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Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity 
of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. 
Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding 
antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement 
mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and 
out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the 
second component necessary to explain the multiple strains of TSE.

Introduction

A growing body of data suggests that the prion theory is 
incomplete and that the disease-specific form of the prion 
protein PrP deposited in TSE brain may not itself be the sole 
infectious villain. This paper aims to reconcile the existing 
data. Starting with a brief overview of prion theory and its 
limitations, the biochemical properties of the PrP protein are 
revisited, notably the overlap between the nucleic-acid-bind-
ing/condensing, membrane-binding/inserting, and antiviral 
activities of PrP, which suggests that PrP and its process-
ing products are antimicrobial proteins (AMPs). The robust 

reverse transcription (RT) chaperoning activity of PrP and 
evidence that TSEs are accompanied by the mobilization of 
diverse retroviruses and retroelements suggest that TSE may 
involve retroelements. Retroelement nucleic acids associated 
with PrP could underlie the different strains of TSEs that 
the protein-only theory fails to explain fully. Although con-
troversial, the notion that PrP associates with nucleic acids 
is of importance to explain the unusual properties of the 
infectious agent. The interested reader is referred to earlier 
reviews and opinions on the same topic (references [1–5] 
and further references in the text).

Prion disease – compelling evidence 
against the protein‑only theory

TSEs are a group of neurodegenerative diseases that includes 
scrapie in sheep, bovine spongiform encephalopathy (BSE) 
in cattle, transmissible mink encephalopathy, chronic wast-
ing disease of elk and deer, and Creutzfeld–Jakob disease 
(CJD) in humans. The socioeconomic impact of TSEs is 
illustrated by the BSE epidemic in 1990–1995, during which 
4.4 million cattle were culled in the UK alone [6].

The transmissibility of scrapie by experimental inocu-
lation was first demonstrated by Cuillé and Chelle [7], 
soon followed by transmission to goats and other spe-
cies (reviewed in reference [8]). Transmission of CJD 
to chimpanzees was later demonstrated by Gajdusek and 
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colleagues [9] (see also reference [10]). The archetypal 
features of TSEs, brain vacuolization and the presence 
of aggregated protein deposits, have been recognized for 
over a century (discussed in references [11–13]), although 
in some cases clinical disease can emerge in the absence 
of detectable proteinaceous aggregates (see below). The 
detection of disease-specific amyloid-like plaques [14] 
and fibrils [15] was followed by the demonstration that 
these aggregates copurify with infectivity and, impor-
tantly, that a major component of these aggregates is a 
protease-resistant 27–30 kDa form of the host protein 
PrP [16–20], dubbed PrPSc after the archetypal disease, 
scrapie, a refolded product of the native cellular precursor 
protein, PrPC, that is encoded by the PRNP gene in humans 
and by Prnp in mice.

PrP has been ascribed multiple functions, ranging from 
synaptic plasticity to cell-surface signaling, cell–cell com-
munication, and RNA metabolism (reviewed in references 
[21, 22]). However, laboratory-raised Prnp-mutant mice 
display only subtle deficits, often irreproducible, in part 
because in four of six lines the knockout led to patho-
genic upregulation of the adjacent Doppel (Prnd) gene, 
explaining many discrepancies (reviewed in reference 
[23]). Indeed, there has been little consensus about the 
physiological role of PrP, and its primary function has 
remained elusive.

The ‘prion’ or ‘protein-only’ theory, as advocated by 
Prusiner and others (e.g., [24]), holds that the cellular form 
of the protein, PrPC, undergoes a conformation change, 
generating the ‘scrapie-specific’ form PrPSc. (In the text 
we use the terms ‘protein-only’ and ‘prion’ theory inter-
changeably to refer to the concept that the infectious agent 
lacks an informational molecule such as a nucleic acid, but 
we do not exclude protein post-translational modifications 
and/or the presence of bound non-informational molecules 
such as lipids.) In turn, PrPSc binds to PrPC and promotes 
PrpC → PrPSc conversion, leading to amplification of (sup-
posedly neurotoxic) PrPSc and disease (see references 
[25–27] for review). In support, other than PrP itself, no 
other agent has been routinely detected in infectious frac-
tions purified from diseased brain. The agent appears to 
be resistant to treatments that normally inactivate nucleic 
acids, and if a nucleic acid is associated with PrP, it has 
been argued to be short [28], excluding a conventional viral 
genome.

However, several lines of evidence suggest that the prion 
theory is incomplete, and other data argue that a nucleic acid 
component may be obligatory for infection: first, the exist-
ence of multiple strains of the agent and the phenomenon 
of strain competition; second, the paucity of infectivity of 
the recombinant prion protein, and third, evidence point-
ing directly to a nucleic acid component associated with 
the protein.

TSE strains – too many to underlie 
a protein‑only hypothesis

The small size of the agent suggests that it might be able 
to replicate without nucleic acid [29–31], leading to the 
‘prion’ hypothesis [24, 32] of an infectious polypeptide. 
However, ever since the very first studies on scrapie it 
was evident that there are multiple strains of TSE that 
differ in host-specificity, replication rate and incubation 
period, type of brain pathology, end-point titer, strain sta-
bility, and resistance to inactivation [33, 34], irrespective 
of host Prnp genotype. Alan Dickinson and colleagues [2, 
33] described multiple different strains, and Moira Bruce 
[34] referred to 20 strains and summarized the different 
properties of 14 mouse-adapted strains. To these one can 
add at least three more recent BSE-derived strains [35], 
two strains of hamster scrapie (hyper and drowsy) isolated 
following inoculation with transmissible mink encepha-
lopathy [36], at least two strains of chronic wasting dis-
ease in deer, elk, and moose [37], and multiple types of 
human TSE, including at least two types of CJD [38], as 
well as fatal familial insomnia (FFI), Gertsmann–Sträu-
ssler–Scheinker syndrome (GSS), and Kuru, which may 
themselves have subtypes, making a total of at least 32 
strains. In this respect, the agent resembles a virus (e.g., 
there are more than 30 subtypes of human papillomavirus).

Moreover, TSE strains can undergo mutational change 
that alters their properties [34]. None of these observations 
are easily explained by the protein-only hypothesis. Bruce 
and Dickinson stated: ‘The considerable strain diversity in 
scrapie, together with the evidence for mutational change 
{…}, offer compelling arguments that scrapie has its own 
independent replicating genome’ [2].

Strain competition

Strain competition affords a further complexity. Some TSE 
agent strains are ‘fast’ (such as scrapie isolate 22A), pro-
ducing early pathology, whereas others are ‘slow’ (such as 
isolate 22C); Dickinson and colleagues explored whether 
inoculation with the slow agent might interfere with later 
superinfection by the fast agent. Perhaps surprisingly, pre-
inoculation of mice with the slow agent, followed 30 days 
later by the fast agent, led to a highly significant delay in 
fast-agent pathology [39]. Indeed, a slow agent can block 
pathogenesis so effectively that the later-inoculated fast 
agent appears to take little active part in the disease [40]. 
Strain competition has been confirmed both in vivo and in 
vitro [41, 42].
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The mechanism is so far unknown. Dickinson and col-
leagues suggested that there might be only a limited num-
ber of ‘replication sites’, which the slow isolate blocks, 
and that the production of new sites must be infrequent 
[39, 40]. Manuelidis raised the intriguing possibility that 
the slow agent might produce defective interfering par-
ticles (DIPs) [41]. Traditional DIPs emerge as genome-
deleted variants of diverse virus types and compete with 
the parent virus for replication, but without themselves 
causing pathology, thus markedly slowing the disease 
process (see references [43, 44] for recent literature). A 
canonical example is afforded by lymphocytic choriomen-
ingitis virus (LCMV). Infection of neonatal rats causes 
severe cerebellar pathology, but coinfection with LCMV 
DIPs is able to slow or abolish discernable disease devel-
opment [45].

