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Summary

Biomolecular simulation is a diverse and growing area of research, making important contri-
butions to structural biology and pharmaceutical research (Huggins et al., 2019). Within the
community there are a several significant and widely used software packages that have evolved
from within various research groups over the past 20 or more years. For example, the molecu-
lar dynamics packages AMBER (Case et al., 2005), GROMACS (Abraham et al., 2015), and
NAMD (Phillips et al., 2005), which are all capable of running biomolecular simulations for
systems consisting of hundreds of thousands of atoms and can be run on hardware ranging
from laptops, to graphics processing units (GPUs), to the latest high-performance comput-
ing clusters. Since different software packages were developed independently, interoperability
between them is poor. In large part this is the result of major differences in the supported
file formats, which makes it difficult to translate the inputs and outputs of one program to
another. As a consequence, expertise in one package doesn’t immediately apply to another,
making it hard to share methodology and knowledge between different research communi-
ties, as evidenced, for instance, by a recent study on reproducibility of relative hydration free
energies across simulation packages (Loeffler et al., 2018). The issue is compounded by the
increasing use of biomolecular simulations as components of larger scientific workflows for bio-
engineering or computer-aided drug design purposes. A lack of interoperability leads to brittle
workflows, poor reproducibility, and lock in to specific software that hinders dissemination of
biomolecular simulation methodologies to other communities.
Several existing software packages attempt to address this problem: InterMol (Shirts et al.,
2016) and ParmEd (Swails, Jason, 2010) can be used to read and write a wide variety of
common molecular file formats; ACPYPE (Sousa da Silva & Vranken, 2012) can generate
small molecule topologies and parameters for a variety of molecular dynamics engines; MDTraj
(McGibbon et al., 2015) and MDAnalysis (Gowers et al., 2016) support reading, writing, and
analysis of different molecular trajectory formats; the Atomic Simulation Engine (ASE) handles
a wide variety of atomistic simulation tasks and provides interfaces to a range of external
packages; and the Cuby (Řezáč, 2016) framework allows access to a range of computational
chemistry functionality from external packages, which can be combined into complex workflows
through structured input files. Despite their utility, the above packages either have a restricted
domain of application, e.g. trajectory files, or require different configuration options or scripts
to interface with different external packages. It is not possible to write a single script that is
independent of the underlying software packages installed on the host system.
Within the Collaborative Computational Project for Biomolecular Simulation (CCPBioSim),
we have attempted to solve this problem via the introduction of an interoperable framework,
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BioSimSpace, that collects together the core functionality of many packages and exposes it
through a simple Python API. By not choosing to reinvent the wheel, we can take advantage of
all the exsting software within the community, and can easily plug into new software packages
as they appear. Our software can convert between many common molecular file formats
and automatically find packages available within the environment on which it is run. This
allows the user to write portable workflow components that can be run with different input,
on different environments, and in completely different ways, e.g. from the command-line, or
within a Jupyter notebook running on a cloud server. BioSimSpace builds on ideas explored
previously by CCPBioSim during the development of the alchemical free energy calculations
software FESetup (Loeffler, Michel, & Woods, 2015) that provides consistent setup of input
files for several simulation engines.

Molecular dynamics

One of the core features of BioSimSpace is the ability to set up and run molecular dynamics
(MD) simulations. There are a large number of packages that can run MD for biomolecules
and BioSimSpace supports several of these: AMBER, GROMACS, and NAMD. BioSimSpace
also comes with a bundled MD engine, SOMD, which interfaces with the OpenMM (Eastman,
2017) toolkit to provide GPU acceleration. This means that there is always a fall back in case
no other MD engines are installed.
While, broadly speaking, the different MD engines offer a similar range of features, their
interfaces are quite different. At the heart of this problem is the incompatibility between
the molecular file formats used by the different packages. While they all contain the same
information, i.e. how atoms are laid out in space and how they interact with each other, the
structure of the files is very different. In order to provide interoperability betwen packages
we need to be able to read and write many different file formats, and be able to interconvert
between them too.

