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Abstract

Yeast strains have been used extensively as robust microbial cell factories for the

production of bulk and fine chemicals, including biofuels (bioethanol), complex phar-

maceuticals (antimalarial drug artemisinin and opioid pain killers), flavours, and fra-

grances (vanillin, nootkatone, and resveratrol). In many cases, it is of benefit to

suppress or modify ergosterol biosynthesis during strain engineering, for example, to

increase thermotolerance or to increase metabolic flux through an alternate pathway.

However, the impact of modifying ergosterol biosynthesis on engineered strains is

discussed sparsely in literature, and little attention has been paid to the implications

of these modifications on the general health and well-being of yeast. Importantly,

yeast with modified sterol content exhibit a wide range of phenotypes, including

altered organization and dynamics of plasma membrane, altered susceptibility to

chemical treatment, increased tolerance to high temperatures, and reduced tolerance

to other stresses such as high ethanol, salt, and solute concentrations. Here, we

review the wide-ranging phenotypes of viable Saccharomyces cerevisiae strains with

altered sterol content and discuss the implications of these for yeast as microbial cell

factories.

K E YWORD S

fecosterol, endocytosis, episterol, plasma membrane, sterol, stress, thermotolerance

1 | INTRODUCTION

Fungal sterols are steroidal structures composed of four rigid

rings, with a hydroxyl group at carbon 3 and an aliphatic tail at

carbon 17. Ergosterol is the predominant sterol in yeast and has

been reported to comprise 12 mol% of the Saccharomyces

cerevisiae lipidome, which encompasses glycerophospholipid,

sphingolipid, and sterol species (Ejsing et al., 2009). Within

yeast cells, ergosterol is mainly located at the plasma membrane

(PM), secretory vesicles, and lipid particles (Sokolov, Trushina,

Severin, & Knorre, 2019; Zinser et al., 1991; Zinser, Paltauf, &

Daum, 1993).

Strains lacking or producing alternative sterols exhibit a range of

phenotypes. In recent years, yeast strains have been engineered as

microbial cell factories for a wide variety of heterologous products,

and a common approach to increase strain productivity is to suppress

native pathways that compete for substrate. In many cases, particu-

larly for terpene engineering, ergosterol biosynthesis has been

suppressed in production strains (Moses et al., 2014; Paddon et al.,

2013). It is therefore industrially relevant to consider the impact of

altered sterol compositions on yeast health, in order to optimize pro-

duction strains and processes.

This article provides an overview of ergosterol biosynthesis in the

budding yeast S. cerevisiae, reviews the phenotypes of viable strains
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with altered sterol compositions, and discusses the implications of

these for microbial cell factories.

2 | ERGOSTEROL BIOSYNTHESIS IN
SACCHAROMYCES CEREVISIAE

The biosynthesis of ergosterol from acetyl-CoA is often grouped into

three modules: (a) the mevalonate biosynthesis module, (b) the farne-

syl pyrophosphate (FPP) biosynthesis module, and (c) the ergosterol

biosynthesis module (Figure 1; reviewed in Hu et al., 2017). The

ergosterol biosynthetic enzymes are localized in different subcellular

compartments of the yeast cell, with Erg proteins of the first, second,

and third modules predominantly located in the mitochondria (Isamu,

Jun, Hiroshi, & Hirohiko, 1973), cytoplasm and endoplasmic reticulum

(ER; Nishino, Hata, Taketani, Yabusaki, & Katsuki, 1981), respectively.

The mevalonate biosynthesis module consists of three steps and

begins with the condensation of two acetyl-CoA molecules to

acetoacetyl-CoA, catalysed by acetyl-CoA acetyltransferase (Erg10).

The hydroxymethylglutaryl-CoA synthase enzyme (Erg13) then

F IGURE 1 Ergosterol biosynthesis in
Saccharomyces cerevisiae Reactions of the
mevalonate biosynthesis module (red),

farnesyl pyrophosphate (FPP) biosynthesis
module (yellow) and ergosterol biosynthesis
module (green). The enzyme names are given
in red. Enzymes which are non-essential for
growth in aerobic conditions are emboldened
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catalyses the condensation of a third molecule of acetyl-CoA to form

3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is reduced by

HMG-CoA reductase (Hmg1 and Hmg2) to mevalonic acid.

