OF SOA
In this section, we will evaluate the adherence of the pro-
posed DaaS design to the key Software-Oriented Archi-
tecture characteristics as defined in fundamental literature
on SOA design [37]–[43], both in theory and through the
example proposed in Figure 2.

6.1 Discoverable and Dynamically Bound Services

A component, i.e. a client, calling upon a service must be
able to discover that service based on information provided
at runtime. After discovering the service dynamically, the
component that called the service, or the client, must be
able to interpret the service outcome. Thus, the client must
at runtime be able to discover the service it needs, to invoke
it, and to receive a sensible answer from the service. In
the DaaS design, the services are dynamically discovered
at runtime by the process. This happens by providing the
correct data input set sD ∈ dirsD to the interface IFD .
Given the decision D that the client wants to invoke and
the set sD , the interface IFD will guide and discover the
relevant decision service DSD. After enacting the decision
D, the service DSD will return the decision outcome o ∈ OD

to the interface IFD , after which the interface will pass it
on to the invoking context, i.e. the client, for interpretation.
In short, the process will inform the interface about the
decision it wants to invoke. However, given the modular
hierarchy of the decision model, multiple decision services,
i.e., with a different input requirements set, can be defined
that invoke the same underlying decision. Which decision
service will be bound to the invocation of the process
depends on the data input set provided by the process
to the decision service interface. Note that according to
basic SOA architectures [41], the decision model functions
as the service provider, while the process model fulfils

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 6

Se
rv

ice
 La

ye
r

Pr
oc

es
s L

ay
er

De
cis

io
n

La
ye

r

Identity Verification
Service

Interface

Background Check

Customer Identity Verification

Public Records

Customer Acceptance

Risk Level

Financial Position Check

Financial Statements Financial Information
Customer ID

Prospect request

Determine risk
level

Draw up
contract

Draw up
rejection

notification

Accept prospect

Reject prospect

Discuss in
executive
meeting

Accept
customer

Risk assessment
form

Collect
documents

Request valid
identification

Verify identity

Customer ID

Look up
information

Financial
information

Public
records

accept

reject

pending

Valid

Invalid

Financial
statement

Customer
file

Identity
verification

Risk Level
Service

Customer Acceptance
Service

Figure 2: Decision as a Service (DaaS) layered architecture

the role of service consumer. The decision service interface
corresponds to a service directory where the decision service
provider can publish information concerning the services
that can be invoked. The decision service consumer can
address the service directory in order to invoke the required
decision services.

In the example in Figure 2, decision activity Determine
risk level provides the input set {fs, iv, fi, pr}, i.e. the
four input data objects of the activity, to the interface.
The interface guides, given the input set and the decision
requested by the decision activity, the invocation of the
correct decision service, i.e. the Risk Level Service
(DSRL). This leads to the invocation of the Risk Level
decision in the decision layer. Through the service and the
decision service interface, the outcome of the decision will
be returned to decision activity Determine risk level
which will produce the Risk assessment form containing the
decision outcome.

6.2 Standardised Service Communication and
Loose Coupling
Communication between the invoking context, e.g. a busi-
ness process, and the services, e.g. decision services tied to
a decision model, should be standardised and addressed

systematically. Besides, a loose coupling between clients
and services is preferred above a tight coupling. In a loose
coupling there are a few well-defined dependencies between
the different modules, while a tight coupling produces a
vast array of dependencies that might not all be observed.
In the DaaS design, the communication between clients from
the process layer and the decision service DSD of a certain
decision D is standardised through a well-defined interface
IFD. The interface is the sole channel of communication
between the clients and the services, and thus serves as
a loose coupling mechanism between the two. Ergo, the
clients are aware of the existence of a service, given that the
clients can witness and access the interface IFD of a decision
service DSD . However, the coupling does not go beyond the
simple interface connection and the client’s awareness of the
existence of a decision service.

In the example in Figure 2, the communication between
a decision activity, e.g. Determine risk level and the
decision service of Risk Level Service is standardised
and loosely coupled through the decision service interface
IFRL, defined as a tuple (dirsRL, ORL). The decision ac-
tivity can only invoke its underlying decision, i.e. Risk
Level by providing the input data relevant for the invo-
cation of the decision service, i.e. sRL ∈ dirsRL. Likewise,

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 7

the decision model will render the outcome of the Risk
Level decision oRL ∈ ORL to the invoking decision activity
through the interface.

6.3 Service Standardisation
In order to provide transparency in design and to avoid
issues concerning redundancy, services should, in analogy
with service communications, be standardised and system-
atised. The notion of a service should be unambiguous and
coherent. This characteristic is closely related to the service
encapsulation characteristic, which states that services that
were not part of the service-oriented design from the begin-
ning, can later be defined and become a part of the design, as
long as they follow the designated service standardisation.
In the DaaS design, a decision service DSD of a decision
D is a tuple (sD, OD), with sD ∈ dirsD a set of input
data sufficient to invoke D and OD the set of decision
outcomes of D. Thus, all new decision services should be
designed according to these well-delineated concepts in
order to ensure the correct invocation of those new services
by potential clients.

In the example in Figure 2, the Risk Level Service
is designed as a tuple ({fs, iv, fi, pr}, ORL) with sRL =
{fs, iv, fi, pr} and ORL being the output set of the decision
Risk Level. Thus, the decision service follows the stan-
dard design regarding input requirement and output sets.

6.4 Service Location Transparency
The invoking context of a service should not be burdened
with the knowledge of the service location within the net-
work, yet the client should be able to invoke a service at any
time, regardless of the service location. This service location
transparency allows the service location to change within
the network without impairing service availability to clients.
In the DaaS design, the process layer is agnostic about the
location of a decision service DSD. Once a correct data
input set sD ∈ dirsD is provided to the interface IFD , the
interface will, given the decision D that the client wants to
invoke and the set sD , discover the location of the relevant
decision service DSD and consequently invoke that service.
This all happens without any client in the process layer
knowing the location of the invoked decision service within
the network. Hence, the decision services can be moved
around the network and stored anywhere in the network
without compromising the availability and accessibility of a
decision service.

In the example in Figure 2, the Risk Level Service
is designed as a tuple ({fs, iv, fi, pr}, ORL). Thus, given
the input requirement set sRL = {fs, iv, fi, pr} ∈ dirsRL,
the interface will discover the location of decision service
DSRL, without the client, i.e. decision activity Determine
risk level being aware of the location of the Risk
Level Service DSRL.