Features

Parsers

At its core, BioSimSpace is built around a powerful set of file parsers which allow reading
and writing of a wide range of molecular file formats. File input/output is provided via
the BioSimSpace.IO package using parsers from the Sire (Woods, Christopher J., 2013)
molecular simulation framework, on top of which BioSimSpace is built. Unlike many other
programs, we take the approach that it is the contents of the file that defines it format, not
the extension. As such, we attempt to parse a file with all of our parsers in parallel. Any
parser for which the contents of the file is incompatible will be rejected early, with the eventual
format of the file determined by the parser that completed without error.
Typically, the information needed to construct a molecular system is split across multiple files,
e.g. a coordinate file containing the atomic coordinates, and a topology file that describes how
the atoms within each molecule are bonded together, along with parameters for the potential
of the molecular model. To handle this, each of our parsers are assigned as being able to
lead, or follow, or both. Lead parsers are able to initialise a molecular system (typically by
constructing the topology), whereas those that follow can add additional information to an
existing molecular system. Lead parsers may also be able to follow, such that when multiple
lead parsers are associated with a set of files then the one that ultimately leads will be
determined by which lead parser is unable to follow. This approach allows us to easily parse
molecular information from multiple files, even if those formats aren’t typically associated with
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each other. As long as the molecular topology corresponding to the information in the files
is consistent, then they can be read. For instance, one can initialise a system by reading an
AMBER format topology, and obtain the coordinates of the system from a Protein Data Bank
(PDB) file.
As files are parsed, records in those files are assigned to a set of properties that are associated
with molecules in the system, e.g. charge, coordinates, element, etc. While some of
these properties are unique to particular parsers, others are shared across formats and are
converted to a consistent set of internal units on read. Those properties which represent
mathematical expressions are stored using Sire’s built in computer algebra system. On write,
each parser expects molecules in the system to contain a specific set of properties, which are
then extracted and converted in order to generate the appropriate records for the format in
question. In this way, a bond record from an AMBER format file can be read into an internal
bond expression, which could then be converted to the appropriate GROMACS bond record
on write. Figure 1 shows a schematic of the file parsing process.

Figure 1: Files are parsed in parallel with the parser that successfully reads the file determining the
file format. Once all files are parsed, a lead parser (solid red arrows) constructs the topology of the
molecular system. Records within the file, e.g. representing terms in the molecular potential such
as bonds, angles, etc., are converted into file format specific representations, then stored internally
as properties of the molecule as general algebraic expressions. Parsers that follow add additional
information to an existing system. Here the AmberRst7 parser adds coordinate and simulation box
data to the system (dashed blue arrows). The file format associated with the files is also stored as a
property of the system so that it is always possible to convert back to the original format on write.

Another feature of our parsers is guaranteed read/write self-consistency. Any file that can be
read can also be written, and vice-versa. In addition, when expected molecular information
is missing from a file we don’t attempt to guess what it may have been. In this sense our
parsers don’t attempt to be too clever, which can lead to unexpected behaviour, particularly
when information is modified or supplemented behind the user’s back.
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The code below shows how to load a set of AMBER format files from a directory:

import BioSimSpace as BSS

system = BSS.IO.readMolecules(BSS.IO.glob("amber/ala/*"))

Protocols and Processes

BioSimSpace simplifies the set-up and running of molecular simulations through an abstraction
of simulation protocols and processes. Protocols define what a user wants to do to a molecular
system, e.g. performing a minimisation to find the local potential energy minimum. Processes
are used to apply a protocol to a system using a specific molecular simulation engine.
The BioSimSpace.Protocol package provides a set of high-level objects for several common
molecular simulation protocols. Each protocol offers as set of configurable options that are
handled by all of the molecular simulation engines that we support. BioSimSpace.Process
provides objects for configuring, running, and interacting with simulation processes for each
of the supported engines. When a process is created by passing in a system and protocol,
BioSimSpace automatically writes all of the input files required by the specific simulation
engine and configures any command-line options required by its executable. Expert users of
a particular engine are free to fully override any of the configuration options if desired.
The example below shows how to configure and run a default energy minimisation protocol
for the molecular system that was loaded earlier. Here we use AMBER as the MD engine:

protocol = BSS.Protocol.Minimisation()
process = BSS.Process.Amber(system, protocol)
process.start()

Interoperability

While it is useful to be able to configure and run simulation processes using specific engines,
any script written in this way would not be portable since we can’t guarantee what software
will be available on a different computer. To this end, the BioSimSpace.MD package provides
functionality for automatically configuring a simulation process using any suitable MD engine
that is installed on the host system. As long as the user has installed an external package
using the default installation procedure for that package, or has made sure that the executable
is in their shell’s path, BioSimSpace will find it. In the case of finding multiple MD engines,
BioSimSpace will make a choice based on the file format of the system (to minimise con-
versions) and whether the user requests GPU support. As an example, the AMBER specific
example in the previous section can be translated to an interoperable alternative as follows:

protocol = BSS.Protocol.Minimisation()
process = BSS.MD.run(system, protocol)
# By default MD.run starts the process automatically.