The second module involves a series of phosphorylation reactions

and begins with the phosphorylation of mevalonate by mevalonate

kinase (Erg12) to phosphomevalonate, which is further phosphory-

lated to mevalonate-5-pyrophosphate by phosphomevalonate kinase

(Erg8). Mevalonate pyrophosphate decarboxylase (Mvd1/Erg19) sub-

sequently catalyses the decarboxylation of mevalonate-

5-pyrophosphate to isopentenyl pyrophosphate (IPP). The 5-carbon

prenyl phosphate, IPP is then isomerised to dimethylallyl pyrophos-

phate by IPP isomerase (Idi1). The condensation of the isomers IPP

and dimethylallyl pyrophosphate result in the formation of geranyl

pyrophosphate, which condenses with another molecule of IPP to

form FPP. The above two condensation reactions between the pyro-

phosphates are catalysed by FPP synthase (Erg20).

The ergosterol biosynthesis module begins with the condensation

of two FPP molecules to the linear 30-carbon squalene by squalene

synthase (Erg9). Squalene is then epoxidized by squalene epoxidase

(Erg1) to 2,3-oxidosqualene, which is cyclised to the four-ring

triterpene lanosterol by lanosterol synthase (Erg7). Lanosterol, the

dedicated precursor for fungal sterol biosynthesis, is then

demethylated by lanosterol C-14 demethylase (Erg11) to

4,4-dimethylcholesta-8,14,24-trienol, which is reduced by sterol C-14

reductase (Erg24) to 4,4-dimethylzymosterol. The oxidoreductases

sterol C-4 methyl oxidase (Erg25), sterol C-4 decarboxylase (Erg26),

and sterol 3-keto reductase (Erg27) then sequentially catalyse the

conversion of 4,4-dimethylzymosterol to zymosterol, the first inter-

mediate of the ergosterol biosynthesis pathway that can be incorpo-

rated into cell membranes. The final reactions in this module require

an oxygen-rich environment and generate sterol intermediates that

can be built into the yeast cell membrane (Figure 2). Zymosterol is

methylated by sterol C-24 methyltransferase (Erg6) to fecosterol,

which is isomerised by sterol C-8 isomerase (Erg2) to episterol. In two

subsequent desaturation reactions episterol is converted to ergosta-

5,7,22,24(28)-tetraenol via ergosta-5,7,24(28)-trienol by the action of

sterol C-5 desaturase (Erg3) and C-22 desaturase (Erg5). The final

reaction of this pathway is the reduction of ergosta-5,7,22,24(28)-

tetraenol to ergosterol by sterol C-24 reductase (Erg4).

The ergosterol biosynthesis pathway is energy intensive, with at

least 24 molecules of ATP and 16 molecules of NADPH estimated to

be required for the de novo synthesis of one molecule of ergosterol

(Hu et al., 2017). In addition, oxygen is an essential cofactor for sev-

eral enzymes, which makes the ergosterol biosynthesis pathway

dependent on the availability of environmental oxygen (Galea &

Brown, 2009). However, in aerobic conditions, yeast cells can over-

produce ergosterol, an excess of which is cytotoxic to yeast cells in

the free form (Liu, Xia, Nie, Wang, & Deng, 2019). Therefore, stringent

regulation and maintenance of cellular sterol homeostasis are critical.

To attenuate the excessive sterol pool, yeast cells either secrete sterol

acetates into the extracellular matrix (Hu et al., 2017) or store steryl

esters in lipid particles (Taylor & Parks, 1978). Under anaerobic condi-

tions, sterol uptake becomes essential for growth and is obtained

either from esterified sterol reserves that can be readily intercon-

verted to free sterols, or from the environment using an import pro-

cess mediated by ATP-binding sterol transporters Aus1 and Prd11

that are repressed in the presence of oxygen (reviewed in Hu et al.,

2017; Liu et al., 2019). The regulation of ergosterol biosynthesis is

tightly controlled at several check points and accomplished by feed-

back mechanisms at the level of transcription, translation, and post-

translation, including the inhibition of key enzymes by ergosterol

pathway intermediates and gene activation by transcription factors

Upc2, Ecm22, Rox1, and Mot3 (reviewed in Liu et al., 2019).

3 | STEROL PROFILES OF VIABLE
ERGOSTEROL BIOSYNTHESIS MUTANTS

Most of the studies in this review report the phenotypes of viable

ergosterol biosynthesis mutants, which vary significantly in sterol

composition. Yeast strains deficient in Erg6, Erg2, Erg3, Erg5, or Erg4

are able to grow under routine laboratory conditions (Palermo, Leak,

Tove, & Parks, 1997). The remaining ERG genes are classified as

essential, although erg24Δ strains are able to grow under specific con-

ditions, such as in defined synthetic media but not yeast extract

peptone-based media under aerobic conditions (Crowley, Smith,

Leak, & Parks, 1996; Lorenz & Parks, 1992; Palermo et al., 1997).

