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GENOMIC PREDICTION

Optimizing Low-Cost Genotyping and Imputation
Strategies for Genomic Selection in Atlantic Salmon
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*The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, United
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Netherlands, and ‡Institute of Aquaculture, University of Stirling, FK9 4LA, United Kingdom

ORCID IDs: 0000-0003-0792-9421 (S.T.); 0000-0002-9616-5912 (D.R.); 0000-0003-1805-0762 (R.D.H.)

ABSTRACT Genomic selection enables cumulative genetic gains in key production traits such as disease
resistance, playing an important role in the economic and environmental sustainability of aquaculture
production. However, it requires genome-wide genetic marker data on large populations, which can be
prohibitively expensive. Genotype imputation is a cost-effective method for obtaining high-density genotypes,
but its value in aquaculture breeding programs which are characterized by large full-sibling families has yet
to be fully assessed. The aim of this study was to optimize the use of low-density genotypes and evaluate
genotype imputation strategies for cost-effective genomic prediction. Phenotypes and genotypes (78,362
SNPs) were obtained for 610 individuals from a Scottish Atlantic salmon breeding program population
(Landcatch, UK) challenged with sea lice, Lepeophtheirus salmonis. The genomic prediction accuracy of
genomic selection was calculated using GBLUP approaches and compared across SNP panels of varying
densities and composition, with and without imputation. Imputation was tested when parents were genotyped
for the optimal SNP panel, and offspring were genotyped for a range of lower density imputation panels.
Reducing SNP density had little impact on prediction accuracy until 5,000 SNPs, below which the accuracy
dropped. Imputation accuracy increased with increasing imputation panel density. Genomic prediction accu-
racy when offspring were genotyped for just 200 SNPs, and parents for 5,000 SNPs, was 0.53. This accuracy
was similar to the full high density and optimal density dataset, and markedly higher than using 200 SNPs
without imputation. These results suggest that imputation from very low to medium density can be a cost-
effective tool for genomic selection in Atlantic salmon breeding programs.
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Genomic selection is increasingly applied in aquaculture breeding to
expedite genetic gain for key production and disease resistance traits
(Zenger et al. 2019). Genomic selection exploits both between- and
within-family genetic information, and therefore can predict the
breeding values of individuals more accurately than using traditional

pedigree-based approaches. However, routine and effective application
of genomic selection in breeding programs depends on large training
datasets of phenotypes and genotypes, which can be expensive. In
livestock and plant breeding, genomic information on large popula-
tions can be achieved in a very cost-effective manner by means of
genotype imputation. Imputation exploits the presence of haplotypes
that are shared between related individuals (Li et al. 2009), such that
high density (HD) imputed genotypes can be obtained from low den-
sity (LD) SNP panels. This can facilitate a major reduction in the cost of
genotyping, as direct genotyping at HD is required only for a subset of
individuals, i.e., the reference panel. However, applications of genotype
imputation in aquaculture breeding are at a formative stage, and opti-
mal strategies need to be defined.

In typical aquaculture breeding programs large full-sibling families
are available, andperformance testing is routinely performedon siblings
of selection candidates. Full-siblings share large genomic segments,
which results in relatively high genomic prediction accuracy with low
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density SNP genotypes, when compared to the SNP densities typically
required in other farmed animal species (Tsai et al. 2016; Vallejo et al.
2017; Palaiokostas et al. 2018; Robledo et al. 2018; Yoshida et al. 2018;
Yoshida et al. 2019). Further, high density SNP arrays have been de-
veloped for Atlantic salmon (Houston et al. 2014), and a high quality
reference genome assembly is available to map those SNPs and de-
termine their order (Lien et al., 2016). Therefore, given the family
structure within a typical aquaculture setting, a first step is to identify
the minimum SNP panel density required to achieve maximum geno-
mic prediction accuracy. Furthermore, optimizing the composition
of these SNP panels needs to be explored to assess impact on the
prediction accuracy. Previous genotype imputation studies have high-
lighted the potential of harnessing medium or high density genotyping
of parents and low density genotyping of offspring to reduce costs of
genomic prediction (Tsai et al. 2017; Yoshida et al. 2018; Dufflocq et al.
2019). In these studies, the genomic prediction accuracy that could be
achieved when using LD genotypes imputed to HD was found to be
comparable to the prediction accuracy when using the full HD panel in
Atlantic salmon (Tsai et al. 2017; Yoshida et al. 2018), and in simulated
data for rainbow trout (Dufflocq et al. 2019). However, a systematic
analysis of the optimal combination of low and high density panels,
and of the effects of SNP panel composition, i.e., which SNPs are
selected for the reduced density panels, has not been yet performed.