According to the DIP model [41], defective particles pro-
duced by the slow TSE strain would swamp replication sites, 
blocking propagation of the fast strain. This is an attrac-
tive model. For TSEs, the site of competition (‘replication 
site’) is not known, but Dickinson [46] has argued that PrPC 
is itself the limiting target, and there is evidence that PrPC 
abundance declines during the course of infection [47, 48].

Strain competition is therefore not necessarily inconsist-
ent with the prion (protein-only) theory but does require 
a defined PrP:PrP interface that a slow strain can occlude.

PrP structure is incompatible with multiple 
stable configurations

The protein-only theory seeks to explain TSE strains by 
multiple alternative configurations of aggregated forms of 
PrP. PrP can undergo a transition from a globular form to an 
aggregated β-rich structure (see below), but this switch is 
not consistent with multiple stable alternative 3D structures.

Yeast prion proteins (e.g., Ure2p and Sup35p) are widely 
cited as a precedent for generating multiple configurations 
that can be propagated across cell division. In yeast, the 
multiple protein forms are generated by a characteristic 
glutamine/asparagine-rich (poly/Q/N) primary sequence 
that leads directly to alternatively stacked amyloid-like 
β-sheet structures. Some variants can persist over multiple 
passages, although the variant-specific properties of oth-
ers can be lost within a single passage (see reference [49] 
for review). In these proteins, this polyQ/N region (‘prion 
domain’) is essential for the protein to switch to alternative 
stable and heritable prion conformations (e.g., [50]). By con-
trast, pWALTZ/PrionW analysis (http://bioin​f.uab.cat/prion​
w/ [50, 51]) reveals that mammalian (mouse, sheep, bovine, 
human) PrP proteins entirely lack any such yeast-type prion 
domain. Thus, although this conclusion relies on the design 

of these bioinformatic tools, we suggest that yeast prions 
may not afford a precedent for TSE strains.

It is not impossible that an alternative type of protein 
configuration remains to be discovered that is capable of 
generating multiple stable configurations, but so far there 
is no adequate explanation for the multiple strains of TSE. 
Different TSE strains do display discrete conformational dif-
ferences in PrP-derived molecules (perhaps consistent with a 
tightly bound second component, see below), but advocates 
of the protein-only theory point instead to subtle changes 
in the conformation and post-translational modification of 
PrP protein (e.g., [52–54]), although without clarifying what 
interactions might cause the differential structural modifica-
tions of the identical substrate protein – and how these could 
stably propagate to generate the 30 or more distinct strains 
of TSE.

A further critique of the conformation hypothesis is that 
infectivity resides in complexes of at least 10–20 PrPSc mol-
ecules, and not in PrPSc monomers to pentamers [55]. This is 
consistent with the PrP:nucleic acid sequestration hypothesis 
(see below) but does not favor the prion hypothesis because 
it would require a protein conformation that is present in 
(PrPSc)10–20 but absent from (PrPSc)2–5.

In addition, the prion theory relies on a defined confor-
mation of PrPSc, and subtle structural differences therein, 
to explain the different strains of agent that are inferred to 
propagate via a protein → protein conversion mechanism. 
However, this is potentially problematic because the key 
N-terminal region of PrPC is intrinsically disordered (dis-
cussed later), which would tend to preclude the generation of 
stable (and transmissible) conformational variants. Indeed, 
disease, infectivity, and strain identity can be associated with 
soluble forms of PrP (in the absence of PrPSc) that have a 
poorly defined structure.

Dissociation between PrP and infectivity: 
PrPSc alone is poorly infectious

Multiple studies have reported that high levels of infectivity 
can be present in the absence of detectable PrPSc [56–60] 
and, conversely, that high levels of PrPSc can be present 
in the absence of infectivity (e.g., [61]). Importantly, TSE 
infectivity appears to expand rapidly following infection, but 
the generation of PrPSc only follows after a delay (reviewed 
in reference [5]). Centrally, highly purified PrPSc is poorly 
if at all infectious.

PrPSc that has been biochemically purified from infected 
brain requires at least 2 × 103 to 106 molecules of PrPSc for 
infectivity, and sometimes more [55, 62–64]. These reports 
are not easily consistent with the concept that PrPSc is itself 
the infectious agent.

http://bioinf.uab.cat/prionw/
http://bioinf.uab.cat/prionw/
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Recombinant PrP molecules, even if aggregated into pro-
tease-resistant analogs of PrPSc, are generally non-infectious 
(e.g., [65, 66]). Collinge and colleagues evaluated 20,000 
different in vitro conditions, and in no case were they able to 
generate infectivity from recombinant PrP [67]. By contrast, 
Legname et al. [68] reported induction of disease by inocu-
lating amyloid-like aggregates of recombinant PrP. However, 
in this case, the recipient transgenic mice were incipiently 
disease-prone because they expressed very high levels of 
mutant PrP, and, before passage, the same inocula failed to 
produce disease in wild-type mice.

Serial protein misfolding cyclic amplification (sPMCA) 
has been employed to generate large amounts of PrPSc from 
a recombinant seed in vitro, and in some cases the material 
generated was reported to cause disease following intracer-
ebral inoculation [69, 70]. However, the observed titers were 
extremely low, again arguing that PrPSc alone is unlikely to 
be the infectious agent. In other systems, no infectivity was 
reported with recombinant PrP despite the presence of large 
amounts of protease-resistant PrPSc [71].

To achieve significant infectivity has required cyclic 
refolding in the presence of whole-brain extract [72–74] or 
an excess of total liver RNA [69, 75], leaving open the pos-
sibility of a second component. Even so, titers have been low 
and, moreover, in some cases, strain differences disappeared 
on amplification [76, 77].

The most recent reports systematically rely on brain 
homogenate or on brain or liver RNA to generate infec-
tivity [75, 78, 79]. For the most part, only low levels of 
infectivity were generated. For example, Wang et al. [79] 
reported that 108 molecules of PrPSc generated in vitro were 
required for infectivity. Burke et al. [80] showed that PrPSc 
can be generated in vitro by cyclic refolding amplification 
in the absence of cofactors, but the PrPSc generated was not 
infectious – they state, ‘To our surprise, the bioassay results 
were completely negative’. Infectivity could only be gener-
ated by reamplification in the presence of brain homogenate/
extracts, demonstrating once again that a second component 
is essential.

One report stands out: Deleault et al. reported the gen-
eration of infectivity from recombinant PrP amplified in the 
presence of high (millimolar) concentrations of phosphatidy-
lethanolamine (PE), whereas the equivalent reaction product 
produced in the absence of PE was not infectious [77]. Why 
some preparations are infectious, whereas those produced 
by a slightly different protocol are not, remains mysterious 
(discussed in reference [81]), pointing to a so far unknown 
alternative infectious conformation, another component, or 
both. This new conformation would need to operate above 
and beyond the supposed alternative conformations mooted 
to explain the 30 or more strains of the agent. However, 
the biochemical purity of the PE employed may be debat-
able ([82] as the cited source), and other researchers have 

reported that PE inhibits prion replication [83]; the gen-
eration of de novo infectivity in the presence of PE alone 
requires independent validation.

To our mind, the best interpretation so far is that of 
Timmes et al., who, to explain the circa 105-fold difference 
in infectivity between in vitro PrPSc and in vivo PrPSc, pro-
posed that a ‘stochastic event’ [71], possibly taking place 
in vivo following inoculation, is essential before de novo 
infectivity can be generated from recombinant molecules. 
Schmidt et al. [67] reached the same conclusion.