The BSS.MD.run function searches the system for suitable packages that support the chosen
protocol, then chooses the most appropriate one to run the simulation. For example, if AMBER
was installed then the process returned by BSS.MD.run would be of type BSS.Process.Amber,
if not then the input files could be converted to a different format allowing the use of a different
process such as BSS.Process.Gromacs.
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Robust and flexible workflow components

The building blocks described above can be used to write interoperable workflow components,
or nodes. Typically, a node will perform a single, well-defined, unit of work with clear inputs
and outputs. The BioSimSpace.Gateway package acts as a bridge between BioSimSpace
and the outside world, allowing a user to construct a node and define the input and output
requirements, along with restrictions on their types and values. As an example, the following
code snippet shows how the minimisation example described above can be translated into a
node.

import BioSimSpace as BSS

# Initialise the Node object and set metadata.
node = BSS.Gateway.Node("Minimise a molecular system and save to file.")
node.addAuthor(name="Lester Hedges",

email="lester.hedges@bristol.ac.uk",
affiliation="University of Bristol")

node.setLicense("GPLv3")

# Set the inputs and outputs.
node.addInput("files",

BSS.Gateway.FileSet(help="A set of molecular input files."))
node.addInput("steps",

BSS.Gateway.Integer(help="The number of minimisation steps.",
minimum=0, maximum=1000000, default=10000))

node.addOutput("minimised",
BSS.Gateway.FileSet(help="The minimised molecular system."))

# Show the graphical user interface (GUI) to allow the user to set the inputs.
# This will only happen if running from within a Jupyter notebook.
node.showControls()

# Load the molecular system and define the a minimisation protocol using the
# user-define input.
system = BSS.IO.readMolecules(node.getInput("files"))
protocol = BSS.Protocol.Minimisation(steps=node.getInput("steps"))

# Execute a simulation process using any available molecular dynamics engine.
process = BSS.MD.run(system, protocol)

# Set the node output to the final configuration of the minimisation process.
# Note that the block=True to the getSystem call to ensure that the
# process finishes before getting the final configuration. (It is possible
# to query the running process in real time when running interactively.)
# Note also that the original file format of the system is preserved on write.
node.setOutput("minimised", BSS.IO.saveMolecules("minimised",

process.getSystem(block=True), system.fileFormat()))

# Finally, validate the node to make sure that outputs are set correctly
# and no errors have been raised. If running interactively, this will
# generate a download link to a zip file containing the node outputs.
node.validate()
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BioSimSpace nodes are flexible in the way in which they can be used, with the same script
working seamlessly from within a Jupyter notebook or on the command-line. Typically, a user
would a write a node as a fully documented, interactive Jupyter notebook, then save it as a
regular Python script to run from the command-line. (For inclusion here we simply include the
Python script representation of the node, which could be re-converted to a notebook using,
e.g., p2j.) Any purely interactive elements included in the node, e.g. visualisations and plots,
are simply ignored when the script is run in a non-interactive mode. To facilitate this dual-use
the node.addInput method generates a custom ipywidgets based graphical user interface for
interative use in Jupyter, or a custom argparse parser for handling command-line arguments.
Figure 2 shows the example node above running within a Jupyter notebook (top) and from
the command-line (bottom).

Figure 2: BioSimSpace nodes can be run within a Jupyter notebook (top) or from the command-line
(bottom)

When working interactively, BioSimSpace also provides functionality for interacting with pro-
cesses while they are running. This allows the user to monitor the progress of a simulation
and generate near real-time plots and visualisations.
While BioSimSpace isn’t intended to be a workflow manager it does provide a means of
chaining together nodes by passing the output of one node as the input to another. For
example, given the following YAML configuration file, config.yaml:

files:
- amber/ala.crd
- amber/ala.top
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it would be possible to run a minimisation followed by an equilibration as follows:

python minimisation.py --config config.yaml && \
python equilibration.py --config output.yaml

