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Abstract
We consider the Cauchy problem for the defocusing stochastic nonlinear Schrödinger
equations (SNLS) with an additive noise in the mass-critical and energy-critical set-
tings. By adapting the probabilistic perturbation argument employed in the context of
the random data Cauchy theory by Bényi et al. (Trans Am Math Soc Ser B 2:1–50,
2015) to the current stochastic PDE setting, we present a concise argument to establish
global well-posedness of the mass-critical and energy-critical SNLS.
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1 Introduction

1.1 Stochastic nonlinear Schrödinger equations

We consider the Cauchy problem for the stochastic nonlinear Schrödinger equation
(SNLS) with an additive noise:
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{
i∂t u + �u = |u|p−1u + φξ

u|t=0 = u0,
(t, x) ∈ R+ × R

d , (1)

where ξ(t, x) denotes a space-time white noise on R+ × R
d and φ is a bounded

operator on L2(Rd). In this paper, we restrict our attention to the defocusing case. Our
main goal is to present a concise argument in establishing global well-posedness of
(1) in the so-called mass-critical and energy-critical cases.

Let us first go over the notion of the scaling-critical regularity for the (deterministic)
defocusing nonlinear Schrödinger equation (NLS):

i∂t u + �u = |u|p−1u, (2)

namely, (1)withφ ≡ 0. TheEq. (2) is known to enjoy the following dilation symmetry:

u(t, x) �−→ uλ(t, x) = λ
− 2

p−1 u(λ−2t, λ−1x)

for λ > 0. If u is a solution to (2), then the scaled function uλ is also a solution
to (2) with the rescaled initial data. This dilation symmetry induces the following
scaling-critical Sobolev regularity:

scrit = d

2
− 2

p − 1

such that the homogeneous Ḣ scrit(Rd)-norm is invariant under the dilation symmetry.
This critical regularity scrit provides a threshold regularity for well-posedness and ill-
posedness of (2). Indeed, when s ≥ max(scrit, 0), the Cauchy problem (2) is known
to be locally well-posed in Hs(Rd) [6,19,22,36].1 On the other hand, it is known that
NLS (2) is ill-posed in the scaling supercritical regime: s < scrit. See [9,26,28].

Next, we introduce two important critical regularities associated with the following
conservation laws for (2):

Mass: M(u(t)) :=
∫
Rd

|u(t, x)|2dx,

Energy: E(u(t)) := 1

2

∫
Rd

|∇u(t, x)|2dx + d − 2

2d

∫
Rd

|u(t, x)| 2d
d−2 dx .

In view of these conservation laws, we say that the Eq. (2) is

(i) Mass-critical when scrit = 0, namely, when p = 1 + 4
d ,

(ii) Energy-critical when scrit = 1, namely, when p = 1 + 4
d−2 and d ≥ 3.

Over the last two decades, we have seen a significant progress in the global-in-time
theory of the defocusing NLS (2) in the mass-critical and energy-critical cases [5,11,
15–17,31,34,37]. In particular, we now know that

1 When p is not an odd integer, we may need to impose an extra assumption due to the non-smoothness of
the nonlinearity.
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(i) The defocusing mass-critical NLS (2) with p = 1 + 4
d is globally well-posed in

L2(Rd),
(ii) The defocusing energy-critical NLS (2) with p = 1 + 4

d−2 , d ≥ 3, is globally

well-posed in Ḣ1(Rd).

Moreover, the following space-time bound on a global solution u to (2) holds:

‖u‖
L

2(d+2)
d−2k

t,x (R×Rd )

≤ C(‖u0‖Hk ) < ∞ (3)

with (i) k = 0 in the mass-critical case and (ii) k = 1 in the energy-critical case. This
bound in particular implies that global-in-time solutions scatter, i.e. they asymptoti-
cally behave like linear solutions as t → ±∞.

Let us now turn our attention to SNLS (1). We say that u is a solution to (1) if it
satisfies the following Duhamel formulation (= mild formulation):

u(t) = S(t)u0 − i
∫ t

0
S(t − t ′)|u|p−1u(t ′)dt ′ − i

∫ t

0
S(t − t ′)φξ(dt ′), (4)

where S(t) = eit� denotes the linear Schrödinger propagator. The last term on the
right-hand side of (4) is called the stochastic convolution, which we denote by �.
Fix a probability space (�,F , P) endowed with a filtration {Ft }t≥0 and let W denote
the L2(Rd)-cylindrical Wiener process associated with the filtration {Ft }t≥0; see (10)
below for a precise definition. Then, the stochastic convolution � is defined by

�(t) = −i
∫ t

0
S(t − t ′)φξ(dt ′)

:= −i
∫ t

0
S(t − t ′)φdW (t ′).

(5)

See Sect. 2 for the precise meaning of the definition (5); in particular see (11).
Our main goal is to construct global-in-time dynamics for (4) in the mass-critical

and energy-critical cases. Thismeans thatwe take (i) p = 1+ 4
d in themass-critical case

and (ii) p = 1 + 4
d−2 in the energy-critical case. Furthermore, we take the stochastic

convolution � in (5) to be at the corresponding critical regularity. Suppose that φ ∈
HS (L2; Hs), namely, φ is a Hilbert-Schmidt operator from L2(Rd) to Hs(Rd). Then,
it is known that � ∈ C(R+; Hs(Rd)) almost surely; see [12]. Therefore, we will
impose that (i) φ ∈ HS (L2; L2) in the mass-critical case and (ii) φ ∈ HS (L2; H1) in
the energy-critical case.

Previously, de Bouard and Debussche [14] studied SNLS (1) in the energy-
subcritical setting: scrit < 1, assuming that φ ∈ HS (L2; H1). By using the Strichartz
estimates, they showed that the stochastic convolution � almost surely belongs to
a right Strichartz space, which allowed them to prove local well-posedness of (1) in
H1(Rd)with φ ∈ HS (L2; H1) in the energy-subcritical case: 1 < p < 1+ 4

d−2 when
d ≥ 3 and 1 < p < ∞ when d = 1, 2. We point out that when s ≥ max(scrit, 0),
a slight modification of the argument in [14] with the regularity properties of the
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stochastic convolution (see Lemma 2.2 below) yields local well-posedness2 of (1)
in Hs(Rd), provided that φ ∈ HS (L2; Hs). See Lemma 2.3 for the statements in
the mass-critical and energy-critical cases. We also mention recent papers [8,30] on
local well-posedness of (1) with additive noises rougher than the critical regularities,
i.e. φ ∈ HS (L2; Hs) with s < scrit.

In the energy-subcritical case, assuming φ ∈ HS (L2; H1), global well-posedness
of (1) in H1(Rd) follows from an a priori H1-bound of solutions to (1) based on the
conservation of the energy E(u) for the deterministic NLS and Ito’s lemma; see [14].
See also Lemma 2.4. In a recent paper [7], Cheung et al. adapted the I -method [10] to
the stochastic PDE setting and established global well-posedness of energy-subcritical
SNLS below H1(Rd). In the mass-subcritical case, global well-posedness in L2(Rd)

also follows from an a priori L2-bound based on the conservation of the mass M(u)

for the deterministic NLS and Ito’s lemma.
We extend these global well-posedness results to the mass-critical and energy-

critical settings.

Theorem 1.1 (i) (Mass-critical case). Let d ≥ 1 and p = 1 + 4
d . Then, given

φ ∈ HS (L2; L2), the defocusing mass-critical SNLS (1) is globally well-posed in
L2(Rd).

(ii) (Energy-critical case). Let 3 ≤ d ≤ 6 and p = 1 + 4
d−2 . Then, given φ ∈

HS (L2; H1), the defocusing energy-critical SNLS (1) is globally well-posed in
H1(Rd).

In the following, we only consider deterministic initial data u0. This assumption
is, however, not essential and we may also take random initial data (measurable with
respect to the filtration F0 at time 0).