At the PM of wild type yeast, ergosterol is the predominant ste-

rol, with minor amounts of zymosterol (Zinser et al., 1993). Yeast

strains with deletions of genes in the late steps of ergosterol biosyn-

thesis accumulate sterols that differ from ergosterol in the number

and position of double bonds in the B-ring and the side chain of the

sterol molecule. Sterol profiling suggests that Erg enzymes catalysing

the last five steps of ergosterol biosynthesis have reduced substrate

specificity and can accept a broad range of similar sterol structures.

As a result, mutants of late ERG genes accumulate mixtures of sterols

including the precursors of the enzymes they lack. The most abundant

sterols in these yeast mutants are depicted in Figure 2, and the poten-

tial catalytic activities that lead to their synthesis are discussed here.

In strains with nonfunctional Erg6, the sterol side chain is not

methylated and unsaturation at Carbon 24 is retained, resulting in the

accumulation of zymosterol (substrate of Erg6), cholesta-7,24-dienol

(catalytic activity of Erg2 on zymosterol), cholesta-5,7,24-trienol (cata-

lytic activity of Erg2 and Erg3 on zymosterol), and cholesta-5,-

7,22,24-tetraenol (catalytic activity of Erg2, Erg3, and Erg5 on

zymosterol; Heese-Peck et al., 2002). Lack of Erg2 isomerase activity

results in the accumulation of fecosterol (substrate of Erg2), egosta-

8-enol (catalytic activity of Erg4 on fecosterol), and ergosta-5,-

8,22-trienol (catalytic activity of Erg3, Erg5, and Erg4 on fecosterol)

(Abe & Hiraki, 2009). In erg3Δ yeast, accumulation of episterol (sub-

strate of Erg3), ergosta-7,22-dienol (catalytic activity of Erg5 and Erg4

on episterol), and ergosta-7-enol (catalytic activity of Erg4 on

episterol) has been reported (Heese-Peck et al., 2002). The erg5Δ

strain, on the other hand, accumulates ergosta-5,7,24(28)-trienol (sub-

strate of Erg5) and ergosta-5,7-dienol (catalytic activity of Erg4 on

ergosta-5,7,24(28)-trienol) (Barton, Corrie, Bard, & Woods, 1974; Sun
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F IGURE 2 Sterols
accumulating in ergΔ strains (a)
Reactions catalysed by enzymes
in the late steps of the ergosterol
biosynthesis pathway, in the
order which they are typically
depicted. (b) Sterols reported to
accumulate in yeast cells lacking
Erg6, Erg2, Erg3, Erg5 or Erg4
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et al., 2013), whereas the erg4Δ strain accumulates ergosta-5,7,22,24

(28)-tetraen-3-ol, the direct precursor of ergosterol (Aguilar et al.,

2010).

Small changes in sterol methyl groups and positions of

unsaturation in the ring skeleton or aliphatic tail, significantly impact

the dynamics of lipid bilayers (Ranadive & Lala, 1987; Shahedi,

Orädd, & Lindblom, 2006). Sterol structure impacts van der Waals

interactions with other lipid bilayer components and influences the

packing effects of sterols when included in model membranes. Nota-

bly, small variations in saturation within the stiff sterol ring structure

can change the orientation of sterol rings, rendering a sterol flat (for

example, ergosterol) or bended (for example, fecosterol and episterol)

(Shahedi et al., 2006). These differences significantly alter the bio-

physical properties of the membrane (Ranadive & Lala, 1987). In the

following section, we explore the impact of altered sterol composition

on yeast membranes in further detail.