One of the most important target traits for genetic improvement in
salmon breeding is host resistance to infectious diseases such as sea lice.
Sea liceareparasiticmarinecopepodsof the familyofCaligidae, endemic
in all major salmon-producing countries (Lepeophtheirus salmonis in
Europe and North America, and Caligus rogercresseyi in Chile), and it
is the most costly disease-related problem for the global salmon in-
dustry (total cost of sea lice control is estimated to be €305 million in
2006 (Costello 2009)). Sea lice infestation has a severe negative impact
on salmon health and production, causing substantial financial losses
due to treatment costs, associated labor and increased morbidity and
mortality due to infestation or secondary bacterial and fungal infec-
tions (Gjerde et al. 2011; Bruno et al. 2013). In addition, sea lice show
variability in their sensitivity to common treatments, and in some
instances, they express high levels of resistance to commonly-used
therapeutants (Tully and Mcfadden 2000; Sevatdal and Horsberg
2003). Encouragingly, host resistance to sea lice has shown significant
heritabilities of 0.22-0.33 (e.g., Gjerde et al. 2011; Tsai et al. 2016).
Another economically important production trait is body weight,
which reflects growth performance. Body weight has been reported
to have a high heritability of 0.5-0.6 (e.g., Tsai et al. 2015). In addition,
both sea lice resistance and body weight are known to have a polygenic
genetic architecture (Tsai et al. 2015; Tsai et al. 2016). Hence,
these traits lend themselves to improvement by genomic selection
approaches, and cost-efficient genotyping approaches employing
genotype imputation may encourage widespread commercial
adoption (Tsai et al. 2017).

The aim of this study was to systematically evaluate and develop
optimal genotype imputation strategies for Atlantic salmon breeding
programs. Using data from a typical commercial breeding program,
several genotype imputation strategies for genomic selection were
tested by (a) identifying high density SNP panels with optimal
density and composition; (b) testing the imputation accuracy when
parents were genotyped at high density, and offspring at a range of
low densities (c) comparing the genomic prediction accuracies of
each of the datasets, and (d) assessing the cost-benefit of imputation
for genomic prediction by quantifying the trade-off between the cost
of genotyping at a given density and the achieved improvement in
genomic prediction accuracy.

MATERIALS AND METHODS

Phenotypes and data transformations
The data used for testing genotype imputation and genomic prediction
were collected from an Atlantic salmon commercial population (Land-
catch, UK), as described in (Tsai et al. 2015). Briefly, the data comprised
of 520 phenotyped and genotyped post-smolt salmon (267 males
and 253 females), offspring of 29 sires and 57 dams. Each sire was
mated to two dams (except for one sire mated to one dam), so that
the offspring were full-sibs / paternal half-sibs, derived from 57 nuclear
families with 4 - 14 offspring per family.

The population was challenged with sea lice (Lepeophtheirus
salmonis) as part of a trial conducted at the Marine Environmental
Research Laboratory (Machrihanish, UK) in 2007, as described in
(Tsai et al. 2015). Phenotypic records of sea lice counts (SLC) were
collected for all offspring. SLC ranged from 1 to 81 lice per animal, and
had a positively skewed distribution with a mean of 25.5 and median
23.5 (Supplementary Information 1). SLC was logarithmically trans-
formed and loge(SLC), with a mean of 3.11 and median of 3.16, was
used in all subsequent analysis (Supplementary Information 1).
The weight of the offspring ranged from 52 to 203 g with a mean of
111.8 g. The weight data were normally distributed and therefore no
transformation was required.

Genotypes and quality control
All samples were genotyped with the Affymetrix Axiom 132K Atlantic
salmon SNP chip (Houston et al. 2014) such that genotypes were avail-
able for all animals for 78,362 high quality, mapped and ordered SNP
markers. Families with . 5% and individuals with . 10% Mendelian
errors were excluded using Plink/1.90-beta4.1 (Purcell et al. 2007).
Further quality control was conducted for the offspring using the
GenABEL package (Aulchenko et al. 2007) on R/3.1.2 (R Development
Core Team 2008) with the following criteria: SNPs with a minor
allele frequency (MAF) , 5%, call rates , 95%, or Hardy-Weinberg
Equilibrium P-value, 1025 were excluded. Individuals with a percent-
age of missing genotypes . 3% were also excluded. In total, 76,488
SNPs (hereafter referred to as the HD SNP panel), and 520 offspring
passed all criteria, and were used to calculate the genomic relationship
matrices for each SNP panel.