In the mass-critical case (and the energy-critical case, respectively), the a pri-
ori L2-bound (and the a priori H1-bound, respectively) does not suffice for global
well-posedness (even in the case of the deterministic NLS (2)). The main idea for
proving Theorem 1.1 is to adapt the probabilistic perturbation argument introduced by
the authors [4,29] in studying global-in-time behavior of solutions to the defocusing
energy-critical cubic NLS with random initial data below the energy space. Namely,
by letting v = u − �, where � is the stochastic convolution defined in (5), we study
the equation satisfied by v:

{
i∂tv + �v = N (v + �)

v|t=0 = u0,
(6)

where N (u) = |u|p−1u. Write the nonlinearity as

N (v + �) = N (v) + (N (v + �) − N (v)
)
.

Then, the regularity properties of the stochastic convolution (see Lemma 2.2 below)
and the fact that their space-time norms can be made small on short time intervals

2 When p is not an odd integer, an extra assumption such as p ≥ [s] + 1 may be needed.
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allow us to view the second term on the right-hand side as a perturbative term. By
invoking the perturbation lemma (Lemmas 3.2, 4.3), we then compare the solution v

to (6) with a solution to the deterministic NLS (2) on short time intervals as in [4,29].
See also [24,35] for similar arguments in the deterministic case. In the energy-critical
case, we rely on the Lipschitz continuity of ∇N (u) in the perturbation argument,
which imposes the assumption d ≤ 6 in Theorem 1.1.

Remark 1.2 We remark that solutions constructed in this paper are adapted to the given
filtration {Ft }t≥0. For example, adaptedness of a solution v to (6) directly follows
from the local-in-time construction of the solution via the Picard iteration. Namely,
we consider the map 	 defined by

	v(t) := S(t)u0 − i
∫ t

0
S(t − t ′)N (v + �)(t ′)dt ′.

Then, we define the j th Picard iterate Pj by setting

P1 = S(t)u0,

Pj+1 = 	Pj = S(t)u0 − i
∫ t

0
S(t − t ′)N (Pj + �)(t ′)dt ′ (7)

for j ∈ N. Since the stochastic convolution � is adapted to the filtration {Ft }t≥0,
it is easy to see from (7) that Pj is adapted for each j ∈ N. Furthermore, the local
well-posedness of (6) by a contraction mapping principle (see Lemmas 3.1 and 4.1
below) shows that the sequence {Pj } j∈N converges, in appropriate functions spaces,
to a limit v = lim j→∞ Pj , which is a solution to (the mild formulation of) (6). By
invoking the closure property of measurability under a limit, we conclude that the
solution v to (6) is also adapted to the filtration {Ft }t≥0. The same comment applies
to Lemma 2.3 below.

Remark 1.3 (i) In the focusing case, i.e. with−|u|p−1u in (1), deBouard andDebuss-
che [13] proved under appropriate conditions that, starting with any initial data,
finite-time blowup occurs with positive probability.

(ii) In themass-subcritical and energy-critical cases, SNLSwith amultiplicative noise
has been studied in [1–3]. In recent preprints, Fan and Xu [18] and Zhang [39]
proved global well-posedness of SNLS with a multiplicative noise in the mass-
critical and energy-critical setting.

2 Preliminary results

In this section, we introduce some notations and go over preliminary results.
Given two separable Hilbert spaces H and K , we denote by HS (H ; K ) the space

of Hilbert–Schmidt operators φ from H to K , endowed with the norm:

‖φ‖HS (H ;K ) =
( ∑

n∈N
‖φen‖2K

) 1
2

,
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where {en}n∈N is an orthonormal basis of H .
Since our focus is the mass-critical and energy-critical cases, we introduceNk(u),

k = 0, 1, by

N0(u) := |u| 4d u and N1(u) := |u| 4
d−2 u. (8)

Namely, k = 0 corresponds to the mass-critical case, while k = 1 corresponds to the
energy-critical case.

The Strichartz estimates play an important role in our analysis. We say that a pair
(q, r) is admissible if 2 ≤ q, r ≤ ∞, (q, r , d) �= (2,∞, 2), and

2

q
+ d

r
= d

2
.

Then, the following Strichartz estimates are known to hold; see [20,23,32,38].

Lemma 2.1 Let (q, r) be admissible. Then, we have

‖S(t)φ‖Lq
t Lr

x
� ‖φ‖L2 .

For any admissible pair (q̃, r̃), we also have∥∥∥∥
∫ t

0
S(t − t ′)F(t ′)dt ′

∥∥∥∥
Lq

t Lr
x

� ‖F‖
Lq̃′

t Lr̃ ′
x
, (9)

where q̃ ′ and r̃ ′ denote the Hölder conjugates. Moreover, if the right-hand side of (9)
is finite for some admissible pair (q̃, r̃), then

∫ t
0 S(t − t ′)F(t ′)dt ′ is continuous (in

time) with values in L2(Rd).

Next, we provide a precise meaning to the stochastic convolution defined in (5). Let
(�,F , P) be a probability space endowedwith a filtration {Ft }t≥0. Fix an orthonormal
basis {en}n∈N of L2(Rd). We define an L2(Rd)-cylindrical Wiener process W by

W (t, x, ω) :=
∑
n∈N

βn(t, ω)en(x), (10)

where {βn}n∈N is a family ofmutually independent complex-valuedBrownianmotions
associated with the filtration {Ft }t≥0. Here, the complex-valued Brownian motion
means that Reβn(t) and Imβn(t) are independent (real-valued) Brownian motions.
Then, the space-time white noise ξ is given by a distributional derivative (in time) of
W and thus we can express the stochastic convolution � as

�(t) = −i
∑
n∈N

∫ t

0
S(t − t ′)φen dβn(t ′), (11)

where each summand is a classical Wiener integral (with respect to the integrator
dβn); see [27]. Then, we have the following lemma on the regularity properties of the
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stochastic convolution. See, for example, Proposition 5.9 in [12] for Part (i). As for
Part (ii), see [30].

Lemma 2.2 Let d ≥ 1, T > 0, and s ∈ R. Suppose that φ ∈ HS (L2; Hs).

(i) We have � ∈ C([0, T ]; Hs(Rd)) almost surely. Moreover, for any finite p ≥ 1,
there exists C = C(T , p) > 0 such that

E

[
sup

0≤t≤T
‖�(t)‖p

Hs

]
≤ C‖φ‖p

HS (L2;Hs )
.

(ii) Given 1 ≤ q < ∞ and finite r ≥ 2 such that r ≤ 2d
d−2 when d ≥ 3, we have

� ∈ Lq([0, T ]; W s,r (Rd)) almost surely. Moreover, for any finite p ≥ 1, there
exists C = C(T , p) > 0 such that

E

[
‖�‖p

Lq ([0,T ];W s,r (Rd ))

]
≤ C‖φ‖p

HS (L2;Hs )
.

By the Strichartz estimates (Lemma 2.1) and Lemma 2.2 on the stochastic con-
volution, one can easily prove the following local well-posedness (see Lemma 2.3
below) of the mass-critical and energy-critical SNLS (1) by essentially following the
argument in [14], namely, by studying the Duhamel formulation for v = u − �:

v(t) = S(t)u0 − i
∫ t

0
S(t − t ′)N (v + �)(t ′)dt ′.

See also Lemmas 3.1 and 4.1 below. In the mass-critical case, the admissible pair
q = r = 2(d+2)

d plays an important role. In the energy-critical case, we use the
following admissible pair

(qd , rd) :=
(

2d

d − 2
,

2d2

d2 − 2d + 4

)
(12)

for d ≥ 3.

Lemma 2.3 (i) (Mass-critical case). Let d ≥ 1, p = 1 + 4
d , and φ ∈ HS (L2; L2).

Then, given any u0 ∈ L2(Rd), there exists an almost surely positive stopping time
T = Tω(u0) and a unique local-in-time solution u ∈ C([0, T ]; L2(Rd)) to the
mass-critical SNLS (1). Furthermore, the following blowup alternative holds; let
T ∗ = T ∗

ω (u0) be the forward maximal time of existence. Then, either

T ∗ = ∞ or lim
T ↗T ∗ ‖u‖

L
2(d+2)

d
t,x ([0,T )×Rd )

= ∞.