In other words, this leaves open the possibility that large 
quantities of modified PrP, inoculated directly into the brain, 
might sporadically and at low frequency recruit an endog-
enous agent for disease propagation. This contrasts with 
‘wild’ transmission in sheep, which is thought to involve 
contact between lambs and placenta from infected ewes, and 
notably, blood contact via scratching posts [84] – the behav-
ior that names the disease [85]. Until transmission of disease 
by purified recombinant PrPSc in the absence of cofactors 
has been demonstrated to take place by equivalent routes in 
animal models (oral, cutaneous), one must remain open to 
the possibility that a protein conformation, alone, might not 
be the transmissible agent in natural scrapie.

Evidence for a crucial nucleic acid 
component in TSE

Inactivation studies argue that the agent cannot comprise 
a nucleic acid component (or at least one of genome size); 
however, alkali treatment (pH 10 for 1 h at 4 °C) reduced 
agent titer by a factor of 1000) [24], consistent with an RNA 
component. Because ribose (unlike deoxyribose) has adja-
cent 2’,3’ hydroxyls, exposure to high pH leads to chain 
scission, whereas DNA (and protein) is largely refractory to 
alkali. In fact, the TSE agent appears to be significantly more 
sensitive to alkali that a control RNA viroid-based pathogen 
(potato spindle tuber viroid [86]), suggesting the presence 
of an obligate RNA component. In addition, Riesner and 
colleagues reported that UV irradiation at 254 nm (which 
principally targets nucleic acids) reduced infectivity by a 
factor of 1000 [87].

Although purified RNA from diseased brain is not itself 
infectious (e.g., [66, 88]), it is not impossible that this failure 
is because brain abundantly expresses the atypical RNase 1 
(also known as brain ribonuclease, BRB) that, unusually, can 
degrade dsRNAs (2000-fold more efficiently than RNase A) 
and is also induced by dsRNA [89]. A protective component 
(protein, lipid, other) may be vital to prevent rapid degrada-
tion of exogenous RNA.

PrP is a strong contender as a protective shield for RNA. 
Early studies argued that the agent is resistant to nucleases, 
but PrP is an RNA-binding protein, and bound RNA can 
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precipitate PrPC to PrPSc conversion (see below); indeed, 
PrP-mediated aggregation can protect bound nucleic acids 
against degradation (as observed in vitro; J-L.D., unpub-
lished). Solubilization and nuclease digestion of released 
nucleic acid has been shown to abolish the infectivity of 
purified brain fractions while leaving PrPSc intact, again 
arguing for a nucleic acid component [90] – probably RNA, 
given the alkali sensitivity of the agent. Conversely, in some 
reports, aggressive removal of PrP proteins by proteinase 
digestion failed to reduce infectivity (e.g., [91, 92]).

Studies over several years, notably by Detlev Riesner and 
colleagues, have carefully examined infectious fractions for 
nucleic acids. In the most recent report, using return refocus-
ing electrophoresis, nucleic acids in the range of 25 nt were 
detected, although there was evidence for larger molecules 
in the 100–400 nt range [87] (note that specific fragments 
as short as 25 nt can be unique in the mammalian transcrip-
tome [93]). However, to put this into perspective, if circa 106 
molecules of PrPSc are required for infection (see earlier), 
detecting the ‘one in a million’ specific bound nucleic acid 
that might be responsible for infectivity represents a major 
challenge.

By contrast, in direct support of a nucleic acid compo-
nent, Simoneau and colleagues demonstrated that neither 
purified PrPSc nor small RNA fragments derived from scra-
pie-infected brain were able to establish infection, but 5 of 
24 animals inoculated with the combination of the two frac-
tions succumbed to a scrapie-related disease [66, 94].

In sum, the existence of 30 or more stably propagating 
strains of disease, combined with the alkali and UV sensitiv-
ity of the agent, the key role of RNA in cyclic reamplifica-
tion of infectivity, and the requirement for RNA to generate 
infectivity from isolated components, suggests that some-
thing else in infectious fractions, perhaps nucleic acid, might 
confer strain properties. We address below the nucleic-acid-
binding properties of PrP with a view to casting light on the 
possible identity of the missing component.

PrP is a nucleic acid‑binding protein

Conserved polybasic regions in the N‑terminal 
domain of PrP

Mammalian PrP protein comprises two structurally distinct 
components. The N-terminus is an intrinsically disordered 
region (IDR), a characteristic of many RNA-binding proteins 
that regulate RNA functions from transcription to mainte-
nance [95, 96], whereas the C-terminal region of native PrP 
adopts a largely globular/α-helical conformation (Fig. 1A). 
Disease is accompanied by aggregation of PrP and transition 
of the globular C-terminus from an α-helical conformation 
to a β-sheet [97, 98].

At least three PRNP-like genes are present in the human 
genome: PRNP, SPRN (Shadoo/shadow of prion protein), 
and PRND (Doppel). The SPRN-like genes are thought to 
be the immediate evolutionary precursors to extant PRNP, 
and although these retain the N-terminal region, these lack 
the C-terminal globular domain of the protein (Fig. 1B) 
[99–101]. Sequence analysis (Fig. 1) identifies two poly-
basic regions in the N-terminal IDR that have charge com-
plementarity to polyacidic nucleic acids, and these regions 
are substantially conserved between humans and amphibians 
(Xenopus laevis). The evolutionary antecedent to PrP pro-
tein, Shadoo, is also an RNA-binding protein by virtue of the 
conserved basic motifs (RGG box, region 1 in Figure 1) in 
the N-terminus of the protein [102], which are also present 
in PrP as well as in other RNA-binding proteins such as 
FMRP [102]. Direct binding of nucleic acid to Shadoo has 
been confirmed [103]. Interestingly, the N-terminal regions 
of Shadoo-like proteins of earlier representatives of the ver-
tebrate lineage such as whale sharks (Rhincodon typus) and 
zebrafish (Danio rerio) also contain a second basic region, 
as in PrP, but of different composition. In zebrafish ‘prion 
protein 1’ the second basic region (region 2) is replaced by a 
histidine-rich motif, whereas in sharks, this is a distinct but 
also highly basic arginine-rich motif (Fig. 1B).

The evolutionary conservation of two polybasic regions 
in the N-terminus of PrP family proteins demonstrates that 
the inherent affinity of PrP for nucleic acid has been retained 
since the beginning of the vertebrate lineage, arguing that 
this feature is likely to be central to the present-day function 
of mammalian PrP protein.

Nucleic acid binding by PrP

There is direct evidence that PrP binds to nucleic acids 
([104, 105], reviewed in references [3, 106, 107]) via its 
N-terminus. Nucleic acid binding takes place in vivo: PrP 
protein could be affinity purified from TSE brain (CJD, BSE, 
scrapie) using either anti-DNA antibody or single-stranded 
DNA-binding protein from an E. coli bacteriophage [108]. 
Of note, the nucleic-acid-binding repertoire of PrP in vivo 
may be extended because (i) PrP is prone to dimerize [109], 
potentially providing multiple binding sites in the dimer, and 
(ii) PrP may also interact with other nucleic-acid-binding 
proteins – the most significant hits in a microarray screen 
for PrP binding partners were RNA-binding proteins [110].

Key role of the disordered N‑terminal region of PrP: 
nucleic acid binding promotes sequential refolding

The intrinsically disordered N-terminal region of PrP is nec-
essary for infectivity. Deletion of basic region 1 leads to an 
apparent large reduction in infectious titer as well as a ~ 75% 
reduction in agent replication rate [111, 112] (as assessed by 
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the increase in incubation period), and deletions extending 
into region 2 abolish infectivity propagation (reviewed in 
reference [113]).