Calculating genomic relationships
The identity by state (IBS) genomic relationship matrix (G) was calcu-
lated from the GenABEL/R (“ibs” function) kinship matrix (Amin et al.
2007) multiplied by two, so that the genomic relationship between
animals i and j was given by:

gij ¼ 1
n

Xn

k¼1

ðxik2 2pkÞðxjk 2 2pkÞ
2pkð12 pkÞ

Where n is the number of loci used for estimating relationships; xik
is the count of alternative alleles (0, 1 or 2) of individual i at SNP locus
k where the reference allele is arbitrarily chosen; and, pk is the fre-
quency of the reference allele in the data.

The diagonal elements were given by gii = 1+Fi, where Fi is the
inbreeding coefficient for individual i, calculated using SNP genotypes

as follows: Fi ¼ n21 Pn

k¼1

ðHE;k 2HikÞ
HE;k

, where HE,k is the expected het-

erozygosity at locus k assuming Hardy‐Weinberg equilibrium (HWE);
andHik is the observed heterozygosity for animal i. SubsequentlyGwas
inverted (R “solve” function) to be used in the ASReml (Gilmour et al.
2009) analysis described below.
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Structure explorationusing classicalmulti-dimensional scaling anal-
ysis (function “cmdscale” in package “stats”/R/3.1.2) did not identify
any sub-clustering in the data (Supplementary Information 1).

Statistical Analysis
The SNP panels used throughout the analysis were defined as follows:
‘HD SNP panel’ was the full high density panel containing 76,488 SNPs
after quality control; ‘reduced SNP panels’ were the reduced density
panels generated from the HD SNP panel to test genomic prediction
at lower SNP densities; ‘optimal SNP panel’ (medium density) was
the selected 5K SNP panel (see ‘Identification of optimal SNP panels’
section); and, ‘imputation SNP panels’ were the low density SNP panels
assumed to be genotyped on the offspring, selected from the optimal
SNP panel to test imputation.

The analyses comprised three main parts: (a) identification of
optimal SNP panels in terms of density and SNP composition; (b)
assessment of the imputation accuracy of a range of lower densities of
imputation SNP panels, when imputed to the optimal SNP panel
identified in (a); and, (c) estimation of genomic prediction accuracies
of imputeddatasetsandcomparisonwithgenomicpredictionaccuracies
of datasets without imputation. All analyses were performed via a
custompipeline thatwas developed integrating: (i) PLINK /1.90-beta4.1
(Purcell et al. 2007), R/3.1.2 and Shell for selection of SNP panels,
and calculation of genomic relationship matrices; (ii) FImpute/2.2
(Sargolzaei et al. 2014) for genotype imputation; and (iii) ASReml/3.0
for estimating breeding values. The code used for the construction
of SNP panels and for the multiple cross-validation procedure
can be accessed on GitHub (https://github.com/SmaragdaT/CVrep)
and is available as an R package (CVrepGPAcalc v1.0 / R version
3.1.2) under GNU General Public License v3.0 (Tsairidou 2019;
CVrepGPAcalc v1.0).

Identification of optimal SNP panels: Previous research has shown
that genomic prediction accuracy has little or no reduction as SNPpanel
density is reduced from 132K down to approximately 5K (Tsai et al.
2016). The focus of the selection of optimal SNP panels was on iden-
tifying an approximate minimal SNP density which could be consid-
ered the asymptote of prediction accuracy. From the HD SNP panel
SNP, reduced panels were generated for densities of 60,000, 10,000,
5,000, 2,000, and from 1,000 down to 200 SNPs at 100 SNP density
intervals, using in-house built software which is available as an R/3.1.2
package (Tsairidou 2019; CVrepGPAcalc v1.0). Two different methods
for selecting SNPs were used: (i) SNPs were sampled randomly without

replacement across the entire genome; and (ii) SNPs were sampled
randomly, without replacement, within each chromosome, and the
number of SNPs sampled from each chromosome was proportional
to the physical length of the chromosome as calculated using the salmo
salar reference genome assembly (Lien et al. 2016 Genbank accession
GCA_000233375.4). For method (ii), in some instances, the total num-
ber of SNPs selected across the genome was allowed to be slightly
higher than the target density due to rounding. Furthermore, for higher
densities, the number of SNPs available on some chromosomes could
be smaller than the required number, therefore the total number of
SNPs selected across the genome was allowed to be smaller than the
intended density (Supplementary Information 2; Table S1).