4 | PHENOTYPES OF ERGOSTEROL
BIOSYNTHESIS MUTANTS

4.1 | Plasma membrane structure

PM is composed of glycerophospholipids, sphingolipids, sterols, and a

plethora of proteins, with roles in transport, signalling and organisa-

tion of the cytoskeleton (van der Rest et al., 1995). Studies using

model membranes have indicated that sterols have a key role in

maintaining PM dynamics (Figure 3; Arora, Raghuraman, &

Chattopadhyay, 2004; Dufourc, 2008; Hsueh et al., 2007; Hsueh,

Gilbert, Trandum, Zuckermann, & Thewalt, 2005; Low, Rodriguez, &

Parks, 1985; Shrivastava & Chattopadhyay, 2007; Soubias, Jolibois,

Massou, Milon, & Réat, 2005). In particular, sterols are considered to

interact strongly with the long and highly saturated acyl chains of

sphingolipids (Ahmed, Brown, & London, 1997; Wattenberg & Silbert,

1983). In the “lipid raft” model for PM structure, microdomains rich in

sterol and sphingolipid are considered to form detergent-insoluble

rafts of liquid ordered phase, surrounded by bulk liquid disordered

phase. The reliability of using model membranes and detergent solu-

bility studies to define PM structure has been controversial (reviewed

in Hancock, 2006; Lichtenberg, Goñi, & Heerklotz, 2005; Munro,

2003); however in yeast, studies using green fluorescent protein

(GFP)-tagged PM proteins have provided growing evidence for lateral

compartmentation of the PM, into domains of distinct protein and

possibly lipid combinations (reviewed in Merzendorfer & Heinisch,

2013). The first type of domain to be described was termed MCC (for

membrane compartment of Can1), to describe the patch-like

codistribution of the proton-dependent permeases Can1, Fur4, Tat2,

and other proteins. The second to be described was termed MCP (for

membrane compartment of Pma1), which describes the network-like

distribution of the H+-ATPase Pma1, which is strictly distinct from the

MCC patches. Further domains that have been described are MCT

(for membrane compartment of TORC2), and CWI (for cell wall integ-

rity; reviewed in Merzendorfer & Heinisch, 2013).

Viable ergosterol biosynthesis mutants (henceforth ergΔ) have

exhibited altered glycerophospholipid and sphingolipid profiles,

changes in PM dynamics, and changes in protein compartmentation at

the PM. For example, Sharma (2006) reports erg2Δ and erg3Δ strains

to have decreased phosphatidylcholine content and erg6Δ to have

increased phosphatidylcholine and phosphatidylserine content. Mean-

while, Guan et al. (2009) report substantial changes in sphingolipid

profiles between ergΔ mutants.

The physical properties of PM in ergΔ strains have been studied

by measuring the time-resolved fluorescence anisotropy of the fluo-

rescent dye trimethylammonium-diphenylhexatriene (TMA-DPH),

which anchors in the outer leaflet of the PM. In a study by Abe and

Hiraki (2009), with the exception of erg5Δ, viable ergΔ strains

exhibited accelerated rotation of TMA-DPH in the PM; the rotational

diffusion coefficients were significantly higher than wild type in the

order erg2Δ > erg6Δ > erg3Δ > erg4Δ. The erg2Δ, erg6Δ, and erg4Δ

strains also exhibited a decrease in order compared to wild type, with

erg2Δ exhibiting the strongest deviation from the wild type. Overall,

this study indicated decreased rigidity of the PM in ergΔ strains, with

an increase in the occurrence of voids, particularly for the erg2Δ

strain. The erg2Δ and erg6Δ strains accumulate sterols with

unsaturation in carbon position 8(9), which differs considerably from

the carbon 7(8) unsaturation in ergosterol (Figure 2). These altered

sterols could account for the striking differences in PM dynamics.

A number of studies have indicated that sterols have a role in

maintaining the compartmentation of PM proteins. For example, in a

genome-wide screen for genes affecting the colocalisation of MCC

domain proteins, Grossmann et al. (2008) identified that loss of Erg2,

Erg24, or Erg6 strongly disrupted MCC formation. Staining of

F IGURE 3 Membrane phases (a) Simplified schematic of a lipid
bilayer in ‘liquid disordered’ phase. In this highly fluid state, lipids

exhibit irregular packing with increased disorder and lateral mobility.
(b) Below melting temperature, lipid bilayers pack tightly in a solid-like
phase known as ‘gel phase’. This impedes the lateral movement of
lipids. (c) When sterols are included in model membranes, bilayers
form a ‘liquid ordered phase’ in which acyl chains are packed more
closely than in liquid disordered phase, but retain lateral mobility

JOHNSTON ET AL. 31

http://wileyonlinelibrary.com


S. cerevisiae cells with filipin (a fluorescent polyene that interacts with

30-β-sterols) has indicated that MCC domains are rich in ergosterol

(Grossmann, Opekarová, Malinsky, Weig-Meckl, & Tanner, 2007), and

the filipin staining of MCC domains was not as distinct as wild type in

erg2Δ, erg24Δ, or erg6Δ strains, indicating reduced compartmentation

of sterols (Grossmann et al., 2008). Notably, Jin, McCaffery, and Grote

(2008) suggest that filipin might only bind free ergosterol, as a strain

with approximately 50% reduction in sphingolipid and a modest

reduction in ergosterol content, exhibits bright uniform staining

around the PM. However, it is also possible that sterol distribution is

impacted by reduced sphingolipid content.