6.5 Service Abstraction
The service abstraction characteristic denotes the proposi-
tion that services should be conceived as a black box by the
invoking context or the clients. Thus, the clients invoking
the service are alleviated from the burden of understanding

the underlying decision logic and mechanisms the services
pertain to. In the DaaS design, the decision logic is en-
capsulated in the decision model in the top layer, i.e. the
decision layer, given that a decision D was defined as a
tuple (ID, OD, L), where ID is a set of input symbols, OD a
set of output symbols and L the decision logic defining the
relation between symbols in ID and symbols in OD . Hence,
the decision logic L is encapsulated in decision nodes in the
decision model and the services merely invoke the decisions
from the decision model and pass the output, through the
interface, to the clients in the process layer. Therefore, the
clients are agnostic about the underlying decision logic and
experience the decision services as a black box. All the
clients need to worry about is providing the relevant inputs
to the interface of the decision services in order to ensure a
sound decision enactment.

In the example in Figure 2, the decision logic invoked
by the Determine risk level decision activity (aDRL)
through DSRL is encapsulated in the decision node Risk
Level (DRL) of the DRD in the decision layer. Hence,
the Determine risk level decision activity is agnostic
about the decision logic underpinning its execution, and
the decision activity conceives the Risk Level Service
DSRL, and consequently the Risk Level decision, as a
black box that merely returns the decision outcome o ∈ ORL

when provided with an input set sRL ∈ dirsRL.

6.6 Service Statelessness
Services should be implemented as simple mechanisms that
either return the relevant outcome or throw an exception
if no conclusion can be reached, i.e. services should be
stateless and consequently resource efficient. Thus, the state
of the service should be separated from the service itself,
providing the service with more flexibility and reusability.
In the DaaS design, a decision service DSD of a decision D
is defined as a tuple (sD, OD), where sD ∈ dirsD is a set
of sufficient input data and OD the output set representing
the decision outcomes of D. Hence, decision services in the
DaaS design will return an outcome from the set OD or an
empty set serving as an exception if no conclusion can be
reached within a reasonable time frame.

In the example in Figure 2, the Risk Level Service
DSRL simply invokes the Risk Level decision at the
request of the Determine risk level decision activity,
and passes the decision outcome outcome o ∈ ORL back to
the invoking decision activity. The Risk Level Service
itself does not keep a state, but simply serves as a bridge
between the process and the decision.

6.7 Service Longevity
Service longevity denotes the objective that a service should
remain unchanged and in existence during a considerably
long time. Services should change only when utterly nec-
essary in order to avoid that clients must adapt time and
again to the newly changed service. Hence, services should
be designed carefully with the intent to last long. In the DaaS
design, it is clear that a decision service DSD of a decision
D will only change if the underlying decision model in the
decision layer changes as well. Since a decision service DSD

of a decision D is defined as a tuple (sD, OD), the decision

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 8

service DSD will only need to change if the input set sD
and/or the output set OD of the underlying decision D
are subject to change. Once changes to a decision service
occur, clients in the process may need to adapt to ensure
a proper invocation of the underlying decisions. Note that
if the input sets and output sets of the decision services
remain the same, while the underlying decision logic that
relates the inputs to the outputs undergoes adaptation, the
decision services remain the same from the perspective of
the clients, i.e., the processes, since the processes experience
the decision logic as a black box.

In the example in Figure 2, the Risk Level Service
DSRL is designed as a tuple ({fs, iv, fi, pr}, ORL) with
sRL = {fs, iv, fi, pr} and ORL being the output set of the
decision Risk Level. Hence, the defined service will only
need to undergo change if sRL and/or ORL exhibit any
changes. In all other changes to either the decision layer
or the process layer, the Risk Level Service DSRL

remains valid.

6.8 Service Reusability
This charecterisitc is cosely related to the charactersitic of
service longevity. Services should be reusable and invocable
repetitively and their results should be reusable. Addition-
ally, the underlying logic should be divided into modules
and linked to different services, thus enhancing the reuse
of the underlying logic. In the DaaS design, the logic L is
stored in the decision model as part of the decision layer
across multiple decision nodes D, given that a decision D
was defined as a tuple (ID, OD, L) with the decision logic
L being part of the decision D. Ergo, the decision logic is
stored in modules represented by the decision nodes. For
every decision node D multiple decision services DSD can
be created, as discussed in Section 5. Hence, the underlying
decision logic L can be accessed in smaller modules linked
to a number of decision services DSD , allowing for the
reusability of the decision logic through repetitive invoca-
tions of the decision logic L by the decision services DSD

pertaining to a decision D.
In the example in Figure 2, the logic contained in the

Risk Level decision node in the decision model can be
reused by multiple clients as long as the clients provide the
necessary input requirement set sRL = {fs, iv, fi, pr} to
the Risk Level Service DSRL.

6.9 Service Composability
Several services might be composed into a single larger
service thanks to the modular design inherent to the SOA
paradigm. This modular design allows to assemble smaller
services into coherent larger ones or even into an applica-
tion. This characteristic is closely related to the characteristic
of service granularity, or more specifically: the degree of
modularity that the services should have. Decision service
composability is inherently enabled by the modular and
hierarchical structure of the DMN model, i.e., a higher-level
decision is composed of its lower-level decisions. As such,
the higher-level decision service is composed of these lower-
level decision services as well.

In the DaaS design example in Figure 2, multiple de-
cision services or modules are implicitly part of larger

decision services or modules. Take for instance the Risk
Level decision node in the decision layer: for this de-
cision, multiple decision services can be defined. Previ-
ously, we defined the Risk Level Service DSRL as
({fs, iv, fi, pr}, ORL) with sRL = {fs, iv, fi, pr} and ORL

being the output set of the decision Risk Level. An-
other Risk Level Service can be defined as well: DSRL2

as a tuple ({oBC , oFPC}, ORL) where oBC ∈ OBC and
oFPC ∈ OFPC are the outputs of the Background
Check decision and the Financial Position Check
decision respectively. For both the Background Check
and the Financial Position Check decision, invoca-
ble decision services can be defined as well, e.g. DSBC

as a tuple ({oCIV , pr}, OBC) and DSFPC as a tu-
ple ({fs, fi}, OFPC). Hence, it can be argued that the
Risk Level Service DSRL2

is a composition of the
Background Check Service DSBC , the Financial
Position Check ServiceDSFPC , and some additional
decision logic encapsulated in the module of the Risk
Level decision node.