The process was replicated 10 times so that for each density, 10 SNP
panels were generated, which were allowed to partly overlap by chance
(Figure 1). For each density and each replicate, the genomic relation-
ship matrices were calculated for the offspring as described above using
the SNPs that passed quality control.

An additional method for SNP selection was trialled whereby SNPs
were chosen based on even physical distance intervals, but results were
similar to the two random selection methods described above, and are
reported in Supplementary Information 3 (Figure S3). Briefly, SNPs
were selectedsothat theywouldbeonaverageequally spacedwithineach
chromosome with a ‘step’ of 0.5, 1, 3, 5, 7, 9, and 11Mbp between them.
The first and last SNPs on each chromosome were always selected.
If given the ‘step’ and physical position of the subsequent SNP, the
same SNP happened to be selected twice, then the next SNP was in-
cluded in the panel instead. The larger the ‘step’ the lower the density
(Supplementary Information 3; Table S3).

Cross validation to test genomic prediction accuracy Genomic
prediction accuracy in the offspring was assessed through cross valida-
tion. The offspring were randomly partitioned into five groups of equal
size, each timemasking the phenotypes of one of the groups (validation
set, nv = 104). Subsequently, using the phenotypes of the remaining four
groups (training set nt = 416) and the genomic relationship matrix,
breeding values (BVs) were predicted for each of the validation sets
fitting the following mixed model in ASReml/3.0:

y ¼ m1þ Xbþ Zaþ e (1)

Where, y is the response variable (Loge(SLC) or body weight);m is the
overall mean, b is the vector of fixed effects (sex and weight for
the Loge(SLC) model; sex for the body weight model) associated with
the incidence matrix X; a is the vector of random animal effects

Figure 1 Experimental design.
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with a�MVN(0,Gsa
2) associated with the incidence matrix Z, where

sa
2 is the additive genetic variance; and, e is the residual error with

e�MVN(0,Ise
2). The mean correlation between the predicted BVs (ŷ)

and the phenotypes (y) was calculated for the five validation sets.
In order to assess the effects of random sampling on the prediction

accuracy (Tsairidou et al. 2014), the cross-validation process was rep-
licated fifty times, where for each replicate a new randomization of
individuals into groups was performed. For each high density SNP
panel, the overall mean correlation and standard deviation were
obtained over the 50 replicates (Figure 1).

For each SNP panel and for each replicate, prediction accuracy was
calculated as the mean correlation divided by the square root of the
heritability � rðy; ŷ Þ=h, for Loge(SLC) and for weight. This heritabil-
ity was calculated from the whole dataset, all 520 offspring and with
G calculated on all SNP markers after quality control with the
same criteria as above (76,488 SNPs), and using model (1). Then for
each SNP density, the average accuracy (and standard deviation) was
obtained over the 10 SNP panel replicates.

Imputation SNP panels and assessment of imputation accuracy: A
range of imputation SNP panels were constructed as a subset of the
optimal SNP panel identified in (a) (i.e., the lowest density SNP panel
that rendered genomic prediction accuracies for both traits similar to
those obtained with the HD SNP panel). For the imputation panels,
SNPs were selected randomly within each chromosome (proportional
to chromosome length as previously described). Due to rounding, it
was possible that the total number of selected SNPs could be slightly
larger than the intended density (Supplementary Information 2;
Table S2). The optimal SNP panel was assumed to be genotyped
on all parents (n = 86) and the imputation SNP panels of varying
densities were assumed to be genotyped for all offspring (n = 520),
so that the offspring were imputed to the optimal SNP panel density
(parents’ genotypes). Imputation was conducted using FImpute/2.2
(Sargolzaei et al. 2014). Imputation accuracy was calculated as
the correlation between imputed and observed genotypes in the
offspring (Yoshida et al. 2018). Then the average imputation accu-
racy across individuals was calculated for each of the low density
imputed SNP panels.

Genomic prediction accuracies of imputed datasets: Estimatedbreed-
ing values for loge(SLC) and body weight, and cross-validated predic-
tion accuracies were estimated in ASReml/3.0 using model (1), with the
difference that here the G matrices were calculated from both directly
genotyped and imputed SNP genotypes for the offspring. Quality con-
trol analysis described in section ‘Genotypes and quality control’ was
repeated for the imputed genotypes. The multiple cross-validation pro-
cedure was used as described above, and for each imputed dataset, the
average prediction accuracy was calculated over 50 replicates.