Nucleic acid binding to the N-terminal region can 
induce refolding of the PrP molecule. To illustrate, 
the addition of nanomolar concentrations of DNA to 

Fig. 1   Two basic regions in the N-terminal segment of PrP and its 
immediate evolutionary precursors: TSE strain-specific structural 
differences. (A) The two polybasic regions in the intrinsically disor-
dered N-terminus of human PrP, schematically depicted in complex 
with a nucleic acid (DNA for illustration), are shown fused to the 
globular/α-helical region of the protein established by NMR (PDB 
1QM2 [236]). (B) Conservation of two basic regions in PrP and its 
evolutionary precursor (Shadoo/SPRN). PrP sequences (P) are Hu, 
human; Mo, mouse; Bo, bovine; Md, opossum (marsupial, Monodel-
phis domestica); Cs, mousebird (Colius striatus); Gg, chicken (Gal-
lus gallus); Pm, viper (Protobothrops mucrosquamatus); Xl, African 
clawed frog (Xenopus laevis). The final three entries are prion protein 
1 from zebrafish (DrP, Danio rerio), Shadoo/SPRN from zebrafish 
(DrS), and Shadoo/SPRN from whale shark (RtS, Rhincodon typus) 
which lack the C-terminal globular region and have alternative 
region 2 polybasic sequences (His-rich in DrP, and Arg-rich in DrS 
and RtS). Color code: red, highly basic (Lys/Arg); violet, basic (Asn/
Gln/His); green, acidic (Asp/Glu); yellow, hydrophobic (Leu/Ile/
Val/Met/Phe/Tyr). (C) TSE strains and the N-terminal region of PrP. 
Summary of strain-dependent cleavage sites, strain-specific antibody 
binding, occlusion of antibody binding, and RNA-dependent refold-
ing of PrP. The figure shows the alignment of the N-termini of human 
(Hu), mouse (Mo), hamster (Ha), and bovine (Bo) PrPC sequences 

(the C-terminus is depicted schematically). Regions 1 and 2 are as in 
panels A and B. The exact details depend on the host species (and 
host genotype) as well as on the strain of the agent. Strain-specific 
cleavages (v) are sites where high-resolution mapping (e.g., mass 
spectrometry) demonstrates that the precise sites of PrP proteolytic 
processing differ significantly between infections with different strain 
types [119, 128, 129, 237]. Grey and brown horizontal bars show 
regions that are occluded (‘cryptic’) in PrPSc versus PrPC (grey) and 
that can also differ according to the strain of TSE [130–133], or that 
are occluded in exosomes from scrapie-infected cells (brown) [220]. 
Blue horizontal bars indicate epitopes for strain-specific antibody 
binding [238–240]. The epitope marked with an asterisk (*) is recog-
nized by antibody 3F4 [241]; RNA binding to PrP in vitro occludes 
3F4 binding (J-L.D, unpublished). Molecular dynamics simulations 
indicate that RNA bound to site 1 can lead to refolding of the poly-
peptide and dissolution of the first α-helical region; predicted new 
contacts after refolding are indicated by red bars; there may be fur-
ther contacts within PrP [115]. ‘Basic’ amino acids indicated in the 
figure include not only K and R but also H, Q, and N, which contain 
positively charged groups with potential to interact with nucleic acid 
phosphates. The panel aims to highlight strain-specific differences 
and is not intended as a comprehensive survey
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recombinant mouse PrP leads to an increase in turbidity 
as assessed by light-scattering at 400 nm. The change is 
rapid, with a latency period of ~ 3 minutes as revealed by 
the fluorescence kinetics of a bound reporter [114]. Molec-
ular dynamics simulations indicate that RNA docked to the 
region 1 polybasic region leads to dissolution of the first 
α-helix in the C-terminal region [115]; this is thought to 
lead towards the formation of large fibrillar ribonucleopro-
tein complexes, for example as demonstrated by electron 
microscopy (e.g., [116]), in which the C-terminal region 
adopts an extensive β-sheet structure [97, 98].

Although undoubtedly an oversimplification (protein 
refolding generally requires a series of metastable states), 
PrP refolding appears to involve (at least) two different 
configurations that differ in their sensitivity to proteinase 
K (PK) [117]. In the first step, refolding of PrPC generates 
a flexible structure that remains susceptible to digestion 
with PK [118], termed PK-sensitive (s)PrPSc [119]. In 
the second step, PrP forms dense aggregates, possibly 
covalently crosslinked [120], in which the core of the 
protein is refractory to PK digestion, termed PK-resist-
ant (r)PrPSc. Both forms are associated with infectivity 

Fig. 1   (continued)



542	 R. Lathe, J. Darlix

1 3

[121]. sPrPSc resembles in some ways an intermediate 
form, dubbed PrP*, that was proposed earlier on theoreti-
cal grounds to be a precursor to protease-resistant PrPSc 
[122], although whether the two forms are equivalent has 
not been established.

The soluble form, sPrPSc, can undergo an assembly 
process that generates liquid droplets (also known as 
proteinaceous membrane-less organelles/coacervates/
hydrogels) upon its interaction with RNA. RNA binding 
by IDRs is crucially important for liquid–liquid phase 
separation [123], attributed to high local concentrations 
of negative charges [124]. The IDR not only extends 
the ligand-capture radius of the protein but also per-
mits refolding of the IDR into an ordered 3D structure 
in response to ligand binding [125, 126]. Droplets are 
composed of diverse RNA-binding proteins in association 
with different RNA species, notably non-coding RNA, 
undergo liquid–liquid phase transitions, and dynamically 
assemble and disassemble, and components can exchange 
with the surrounding liquid phase within seconds to min-
utes [124].

Droplet formation by PrPC has been confirmed [127]. 
Moreover, Alzheimer Aβ (discussed later) has been pro-
posed as a key component of PrP-based droplets [127] and 
in some ways resembles the PrP binding partner, ‘protein 
X’, that was postulated earlier to play a role in the transi-
tion from PrPC to PrPSc [122]. In sum, there is reason to 
suspect that the intermediate proteinase-sensitive form of 
PrP, sPrPSc, represents a dynamic assembly of PrP into 
liquid droplets following binding to nucleic acid, in asso-
ciation with other RNA-binding proteins, which is then 
followed by irreversible aggregation to generate rPrPSc.

Of note, the sPrPSc/rPrPSc ratio in TSE depends on the 
strain of the agent. Indeed, different strains adopt con-
formations that differ in protease sensitivity [117, 118]. 
This meshes with several studies in which proteolytic 
cleavages in the immediate vicinity of region 2 (arrows in 
Fig. 1C) differ according to the strain of agent [121, 128, 
129], as well as with regions that are occluded (‘cryptic’) 
in PrPSc versus PrPC – and that can also differ accord-
ing to the strain of agent [130–133] (horizontal bars in 
Fig. 1C). It remains unknown what causes these confor-
mational differences in PrPSc, but it is plausible to suggest 
that different nucleic acid ligands bound to region 2 might 
potentially be responsible for differential cleavage of the 
complex (Fig. 1C). Although direct evidence for this is 
so far lacking, this possibility has not yet been systemati-
cally addressed.

In the following, we focus on an important aspect of 
the interaction between PrP and nucleic acids: PrP is a 
defense protein that protects against invasion by extrane-
ous infectious agents.

PrP is an antimicrobial protein (AMP)

Nucleic acid binding is a central feature of AMPs (see 
below), a diverse group of evolutionarily ancient proteins 
that predate the adaptive immune system. These proteins, 
and often active peptide subfragments generated by proteo-
lytic processing, have potent activity against a wide range 
of viruses, bacteria, and yeasts, acting via several differ-
ent pathways, often in parallel (reviewed in references 
[134–136]).