7 IMPLICATIONS OF DAAS FOR PROCESS AND
DECISION INTEGRATION

The advantages of the separation of modelling and mining
concerns are emphasised in literature [1]–[3], [5], [22], [25],
[28]. These works especially highlight the scalability, main-
tainability, flexibility, and understandability of decisions and
processes. However, they do not provide a clear design or
framework on how to systematically address these issues
and how to guarantee a sound SoC by design. In this section
we will discuss these advantages of separating the concerns
and we will relate them to the DaaS design.

7.1 Scalability

A straightforward advantage of separating the process and
decision modelling concerns is scalability. Given the fact
that, when separating concerns, the decision logic is not
modelled together with the process, the decision logic in
the decision model can be concurrently invoked by many
clients. This promotes the reusbility of the decisions and the
underlying decision logic and thus creates scale advantages.

In the DaaS design in Figure 2, it is clear that multiple
processes from the process layer can call upon a number of
services simultaneously and that all the services can access
the decision model at the same time. In cases where the
modelling concerns are not separated, e.g. a typical way of
modelling the process and decision concerns in one model
is using an intricate setup of gateways, the decisions and the
decision logic are embedded in the process, thus providing
no opportunities for the reuse of logic and decisions and
no possibilities for parallel invocation and enactment of
the decisions. The DaaS design in Figure 2 clearly avoids
these convoluted situations, as the decision logic is stored
in the decision model as part of the decision layer, while
the control flow is part of the process layer. The two do not
convolute each other, however, the decisions can easily be
invoked by any process as long as the process is able to
provide the right input set to the interface of the decision
service. That way, multiple decisions can access the decision

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 9

model and make use of the decision logic concurrently.
Hence, the DaaS design provides the suitable circumstances
for the scalability of decision enactment and logic reuse.

7.2 Maintainability
Another clear advantage of SoC is maintainability. Take
for example the situation of a convoluted process-decision
model where decisions are hard coded into gateways and
the control flow of the process: if either the process or
a decision changes, the convoluted model needs to be
adapted. This creates a need for constant maintenance of the
convoluted process-decision model. When adopting the SoC
paradigm, this issues of maintainability and convolution of
models are circumvented.

In the DaaS design in Figure 2, the decisions and the
processes are not convoluted as they are separated into dif-
ferent modules of their respective layers. If parts of a process
change in the process layer, the decisions in the decision
layer are not affected. This corresponds to a decision-first
approach, as opposed to the process-first approach that is
present a convoluted process-decision model with cascading
gateways. The maintenance of the process does not affect
the underlying decisions. On the other hand, if parts of the
decision model change, some services and processes will
need to adapt to the changes in order to be able to invoke
said decisions correctly. However, not all the services and
processes will need to undergo adaptations; only the ones
that are directly affected by the decisions that were modi-
fied. Other services and processes that do not pertain to the
adjusted decision will still function properly without any
need for adaptation. Noteworthy is that in the case of the
DaaS design, where the modelling concerns are separated,
all the decision logic is concentrated in the decision model
as part of the decision layer. If anything concerning the de-
cisions needs to change, the adaptation happens only in one
place, i.e. the decision model. However, if decisions change
in the process-first approach, every process containing those
decisions will need to adapt as well. Hence, DaaS advances
the maintainability of both processes and decisions.

7.3 Flexibility
Flexibility refers to the ad-hoc reuse of decisions and deci-
sion logic, as well as the flexibility in adapting and changing
the underlying decision logic. Clearly, the process-first ap-
proach where modelling concerns are not separated does
not support flexibility in any way: no reuse of logic is
possible, since the logic is embedded in the control flow
of the process and not stored in a separate module; and
adapting the decision logic is rather cumbersome, since the
logic is dispersed across multiple processes and hidden
in convoluted process paths. Therefore, the process-first
approach shows little flexibility in general.

In the DaaS design in Figure 2, the concerns are sepa-
rated into their respective layers, and as explained earlier,
the separated decision logic can be invoked ad-hoc by any
client from the process layer conforming to the interface
needed to invoke a decision service and consequently the
necessary decision. Besides, changing the underlying deci-
sion logic is less of a burden, since the logic is concentrated
in a single model, rather than dispersed across a process or

even across multiple distributed or collaborating processes.
Hence, the DaaS design offers a higher level of flexibility,
both in terms of reusability of decisions and decision logic,
as well as in terms of flexibility in logic adaptation.

7.4 Complexity and Understandability
The complexity and understandability of models is of
particular importance. When modelling concerns are not
separated the process quickly becomes overly complicated
due to the cascading gateways. This is especially the case
in knowledge-intensive processes where a lot of decisions
need to be made based on a certain underlying logic. Often
the term spaghetti-like processes [44] is used to refer to this
phenomenon of intricate and convoluted control flows.

When opting for a DaaS design, the decisions and the
decision logic are externalised and encapsulated in a sep-
arate layer as part of the decision model. Therefore, the
control flow of the process is alleviated from the burden of
representing the different decision paths. As a consequence,
the actual process becomes visible and more understand-
able. However, because of the fact that decisions have been
externalised, the process is still burdened with data manage-
ment and data propagation, i.e. the process is responsible
for the collection and propagation of the data needed for
the invocation of a decision service. The decision model
does not concern itself with these issues of data propagation
and data management. It simply transforms the input data,
obtained from the process through the decision service,
into a decision output which is sent back to the invoking
process. Hence, in the DaaS design, process complexity in
terms of control flow will decrease, however, the complexity
of data management is likely to increase. Thus data man-
agement and data propagation within processes becomes
of paramount importance. Besides, when separating the
decisions from the process, the overall view of the entire
problem might be clouded, as processes take abstraction
of decisions and simply approach decisions as a black box
that answers to input, without concerning themselves with
the underlying decision logic. Therefore, when applying the
DaaS design, the emphasis should be put on the decisions
and on a decision-first approach. The process might take
abstractions from decisions and conceive them as a black
box, however, everything stands or falls with the correct
definition of the decisions, as both the decision services
and the processes need to heavily rely on the decisions to
function properly.