Cost-benefit analysis using imputed data
A cost-benefit analysis was performed to evaluate the economic benefit
of genotyping the selection candidates at lowerdensities andperforming
genotype imputation considering the genomic prediction accuracy
obtained. The scenarios tested were (i) all animals (parents and off-
spring) genotyped at medium density with a 5K SNP panel, and, (ii)
parents genotyped at 5K and offspring at 200 SNPs and imputed to 5K.
The annual cost of genotyping was estimated as follows: for a salmon
breeding program assuming 300 parents and 10,000 offspring, for
scenario (i) a cost of $15 per individual was assumed; for scenario
(ii) 300 parents genotyped at 5Kwere assumed to cost $30per SNParray
(the price per array increases with lower volume of samples), and 10,000

offspring genotyped at 200 SNPs were assumed to cost $5 per
individual to genotype the SNP panel.

Data availability
The code used in the current study can be accessed on GitHub (https://
github.com/SmaragdaT/CVrep), and is available as an R package
(CVrepGPAcalc v1.0 / R version 3.1.2) under GNU General Public
License v3.0 (Tsairidou 2019; CVrepGPAcalc v1.0). To install
in RStudio use: install.packages(“devtools”); library(devtools);
install_github(“SmaragdaT/CVrep”, subdir=”CVrepGPAcalc”);
library(CVrepGPAcalc). The genotype and phenotype data can be
accessed at https://www.g3journal.org/content/7/4/1377.supplemental
(Tsai et al. 2017). Supplementary Information 1: sea lice count
distribution and data structure exploration using classical multi-
dimensional scaling; Supplementary Information 2: number of SNPs
selected when SNPs were sampled randomly within each chromo-
some; Supplementary Information 3: genomic prediction accuracies
when SNPs were selected based on physical distance; Supplementary
Information 4: correlations between phenotypes and cross-validated
predicted BVs for the different HD SNP panel densities; Supplemen-
tary Information 5: distributions of imputation accuracy values across
individual animals; Supplementary Information 6: genomic predic-
tion accuracy after removing SNPs with minor allele frequency less
than 0.3. Supplemental material available at figshare: https://doi.org/
10.25387/g3.9929945.

RESULTS

Genetic parameters and testing of genomic prediction
with reduced density panels
The genomic heritability using the HD SNP panel was found to be 0.19
(SE = 0.07) for sea lice resistance, and 0.57 (SE = 0.07) for body weight
which was generally in agreement with findings from earlier studies,
either based on the same (e.g., Tsai et al. 2015; Tsai et al. 2016) or
different populations (Cáceres et al. 2019).

For the different reduced SNP panel densities the correlations be-
tween phenotypes and cross-validated predicted BVs reflected the in-
crease in information with increasing SNP density (Supplementary
Information 4). Reducing the SNP panel density from the HD SNP
panel (76,488SNPs) to200SNPsresulted ina14.5%decrease ingenomic
prediction accuracy for sea lice resistance, and a 27.9%decrease for body
weight (Figure 2; SNPs selected randomly within chromosome). Across
all SNP densities, prediction accuracies for body weight were higher
than those for sea lice resistance. Predictions for weight appeared to
benefit slightly more from using higher SNP densities compared to sea
lice resistance (Figure 2), which may reflect that body weight is poten-
tially a more polygenic trait than sea lice resistance. Both methods of
selecting SNPs to construct reduced SNP panels (randomly across the
entire genome or within each chromosome) showed similar patterns
performed similarly with regards to genomic prediction accuracy.

Regardless of the trait, prediction accuracy started to decrease be-
tween 2,000 and 5,000 SNPs, therefore the medium SNP density of
5,000 was tested as the optimal SNP panel for the imputation analyses.
This medium SNP density was used rather than the HD SNP panel
because it was assumed that a 5K SNP panel would be cheaper to
genotype in most circumstances.

Variability of cross-validated prediction accuracy
While the reduction in genomic prediction accuracy with the reduced
SNP densities was modest, the standard deviations (Figure 2) and the
variances (Figure 3) were substantially larger at these lower densities.
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In other words, there was substantial variability in accuracy between
SNP panel replicates at lower densities, which means the accuracy
depends on the SNPs included on the panel. In contrast, variability
over SNP panel replicates diminished for SNP densities of 5K of larger.
This phenomenonwasmore pronounced for sea lice resistance than for
body weight (Figure 3).