Nodes can also be run from within BioSimSpace itself, allowing the user access to existing
functionality as building blocks for more complex scripts. For example, the minimisation node
can be run from within BioSimSpace as follows:

# Create a dictionary of inputs to the node.
input = {"files" : ["amber/ala.crd", "amber/ala.top"], "steps" : 1000}

# Run the node and capture the output as a dictionary.
output = BSS.Node.run("minimisation", input)

Forwards compatibility

To ensure that BioSimSpace nodes are forwards compatible as new features are added all
sub packages can query their own functionality and present this to the user. For example,
calling BioSimSpace.IO.fileFormats() returns a list of the currently supported molecular
file formats, BioSimSpace.Solvent.waterModels() returns a list of the supported water
models, etc. These values can be passed as the allowed keyword argument when setting an
input requirement of a node, ensuring that the node supports the latest functionality of the
package version that is installed. The following code snippet shows a node that can be used
to convert to any supported molecular file format, which will continue to work as additional
formats are added.

import BioSimSpace as BSS

# Initialise the Node object and set metadata.
node = BSS.Gateway.Node("Convert between molecular file formats.")
node.addAuthor(name="Lester Hedges",

email="lester.hedges@bristol.ac.uk",
affiliation="University of Bristol")

node.setLicense("GPLv3")

# Set the inputs and outputs and launch the GUI.
node.addInput("files",

BSS.Gateway.FileSet(help="A set of molecular input files."))
node.addInput("file_format",

BSS.Gateway.String(help="The format to convert to.",
allowed=BSS.IO.fileFormats()))

node.addOutput("converted", BSS.Gateway.File(help="The converted file."))
node.showControls()

# Load the molecular system using the user defined input "files".
system = BSS.IO.readMolecules(node.getInput("files"))

# Convert the system to the chosen format and set the output.
node.setOutput("converted",

BSS.IO.saveMolecules("converted", system, node.getInput("file_format")))

node.validate()
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Figure 3 shows how the allowed=BSS.IO.fileFormats() argument is translated into a
dropdown menu for the Jupyter GUI (top), or using the choices option of argparse to display
the available options on the command-line (bottom). This means that the script is adaptive
to the support of additional file parsers in future without need for modification.

Figure 3: BioSimSpace nodes are adaptive to new functionality without modification.

Extensibility

BioSimSpace has been developed with the intention of being easily extensible. Adding support
for a new MD engine just requires the creation of a new BioSimSpace.Process class and
accompanying functionality to translate the high level BioSimSpace.Protocol objects into
package specific configuration files. Similarly, it is easy to add support for new tools and
utilities as long as they read and write to one of the many molecular file formats that we
support. For example, as an alternative to our built in molecular alignment code, it was trivial
to wrap the FKCOMBU program from the KCOMBU (Kawabata, 2011) package to enable
flexible alignment of molecules. Importantly, support for new packages doesn’t change our
core API so that new functionality is exposed to users without breaking existing scripts.

Advanced simulation methods

As well as the basic molecular dynamics protocols described so far, BioSimSpace also sup-
ports several advanced biomolecular simulation techniques that can be deployed with modular
pipelines of setup, run, and analysis nodes executed with best-practices protocols encoded in
the library. Our intention is to make it easier to benchmark complex biomolecular simulation
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techniques by varying different setup tools, simulation engines, or analysis techniques. For
instance, Free-Energy Perturbation (FEP) (Cournia, Allen, & Sherman, 2017) functionality
in BioSimSpace can currently be used to compute drug binding affinities with the SOMD or
GROMACS simulation engines. By keeping all setup and analysis protocols identical any vari-
ability in the results can be ascribed to differences in the simulation engines and protocols only.
BioSimSpace also provides support for metadynamics (Barducci, Bonomi, & Parrinello, 2011)
simulations using PLUMED (Tribello, Bonomi, Branduardi, Camilloni, & Bussi, 2014) and
GROMACS. The application of BioSimSpace FEP and metadynamics workflows to proteins
of pharmaceutical interest will be reported elsewhere in due course.

Ease of use

BioSimSpace is avaiable to install from source, as a binary, and as a conda package, all of
which are continually built and deployed as part of our developent pipeline. This means that
it is easy for users to keep up to date with the latest features, without having to wait for
a new release. In addition, access to BioSimSpace is always available through our notebook
server, where users are free to work through tutorials and workshop material and make use of
our existing repository of nodes.
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