8 EVALUATION OF DAAS DESIGN ON A REAL-LIFE
ENRICHED EVENT LOG

In this section, the DaaS approach is illustrated with au-
tomatically discovered decision services from an enriched
event log. Literature on automatic discovery of DMN deci-
sion models from event logs has seen a considerable surge
over the past few years [25], [28], [29]. The work in [25]
is particularly interesting as it addresses decisions within a
processes over multiple activities or even across the entire
process execution span, rather than containing decisions to
local decision points in the process. This Process Mining
Integrating Decisions (P-MInD) framework provides inter-
esting insights in the interaction between processes on the

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 10

one hand, and data, rules, and decisions on the other. We
capitalise on the findings in [25] by adapting the technique
in order to unveil decision services within processes, which
will better explain the interaction between the processes and
the decisions. In the remainder of this section we explain the
changes applied to P-MInD needed to acknowledge decision
services, thus rendering the discovered models consistent
with the SOA paradigm. We call this approach the Service-
Oriented Architecture Process Mining Integrating Decisions
(SOAP-MInD). This section is concluded with a real-world
example of DaaS-compatible decision services derived from
an enriched event log containing information on a bank loan
application and approval process.

8.1 SOAP-MInD
While P-MInD [25] discovers holistic decision models from
event logs, it does not clearly illustrate how the process
model communicates with its underlying decision model.
In order to clarify the decision invocations by the process it
is necessary to explain which decisions the process invokes
at which specific points in the process. Additionally, it is
required to know how the process invokes the desired
decision, i.e. with which input data objects. In other words,
for each invoked decision D the decision services DSD that
are called upon by the process need to be identified. P-MInD
abstracts from the idea of services and is only concerned
with the decision layer and process layer in Figure 2. How-
ever, to understand the interactions between the process and
decision layers, the specific invocations of the process layer,
i.e. the service calls, need to be acknowledged. Thus, we
expand P-MInD to Service-Oriented Architecture Process
Mining Integrating Decisions (SOAP-MInD), a framework
for mining integrated decision services and the respective
process traces where they are invoked. SOAP-MInD builds
further on the principles of P-MInD and we refer to that
seminal work on holistic decision modelling for details
[25]. In what follows, we briefly describe the adaptation
of P-MInD to render SOAP-MInD. SOAP-MInD was made
compatible with the ProM framework as it is available as a
ProM plugin, thus making the code open source1.

The basis for both the P-MInD and SOAP-MInD ap-
proaches lies in the classification of activities according to
Definition 7. This classification aides in understanding the
interaction between the decision services and the decision
service interface on the one hand, and the process itself on
the other. Clearly, the set of operational activities (Ao) is not
involved in decision making and is therefore irrelevant for
the decision service layer and the decision service interface.
Administrative activities have the purpose to introduce
input data objects for decisions and are therefore relevant for
the decision service layer and interface. An administrative
activity a ∈ Aa will provide an output set O(a) which can be
used as inputs for future decision activities in the process. A
decision activity d ∈ Ad will receive an input set I(d) which
is composed of the outputs of previously executed admin-
istrative activities and/or outputs of previously executed
decision activities. The decision activity d ∈ Ad will call
upon the decision service DSD through the decision service
interface IFD in order to invoke underlying decision D.

1. https://svn.win.tue.nl/repos/prom/Packages/PMinD/

Algorithm 1 captures how both the the decisions are
stored and possible decision services are identified. First, the
influence of activities over variables is identified through
checking which shifts exist in an event log, i.e., whether
the value of a variable v changed during an activity a
compared to its previous occurrence in a trace. This is taken
as evidence that the activity influences v, and both are
stored as potential decisions (lines 2-3). Next, all potential
decisions are checked for their occurrence, to see whether
a certain decision happens (enough times, see mintraces)
before another (ai < aj), and hence whether it might have
an influence over each other’s variables (lines 4-5). Note
that this allows for decisions in which ai serves as input
to aj , and vice versa. For all traces where this is the case,
the correlation between both variables is calculated to see
whether there is a link between both decisions (line 6).
The variable/activity pair (VP) occurring the latest ((vj , aj))
is stored as a potential decision with inputs and outputs
including the variable(s) of the earlier occurring activity ai.
This happens until all these connections are made, and the
full input set of aj is established. Next, all different decision
sequences that happen in all traces are distilled, depending
on what decision-relations were established through the
correlations. After this, all possible decision services are
discovered as well, in set DS. For each cluster of decisions,
the values attached to the corresponding variable/activity
pair are used to train a predictive model Ld, completing the
decision (lines 10-13). More details on the extraction of the
shifts, as well as correlation and thresholds are discussed in
[25].

Algorithm 1 Decision service detection in an event log
1: procedure FIND DECISION SERVICES(event log L)
2: Retrieve all shifts in the event log, i.e., all activities a ∈ A for which a

variable’s v value changes during its execution
3: V P ← (v, a), a potential candidate decision D where v ∈ Oda and

a ∈ Ad

4: for (vi, ai), (vj , aj) ∈ V P × V P do
5: if |{t ∈ L | ai, aj ∈ t ∧ai < aj ∧vi ∈ I(vj)}| > mintraces then
6: if corr(vi, vj) > corrthres then
7: D ← d = (Id ← vi, Od = vj , L = ∅) . See Def. 3
8: DSd ∈ DS ← (Id, Od)

9: Cluster traces in set CT where the same subsets DSCT
⊆ DSd are

present
10: for c ∈ CT do
11: for DSd ∈ DSCT

do
12: train predictive model Ld over Id to predict Od

13: D ← d = (Id, Od, Ld)

Hence, the trace clusters are grouped based on the
decision services they invoke. Note that in Definition 5, a
decision service DSd of a decision d was defined as a tuple
(sd, Od), where sd ∈ dirsd is a set of input data sufficient to
invoke the decision d and Od the output set representing the
decision outcomes of d. The traces in this step of the SOAP-
MInD approach are clustered based on the set of input data
sd ∈ dirsd needed to invoke a decision d and to obtain
a decision outcome o ∈ Od. Hence, the clusters present
different execution sequences in which the decision services
were invoked through the interfaces.

8.2 Decision Service Compliance Verification

SOAP-MInD renders two models per trace cluster of vari-
able shift sequences: a process model and a decision service

https://svn.win.tue.nl/repos/prom/Packages/PMinD/

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 11

model. This offers opportunities of decision service compli-
ance verification, i.e. per trace cluster it can be investigated
whether the discovered process model is able to correctly
invoke the services pertaining to that same trace cluster.