(ii) (Energy-critical case). Let 3 ≤ d ≤ 6, p = 1 + 4
d−2 , and φ ∈ HS (L2; H1).

Then, given any u0 ∈ H1(Rd), there exists an almost surely positive stopping time
T = Tω(u0) and a unique local-in-time solution u ∈ C([0, T ]; H1(Rd)) to the
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energy-critical SNLS (1). Furthermore, the following blowup alternative holds;
let T ∗ = T ∗

ω (u0) be the forward maximal time of existence. Then, either

T ∗ = ∞ or lim
T ↗T ∗ ‖u‖Lqd ([0,T );W 1,rd (Rd )) = ∞.

We note that the mapping: (u0, �) �→ v is continuous. See Proposition 3.5 in [14].
In the energy-critical case, the local-in-time well-posedness also holds for d > 6
(see Remark 4.2 below). As mentioned earlier, the perturbation argument requires the
Lipschitz continuity of ∇N and hence we need to assume d ≤ 6 in the following.

Lastly, we state the a priori bounds on the mass and energy of solutions constructed
in Lemma 2.3.

Lemma 2.4 (i) (Mass-critical case). Assume the hypotheses in Lemma 2.3(i). Then,
given T0 > 0, there exists C1 = C1(M(u0), T0, ‖φ‖HS (L2;L2)) > 0 such that for
any stopping time T with 0 < T < min(T ∗, T0) almost surely, we have

E

[
sup

0≤t≤T
M(u(t))

]
≤ C1, (13)

where u is the solution to the mass-critical SNLS (1) with u|t=0 = u0 and T ∗ =
T ∗

ω (u0) is the forward maximal time of existence.
(ii) (Energy-critical case). Assume the hypotheses in Lemma 2.3(ii). Then, given T0 >

0, there exists C2 = C2(M(u0), E(u0), T0, ‖φ‖HS (L2;H1)) > 0 such that for any
stopping time T with 0 < T < min(T ∗, T0) almost surely, we have

E

[
sup

0≤t≤T
M(u(t))

]
+ E

[
sup

0≤t≤T
E(u(t))

]
≤ C2,

where u is the solution to the defocusing energy-critical SNLS (1) with u|t=0 = u0
and T ∗ = T ∗

ω (u0) is the forward maximal time of existence.

For Part (ii), we need to assume that the equation is defocusing. These a priori
bounds follow from Ito’s lemma and the Burkholder–Davis–Gundy inequality. In
order to justify an application of Ito’s lemma, one needs to go through a certain
approximation argument. See, for example, Proposition 3.2 in [14]. In our mass-
critical and energy-critical settings, however, such an approximation argument is more
involved and hence we present a sketch of the argument in “Appendix A”.

3 Mass-critical case

In this section, we prove global well-posedness of the defocusing mass-critical SNLS
(1) (Theorem 1.1(i)). In Sect. 3.1, we first study the following defocusingmass-critical
NLS with a deterministic perturbation:

i∂tv + �v = N0(v + f ), (14)
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where N0 is as in (8) and f is a given deterministic function, satisfying certain regu-
larity conditions. By applying the perturbation lemma, we prove global existence for
(14), assuming an a priori L2-bound of a solution v to (14). See Proposition 3.3. In
Sect. 3.2, we then present the proof of Theorem 1.1(i) by writing (1) in the form (14)
(with f = �) and verifying the hypotheses in Proposition 3.3.

3.1 Mass-critical NLS with a perturbation

By the standard Strichartz theory, we have the following local well-posedness of the
perturbed NLS (14).

Lemma 3.1 There exists small η0 > 0 such that if

‖S(t − t0)v0‖
L

2(d+2)
d

t,x (I×Rd )

+ ‖ f ‖
L

2(d+2)
d

t,x (I×Rd )

≤ η

for some η ≤ η0 and some time interval I = [t0, t1] ⊂ R, then there exists a unique

solution v ∈ C(I ; L2(Rd)) ∩ L
2(d+2)

d
t,x (I × R

d) to (14) with v(t0) = v0 ∈ L2(Rd).
Moreover, we have

‖v‖
L

2(d+2)
d

t,x (I×Rd )

≤ 2η.

Proof We show that the map 	 defined by

	v(t) := S(t − t0)v0 − i
∫ t

t0
S(t − t ′)N0(v + f )(t ′)dt ′

is a contraction on the ball B2η ⊂ L
2(d+2)

d
t,x (I × R

d) of radius 2η > 0 centered at the
origin, provided that η > 0 is sufficiently small. Noting that the Hölder conjugate of
2(d+2)

d is 2(d+2)
d+4 = 2(d+2)

d /(1+ 4
d ), it follows from Lemma 2.1 that there exists small

η0 > 0 such that

‖	v‖
L

2(d+2)
d

t,x (I×Rd )

≤ ‖S(t − t0)v0‖
L

2(d+2)
d

t,x (I×Rd )

+ ‖	v − S(t − t0)v0‖
L

2(d+2)
d

t,x (I×Rd )

≤ η + C

(
‖v‖

L
2(d+2)

d
t,x (I×Rd )

+ ‖ f ‖
L

2(d+2)
d

t,x (I×Rd )

)1+ 4
d

≤ η + Cη1+
4
d ≤ 2η

and

‖	v1 − 	v2‖
L

2(d+2)
d

t,x (I×Rd )

≤ 1

2
‖v1 − v2‖

L
2(d+2)

d
t,x (I×Rd )
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for anyv, v1, v2 ∈ B2η and0 < η ≤ η0.Hence,	 is a contraction on B2η. Furthermore,
we have

‖v‖L∞(I ;L2(Rd )) ≤ ‖S(t − t0)v0‖L∞(I ;L2(Rd ))

+ C

(
‖v‖

L
2(d+2)

d
t,x (I×Rd )

+ ‖ f ‖
L

2(d+2)
d

t,x (I×Rd )

)1+ 4
d

≤ ‖v0‖L2 + Cη1+
4
d < ∞

for any v ∈ B2η. This shows that v ∈ C(I ; L2(Rd)). ��
Next, we recall the long-time stability result in the mass-critical setting. See [35]

for the proof.

Lemma 3.2 (Mass-critical perturbation lemma) Let I be a compact interval. Suppose
that v ∈ C(I ; L2(Rd)) satisfies the following perturbed NLS:

i∂tv + �v = |v| 4d v + e, (15)

satisfying
‖v‖L∞(I ;L2(Rd )) + ‖v‖

L
2(d+2)

d
t,x (I×Rd )

≤ R

for some R ≥ 1. Then, there exists ε0 = ε0(R) > 0 such that if we have

‖u0 − v(t0)‖L2(Rd ) + ‖e‖
L

2(d+2)
d+4

t,x (I×Rd )

≤ ε (16)

for some u0 ∈ L2(Rd), some t0 ∈ I , and some ε < ε0, then there exists a solution
u ∈ C(I ; L2(Rd)) to the defocusing mass-critical NLS:

i∂t u + �u = |u| 4d u (17)

with u(t0) = u0 such that

‖u‖L∞(I ;L2(Rd )) + ‖u‖
L

2(d+2)
d

t,x (I×Rd )

≤ C1(R),

‖u − v‖L∞(I ;L2(Rd )) + ‖u − v‖
L

2(d+2)
d

t,x (I×Rd )

≤ C1(R)ε,

where C1(R) is a non-decreasing function of R.

In the remaining part of this subsection,we consider long time existence of solutions
to the perturbed NLS (14) under several assumptions. Given T > 0, we assume that
there exist C, θ > 0 such that

‖ f ‖
L

2(d+2)
d

t,x (I×Rd )

≤ C |I |θ (18)
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for any interval I ⊂ [0, T ]. Then, Lemma 3.1 guarantees existence of a solution to the
perturbed NLS (14), at least for a short time. The following proposition establishes
long time existence under some hypotheses.