Another source of variation in the genomic prediction accuracy is
due to the random sampling of individuals into the cross-validation
groups,whichwill depend to some extent on sample size. Interestingly, a
single prediction accuracy from one cross-validation can be a major
over- or underestimate of the prediction accuracy. For example, for one
of themedium density 5000 SNP panels, the prediction accuracy for sea
lice resistance ranged from 0.40 to 0.62 over the 50 cross-validation
replicates, with a mean of 0.52 (Figure 4). Similarly for weight and for
the same 5000 SNP panel, the prediction accuracy ranged from 0.55 to
0.64, with a mean of 0.59 (Figure 4). Therefore, in the present study a
multiple cross-validation procedure was followed, where individuals
were re-allocated into 5 cross-validation groups 50 times. A larger
sampling size would be expected to make the distribution of the pre-
diction accuracies narrower and minimize the random sampling ef-
fects. This may be good practice for future studies of genomic selection
in aquaculture breeding to avoid sampling bias.

Imputation accuracy
Imputation accuracy increased as the density of the imputation
SNP panels increased (Figure 5) which was as expected based on
previous studies (e.g., Hayes et al. 2012). For imputation to
5000 SNPs, the accuracy ranged from 0.72 (SD = 0.03) for 200 SNPs,
to 0.94 (SD = 0.02) for the SNP panel comprising 1000 SNPs,
reaching . 90% imputation accuracy for 700 SNPs or more. The
standard deviation of the imputation accuracies among individuals
reduced for higher density imputation panels (SD = 0.034 for
200 SNPs, and SD = 0.016 for 1000 SNPs; Figure 5). Imputation
accuracy per individual ranged from 0.61 to 0.82 when imputing
from 200 SNPs, and from 0.86 to 0.96 when imputing from
1000 SNPs (Supplementary Information 5).

Genomic prediction accuracy of imputed datasets
Despite the higher imputation accuracy of higher density imputation
SNP panels (Figure 5), increasing the density of the imputation SNP
panel for sea lice resistance resulted in an only marginal increase
in genomic prediction accuracy achieved using imputed genotypes
(Figure 6). For example, 200 SNPs imputed to 5,000 provided a pre-
diction accuracy of 0.53, while the prediction accuracy for 1000 SNPs
imputed to 5,000 was 0.56, and with 5,000 true genotypes was 0.54.

Figure 2 Prediction accuracy for sea lice resistance and body weight for the HD and the reduced SNP panels, when SNPs were sampled (i)
randomly across the genome, and (ii) randomly within each chromosome, proportionally to chromosome length. Vertical bars represent the
standard deviations over 10 SNP panel replicates.
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For body weight, genomic prediction accuracies using SNPs imputed to
5,000 were slightly higher when higher imputation SNP panel densities
were used (Figure 6).

While the influence of the SNP density of the imputation panel
on genomic prediction accuracy might be minor, the benefit of
imputation vs. using the low-density SNP panel alone (without
imputation) varied according to SNP density. As a general pattern,
genomic prediction accuracies using genotypes imputed to the
medium density 5,000 SNPs optimal panel were very close to those
using true genotypes for the same density (Figures 2 and 6).
The benefits of imputation were highest at the lowest imputation
SNP panel densities. For example, genomic prediction accuracy
using 200 SNPs without imputation for sea lice resistance was 0.45
(Figure 2 and 6), whereas with imputation to 5,000 SNPs it was
0.53, which corresponds to an increase of 17.5% (Figure 6). In
contrast, for a density of 700 SNPs, the benefit of imputation vs.
no imputation was approximately 6.83%, and at 1,000 SNPs the
benefit was negligible. In summary, the use of low density impu-
tation SNP panels (e.g., 200 SNPs) with imputation to medium
density (5,000 SNPs) resulted in prediction accuracies comparable
to using the optimal SNP panel (5,000 SNPs) on all animals,
and significantly outperformed low density panels alone without
imputation.

Cost-benefit analysis
In scenario (i)where all animals (parents and offspring) were genotyped
with a medium density SNP panel (5000 SNPs), the total cost of
genotyping was estimated at $154,500. However in scenario (ii) where
only the parents were genotyped for medium density and the offspring
were genotyped for 200 SNPs, the cost was estimated to reduce to
$59,000. This corresponds to a 62% cost reduction between scenario (i)
and (ii), with virtually no loss of genomic prediction accuracy for the
traits measured.