Naively it can be stated that the process model either
complies with the decision service or it does not comply
with the service, as defined in the decision Service Adher-
ence Criterion (SAC) in Definition 9. If the process model
complies with the decision service, it inherently provides
the necessary decision input requirements set sD ∈ dirsD
needed for the invocation of decision service DSD pertain-
ing to decision D. Clearly, this input requirements set sD
must be readily available to the process before the point in
the process where the decision service DSD is invoked. That
way, the process can correctly provide the decision service
interface IFD with its corresponding input data. Conse-
quently, the decision service DSD will invoke decision D
and an outcome o ∈ OD will be returned to the process
through the interface IFD. However, if no valid decision
input requirements set sD ∈ dirsD is available in the
process at the time when the process invokes decision D by
calling upon its decision service DSD through the interface
IFD, the process is not complying with the decision service.
Hence, no crisp decision outcome o ∈ OD of decision D will
be returned to the process by the decision model through the
decision service DSD and the decision interface IFD.

This is a rather naive approach towards decision service
compliance verification, as decision service invocations are
only considered to enact an underlying decision if the input
data provided is both complete and correct. However, deci-
sion reasoning on incorrect and incomplete data can be ap-
plied as well. If for instance one input data element is miss-
ing from the decision input requirements set sD ∈ dirsD ,
the decision service DSD might still be able to invoke its
underlying decision model and provide all possible decision
outcomes, given the known values is sD and all possible
values for the missing data element in sD. The process
would then, instead of one decision outcome, be provided
with a set of possible decision outcomes ODM

∈ OD . As a
result, the process could still be able to continue properly
after the decision enactment and reach a sound conclusion,
given the correct interpretation of the decision outcomes
in the process flow. Hence, the situation is more nuanced
as it can be argued that a process can partially comply
with a decision service as well, i.e. the process does not
fully comply with the decision service in terms of input
requirements sets, data hierarchies, and data propagation,
however, given the data that the process provides to the
decision service, a set of decision outcomes might still be
reachable and useful for further process enactment. In that
case, the decision Service Adherence Criterion (SAC) of
Definition 9 can be relaxed towards a weaker version of
decision service compliance.

8.3 Illustration and Discussion

In this subsection, we illustrate the DaaS design by applying
the SOAP-MInD framework to a real-life enriched event
log containing information on a bank loan application and
approval process, made available for the 2017 BPI Chal-

lenge2. The log was filtered to a time window containing
data between 26 August 2016 and 28 October 2016, i.e. 9
weeks of data. The filtered log contains 77,317 events over
4,382 cases. No additional pre-processing was performed
and the unaltered log was used to create the output. Figure
3 provides two decision services that were extracted from
the log. The decision services pertain to two trace clusters.
Figure 4 depicts a part of the mined trace cluster relating to
the rightmost decision service from Figure 4. Due to page
restrictions, the full mined process models representing the
trace clusters have been made available online3.

The leftmost decision service in Figure 3 is invoked in
the trace cluster containing 1,125 traces. In these traces,
the Complete application decision has to be made. In
order for the service to invoke this decision, the outcomes of
two subdecisions need to be provided by the process to the
decision service. The outcomes of the Call incomplete
files and Call after offers decisions form the in-
put requirement set needed for the correct invocation of
the Complete application decision. Hence, this DMN
model represents a decision service that is invoked in the
trace cluster it pertains to. Note that in this model the
information requirement arrows are coloured black, indi-
cating that the trace cluster conforms to the discovered
decision service, i.e. the Service Adherence Criterion (SAC)
in Definition 9 is adhered to in terms of input requirements
for the decisions that are invoked. Thus, the order of the
decision activities in the process model conforms to the
hierarchy as depicted in the decision service model.

On the other hand, the rightmost decision service in
Figure 3 is not adhered to by the trace cluster which invokes
that decision service. Notice that the arrows in this model
are coloured red to indicate that the order of decision activi-
ties in the process model, representing the 625 traces cluster,
violates the decision hierarchy demanded by the decision
service model. Namely, the service requires the outputs of
the Application cancelled and Call after offers
decisions in order to invoke the Complete application
decision. As shown in the corresponding process model in
Figure 4, and the full process model that is provided online,
this hierarchy is not respected and at the time of invocation
of the decision service in the process, the necessary input
requirement set is not available to the process. As a conse-
quence, the process can not call upon the decision service
in a proper manner and hence the decision model can not
enact the invoked decision without the relevant input data.
Thus, no sound decision outcome will be provided to the
process, and the process might not be able to resume.

Next to the input requirement arrows in Figure 3 the
number of traces that invoke the decision service are de-
picted. These traces are clustered according to the deci-
sion input and output propagation, as discussed in Section
8.1. Hence, the data propagation within the trace indicates
which input requirement sets are passed on within the
process and thus which decision services are invoked at
specific points in the process. Thus, service-orientation and
SoC provide a view into the intersection and interplay

2. https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-
86ae4c7a310b

3. https://feb.kuleuven.be/public/u0111379/TSC/

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://feb.kuleuven.be/public/u0111379/TSC/

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 12

W_Complete application->org:resource

W_Call incomplete files->Action

1125

W_Call after offers->Action

1125

W_Complete application->org:resource

A_Cancelled->org:resource

625

W_Call after offers->Action

625

Figure 3: Discovered decision services.

A_Create Application A_Submitted

W_Assess potential fraud

W_Shortened completion

W_Handle leads

A_Concept

A_Accepted

W_Complete application

W_Call after offers

O_Create Offer O_Created
O_Sent (mail and online)

A_Complete

W_Call incomplete files
W_Validate application A_Validating O_Returned

A_Incomplete A_Cancelled

O_Cancelled

Figure 4: Fragment of the trace cluster not adhering to the decision service.

between data and processes, process modelling and deci-
sion modelling, process mining and classical data mining.
Capitalising on the DaaS design, the advantages inherent to
service-orientation can be exploited when separating multi-
perspective modelling and mining tasks, such as the process
perspective and the decision perspective.