Nucleic acid binding is a central feature 
of AMPs

AMPs are generally held to centrally exert their antimicro-
bial properties by interacting with membranes. However, 
membrane phospholipids and sulfated glycosaminoglycans 
resemble nucleic acids in that they are polyanions, and 
dual nucleic acid and membrane binding is thus a common 
feature of AMPs [136, 137]. These dual nucleic-acid- and 
membrane-binding properties of AMPs are not widely rec-
ognized, and we therefore provide two further examples.

The classical AMP LL-37 displays robust nucleic-acid-
binding activity [138, 139] and can enter the nucleus and 
modulate gene transcription. These properties are shared by 
the AD Aβ peptide, whose antimicrobial activity against a 
variety of infectious agents, including viruses, bacteria, and 
yeasts, is well documented (reviewed in reference [140]). 
Aβ displays the structural signature characteristics of a 
nucleic-acid-binding protein [141], binds directly to DNA 
[142–146], and can also enter the nucleus to modulate tran-
scription [147]. Of note, like both LL-37 and Aβ, PrP can 
also enter the nucleus, where it associates with chromatin 
[148].

Interestingly, in addition to direct nucleic acid binding 
(reviewed above), PrP binds tightly to Aβ, PrP and Aβ are 
codeposited in both AD and TSE brain, and PrP modulates 
the generation and fibrillization of Aβ (see reference [149] 
for review), reinforcing the idea that both PrP and Aβ are 
components of the innate immune system.

PrP is membrane‑active

Like conventional AMPs, PrP can take up a transmembrane 
configuration [150] and/or insert into membranes [151–153]. 
Studies on the second basic region of PrP suggest that mem-
brane binding by this region generates membrane pores that 
penetrate only half of the membrane [154]. To identify the 
sequences involved, Shin et al. used protease digestion of 
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membrane-inserted hamster PrP to identify a protected pep-
tide, NH2-NKPSKPKTNMK-COOH, which corresponds to 
region 2 in Figure 1 [155]. It remains unclear why region 
1 was not identified in this assay, but, interestingly, in this 
paper, a further peptide, also basic in nature, was identified 
that maps to the globular region of the protein, suggesting 
that regions downstream of the N-terminus may further con-
tribute to interactions with membranes (and perhaps with 
nucleic acids) by present-day mammalian PrP.

PrP displays antimicrobial activity

Key characteristics of AMPs, in addition to nucleic acid/
membrane binding (see above), include (i) evolutionary 
conservation, (ii) induction by pathogen infection, and (iii) 
antimicrobial action via aggregation, features shared by 
PrP.

First, PrP is substantially conserved through evolution, 
with homologs in frogs and fish (Fig. 1B).

Fig. 2   PrP interactions with retroviruses, retroelements, and 
exosomes. (A) Protease-resistant PrP aggregates in retrovirus infec-
tion. HIV-1 infection induces the formation of PrP forms that are 
resistant to proteinase K (PK, concentrations as indicated). Adapted, 
with permission, from reference [170]. (B) PrP chaperones the initia-
tion of reverse transcription of HIV-1 RNA. A fragment of HIV-1 5’ 
RNA containing the tRNA primer-binding site was incubated with 
tRNA3

Lys, HIV-1 reverse transcriptase, and dNTP in the presence or 
absence of human (hu) or ovine (ov) PrP. Almost no product is syn-
thesized in the absence of PrP (first lane). Size markers, nt; ratios 
indicate the PrP dilution. Panel adapted, with permission, from Darlix 
and colleagues [116]. (C) Differential display (panel for illustration) 
of control and scrapie-infected brain led to the identification of ROS 

(RNA overexpressed in scrapie) sequences centrally including LINE 
elements and LINE targets. Lanes 1–3 and 4–6 are amplification 
products obtained using brain RNAs from independent control and 
scrapie-infected animals. Panel adapted, with permission, from refer-
ence [242]. (D) Size distribution of RNA in total cell extracts (above) 
and exosomes (below) from transmissible spongiform encephalopa-
thy (TSE)-infected and control cells, illustrating RNA components 
as large as 300 nt, and possibly others in the > 1 kb range. Exosomes 
contain both PrP protein and TSE infectivity [217, 220], but deep 
sequencing indicates that they contain a select group of cellular 
nucleic acids, of which ~ 50% are retroelement RNAs [221]. Figure 
adapted, with permission, from reference [221]
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Second, PrP expression is upregulated in vitro by infec-
tion with adenovirus 5 [156, 157], Epstein–Barr virus (EBV) 
[158], hepatitis C virus [159, 160], HIV-1 [161], Helicobac-
ter pylori [162], and Mycobacterium bovis [163], as well as 
by murine leukemia virus (MuLV) and vesicular stomati-
tis virus [164]. In vivo, brain PrP is upregulated in HIV-1 
infection as well as in simian immunodeficiency virus (SIV) 
encephalitis in macaques [165]. Of note, HIV is reported to 
induce PrPSc-like PrP aggregation (Fig. 2A), which is also 
seen during infection with another retrovirus, caprine arthri-
tis encephalitis virus [166].

Third, Schmidtchen and colleagues [167] were the first 
to report that PrP polypeptides display direct antimicrobial 
activity against Gram-negative and Gram-positive bacteria, 
as well as against the fungus Candida parapsilosis. The key 
region was mapped to the N-terminal domain, and studies 
on synthetic peptides confirmed the central role of region 1 
[167]. In addition to bacteria and yeast, PrP is also known 
to restrict the proliferation of multiple DNA and RNA 
viruses, including adenovirus 5, coxsackievirus B3, HIV-1, 
and poliovirus (see reference [149] for review). In addition 
to aggregation induced on infection (see below), like other 
AMPs, PrP is also an immunomodulator (see reference [168] 
for review).

In sum, the data suggest that the primary ancestral func-
tion of PrP is as an antimicrobial defense protein. The pres-
ence of both long fibrils and condensed aggregates in TSE 
brain is consistent with the antimicrobial role of PrP, specifi-
cally in that this resembles the aggregation process inferred 
for Alzheimer disease (AD) Aβ peptide – extrusion of long 
filaments followed by condensation into dense aggregates 
that trap pathogens [140, 169]. Indeed, early researchers on 
TSE were struck by the resemblance between the deposits 
seen in TSE brain and those reported in AD [14, 15].

Abnormal RNAs promote PrP refolding 
and aggregation: PrPC‑to‑PrPSc conversion 
as a sequestration mechanism

Nucleic acid binding is likely to be a central component of 
the antimicrobial repertoire of PrP. We underline two distinct 
mechanisms: (i) binding and (ii) sequestration. First, PrP 
can bind to HIV mRNA, which in turn blocks translation of 
the viral message, and native PrP inhibits HIV replication 
[170]. This activity has been confirmed for human, mouse, 
and hamster PrP [171] and is thus evolutionarily conserved.

The second mechanism involves aggregation. The pro-
pensity of AMPs to aggregate in response to pathogen 
ligands is generally accepted to be a major component of 
their defense activity [172, 173]. For PrP, the formation of 
the aggregated protease-resistant form is induced by infec-
tion (e.g., HIV-1 [170], Fig. 2A), and specific nucleic acids 

can trigger the conversion from PrPC to PrPSc (see below) 
in which the protein refolds and subsequently aggregates. 
Aggregation may represent a sequestration mechanism that 
contributes to host defense [149], as it is generally for other 
AMPs such as Aβ [169]. For many AMPs, the trigger for 
aggregation is not known, but binding of nucleic acids to PrP 
can induce refolding of the molecule and generation of the 
aggregation-prone PrPSc form. The exact structural features 
remain unclear, but different nucleic acids differ enormously 
in their ability to catalyze this transition, as summarized 
below.