Proposition 3.3 Given T > 0, assume the following conditions (i)–(ii):

(i) f ∈ L
2(d+2)

d
t,x ([0, T ] × R

d) satisfies (18),
(ii) Given a solution v to (14), the following a priori L2-bound holds:

‖v‖L∞([0,T ];L2(Rd )) ≤ R (19)

for some R ≥ 1.

Then, there exists τ = τ(R, θ) > 0 such that, given any t0 ∈ [0, T ), a unique solution
v to (14) exists on [t0, t0 + τ ] ∩ [0, T ]. In particular, the condition (ii) guarantees
existence of a unique solution v to the perturbed NLS (14) on the entire interval
[0, T ].

Proof By setting e = N0(v + f ) −N0(v), Eq. (14) reduces to (15). In the following,
we iteratively apply Lemma 3.2 on short intervals and show that there exists τ =
τ(R, θ) > 0 such that (15) is well-posed on [t0, t0 + τ ] ∩ [0, T ] for any t0 ∈ [0, T ).

Letw be the global solution to the defocusing mass-critical NLS (17) withw(t0) =
v(t0) = v0. By the assumption (19), we have ‖w(t0)‖L2 ≤ R. Then, by the space-time
bound (3), we have

‖w‖
L

2(d+2)
d

t,x (R×Rd )

≤ C(R) < ∞.

Given small η > 0 (to be chosen later), we divide the interval [t0, T ] into J =
J (R, η) ∼ (

C(R)/η
) 2(d+2)

d many subintervals I j = [t j , t j+1] such that

‖w‖
L

2(d+2)
d

t,x (I j ×Rd )

≤ η. (20)

We point out that η will be chosen as an absolute constant and hence dependence of
other constants on η is not essential in the following. Fix τ > 0 (to be chosen later in
terms of R and θ ) and write [t0, t0+τ ] = ⋃J ′

j=0

([t0, t0+τ ]∩ I j
)
for some J ′ ≤ J −1,

where [t0, t0 + τ ] ∩ I j �= ∅ for 0 ≤ j ≤ J ′ and [t0, t0 + τ ] ∩ I j = ∅ for j > J ′.
Since the nonlinear evolution w is small on each I j , it follows that the linear

evolution S(t − t j )w(t j ) is also small on each I j . Indeed, from the Duhamel formula,
we have

S(t − t j )w(t j ) = w(t) − i
∫ t

t j

S(t − t ′)N0(w)(t ′)dt ′.
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Then, by Lemma 2.1 and (20), we have

‖S(t − t j )w(t j )‖
L

2(d+2)
d

t,x (I j ×Rd )

≤ ‖w‖
L

2(d+2)
d

t,x (I j ×Rd )

+ C‖w‖1+
4
d

L
2(d+2)

d
t,x (I j ×Rd )

≤ η + Cη1+
4
d

≤ 2η (21)

for all j = 0, . . . , J − 1, provided that η > 0 is sufficiently small.
Now, we estimate v on the first interval I0. By v(t0) = w(t0) and (21), we have

‖S(t − t0)v(t0)‖
L

2(d+2)
d

t,x (I0×Rd )

= ‖S(t − t0)w(t0)‖
L

2(d+2)
d

t,x (I0×Rd )

≤ 2η.

Let η0 > 0 be as in Lemma 3.1. Then, by the local theory (Lemma 3.1), we have

‖v‖
L

2(d+2)
d

t,x (I0×Rd )

≤ 6η,

as long as 3η < η0 and τ = τ(η, θ) = τ(θ) > 0 is sufficiently small so that

‖ f ‖
L

2(d+2)
d

t,x ([t0,t0+τ))

≤ Cτ θ ≤ η. (22)

Next, we estimate the error term. By Lemma 2.1 and (18), we have

‖e‖
L

2(d+2)
d+4

t,x (I0×Rd )

≤ C

(
‖v‖

L
2(d+2)

d
t,x (I0×Rd )

+ ‖ f ‖
L

2(d+2)
d

t,x (I0×Rd )

) 4
d ‖ f ‖

L
2(d+2)

d
t,x (I0×Rd )

≤ C
(
η + τ θ

) 4
d
τ θ

≤ Cτ θ (23)

for any small η, τ > 0. Given ε > 0, we can choose τ = τ(ε, θ) > 0 sufficiently
small so that

‖e‖
L

2(d+2)
d+4

t,x (I0×Rd )

≤ ε.

In particular, for ε < ε0 with ε0 = ε0(R) > 0 dictated by Lemma 3.2, the condition
(16) is satisfied on I0. Hence, by the perturbation lemma (Lemma 3.2), we obtain

‖w − v‖L∞(I0;L2(Rd )) + ‖w − v‖
L

2(d+2)
d

t,x (I0×Rd )

≤ C1(R)ε.

In particular, we have

‖w(t1) − v(t1)‖L2(Rd ) ≤ C1(R)ε. (24)
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We now move onto the second interval I1. By (21) and Lemma 2.1 with (24), we have

‖S(t − t1)v(t1)‖
L

2(d+2)
d

t,x (I1×Rd )

≤ ‖S(t − t1)w(t1)‖
L

2(d+2)
d

t,x (I1×Rd )

+ ‖S(t − t1)(w(t1) − v(t1))‖
L

2(d+2)
d

t,x (I1×Rd )

≤ 2η + C0 · C1(R)ε ≤ 3η (25)

by choosing ε = ε(R, η) = ε(R) > 0 sufficiently small.
Proceeding as before, it follows from Lemma 3.1 with (25) that

‖v‖
L

2(d+2)
d

t,x (I1×Rd )

≤ 8η,

as long as 4η ≤ η0 and τ > 0 is sufficiently small so that (22) is satisfied. By repeating
the computation in (23) with (18), we have

‖e‖
L

2(d+2)
d+4

t,x (I1×Rd )

≤ Cτ θ ≤ ε

by choosing τ = τ(ε, θ) > 0 sufficiently small. Hence, by the perturbation lemma
(Lemma 3.2) applied to the second interval I1, we obtain

‖w − v‖L∞(I1;L2(Rd )) + ‖w − v‖
L

2(d+2)
d

t,x (I1×Rd )

≤ C1(R)(C1(R) + 1)ε.

provided that τ = τ(ε, θ) > 0 is chosen sufficiently small and that (C1(R)+1)ε < ε0.
In particular, we have

‖w(t2) − v(t2)‖L2(Rd ) ≤ C1(R)(C1(R) + 1)ε =: C2(R)ε.

For j ≥ 2, define C j (R) recursively by setting

C j (R) = C1(R)(C j−1(R) + 1).

Then, proceeding inductively, we obtain

‖w(t j ) − v(t j )‖L2(Rd ) ≤ C j (R)ε,

for all 0 ≤ j ≤ J ′, as long as ε = ε(R, η, J ) > 0 is sufficiently small such that

• C0 · C j (R)ε ≤ η (here, C0 is the constant from the Strichartz estimate in (25)),
• (C j (R) + 1)ε < ε0,

for j = 1, . . . , J ′. Recalling that J ′ + 1 ≤ J = J (R, η), we see that this can be
achieved by choosing small η > 0, ε = ε(R, η) = ε(R) > 0, and τ = τ(ε, θ) =
τ(R, θ) > 0 sufficiently small. This guarantees existence of a (unique) solution v

to (14) on [t0, t0 + τ ]. Lastly, noting that τ > 0 is independent of t0 ∈ [0, T ), we
conclude existence of the solution v to (14) on the entire interval [0, T ]. ��
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3.2 Proof of Theorem 1.1(i)

We are now ready to present a proof of Theorem 1.1(i). Given a local-in-time solution
u to (1), let v = u − �. Then, v satisfies

{
i∂tv + �v = N0(v + �)

v|t=0 = u0.
(26)

Theorem 1.1(i) follows from applying Proposition 3.3 to (26) with f = �, once we
verify the hypotheses (i) and (ii).