9 EVALUATING DAAS SOA MATURITY

Maturity models can be used to assess the maturity of a
system and thus to provide a roadmap towards a suc-
cessful implementation of the system. For the purpose of
SOA adoption, SOA maturity models have been proposed
in literature. However, [45] point out that existing SOA
maturity models are in most cases developed by vendors
of SOA solutions and that they are therefore dependent
on the specific products they are designed for. Hence, they
propose an independent SOA Maturity Model (iSOAMM),
i.e., a SOA maturity model that is independent of the used
technologies and products. They develop SOA maturity
model levels which are oriented at the capability of an SOA
to support business processes. This means that a SOA with
higher maturity possesses more features, which are useful
within business processes. An overview of the iSOAMM
maturity levels for the architectural viewpoint is provided
in Figure 5.
Level 1: Trial SOA: This level recognises the existence of
services. However, different services use incompatible tech-
nologies and standards. Hence, the services exhibit a lack of
standardisation and they form a collection of unconnected
service islands and not a true service-oriented architecture.
Level 2: Integrative SOA: This maturity level introduces a
standardised service interface such that a high-level applica-
tion, e.g., a business process, can use the interface to access
the different services that are provided by the system.
Level 3: Administered SOA: This maturity level introduces
service orchestration, i.e., it allows for composing several
existing fine-grained services into a single higher order

composite service. This modular service approach promotes
the reuse and manageability of service components.
Level 4: Cooperative SOA: This level supports the chore-
ography of processes, i.e., cooperation between processes.
Additionally, human users are often vital to process execu-
tion support. Hence, choreography can be employed to close
the gap between services on the one hand, and human users
and (external) business processes on the other.
Level 5: On Demand SOA: In this maturity level, the static
binding of the services is replaced with a dynamic binding
of services at runtime, i.e., the service is looked up by name
at runtime.

Figure 5: Independent SOA Maturity Model (iSOAMM) [45]

In what follows, we briefly explain the adherence to
each maturity level and we apply the iSOAMM to the DaaS
design proposed in this paper. The DaaS design conforms
to maturity level 1 as it provides services. Since the design
provides a standardised service interface in the form of
Definition 6, and since services are developed according
to Definition 5, using the same standard, i.e., DMN, the
DaaS design conforms to maturity level 2 as well. Given
the modular design of DMN decision models, as defined in
Definitions 1 and 2, the designed decision services exhibit

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 13

modularity as well as they provide opportunities for deci-
sion service composition and decomposition as explained
in Subsection 6.9. This ensures conformance to maturity
level 3. Adherence to maturity level 4, i.e., cooperation
between processes and human user support of processes, is
not explicitly included in the DaaS design, as collaborative
business processes were considered out of scope in this
paper. However, the DaaS design allows for adding another
layer that is concerned with communication between the
process in the DaaS design and human actors or external
processes. Furthermore, the process layer inherently allows
for choreography between process and human users by
employing pools and lanes within the process models. Fi-
nally, the DaaS design adheres to maturity level 5 as well,
since it provides a decision on demand service to business
processes, i.e., the services are invoked at runtime by the
process by providing the decision service name that the
process wants to invoke, together with the decision service
input requirements set necessary for the invocation of the
service.

10 LIMITATIONS OF THE DAAS DESIGN

Organising process-aware information systems (PAIS) ac-
cording to the SOA DaaS design requires system redesign.
This induces limitations and obstacles as the processes in the
legacy system did not follow the SOA and SoC paradigms.
First, the decisions embedded in the process flows need to
be externalised into a separate DMN decision model. This
leads to the introduction of additional complexity because
of new types of models that are becoming part of the
system, i.e., the decision models. Furthermore, the business
processes need to undergo redesign [46] to eliminate the de-
cision construct that were present in the legacy process mod-
els. This is done to avoid ambiguity and overlap between
decision constructs in the process model and the decision
specified in the decision model. As such, the SoC paradigm
between processes and decisions is instated. Additionally,
the redesigned process models need to be compatible with
the newly established decision models and hence the de-
cision services derived from them. Thus, decision service
consistency constraints apply according to the service ad-
herence criterion when designing processes that need to
call upon the decision logic through the decision services.
Hence, a more complicated data propagation management
within processes is inherent to the DaaS design, as opposed
to designs where the SoC paradigm is not respected.

11 CONCLUSION AND FUTURE WORK

In this paper we have contributed a SOA design for process-
and decision-aware information systems, enhancing the un-
derstanding of the interaction between decisions and pro-
cesses according to the SoC paradigm. The provided frame-
work consists of a process layer, interface, service layer,
and decision layer, making possible the implementation
of decisions as services, or Decision as a Service (DaaS).
The processes can access the decisions through this DaaS
architecture on demand, which we named Decision on
Demand (DoD). Furthermore, this paper formally defines
the key concepts of DaaS and DoD and the proposed design

is evaluated against key SOA characteristics, elucidating
the benefits in terms of service abstraction and usefulness
of the DaaS/DoD mechanism. Furthermore, implications
of the proposed framework regarding integrated process-
decision modelling are elaborated upon as well, demonstrat-
ing that the DaaS design greatly benefits the SoC between
processes and decisions, thus advancing scalability, main-
tainability, flexibility and understandability. Additionally,
we illustrated that the proposed DaaS design exhibits itself
in real-life event logs by applying automatic decision service
discovery on an enriched event log on a real-life bank loan
application and approval process. Finally, the DaaS design
was assessed in terms of SOA maturity, illustrating that the
design conforms to the highest maturity levels.

In future work, it will be investigated how the proposed
architecture can aid in solidifying the SoC in the modelling
and mining of decisions and processes. Moreover, the mod-
elling complexity of integrated models will be investigated
and evaluated based on empirical studies. Finally, decision
services can be of particular interest for Internet-of-Things
(IoT) application areas [19], where multiple actors need to
access a shared decision logic.

REFERENCES

[1] J. Gordijn, H. Akkermans, and H. Van Vliet, “Business modelling
is not process modelling,” in Conceptual modeling for e-business and
the web. Springer, 2000.

[2] J. Vanthienen, F. Caron, and J. De Smedt, “Business rules, decisions
and processes: five reflections upon living apart together,” in
Proceedings SIGBPS Workshop on Business Processes and Services
(BPS’13), 2013, pp. 76–81.

[3] T. Biard, A. Le Mauff, M. Bigand, and J.-P. Bourey, “Separation
of decision modeling from business process modeling using new
decision model and notation(dmn) for automating operational
decision-making,” in Working Conference on Virtual Enterprises.
Springer, 2015, pp. 489–496.