Binding of long (but not short) DNA can stimulate the 
conversion, and excess DNA, conversely, inhibits aggrega-
tion [105]. These effects are sequence-dependent. In an in 
vitro amplification system, poly(A) RNA was shown to be 
essential for the generation of PrPSc. Although mammalian 
RNA preparations stimulated amplification of PrPSc, RNA 
preparations from invertebrate species appeared not to do 
so ([76, 174]; reviewed in reference [175]), indicating that 
PrP recognizes specific features. Moreover, PrP molecules 
of different species (e.g., mouse versus hamster) appear to 
differ in their dependence on RNA for conversion to the 
PrPSc form [176].

Different RNAs have widely different binding affinities 
for PrP. RNAs with multiple double-stranded regions have 
been reported to bind most tightly [177, 178], and such 
highly structured RNAs promote the conversion of PrP 
(PrPC) to PrPSc [178]. Although the precise features that 
demarcate high-affinity binding to PrP have not been estab-
lished, PrP is likely to be a sensor of non-Watson–Crick 
base pairs in double-stranded RNA [177], adjacent stem-
loop structures and G4 quadruplexes (reviewed in reference 
[179]), and/or pseudoknots [180].

Notably, the binding of a single nucleic acid to two or 
more copies of PrP would bring different PrP molecules 
into close proximity, thereby promoting protein–protein 
interaction and aggregation. Abnormal RNAs triggering 
PrPC-to-PrPSc conversion are thus likely become entrapped 
in an insoluble aggregate, where they can no longer partici-
pate in cellular metabolism, and RNA sequestration is likely 
to contribute to the antimicrobial repertoire of PrP [149].

PrP interactions with RNA and chaperoning 
of reverse transcription: implications 
for the nature of the TSE agent

Pathogens exploit AMPs

Vertebrate AMPs and viruses have coexisted for at least 200 
million years, and multiple viruses have co-opted AMPs to 
promote their own replication. For example, HIV-1 exploits 
the classical AMP LL-37 as well as Alzheimer Aβ to 
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promote its own replication [181, 182], and there are several 
other examples [183–185]. The same is true of PrP, where 
HSV-1 has evolved an anti-PrP function, ICP34.5 (infected 
cell polypeptide 34.5 kDa), not only to evade PrP-mediated 
inactivation but also to exploit PrP to foster its own prolifera-
tion (reviewed in reference [149]). Another virus, hepatitis 
C virus, also exploits PrP to promote its own replication 
[186], as does MuLV [187]. This raises the possibility that 
an infectious agent, so far unknown, might exploit PrP in 
TSE. In the following, we focus on potential synergies with 
retroviruses and retroelements.

PrP is a Gag‑like protein that chaperones 
conversion of RNA to DNA by RT enzyme

A further dimension of PrP nucleic acid interactions was 
uncovered when it was observed that native PrP is capable 
of chaperoning the RT enzyme in retroviral cDNA synthe-
sis assays [104, 116]. Briefly, after entry of the retroviral 
single-stranded RNA genome into the cell, RT-mediated 
synthesis of a complementary DNA strand is primed by an 
endogenous tRNA molecule. This involves the assembly of a 
macromolecular complex containing both the RNA genome 
template and a primer tRNA, a process that is normally pro-
moted by the viral Gag nucleocapsid (NC) ‘chaperone’ pro-
tein. It was discovered that PrP is as effective as, or even 
more effective than HIV-1 NC in chaperoning RT-mediated 

cDNA synthesis [104, 116]. In the absence of a chaper-
one, almost no cDNA product is made, but the addition of 
either human or ovine PrP leads to a dramatic increase in 
the amount of cDNA (Fig. 2B). This has also been con-
firmed for feline immunodeficiency virus (FIV) [170]. The 
functional domain responsible for RT stimulatory activity is 
located within the N-terminal nucleic-acid-binding region 
of PrP [104] (Fig. 1). These findings indicate that the RNA-
binding and chaperoning activities of PrP, a defense mol-
ecule that normally protects the host against virus infection, 
could potentially be subverted by retroviruses/retroelements 
to ensure their replication. PrP-mediated specific RT chap-
eroning has not yet been formally confirmed to take place 
in vivo, but PrP is necessary in vivo for HSV replication 
(which depends on retroelement activation), can promote 
MuLV proliferation [187, 188], colocalizes with both HIV-1 
and MuLV Gag RT chaperone proteins [170, 187, 189], and 
is found in retrovirus particles [104, 116], suggesting that 
PrP is likely to contribute to the in vivo RT process.

TSE and retroviruses

Synergistic interactions between TSE and retroviruses are 
well documented. In mouse NIH3T3 cells, which are poorly 
permissive for scrapie propagation, PrPSc production was 
not sustained following scrapie infection, but when the cells 
were coinfected with MuLV, there was a marked increase 

Table 1   Retrovirus and retroelement mobilization in TSE

Element Findings References

A. Retrovirus; host species
MuLV; mouse TSE coinfection can promote MuLV proliferation [187, 188]
Endogenous retroviruses (ERVs); mouse ERV sequences constituted 2 of 22 specific markers upregulated in early-stage scrapie 

infection
[243]

Retrovirus; elk A retroviral insertion site was a primary diagnostic DNA sequence marker in chronic 
wasting disease

[244]

ERVs; macaque BSE infection upregulates a panel of ERVs [245]
Retrovirus; human Retrovirus-specific sequences in infectious fractions from CJD brain but not in controls [246, 247]
Human ERVs (HERVs) HERV detection rates were significantly increased in CJD samples; profiles were also 

distinctly different: 21 of 87 sporadic CJD samples, but none of 40 controls, were dual 
positive for HERV types W and L

[248]

B. Retroelement; host species
Bov-tA; bovine All infected cattle were positive for Bov-tA sequences (a short interspersed sequence 

mobilized by LINEs); only 5/845 healthy controls were positive
[249]

IAP-1; mouse Scrapie infection in cultured mouse cells is associated with upregulation of IAP-1 
retroelement RNA; ‘curing’ (i.e., removal of scrapie infection) of infected cells using 
pentosan polysulfate led to a remarkable (103-fold) downregulation of IAP-1 RNA

[250]

LINE; hamster The most abundant scrapie-only sequence in scrapie-infected hamster brain versus 
controls was a LINE1 family element. Other bands were RNA 7SL (SINE parent and 
common partner of LINE mobilization), and target sites for LINE-family elements 
that insert within 18S and 28S rDNA genes

[242]

7S RNA-related sequences; hamster Hyperabundance of 7SK-hybridizing sequences in scrapie-infected brain [251]
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in both PrPSc levels and infectivity [189]. In vivo, higher 
brain titers of endogenous MuLV correlated with faster scra-
pie progression [190], and PrP boosted MuLV propagation 
[187], indicating that TSE and retrovirus infection act syn-
ergistically. Moreover, there is direct evidence for retrovirus 
mobilization in TSEs (Table 1A). TSE infection in multi-
ple species is thus associated with endogenous retrovirus 
expression/proliferation.

TSE and retroelements

Retroviruses in the mammalian genome are outnumbered 
by endogenous retrovirus-like retroelements that replicate 
by an RT mechanism but lack an envelope glycoprotein and 
are thus incapable of generating conventional viral parti-
cles). These elements, including LINE family (long inter-
spersed nuclear element) and related elements (such as short 
interspersed nuclear elements, SINES – B1/B2 elements in 
mice – highly structured Alu-like elements derived from 
cellular RNA 7SL), comprise up to 40% of the mammalian 
genome and are believed to have played, and continue to 
play, a crucial role in vertebrate genome evolution (reviewed 
in reference [191]). Some tissues, notably the brain, display 
active LINE/SINE transposition into adulthood [192, 193], 
and ongoing (physiological) mobilization of retroelements 
in the human brain is mainly of LINEs and SINES [194].