Fix T > 0. From Lemma 2.4 and Markov’s inequality, we have the following
almost sure a priori bound:

sup
0≤t≤T

M(u(t)) ≤ C
(
ω, T , M(u0), ‖φ‖HS (L2;L2)

)
< ∞ (27)

for a solution u to (1) with p = 1+ 4
d . Then, from (27) and Lemma 2.2(i), we obtain

sup
0≤t≤T

M(v(t)) = sup
0≤t≤T

M(u(t) − �(t)) ≤ sup
0≤t≤T

M(u(t)) + sup
0≤t≤T

M(�(t))

≤ C
(
ω, T , M(u0), ‖φ‖HS (L2;L2)

)
< ∞

almost surely. This shows that the hypothesis (ii) in Proposition 3.3 holds almost
surely for some almost surely finite R = R(ω) ≥ 1. The hypothesis (i) in Proposition
3.3 easily follows from Hölder’s inequality in time, Markov’s inequality, and Lemma
2.2(ii).More precisely, by fixing finite q >

2(d+2)
d and noting 2(d+2)

d ≤ 2d
d−2 for d ≥ 3,

Lemma 2.2(ii) yields

E

[
‖�‖

Lq ([0,T ];L
2(d+2)

d (Rd ))

]
≤ C‖φ‖HS (L2;L2).

Then, Markov’s inequality yields

‖�‖
Lq ([0,T ];L

2(d+2)
d (Rd ))

≤ C
(
ω, ‖φ‖HS (L2;L2)

)
< ∞, (28)

which in turn implies � ∈ L
2(d+2)

d
t,x ([0, T ] × R

d) almost surely. Moreover, it follows
from (28) and Hölder’s inequality in time that

‖�‖
L

2(d+2)
d

t,x (I×Rd )

≤ |I |θ‖�‖
Lq (I ;L

2(d+2)
d (Rd ))

≤ C
(
ω, ‖φ‖HS (L2;L2)

)|I |θ

for any interval I ⊂ [0, T ], where θ = d
2(d+2) − 1

q > 0. This verifies (18).
Hence, by applying Proposition 3.3, we can construct a solution v to (26) on [0, T ].

Since the choice of T > 0 was arbitrary, this proves Theorem 1.1(i).
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4 Energy-critical case

In this section, we prove global well-posedness of the defocusing energy-critical
SNLS (1) (Theorem 1.1(ii)). The idea is to follow the argument for the mass-critical
case presented in Sect. 3. Namely, we study the following defocusing energy-critical
NLS with a deterministic perturbation:

i∂tv + �v = N1(v + f ), (29)

where N1 is as in (8) and f is a given deterministic function, satisfying certain regu-
larity conditions.

Let qd and rd be as in (12) and set ρd := 2d2

(d−2)2
for d ≥ 3. A direct calculation

shows that

d + 2

d − 2

1

qd
= 1

q ′
d
,

1

r ′
d

= 1

rd
+ 4

d − 2

1

ρd
, and W 1,rd (Rd) ↪→ Lρd (Rd). (30)

4.1 Energy-critical NLS with a perturbation

We first go over the local theory for the perturbed NLS (29) in the energy-critical case.

Lemma 4.1 Let 3 ≤ d ≤ 6. Then, there exists small η0 = η0 > 0 such that if

‖S(t − t0)v0‖Lqd (I ;W 1,rd (Rd )) + ‖ f ‖Lqd (I ;W 1,rd (Rd )) ≤ η (31)

for some η ≤ η0 and some time interval I = [t0, t1] ⊂ R, then there exists a unique
solution v ∈ C(I ; H1(Rd)) ∩ Lqd (I ; W 1,rd (Rd)) to (29) with v(t0) = v0 ∈ H1(Rd).
Moreover, we have

‖v‖Lqd (I ;W 1,rd (Rd )) ≤ 2η.

Proof We show that the map 	 defined by

	v(t) := S(t − t0)v0 − i
∫ t

t0
S(t − t ′)N1(v + f )(t ′)dt ′

is a contraction on B2η ⊂ Lqd (I ; W 1,rd (Rd)) of radius 2η > 0 centered at the origin,
provided that η > 0 is sufficiently small. It follows from Lemma 2.1 and (30) with
(31) that there exists small η0 > 0 such that

‖	v‖Lqd (I ;W 1,rd (Rd )) ≤ ‖S(t − t0)v0‖Lqd (I ;W 1,rd (Rd )) + C‖N1(v + f )‖
Lq′

d (I ;W 1,r ′
d (Rd ))

≤ η+C

(
‖v‖Lqd (I ;W 1,rd (Rd )) + ‖ f ‖Lqd (I ;W 1,rd (Rd ))

)1+ 4
d−2

≤ η + Cη1+
4

d−2 ≤ 2η
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for v ∈ B2η and 0 < η ≤ η0. Recall that∇N1 is Lipschitz continuous when 3 ≤ d ≤ 6
and we have

∇N1(u1) − ∇N1(u2) = O
(|u1| 4

d−2 + |u1| 4
d−2

)∇(u1 − u2)

+ O
(
(|u1| 6−d

d−2 + |u1| 6−d
d−2 )|u1 − u2|

)∇u2. (32)

See, for example, Case 4 in the proof of Proposition 4.1 in [29]. Then, proceeding as
above with (32), we have

‖	v1 − 	v2‖Lqd (I ;W 1,rd (Rd ))

≤ C‖N1(v1 + f ) − N1(v2 + f )‖
Lq′

d (I ;W 1,r ′
d (Rd ))

≤ C

(
‖v1‖Lqd (I ;Lρd (Rd )) + ‖v2‖Lqd (I ;Lρd (Rd )) + ‖ f ‖Lqd (I ;Lρd (Rd ))

) 4
d−2

× ‖v1 − v2‖Lqd (I ;W 1,rd (Rd ))

+ C

(
‖v1‖Lqd (I ;W 1,rd (Rd )) + ‖v2‖Lqd (I ;W 1,rd (Rd )) + ‖ f ‖Lqd (I ;W 1,rd (Rd ))

)

×
(

‖v1‖Lqd (I ;Lρd (Rd )) + ‖v2‖Lqd (I0;Lρd (Rd )) + ‖ f ‖Lqd (I ;Lρd (Rd ))

) 6−d
d−2

× ‖v1 − v2‖Lqd (I ;Lρd (Rd ))

≤ Cη
4

d−2 ‖v1 − v2‖Lqd (I ;W 1,rd (Rd ))

≤ 1

2
‖v1 − v2‖Lqd (I ;W 1,rd (Rd )) (33)

for v1, v2 ∈ B2η and 0 < η ≤ η0. Hence, 	 is a contraction on B2η. Furthermore, we
have

‖v‖L∞(I ;H1(Rd )) ≤ ‖S(t − t0)v0‖L∞(I ;H1(Rd )) + C‖N1(v + f )‖
Lq′

d (I ;W 1,r ′
d (Rd ))

≤ ‖v0‖H1 + Cη1+
4

d−2 < ∞

for v ∈ B2η. This shows that v ∈ C(I ; H1(Rd)). ��
Remark 4.2 The restriction d ≤ 6 appears in (32) and (33), where we used the
Lipschitz continuity of ∇N1. Following the argument in [6], we can remove this
restriction and construct a solution by carrying out a contraction argument on
B2η ⊂ Lqd (I ; W 1,rd (Rd)) equipped with the distance

d(v1, v2) = ‖v1 − v2‖Lqd (I ;Lrd (Rd )).

Indeed, a slight modification of the computation in (33) shows d(	v1, 	v2) ≤
1
2d(v1, v2) for any v1, v2 ∈ B2η.
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Next, we state the long-time stability result in the energy-critical setting. See [11,
25,33,35]. The following lemma is stated in terms of non-homogeneous spaces, the
proof follows closely to that in the mass-critical case.