[4] H. van der Aa, H. Leopold, K. Batoulis, M. Weske, and H. A.
Reijers, “Integrated process and decision modeling for data-driven
processes,” in Business Process Management Workshops, ser. LNBIP,
vol. 256. Springer, 2015, pp. 405–417.

[5] F. Hasić, L. Devadder, M. Dochez, J. Hanot, J. De Smedt, and
J. Vanthienen, “Challenges in refactoring processes to include
decision modelling,” in Business Process Management Workshops,
ser. LNBIP. Springer, 2017.

[6] F. Hasić, J. De Smedt, and J. Vanthienen, “A service-oriented ar-
chitecture design of decision-aware information systems: Decision
as a service,” in On the Move to Meaningful Internet Systems, ser.
Lecture Notes in Computer Science. Springer, 2017.

[7] F. Hasić, L. Vanwijck, and J. Vanthienen, “Integrating processes,
cases, and decisions for knowledge-intensive process modelling,”
in International Workshop on Practicing Open Enterprise Modeling.
CEUR, 2017.

[8] A. Zarghami, B. Sapkota, M. Z. Eslami, and M. van Sinderen, “De-
cision as a service: Separating decision-making from application
process logic,” in EDOC. IEEE, 2012, pp. 103–112.

[9] A. Bock, H. Kattenstroth, and S. Overbeek, “Towards a modeling
method for supporting the management of organizational decision
processes,” in Modellierung, ser. LNI, vol. 225. GI, 2014, pp. 49–64.

[10] F. Boumahdi, R. Chalal, A. Guendouz, and K. Gasmia,
“Soaˆ\mathrm {+ d}: a new way to design the decision in
soabased on the new standard decision model and notation
(dmn),” Service Oriented Computing and Applications, vol. 10, no. 1,
pp. 35–53, 2016.

[11] M. Mircea, B. Ghilic-Micu, and M. Stoica, “An agile architec-
ture framework that leverages the strengths of business intel-
ligence, decision management and service orientation,” Business
Intelligence-Solution for Business Development, 2011.

[12] E. Kornyshova and R. Deneckère, “Decision-making ontology for
information system engineering,” in ER, ser. LNCS, vol. 6412.
Springer, 2010, pp. 104–117.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , DATE 14

[13] SAP, “Decision service management,” https://www.sap.com/
products/decision-service-management.html.

[14] F. Hasić, J. De Smedt, and J. Vanthienen, “An Illustration of
Five Principles for Integrated Process and Decision Modelling
(5PDM),” KU Leuven, Tech. Rep., 2017.

[15] J. Hu, G. Aghakhani, F. Hasić, and E. Serral, “An evaluation
framework for design-time context-adaptation of process mod-
elling languages,” in Practice of Enterprise Modelling (PoEM), ser.
Lecture Notes in Computer Science. Springer, 2017.

[16] OMG, “Decision Model and Notation 1.1,” 2016.
[17] J. M. Perez-Alvarez, M. T. Gomez-Lopez, L. Parody, and R. M.

Gasca, “Process instance query language to include process per-
formance indicators in dmn,” in 20th International Enterprise Dis-
tributed Object Computing Workshop. IEEE, 2016, pp. 1–8.

[18] L. Ochoa and O. González-Rojas, “Analysis and re-configuration
of decision logic in adaptive and data-intensive processes (short
paper),” in OTM Confederated International Conferences ”On the
Move to Meaningful Internet Systems”. Springer, 2017, pp. 306–313.

[19] F. E. Horita, J. P. de Albuquerque, V. Marchezini, and E. M.
Mendiondo, “Bridging the gap between decision-making and
emerging big data sources: an application of a model-based frame-
work to disaster management in brazil,” Decision Support Systems,
vol. 97, pp. 12–22, 2017.

[20] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for ex-
pressing the relationships between multiple views in requirements
specification,” IEEE Transactions on Software Engineering, vol. 20,
no. 10, pp. 760–773, 1994.

[21] IBM, “Php object orientation: Separating concerns, building
more modular php applications,” https://www.ibm.
com/developerworks/library/os-php-objectorient/os-php-
objectorient-pdf.pdf, 2009.

[22] F. Hasić, J. De Smedt, and J. Vanthienen, “Augmenting processes
with decision intelligence: Principles for integrated modelling,”
Decision Support Systems, vol. 107, pp. 1 – 12, 2018.

[23] W. Van Der Aalst, “Service mining: Using process mining to
discover, check, and improve service behavior,” IEEE Transactions
on Services Computing, vol. 6, no. 4, pp. 525–535, 2013.

[24] W. van der Aalst and E. Damiani, “Processes meet big data:
Connecting data science with process science,” IEEE Transactions
on Services Computing, vol. 8, no. 6, pp. 810–819, 2015.

[25] J. De Smedt, F. Hasić, and J. Vanthienen, “Towards a holistic
discovery of decisions in process-aware information systems,”
in Business Process Management, ser. Lecture Notes in Business
Information Processing. Springer, 2017.

[26] F. Hasić, J. De Smedt, and J. Vanthienen, “Developing a modelling
and mining framework for integrated processes and decisions,”
in OTM Confederated International Conferences ”On the Move to
Meaningful Internet Systems”. OTM Workshops, ser. Lecture Notes
in Computer Science, vol. 10697. Springer, 2017, pp. 259–269.

[27] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. van der Aalst,
“Data-driven process discovery-revealing conditional infrequent
behavior from event logs,” in International Conference on Advanced
Information Systems Engineering. Springer, 2017, pp. 545–560.

[28] E. Bazhenova, S. Buelow, and M. Weske, “Discovering decision
models from event logs,” in International Conference on Business
Information Systems. Springer, 2016, pp. 237–251.

[29] J. Campos, P. Richetti, F. A. Baião, and F. M. Santoro, “Discovering
business rules in knowledge-intensive processes through decision
mining: an experimental study,” in International Conference on
Business Process Management. Springer, 2017, pp. 556–567.

[30] S. Goedertier and J. Vanthienen, “Compliant and flexible busi-
ness processes with business rules,” in Proceedings of the CAISE
Workshop on Business Process Modelling, Development, and Support
BPMDS, 2006.