Importantly, new LINE integrations tend to take place 
into actively transcribed genes [195, 196], but element inser-
tion typically leads to 5’ truncation and loss of the Gag-like 
chaperone activity encoded by the first open reading frame 
(ORF1) [197, 198]. Further mobilization may therefore 
become dependent on non-LINE RT chaperones such as PrP.

Thus, as summarized in Table 1B, in addition to retrovi-
ruses, there is direct evidence for retroelement mobilization 
in TSE infection in both rodents and cattle.

Overlap with herpes virus biology: 
Herpesviridae members mobilize 
retroelements

As noted earlier, HSV-1 depends on PrP for its replication. 
This is relevant because members of the family Herpesviri-
dae, including HSV1, cytomegalovirus (CMV), and EBV, 
activate the expression of human endogenous retroviruses 
(HERV)-K and HERV-W [199–206]. Both HSV1 [207–209] 
and gammaherpesvirus (MHV68 [210]) promote the expres-
sion of short interspersed nuclear elements (SINEs), short 
elements that depend on RT for mobilization, and SINE 
upregulation enhances herpesviral gene expression [210] via 
pathways that remain poorly understood. Further research 
will be necessary to determine whether interactions between 

PrP and SINE RNAs underlie the dependence of HSV-1 on 
PrP function.

PrP transports nucleic acids

Retroelements such as LINEs are generally thought of as 
being wholly intracellular entities. Because (unlike retrovi-
ruses) they lack envelope proteins, it might be held that they 
cannot be taken up by cells, and, conversely, once inside 
the cell they have no mechanism for packaging and export 
from the cell. If so, this would rule them out as transmis-
sible agents. However, the ability of AMPs such as PrP to 
bind to both membranes and nucleic acids has an unexpected 
consequence – nucleic acid delivery.

Nucleic acid import. The archetypical AMP LL-37 can 
bind to extracellular DNA plasmids and oligonucleotides 
and then transport them across the membrane into the 
cytosol and nucleus [138, 139]. Similar findings have been 
reported for PrP. Kocisko et al. expressed a fusion protein 
between PrP and GFP and studied binding and uptake of 
rhodamine-labeled ssDNA oligonucleotides. Initially, rhoda-
mine fluorescence colocalized with GFP at the cell surface, 
but after 24 h, oligonucleotide fluorescence was concen-
trated in the perinuclear region; internalization was depend-
ent on the fusion protein [211]. Magzoub et al. studied a 
fluorescein-conjugated N-terminal PrP peptide and reported 
a 100-fold increase in the internalization of ssDNA [212]. 
Equivalent findings were reported for a luciferase reporter 
plasmid, where a PrP peptide facilitated both uptake and 
luciferase gene expression. In addition, Yin et al. described 
experiments in which a PrP peptide construct internalized 
both dsDNA and ssDNA oligonucleotides. Expression of the 
plasmid reporter (YFP) was stimulated by at least two orders 
of magnitude by the PrP peptide [213]. This work shows that 
PrP can catalyze the uptake of extracellular nucleic acids 
into cells. Although it has been argued that PrP (and Aβ) 
uptake may take place via the laminin receptor [214], block-
ade of the receptor only reduced uptake by 20–55% [215, 
216]; other receptors and/or direct membrane interactions 
are therefore likely to contribute to internalization.

Nucleic acid export. Cell disruption as a result of dis-
ease is one way in which intracellular nucleic acids can be 
released into the extracellular milieu. However, there is evi-
dence for a more direct route. It has been known for many 
years that PrP associates with exosomes [217], small mem-
brane-enclosed vesicles that are actively shed from the cell 
membrane of diverse cell types and contain cellular RNAs 
(reviewed in references [218, 219]). Exosomal PrP could 
thereby facilitate both nucleic acid binding and membrane 
interactions.
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Importantly, exosomes secreted from scrapie-infected 
cells efficiently transmitted infection when inoculated into 
mice [217, 220]. Deep sequencing of RNAs present in 
vesicles released from cells infected with the human CJD-
derived Fukuoka-1 TSE strain revealed that over 50% corre-
sponded to retroviruses, LINES, and SINES [221] (Fig. 2D). 
Moreover, N-terminal epitopes of native PrP in infectious 
exosomes are masked against antibody recognition by an 
unknown ligand/modification [220], and it is possible that 
the PrP N-terminal region is tightly bound to some of these 
RNA species.

The specific association of infectivity, PrP protein, and 
retroelement sequences therefore suggests that PrP can act 
analogously to retroelement Gag proteins (analogs of LINE 
element ORF1 protein) in recruiting RNA genomes to mem-
branes for export from the cell (e.g., [222, 223]).

Nature of the natural TSE agent

Condensation of PrPC into insoluble aggregates is, as with 
other AMPs, overtly a host response to entrap and inactivate 
the target pathogen (in this case, specific nucleic acids), but 
PrPSc formation only takes place late in infection (reviewed 
in reference [5]) – and sometimes not at all if there is mis-
matching between donor and recipient (e.g., first passages of 
BSE in mice [56–58, 60]), despite high titers of infectivity 
– raising the question of the molecular form of the infectious 
TSE agent before it is sequestered into PrPSc aggregates.

The most likely (natural) form of the transmissible agent 
is, arguably, an exosome-like phospholipid particle that 
also contains PrP and RNAs, notably retroelement RNAs 
or fragments thereof. This notion is based on the fact that 
PrP resembles the retroviral structural polyprotein Gag: both 
bind nucleic acids, interact with membranes, form aggre-
gates in response to RNA binding, and have RNA chap-
eroning activities (i.e., fraying, unwinding, and annealing 
activities, matchmaking, and stimulation of RT activity by 
primer–template annealing and enzyme recruitment to the 
complex). Like Gag proteins, PrP can form liquid droplets 
upon binding to RNA in association with other RNA-binding 
proteins. Moreover, biophysical considerations argue that 
liquid droplets are precursors for the assembly of membrane-
enclosed ribonucleoprotein complexes including endosomes/
exosomes and retroviral particles. For example, lipid-asso-
ciated PrPSc was reported to readily form liposomes [63]. 
However, the details need to be worked out.

Retrovirus production by budding proceeds via host-cell 
late endosomes and exosome pathways, and retrovirus par-
ticles and exosomes display many similarities. In addition 
to retroelement nucleic acids that are enriched in exosomes 
[221], PrP protein (as well as Gag proteins) is found in both 
retrovirus particles and exosomes [104, 116, 189, 217]. PrP 

is present on the outer surface, where it could plausibly 
promote membrane fusion, but is undoubtedly also within 
the particles – many forms of PrP lack the GPI membrane 
anchor, and PrP is recruited to particles even when the GPI 
anchor is missing [189].

TSE infectivity is found in exosomes [217, 220], and both 
the cellular (PrPC) and disease-related (PrPSc) forms of PrP 
are present in exosomes as well as in retroviral (MoMLV and 
HIV) particles [104, 116, 189]. Indeed, GPI-linked proteins 
(such as PrP) are selectively recruited into both exosomes 
and retroviral particles (see above). As originally shown by 
Temin and Baltimore [224], RT is present in the interior 
of retroviral particles and can catalyze reverse transcription 
in situ, raising the possibility that retroelement-encoded 
RT enzyme may also be present in infectious exosomes 
(although this remains to be investigated). In support, Kato 
et al. list LINE1 (LINE1-type transposase domain-contain-
ing 1) as a component of RNA granule liquid droplets [225].

In sum, the PrPSc aggregates – a product of host defense 
– are unlikely to represent the form of the agent that transits 
between animals and cells in vivo. We suggest that subviral 
exosomal particles containing PrP and nucleic acid represent 
the infectious moiety in natural scrapie – with transmission 
via scratching posts or placenta.