DISCUSSION
This study explores developing optimal methods for cost-effective
genomic selection in aquaculture, with a focus on an Atlantic salmon
sib-testing breeding program. In this study, genetic relationships were
incorporated through the genomic relationship matrix which was
computed from the SNP genotype data and captures identity by state
(IBS).While family-based selection usingphenotypes andpedigrees can
only capture between-family variation, genomic selection using genetic
markers can also capture within-family variation. This allows to dis-
tinguish between the genetic merit of full-siblings by predicting and
utilizing the Mendelian segregation term. Previous studies have shown
that using genomic relationships improves the predictive ability of
the BVs compared to pedigree-based predictions (Habier et al. 2007;

Figure 3 Variance of prediction accuracy of the reduced SNP panels, for sea lice resistance and weight, when SNPs were sampled (i) randomly
across the genome, and (ii) randomly within each chromosome, proportionally to chromosome length.
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Zenger et al. 2019). Genomic selection presents further advantages over
pedigree-based selection as it allows to reduce emphasis on particular
families and therefore facilitates improved control of the rate of in-
breeding (Daetwyler et al. 2008).

Genomic prediction using low density SNP panels
The results presented herein confirmed findings from earlier studies of
genomic selection in aquaculture species where relatively low density
SNP panels were found to be as effective as full high density panels for
the prediction of breeding values (Tsai et al. 2016; Vallejo et al. 2017;
Palaiokostas et al. 2018; Robledo et al. 2018; Yoshida et al. 2018;
Yoshida et al. 2019). Aquaculture settings are typically characterized
by full-sib testing schemes, and full-siblings share long genomic seg-
ments which can be adequately captured by fewer SNPs. Therefore, the
existence of close relationships between training and validation animals
is likely to be the reason why fewer SNPs are sufficient to capture
relationships between individuals and provide near-maximal predic-
tion accuracy. However, the current study has highlighted high vari-
ability in prediction accuracies with lower density SNP panels,
reflecting the importance of the sampling effect in selecting the SNP
panel. In contrast, for densities. 5K, the risk of losing accuracy due to

the chance inclusion of less informative SNPmarkers diminished. Non-
random SNP selection, based on knowledge of the causal mutations
affecting the trait of interest, is expected to enhance genomic prediction
accuracy and assist particularly with cross-population prediction
(Edwards et al., 2016). Such knowledge will allow including the
causative variant itself rather than relying on linkage disequilibrium
between the QTL and the SNP marker, and prioritizing functional
SNPs into genomic prediction.

It should be noted that the highprediction accuracies using relatively
modest SNP marker densities is likely to be restricted to sibling-testing
schemes or similar. In situations where the relationship between the
training and validation populations is more distant (such as use of one
population as training set and another population as validation set),
prediction accuracy is likely to be much lower, and higher SNPmarker
density may be more advantageous (Tsai et al., 2016). This is because
variation in linkage disequilibrium patterns between SNP markers
and QTL across populations compromises across-population predic-
tion accuracy (Snelling et al. 2013). Therefore, the results in the present
study may be to some extent population and trait specific. Another
factor that may affect the prediction accuracy is the minor allele
frequency, however, rarer alleles may be important for capturing

Figure 4 Prediction accuracy across 50 cross-
validation repeats for the 200 and 5000 SNP
panels, for sea lice resistance and body weight.

Figure 5 Imputation accuracy for the impu-
tation SNP panels, when imputed to the
optimal SNP panel. Vertical bars represent
the standard deviations over 520 offspring.
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haplotypes for specific families. Removing SNPs with minor allele fre-
quency less than 0.3 was not found to reduce the variability of pre-
diction accuracy values obtained across the SNP panel replicates
(Supplementary Information 6).

Selecting SNPs randomly across the genome or randomly within
each chromosome performed similarly in terms of genomic pre-
diction accuracy. The method of random sampling within each
chromosome was preferred for the selection of the optimal SNP
panel, as thismethod ensures amore evendistribution of SNPs across
the genome, and ensures that SNPs from all chromosomes are
included in the calculation of the genomic relationship matrices.
In the present study, SNPs were selected at random within each
chromosome, with the number of SNPs corresponding to the phys-
ical length of the chromosome. SNP panels were also constructed by
selecting SNPs based on even physical distance within each chro-
mosome (Supplementary Information 3). Selecting SNPs based on
genetic distance was not tested, and may be expected to impact on
prediction accuracy due to major variation in recombination rate
across the genome of salmon, particularly in males. However, given
that reducing SNP density from the highest density to the opti-
mal density panel did not reduce prediction accuracy, it is unlikely

that genetic distance or regions of high recombination have a
major impact.