[31] J. Bae, L. Liu, J. Caverlee, L.-J. Zhang, and H. Bae, “A similarity
measure for process mining in service oriented architecture,” Web
Services Research for Emerging Applications: Discoveries and Trends:
Discoveries and Trends, pp. 87–103, 2010.

[32] W. Wei, M. Indulska, and S. Sadiq, “Guidelines for business rule
modeling decisions,” Journal of Computer Information Systems, pp.
1–11, 2017.

[33] J. Bae, L. Liu, J. Caverlee, L.-J. Zhang, and H. Bae, “Development of
distance measures for process mining, discovery, and integration,”
International Journal of Web Services Research, vol. 4, no. 4, p. 1, 2007.

[34] W. Wang, M. Indulska, and S. Sadiq, “Factors affecting business
process and business rule integration,” in Australian Conference on
Information Systems, 2014.

[35] C. Nagl, F. Rosenberg, and S. Dustdar, “Vidre–a distributed
service-oriented business rule engine based on ruleml,” in 10th
IEEE International Enterprise Distributed Object Computing Confer-
ence (EDOC). IEEE, 2006, pp. 35–44.

[36] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, pp.
75–105, 2004.

[37] G. Bieber and J. Carpenter, “Introduction to service-oriented pro-
gramming (rev 2.1),” OpenWings Whitepaper, April, 2001.

[38] T. Erl, Soa: principles of service design. Prentice Hall Press, 2007.
[39] H. Chesbrough and J. Spohrer, “A research manifesto for services

science,” Communications of the ACM, vol. 49, no. 7, pp. 35–40, 2006.
[40] T. Erl, SOA design patterns. Pearson Education, 2008.
[41] IBM, “Soa fundamentals in a nutshell,” https://www.ibm.com/

developerworks/webservices/tutorials/ws-soa-ibmcertified/ws-
soa-ibmcertified.html, IBM.

[42] M. H. Valipour, B. AmirZafari, K. N. Maleki, and N. Daneshpour,
“A brief survey of software architecture concepts and service ori-
ented architecture,” in International Conference on Computer Science
and Information Technology. IEEE, 2009, pp. 34–38.

[43] IBM, “New to soa and web services,” https://www.ibm.com/
developerworks/webservices/newto/index.html.

[44] C. W. Günther and W. M. Van Der Aalst, “Fuzzy mining–adaptive
process simplification based on multi-perspective metrics,” in
International conference on business process management. Springer,
2007, pp. 328–343.

[45] C. Rathfelder and H. Groenda, “Isoamm: An independent soa
maturity model,” in IFIP International Conference on Distributed
Applications and Interoperable Systems. Springer, 2008, pp. 1–15.

[46] F. Hasić, J. De Smedt, and J. Vanthienen, “Redesigning processes
for decision-awareness: Strategies for integrated modelling,” in
2018 11th International Conference on the Quality of Information and
Communications Technology (QUATIC). IEEE, 2018, pp. 247–250.

Faruk Hasić is a PhD candidate in the Depart-
ment of Information Management, Modelling and
Simulation at KU Leuven. His interests lie in
information systems engineering with an empha-
sis on the integrated process and decision engi-
neering, with applications in the IoT domain. His
research has been published in leading journals
and conferences such as Decision Support Sys-
tems, International Conference on Business Pro-
cess Management, and the International Confer-
ence on Cooperative Information Systems.

Johannes De Smedt obtained his PhD at KU
Leuven and is currently a lecturer at the Uni-
versity of Edinburgh. His main interests include
flexible business process modelling and mining
and temporal item set mining. His research was
published in leading journals such as Decision
Support Systems, Expert Systems with Appli-
cations, and conferences such as Conference
on Advanced Information Systems Engineering,
and International Conference on Cooperative In-
formation Systems.

Seppe vanden Broucke is an Assistant Pro-
fessor at the Leuven Institute for Research on
Information Systems (LIRIS) in the Department
of Decision Sciences and Information Manage-
ment at KU Leuven. Seppes research interests
include business data mining and analytics, ma-
chine learning, process management, and pro-
cess mining. His work has been published in
well-known international journals and presented
at top-tier computer science conferences.

Estefanı́a Serral is an Assistant Professor at KU
Leuven. She has a highly international and inter-
disciplinary profile, with research in topics such
as Internet of Things, ubiquitous business pro-
cesses, and context-adaptive systems. In 2018,
she was an Assistant Professor at TU/e (Nether-
lands). From 2012 to 2014, she was at the TU of
Vienna (Austria). Until 2012, she worked at the
TU of Valencia (Spain). Prof. Serral has many
publications in high-ranking conferences and
journals, e.g., CAiSE, ER, UIC, ESWA, SOSYM.

https://www.ibm.com/developerworks/library/os-php-objectorient/os-php-objectorient-pdf.pdf
https://www.ibm.com/developerworks/library/os-php-objectorient/os-php-objectorient-pdf.pdf
https://www.ibm.com/developerworks/library/os-php-objectorient/os-php-objectorient-pdf.pdf
https://www.ibm.com/developerworks/webservices/tutorials/ws-soa-ibmcertified/ws-soa-ibmcertified.html
https://www.ibm.com/developerworks/webservices/tutorials/ws-soa-ibmcertified/ws-soa-ibmcertified.html
https://www.ibm.com/developerworks/webservices/tutorials/ws-soa-ibmcertified/ws-soa-ibmcertified.html
https://www.ibm.com/developerworks/webservices/newto/index.html
https://www.ibm.com/developerworks/webservices/newto/index.html

	Introduction
	Motivation and Related Work
	Methodology
	Preliminaries
	Decision as a Service (DaaS)
	Compliance with the Principles of SOA
	Discoverable and Dynamically Bound Services
	Standardised Service Communication and Loose Coupling
	Service Standardisation
	Service Location Transparency
	Service Abstraction
	Service Statelessness
	Service Longevity
	Service Reusability
	Service Composability

	Implications of DaaS for Process and Decision Integration
	Scalability
	Maintainability
	Flexibility
	Complexity and Understandability

	Evaluation of DaaS Design on a Real-Life Enriched Event Log
	SOAP-MInD
	Decision Service Compliance Verification
	Illustration and Discussion

	Evaluating DaaS SOA Maturity
	Limitations of the DaaS Design
	Conclusion and Future Work
	References
	Biographies
	Faruk Hasic
	Johannes De Smedt
	Seppe vanden Broucke
	Estefanía Serral