Lemma 4.3 (Energy-critical perturbation lemma) Let 3 ≤ d ≤ 6 and I be a compact
interval. Suppose that v ∈ C(I ; H1(Rd)) satisfies the following perturbed NLS:

i∂tv + �v = |v| 4
d−2 v + e,

satisfying
‖v‖L∞(I ;H1(Rd )) + ‖v‖Lqd (I ;W 1,rd (Rd )) ≤ R

for some R ≥ 1. Then, there exists ε0 = ε0(R) > 0 such that if we have

‖u0 − v(t0)‖H1(Rd ) + ‖e‖
Lq′

d (I ;W 1,r ′
d (Rd ))

≤ ε

for some u0 ∈ H1(Rd), some t0 ∈ I , and some ε < ε0, then there exists a solution
u ∈ C(I ; H1(Rd)) to the defocusing energy-critical NLS:

i∂t u + �u = |u| 4
d−2 u

with u(t0) = u0 such that

‖u‖L∞(I ;H1(Rd )) + ‖u‖Lqd (I ;W 1,rd (Rd )) ≤ C1(R),

‖u − v‖L∞(I ;H1(Rd )) + ‖u − v‖Lqd (I ;W 1,rd (Rd )) ≤ C1(R)ε,

where C1(R) is a non-decreasing function of R.

With Lemmas 4.1 and 4.3 in hand, we can repeat the argument in Proposition
3.3 and obtain the following proposition. The proof is essentially identical to that
of Proposition 3.3 and hence we omit details. We point out that, in applying the
perturbation lemma (Lemma 4.3) with e = N1(v + f ) − N1(v), we use (32), which
imposes the restriction d ≤ 6.

Proposition 4.4 Let 3 ≤ d ≤ 6. Given T > 0, assume the following conditions (i)–(ii):

(i) f ∈ Lqd ([0, T ]; W 1,rd (Rd)) and there exist C, θ > 0 such that

‖ f ‖Lqd (I ;W 1,rd (Rd )) ≤ C |I |θ

for any interval I ⊂ [0, T ].
(ii) Given a solution v to (29), the following a priori H1-bound holds:

‖v‖L∞([0,T ];H1(Rd )) ≤ R

for some R ≥ 1.
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Then, there exists τ = τ(R, θ) > 0 such that, given any t0 ∈ [0, T ), a unique solution
v to (29) with k = 1 exists on [t0, t0 + τ ] ∩ [0, T ]. In particular, the condition (ii)
guarantees existence of a unique solution v to the perturbed NLS (29) on the entire
interval [0, T ].

4.2 Proof of Theorem 1.1(ii)

As in Sect. 3.2, Theorem 1.1(ii) follows from applying Proposition 4.4 to (29) with
f = �, once we verify the hypotheses (i) and (ii).
Fix T > 0. As in Sect. 3.2, the hypothesis (i) in Proposition 4.4 can easily be

verified from Hölder’s inequality in time, Markov’s inequality, and Lemma 2.2(ii),
once we note that

rd = 2d2

d2 − 2d + 4
≤ 2d

d − 2
.

Furthermore, the following almost sure a priori bound follows from Lemma 2.4 and
Markov’s inequality:

sup
0≤t≤T

(
M(u(t)) + E(u(t))

)
≤ C

(
ω, T , M(u0), E(u0), ‖φ‖HS (L2;H1)

)
< ∞ (34)

for a solution u to (1) with p = 1 + 4
d−2 . Then, from (34) and Lemma 2.2(i), we

obtain

sup
0≤t≤T

‖v(t)‖H1 ≤ sup
0≤t≤T

‖u(t)‖H1 + sup
0≤t≤T

‖�(t)‖H1

≤ C
(
ω, T , M(u0), E(u0), ‖φ‖HS (L2;H1)

)
< ∞

almost surely. This shows that the hypothesis (ii) in Proposition 4.4 holds almost surely
for some almost surely finite R = R(ω) ≥ 1. This proves Theorem 1.1(ii).
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Appendix A: On the application of Ito’s lemma

In this appendix, we briefly discuss the derivation of the a priori bounds on the mass
and the energy stated in Lemma 2.4. The argument essentially follows from that by
de Bouard-Debussche [14] but we indicate certain required modifications.

A.1. Mass-critical case

We first consider the mass-critical case. Given N ∈ N, let PN denote a smooth fre-
quency projection onto {|ξ | ≤ N } and set φN := PN ◦φ. Then, consider the following
truncated SNLS: {

i∂t uN + �uN = N0(uN ) + φN ξ

uN |t=0 = PN u0,
(A.1)

where N0 is as in (8). Note that PN u0 ∈ H1(Rd) and φN ∈ HS (L2; H1). Therefore,
it follows from [14] that (A.1) is globally well-posed for each N ∈ N. Furthermore,
from Proposition 3.2 in [14], we have

M(uN (t)) = M(PN u0) + 2Im
∑
n∈N

∫ t

0

∫
Rd

uN (t ′)φN endxdβn(t ′) + 2t‖φN ‖2HS (L2;L2)

(A.2)

for any t ≥ 0 and, as a consequence of (A.2) and the Burkholder–Davis–Gundy
inequality (see, for example, [21, Theorem 3.28 on p.166]), the a priori bound (13)
holds for each uN , with the constant C1, independent of N ∈ N.

Given T0 > 0, let 0 < T < min(T ∗, T0) be a given stopping time as in Lemma
2.4(i) and u be the solution to (1) constructed in Lemma 2.3(i). We now show that the
solution uN to the truncated SNLS (A.1) converges to u almost surely. Then, the a
priori bound (13) for u follows from that for uN mentioned above and the convergence
of uN to u.

In the following, we suppress the spatial domain Rd for simplicity of the presenta-
tion. Given R > 0, define a stopping time T1 by setting

T1 = T1(R) := inf
{
τ ≥ 0 : ‖u‖

L
2(d+2)

d
t,x ([0,τ ])

≥ R
}

and set T2 := min(T , T1). In view of the blowup alternative in Lemma 2.3, we have

‖u‖
L

2(d+2)
d

t,x ([0,T ])
< ∞

almost surely and hence we conclude that T2 ↗ T almost surely as R → ∞.
Given small η > 0 (to be chosen later), we divide the interval [0, T2] into J =

J (R, η)many random subintervals I j = I j (ω) = [t j , t j+1]with t0 = 0 < t1 < · · · <
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tJ−1 < tJ = T2 such that
‖u‖

L
2(d+2)

d
t,x (I j )

∼ η (A.3)

for j = 0, 1, . . . , J − 1.
Define the truncated stochastic convolution �N by

�N (t) := −i
∑
n∈N

∫ t

0
S(t − t ′)φN endβn(t ′)

and set

C ( j)
N (ω, u0, φ) = ‖u(t j ) − uN (t j )‖L2

+ ‖� − �N ‖
L

2(d+2)
d

t,x ([0,T2])
+ ‖� − �N ‖L∞([0,T2];L2) (A.4)

for j = 0, 1, . . . , J − 1. Then, it follows from the Lebesgue dominated convergence
theorem (applied to (Id − PN )u0) and Lemma 2.2 that

C (0)
N (ω, u0, φ) −→ 0 (A.5)

almost surely as N → ∞.
From the Strichartz estimates (Lemma 2.1), we have

‖u − uN ‖
L

2(d+2)
d

t,x ([0,τ ])
� ‖u(0) − uN (0)‖L2

+
(

‖u‖
L

2(d+2)
d

t,x ([0,τ ])
+ ‖uN ‖

L
2(d+2)

d
t,x ([0,τ ])

) 4
d ‖u − uN ‖

L
2(d+2)

d
t,x ([0,τ ])

+ ‖� − �N ‖
L

2(d+2)
d

t,x ([0,τ ])
(A.6)

for any subinterval [0, τ ] ⊂ I0 = [0, t1]. Then, from (A.6) with (A.3) and (A.4), we
obtain

‖u − uN ‖
L

2(d+2)
d

t,x ([0,τ ])
� C (0)

N (ω, u0, φ)

+
(

η + ‖uN ‖
L

2(d+2)
d

t,x ([0,τ ])