Heritability estimation and prediction accuracy
Heritabilities estimated using lower density SNP panels (where the
reduced SNP panels were used to calculate the G matrix) were not
found to be reliable, with large standard deviations that often were
larger than the estimates. Hence, while the correlation between pre-
dicted BV and phenotype reduced for lower densities as expected, the
accuracies calculated using the heritability estimates from lower density
SNP panels appeared to remain high (preliminary analysis; results not
shown), which was an artifact introduced by the spurious heritability
estimates. This is likely to be common in studies of genomic prediction
accuracies with reducedmarker densities if the reduced panel is used to
calculate the h2 estimate that underlies the transformation from corre-
lation between phenotypes and EBVs to the accuracy value rðy; ŷ Þ=h.
Therefore, for the calculation of the accuracies presented here,
the heritability calculated from the HD SNP panel was used, which is
expected to be closer to the true heritability in the population as a
greater proportion of the genetic variance is captured by the HD
SNP markers. The heritability estimated using the HD SNP panel

Figure 6 Prediction accuracy of imputation SNP panels for sea lice resistance and body weight, for (i) the imputation SNP panel densities
with range from 200 to 1,000 SNPs imputed to the optimal 5,000 SNP panel (Imputed_5000), (ii) the imputation SNP panel densities with
range from 200 to 1,000 SNPs alone without imputation (LD_only), and, (iii) the optimal 5,000 SNP panel directly genotyped without
imputation (HD_5000).
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was consistent with the heritability estimated using pedigree data for
the same population (pedigree-based heritability of 0.23 (SE = 0.08)
for sea lice resistance).

Genomic prediction accuracy is affected by the genetic distance
between training and test populations (e.g., Scutari et al. 2016), and
the rapid drop in accuracy when the training and test sets do not
include close relatives has been observed in both salmon (Tsai et al.
2016) and common carp (Palaiokostas et al. 2019). The variation
observed in the accuracy across the cross-validation repeats is due
to the random sampling of individuals to construct the training
and validation sets; the genetic distance between the training and
validation sets varies by chance and affects the prediction accuracy.
Hence in the present study average prediction accuracies are
reported over 50 replicates of cross-validation, where in each rep-
licate, individuals are re-allocated in training and test sets. There-
fore, where possible in aquaculture breeding programs, close
relatives (such as full-siblings) to the selection candidates should
be included in reference populations to achieve high accuracy levels
for genomic prediction.

Imputation and cost-benefit analysis
Results from using imputed genotypes for genomic prediction were in
agreement with previous studies (Tsai et al. 2017; Yoshida et al. 2018),
where the authors observed that genomic prediction accuracies using
imputed genotypes were very close to those of true genotypes. For very
low imputation SNP panel densities (e.g., 200 SNPs), although the
imputation accuracy was lower, the genomic prediction accuracy using
the imputed genotypes was not greatly reduced. The high imputation
accuracies observed in this study can be explained by the inclusion of
close relatives in the reference group. A trade-off was observed between
genotyping cost and loss of prediction accuracy, but using low den-
sity imputation panels with imputation to medium density appears
to be a highly accurate cost-effective option. A reduction in pre-
diction accuracy means a reduction in genetic gain, and this has a
cost implication. However, this cost is difficult to quantify, as it
will be specific to the trait, the breeding goal, and the company.
Furthermore, it is unclear where this cost would be incurred, for
example to the breeding company or to the producer. In addition, it
should be noted that this is a small-scale trial and the imputation
and genomic prediction performance is likely to be more consistent
in larger commercial operations, and therefore needs to be tested
for different populations and traits.

CONCLUSION
High genotype imputation accuracy can be achieved in the context of a
salmonbreedingprogrambygenotypingparents atmediumdensity and
offspring at low density. When offspring are genotyped at very low
density (e.g., 200 SNPs), and the parents are genotyped at medium
density (e.g., 5000 SNPs), this is sufficient to obtain near-maximal
genomic prediction accuracy. Since genotyping for very low density
panels is considerably cheaper than genotyping for medium or high
density panels, this genotype imputation approach may be a cost ef-
fective tool for genomic prediction in Atlantic salmon.
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