Is it PrP or the nucleic acid that causes 
pathology in TSE?

We have argued that PrP is a defense molecule that aggre-
gates in response to specific RNAs but in some cases can 
provoke their RT copying and mobilization. However, like 
all AMPs, high concentrations of PrP are undoubtedly neu-
rotoxic, particularly in their activated forms (such as Aβ 
peptide and PrPSc), raising the question of whether it is the 
neurotoxic AMP or the microbe that causes the disease. For 
Aβ, the debate continues to rage, but the presence of exten-
sive Aβ aggregates in the brain of healthy elderly individu-
als with no evidence of cognitive decline suggests that Aβ 
deposition has successfully immobilized the invader and is 
not itself the primary cause of disease [140]. The same line 
of argument may apply to TSE, because Yuan et al. [226] 
reported protease-resistant aggregates of PrPSc-like material 
in normal human brain from individuals free of any neuro-
logical disorder (or PRNP mutations).

PrPSc can clearly be neurotoxic, but we argue that the 
neuropathology – which can take place in the absence of any 
PrPSc – is primarily caused by PrP-mediated retroelement 
mobilization, with widespread insertional mutagenesis and 
disruption of basic cellular metabolic processes (e.g., Alu 
retroelements are closely related to essential 7S RNAs that 
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are involved in fundamental aspects of cell function such as 
protein secretion and translation).

Discussion and conclusions: TSE 
as a retromobilization disease

In this synthesis we juxtapose new findings that were not 
available at the beginning of the prion era: first, that PrP is a 
nucleic-acid-binding antimicrobial protein that it similar to 
retroviral Gag proteins in its ability to trigger reverse tran-
scription; second, that retroelement mobilization is widely 
seen in TSE disease; and third, that PrP can also mediate 
nucleic acid transport into and out of the cell.

To explain the 30 or more strains of TSE, a strong case 
can now be made that a second element – retroelement 
nucleic acid – bound to PrP constitutes the second compo-
nent. We propose that a retroelement nucleic acid bound to 
PrP constitutes the infectious agent, triggering uncontrolled 
retroelement mobilization in the recipient and onward trans-
mission to adjacent cells (Fig. 3). This analysis suggests that 
strain characteristics are determined by the identity of the 
retroelement nucleic acid(s) bound to PrP.

There is a precedent for retrotransposition disease 
– hybrid dysgenesis in Drosophila. When a transposition-
repressed genome is crossed into a permissive line, derepres-
sion takes place – leading to massive mobilization of both 
non-RT and RT elements, including classic LINE elements 
[227, 228], causing widespread insertional mutagenesis and 
cell toxicity.

Unexpectedly, retroelements (like retroviruses) can 
also be transmitted between hosts. This has been amply 
documented for mobile elements in insects and plants (not 
reviewed), but can also take place in vertebrates. Rumi-
nants (Bos and Ovis spp.) recently (~ 40 million years ago) 
acquired a specific LINE, BovB, from snakes and lizards, 
and it has been suggested that biting insects may have been 
the vector [229, 230]. Classical L1 elements can also be 
transferred between species [231].

In TSE, the simplest interpretation is that a retroelement/
endogenous retrovirus RNA genome, or a subfragment 
thereof, is brought into the cell by PrP, and PrP chaperone 
activity then promotes its copying into DNA and genomic 
insertion. A retroelement subfragment might suffice in some 
cases, acting as a primer for PrP-stimulated reverse tran-
scription of an endogenous element and subsequent mobili-
zation. The disease-causing properties of a given inoculum 

Fig. 3   PrP promotes multiple steps in nucleic acid transport and ret-
roelement mobilization. As reviewed in the text, PrP binds to nucleic 
acids and can (i) facilitate cellular uptake by membrane binding 
and/or (ii) undergo a conformation change in response to abnormal 
nucleic acids, which leads to aggregation as part of its AMP action 
(*the AMP activity of PrP may also involve membrane binding). PrP 
is a highly effective chaperone of cDNA synthesis by reverse tran-

scriptase (RT), and the transmissible encephalopathies (TSEs) are 
characterized by upregulation/mobilization of retroelements, includ-
ing long and short interspersed nuclear repeat elements (LINEs and 
SINES). TSE infectivity, PrP protein, and LINE nucleic acids are 
associated with membrane-enclosed exosomal vesicles that are shed 
from the cell surface. indicates confirmed steps. Abbreviations: AMP, 
antimicrobial peptide; RV, retrovirus
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would then crucially depend on the extent of matching 
between the incoming nucleic acid and host-encoded ele-
ments. This could explain the species barrier that is observed 
with some TSE agents (and also mutational changes as a 
consequence of mismatching).

PrP (and potentially other Gag-like nucleic acid chaper-
ones) clearly plays a vital role in this process because free 
nucleic acid from TSE brain is not infectious (e.g., [66, 88]; 
note our earlier caveat regarding an unusual brain-enriched 
RNase), but one observation remains to be explained – that 
disease-associated forms of PrP may, at low frequency, alone 
establish infection, a process that probably requires a sto-
chastic event taking place in the host cell. What might this 
event be?

We envisage two non-exclusive scenarios. First, a chance 
tripartite encounter between the PrP inoculum, an endoge-
nous retroelement mRNA (or DNA), and a cellular RNA (or 
fragment) capable of acting as a primer could set up mobi-
lization of the retroelement, leading to disease. It is of note 
that LINE-type retroelements typically lack the upstream 
ORF encoding the crucial Gag-like RT chaperone protein 
and thus cannot mobilize. Exogenous PrP (possibly refolded 
into an alternative conformation) could therefore catalyze 
de novo mobilization of otherwise silent elements. Second, 
sporadic mutation in a endogenous retroelement RNA (or 
gene) could lead to an altered RNA conformation that is 
efficiently mobilized by PrP.

Under this interpretation, the appearance of spontaneous 
disease in familial TSEs, such as CJD and GSS, which har-
bor disease-triggering mutations in PrP, could thus result 
from PrP-mediated hyperactivation of endogenous elements. 
In support, cells containing PrP mutated to contain the 
P102L GSS allele (P101L in mouse PrP) displayed higher 
MuLV titers in vitro and increased MuLV plaque size [187]. 
Although this remains to be independently confirmed, this 
finding suggests that familial TSE mutant PrP can upregulate 
the proliferation of an endogenous element.

Looking wider, abnormal retroelement mobilization has 
also been reported in neuropsychiatric diseases including 
Alzheimer disease [232–234], of note because PrP interacts 
with Alzheimer Aβ (see text and reference [149] for review), 
leading to the inference that PrP chaperone activity may also 
contribute to pathology in other diseases.

In sum, the data argue for an intimate association between 
PrP and nucleic acids that could finally explain the different 
strains of TSE agent. More than a decade ago, we were, in 
the words of Silva et al., ‘halfway there’ towards the iden-
tification of the specific nucleic acid(s) involved in TSE 
[235]. We surmise that we are today three-quarters of the 
way towards that goal. This is an important goal because it 
raises pragmatic issues relating to TSE diagnosis, disinfec-
tion, and potential therapeutics. However, advocates of the 
protein-only hypothesis will rightly demand a formal proof 

before admitting any modification to the theory. Only time 
(and further experiment) will tell. Although deep sequenc-
ing of nucleic acids from TSE versus control will hopefully 
cast light, testing the infectivity of specific nucleic acids in 
vivo in conjunction with purified PrP will be necessary to 
resolve the matter, but this requires pathogen containment 
facilities and is not a trivial undertaking. To conclude, as 
Moira Bruce observed a quarter of a century ago, ‘The issue 
will remain controversial until there is a direct identification 
of the informational molecule of the agent and the variations 
in it which lead to phenotypic diversity’ [34].
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