) 4
d ‖u − uN ‖

L
2(d+2)

d
t,x ([0,τ ])

(A.7)

for any 0 ≤ τ ≤ t1. By taking η > 0 sufficiently small, a standard continuity argument
with (A.7) and (A.5) yields

‖uN ‖
L

2(d+2)
d

t,x (I0)
∼ η, (A.8)

uniformly in N ≥ N0(ω).
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Applying Lemma 2.1 once again with (A.3) and (A.8), we then have

‖u − uN ‖L∞(I0;L2) + ‖u − uN ‖
L

2(d+2)
d

t,x (I0)

� ‖u(0) − uN (0)‖L2 + η
4
d ‖u − uN ‖

L
2(d+2)

d
t,x (I0)

+ ‖� − �N ‖L∞(I0;L2) + ‖� − �N ‖
L

2(d+2)
d

t,x (I0)

uniformly in N ≥ N0(ω). Thus, from (A.4) and (A.5), we conclude that

‖u − uN ‖L∞(I0;L2) � C (0)
N (ω, u0, φ) −→ 0

as N → ∞. In particular, we have

‖u(t1) − uN (t1)‖L2 � C (0)
N (ω, u0, φ) −→ 0 (A.9)

as N → ∞. By repeating the argument above, we have

‖uN ‖
L

2(d+2)
d

t,x (I1)
∼ η,

uniformly in N ≥ N1(ω). Together with (A.9), this yields

‖u − uN ‖L∞(I1;L2) � C (1)
N (ω, u0, φ) −→ 0

as N → ∞.
By successively applying the argument above to the interval I j , j = 0, 1, . . . , J −1,

we conclude that

‖u − uN ‖L∞(I j ;L2) � C ( j)
N (ω, u0, φ) −→ 0

as N → ∞. Therefore, recalling that J = J (R, η) depends only on R > 0 and an
absolute constant η > 0, we obtain

‖u − uN ‖L∞([0,T2];L2) �
J−1∑
j=0

C ( j)
N (ω, u0, φ) −→ 0.

By the almost sure convergence of uN to u in C([0, T2]; L2(Rd)), Fatou’s lemma, and
the uniform bound (13) for uN , we then have

E

[
sup

0≤t≤T2
M(u(t))

]
= E

[
lim

N→∞ sup
0≤t≤T2

M(uN (t))

]

≤ lim
N→∞E

[
sup

0≤t≤T2
M(uN (t))

]
≤ C1.
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Finally, from the almost sure convergence of T2 = T2(R) to T , as R → ∞, and
Fatou’s lemma, we conclude the bound (13) for u. This proves Lemma 2.4(i).

A.2. Energy-critical case

Next, we consider the energy-critical case. In the following, we only discuss the a
priori bound on the energy:

E

[
sup

0≤t≤T
E(u(t))

]
≤ C2, (A.10)

since the a priori bound on the mass follows in a similar but simpler manner.

Lemma 4.5 Assume the hypotheses in Lemma 2.3(ii). Then, for any stopping time T
such that 0 < T < T ∗ almost surely, we have

E(u(T )) = E(u0) − Im
∑
n∈N

∫ T

0

∫
Rd

(�u − N1(u))(t ′)φendxdβn(t ′)

+ d

d − 2

∑
n∈N

∫ T

0

∫
Rd

|u(t ′)| 4
d−2 |φen|2dxdt ′ + T ‖φ‖2

HS (L2;Ḣ1)
, (A.11)

where u is the solution to the energy-critical SNLS (1) with p = 1 + 4
d−2 , N1 is as

in (8), and T ∗ is the forward maximal time of existence.

Once we prove Lemma 4.5, the bound (A.10) follows from the Burkholder-Davis-
Gundy inequality.

Proof A direct calculation shows that

E ′(u(t))(v) = Re
∫
Rd

(
∇u(t) · ∇v + N1(u)(t)v

)
dx,

E ′′(u(t))(v1, v2) = Re
∫
Rd

∇v1 · ∇v2dx + Re
∫
Rd

|u(t)| 4
d−2 v1v2dx

+ 4

d − 2

∫
Rd

|u(t)| 4
d−2−2Re

(
u(t)v1

)
Re

(
u(t)v2

)
dx

for v, v1, v2 ∈ H1(Rd). Thus, a formal application of Ito’s lemma to E(u(t)) yields
(A.11). It remains to justify the application of Ito’s lemma.

As in the proof of Proposition 3.3 in [14], given N ∈ N, we consider the following
truncated problem:

{
i∂t uN + �uN = PNN1(uN ) + φN ξ

uN |t=0 = PN u0,
(t, x) ∈ R+ × R

d , (A.12)
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where PN and φN are the same as those in Sect. 1. Since the frequency truncation is
harmless, the same well-posedness result as in Lemma 2.3 (ii) holds for the truncated
SNLS (A.12). Moreover, by considering the corresponding Duhamel formulation for
(A.12), we have uN = P3N uN . We can therefore apply Ito’s lemma (see Theorem
4.32 in [12]) to E(uN (t)) and obtain

E(uN (t)) = E(PN u0) − Im
∑
n∈N

∫ t

0

∫
Rd

(�uN − N1(uN ))(t ′)φN endxdβn(t ′)

+ Im
∫ t

0

∫
Rd

�uN (t ′)(Id − PN )N1(uN )(t ′)dxdt ′

+ d

d − 2

∑
n∈N

∫ t

0

∫
Rd

|uN (t ′)| 4
d−2 |φN en|2dxdt ′ + t‖φN ‖2

HS (L2;Ḣ1)

(A.13)

for 0 < t < T ∗
N , where T ∗

N is the forward maximal time of existence for the solution
uN to (A.12).

Given R > 0, define a stopping T1 by setting

T1 = T1(R) := inf
{
τ ≥ 0 : ‖u‖Lqd ([0,τ ];W 1,rd ) ≥ R

}
and set T2 := min(T , T1), where T is the stopping time given in Lemma 2.4(ii) with
0 < T < min(T ∗, T0). In view of the blowup alternative in Lemma 2.3, we have

‖u‖Lqd ([0,T ];W 1,rd ) < ∞ (A.14)

almost surely and hence we conclude that T2 ↗ T almost surely as R → ∞.
From (30) and (32), we have

‖N1(u) − PNN1(uN )‖
Lq′

d (I ;W 1,r ′
d )

� ‖(Id − PN )N1(u)‖
Lq′

d (I ;W 1,r ′
d )

+ ‖N1(u) − N1(uN )‖
Lq′

d (I ;W 1,r ′
d )

� ‖(Id − PN )N1(u)‖
Lq′

d (I ;W 1,r ′
d )

+
(
‖u‖Lqd (I ;W 1,rd ) + ‖uN ‖Lqd (I ;W 1,rd )

) 4
d−2 ‖u − uN ‖Lqd (I ;W 1,rd ) (A.15)

for any interval I ⊂ [0, T2]. It follows from the Lebesgue dominated convergence
theorem and (A.14) that the first term on the right-hand side of (A.15) converges to
0 almost surely as N → ∞. Accordingly, proceeding as in Sect. 1, we conclude that
uN converges to u in C([0, T2]; H1(Rd))∩ Lqd ([0, T2]; W 1,rd (Rd)) almost surely. In
particular, there exists an almost surely finite number N0(ω) ∈ N such that T ∗

N ≥ T2
for any N ≥ N0(ω) and, as a result, (A.13) holds for any 0 < t < T2 and N ≥ N0(ω).
Moreover, from the definition of T2 = T2(R), we may assume

‖uN ‖Lqd ([0,T2];W 1,rd ) ≤ R + 1 (A.16)
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for any N ≥ N0(ω).
This allows us to conclude that the third term on the right-hand side of (A.13) tends

to 0 almost surely as N → ∞. Indeed, by (30), (32), (A.14), (A.16), and the almost
sure convergence of uN to u in Lqd ([0, T2]; W 1,rd (Rd)), we have, for any 0 ≤ t ≤ T2,

∣∣∣∣
∫ t

0

∫
Rd

�uN (t ′)(Id − PN )N1(uN )(t ′)dxdt ′
∣∣∣∣

≤
∣∣∣∣
∫ t

0

∫
Rd

(Id − PN )�u(t ′) · N1(u)(t ′)dxdt ′
∣∣∣∣

+
∣∣∣∣
∫ t

0

∫
Rd

(�u − �uN )(t ′)(Id − PN )N1(u)(t ′)dxdt ′
∣∣∣∣

+
∣∣∣∣
∫ t

0

∫
Rd

�uN (t ′)(Id − PN )
(N1(u) − N1(uN )

)
(t ′)dxdt ′

∣∣∣∣
� ‖(Id − PN )u‖Lqd ([0,T2];W 1,rd )‖N1(u)‖

Lq′
d ([0,T2];W 1,r ′

d )

+ ‖u − uN ‖Lqd ([0,T2];W 1,rd )‖N1(u)‖
Lq′

d ([0,T2];W 1,r ′
d )

+ ‖uN ‖Lqd ([0,T2];W 1,rd )‖N1(u) − N1(uN )‖
Lq′

d ([0,T2];W 1,r ′
d )

� ‖(Id − PN )u‖Lqd ([0,T2];W 1,rd )‖u‖
d+2
d−2

Lqd ([0,T2];W 1,rd )

+
(
‖u‖Lqd ([0,T2];W 1,rd ) + ‖uN ‖Lqd ([0,T2];W 1,rd )

) d+2
d−2 ‖u − uN ‖Lqd ([0,T2];W 1,rd )

−→ 0 (A.17)

almost surely, as N → ∞.
Let us now consider the second and fourth terms on the right-hand side of (A.13).

As for the second term, we first consider the contribution from N1(uN )φN en . By

Hölder’s inequality with (8) and Sobolev’s embedding: Ḣ1(Rd) ↪→ L
2d

d−2 (Rd), we
have

∣∣∣∣
∫
Rd

N1(uN )φN endx

∣∣∣∣ ≤ ‖uN ‖
d+2
d−2

L
2d

d−2
‖φN en‖

L
2d

d−2
� ‖uN ‖

d+2
d−2

Ḣ1 ‖φN en‖Ḣ1 .

Then, by Ito’s isometry along with the independence of {βn}n∈N, we obtain

E

[∣∣∣∣ ∑
n∈N

∫ t

0

∫
Rd
N1(uN )(t ′)φN endxdβn(t ′)

∣∣∣∣
2]

� t
∑
n∈N

‖uN ‖
2(d+2)

d−2

L∞([0,t];Ḣ1)
‖φN en‖2

Ḣ1

� t‖uN ‖
2(d+2)

d−2

L∞([0,t];Ḣ1)
‖φN ‖2

HS (L2;Ḣ1)
. (A.18)
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By integration by parts (in x) and Ito’s isometry, we bound the contribution from
�uN φN en by

E

[∣∣∣∣ ∑
n∈N

∫ t

0

∫
Rd

�uN (t ′)φN endxdβn(t ′)
∣∣∣∣
2]

� t‖uN ‖2
L∞([0,t];Ḣ1)

‖φN ‖2
HS (L2;Ḣ1)

.

(A.19)

As for the fourth term on the right-hand side of (A.13), it follows from Hölder’s and
Sobolev’s inequalities that

∑
n∈N

∫
Rd

|uN | 4
d−2 |φN en|2dx ≤ ‖uN ‖

4
d−2

L
2d

d−2

∑
n∈N

‖φN en‖2
L

2d
d−2

� ‖uN ‖
4

d−2

Ḣ1 ‖φN ‖2
HS (L2;Ḣ1)

. (A.20)

Since 3 ≤ d ≤ 6, we have 4
d−2 ≥ 1, which implies that difference estimates on the

contributions from uN and u for (A.18), (A.19), and (A.20) also hold. Therefore, by
in view of (A.17) and (the difference estimates for) (A.18), (A.19), and (A.20), we
obtain (A.11) by taking N → ∞ in (A.13) and then R → ∞. This concludes the
proof of Lemma 4.5. ��

References

1. Barbu, V., Röckner, M., Zhang, D.: Stochastic nonlinear Schrödinger equations with linear multiplica-
tive noise: rescaling approach. J. Nonlinear Sci. 24(3), 383–409 (2014)

2. Barbu, V., Röckner, M., Zhang, D.: Stochastic nonlinear Schrödinger equations. Nonlinear Anal. 136,
168–194 (2016)

3. Barbu, V., Röckner, M., Zhang, D.: Stochastic nonlinear Schrödinger equations: no blow-up in the
non-conservative case. J. Differ. Equ. 263(11), 7919–7940 (2017)

4. Bényi, Á., Oh, T., Pocovnicu,O.: On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger
equation on Rd , d ≥ 3. Trans. Am. Math. Soc. Ser. B 2, 1–50 (2015)

5. Bourgain, J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial
case. J. Am. Math. Soc. 12(1), 145–171 (1999)

6. Cazenave, T., Weissler, F.: Some remarks on the nonlinear Schrödinger equation in the critical case. In:
Nonlinear Semigroups, Partial Differential Equations and Attractors (Washington, DC, 1987). Lecture
Notes in Mathematics, vol. 1394, pp. 18–29

7. Cheung, K., Li, G., Oh, T.: Almost conservation laws for stochastic nonlinear Schrödinger equations.
arXiv arXiv:1910.14558 [math.AP]

8. Cheung, K., Pocovnicu, O.: On the local well-posedness of the stochastic cubic nonlinear Schrödinger
equation on Rd , d ≥ 3, with supercritical noise (preprint)

9. Christ, M., Colliander, J., Tao, T.: Ill-posedness for nonlinear Schrödinger and wave equations.
arXiv:math/0311048 [math.AP]

10. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Almost conservation laws and global rough
solutions to a nonlinear Schrödinger equation. Math. Res. Lett. 9(5–6), 659–682 (2002)

11. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for
the energy-critical nonlinear Schrödinger equation in R

3. Ann. Math. 167(3), 767–865 (2008)
12. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics

and Its Applications, vol. 152, 2nd edn. Cambridge University Press, Cambridge (2014)
13. de Bouard, A., Debussche, A.: On the effect of a noise on the solutions of the focusing supercritical

nonlinear Schrödinger equation. Probab. Theory Relat. Fields 123(1), 76–96 (2002)

123

http://arxiv.org/abs/1910.14558
http://arxiv.org/abs/math/0311048


Stoch PDE: Anal Comp

14. de Bouard, A., Debussche, A.: The stochastic nonlinear Schrödinger equation in H1. Stoch. Anal.
Appl. 21(1), 97–126 (2003)

15. Dodson,B.:Globalwell-posedness and scattering for the defocusing, L2-critical nonlinear Schrödinger
equation when d ≥ 3. J. Am. Math. Soc. 25(2), 429–463 (2012)

16. Dodson, B.: Global well-posedness and scattering for the defocusing, L2-critical, nonlinear
Schrödinger equation when d = 1. Am. J. Math. 138(2), 531–569 (2016)

17. Dodson, B.: Global well-posedness and scattering for the defocusing, L2-critical, nonlinear
Schrödinger equation when d = 2. Duke Math. J. 165(18), 3435–3516 (2016)

18. Fan, C., Xu, W.: Global well-posedness for the defocusing mass-critical stochastic nonlinear
Schrödinger equation on R at L2 regularity. arXiv:1810.07925 [math.AP]

19. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general
case. J. Funct. Anal. 32(1), 1–32 (1979)

20. Ginibre, J., Velo, G.: Smoothing properties and retarded estimates for some dispersive evolution equa-
tions. Commun. Math. Phys. 144(1), 163–188 (1992)

21. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics,
vol. 113, 2nd edn. Springer, New York (1991)

22. Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. Henri. Poincaré Phys. Théor. 46(1), 113–129
(1987)

23. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)
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