A number of hypothesised mechanisms for PM compartmentation

have been investigated. Spira et al. (2012) found actin

depolymerisation to have a minor impact on protein distribution,

whereas enzymatic degradation of cell wall induced aggregation of

membrane proteins into large patches. Reduced lipid complexity (fol-

lowing modification of either phospholipid, sphingolipid, or sterol con-

tent) was concluded to be strongly associated with reduced protein

segregation. Membrane potential also appears to influence the lateral

distribution of both sterols and proteins. Grossmann et al. (2007)

applied a proton gradient uncoupler to yeast strains and found depo-

larisation of PM to result in dispersion of ergosterol and proteins from

MCC patches. Notably, when cells were first treated with the sterol

dye filipin and then with the proton gradient uncoupler, ergosterol did

not disperse, and Can1 was no longer released from MCCs, suggesting

that ergosterol has a structural role in maintaining MCC domains.

Overall, the work of Spira et al. (2012) and others indicate that

ergosterol has a role in maintaining lateral compartmentation of the

PM. Heterologous PM proteins produced in yeast may not localise to

PM microdomains as anticipated in cells with altered sterol content,

without further engineering. For example, Grossmann et al. (2008)

report reduced localization of Hup1 (a hexose/H+ symporter from

Chlorella kessleri) at MCC domains of S. cerevisiae erg2Δ, erg24Δ, and

erg6Δ strains. Further phenotypes of ergosterol biosynthesis mutants

are likely to be explained in part by the altered activities of PM pro-

cesses, which also have implications for yeast as microbial cell facto-

ries as discussed below.

4.2 | Vesicular trafficking

There are multiple vesicular trafficking pathways in yeast, which

deliver proteins and other compounds between cellular compartments

(reviewed in Feyder, De Craene, Bär, Bertazzi, & Friant, 2015). Pro-

teins synthesized at the ER are trafficked via membrane-bound vesi-

cles to the Golgi apparatus. At the Golgi, proteins are sorted for

transport to either the PM via the secretory pathway or the vacuole

via the vacuolar protein sorting pathway or alkaline phosphatase path-

way. Meanwhile, PM proteins (and external compounds) are continu-

ously internalised by endocytosis (reviewed in Goode, Eskin, &

Wendland, 2015; Lu, Drubin, & Sun, 2016) and transported to endo-

somes, where they are sorted for transport to either the vacuole for

degradation or the Golgi for recycling.

The efficacy of various vesicular transport pathways in ergosterol

biosynthesis mutants has been summarised in Table 1. In general, the

trafficking and maturation of most proteins does not appear to be

strongly affected in viable ergΔ strains. For example, correct matura-

tion of carboxypeptidase Y (indicating delivery from ER to Golgi and

Golgi to vacuole) and Gas1 (indicating delivery from ER to Golgi), as

well as secretion of invertase to periplasm has been reported for a

number of ergΔ strains (Heese-Peck et al., 2002; Munn et al., 1999).

However in erg2Δ, erg3Δ, and erg6Δ strains, the tryptophan permease

Tat2 has been found to accumulate in vacuolar compartments, rather

than MCC domains of the PM (Daicho et al., 2009; Estrada et al.,

2015; Guan et al., 2009; Umebayashi & Nakano, 2003). Notably in

wild type yeast cells, vacuolar accumulation of Tat2 occurs under con-

ditions of reduced nutrient availability via the inactivation of Target

Of Rapamycin Complex (TORC)1 kinase activity (Beck, Schmidt, &

Hall, 1999; Schmidt, Beck, Koller, Kunz, & Hall, 1998).

The TORC1 complex functions as a master regulator of cell growth.

Under conditions favourable for growth, TORC1 has kinase activity and

promotes processes required for cell growth and division, such as ribo-

some biogenesis and translation initiation. Activation of TORC1 has

been shown to promote the endocytosis of some transporters, such as

Can1 (MacGurn, Hsu, Smolka, & Emr, 2011), and inhibit the endocytosis

of other transporters, including Tat2 (De Craene, Soetens, & Andre,

2001; Schmidt et al., 1998). Vacuolar accumulation of Tat2 under

normal growth conditions in certain ergΔ strains, is therefore suggestive

of reduced TORC1 activity. In support of this, Estrada et al. (2015)

found an erg3Δ strain to be more sensitive to treatment with the

TORC1 inhibitor rapamycin, as determined by reduced growth in the

presence of rapamycin and rapid dephosphorylation of the TORC1 tar-

get Sch9 when treated with rapamycin. These results suggest reduced

TORC1 activity in erg3Δ under normal growth conditions; however, the

results could potentially also be due to increased intracellular accumu-

lation of rapamycin, if efflux of rapamycin is reduced in erg3Δ (see

Section 4.4). The TORC1 complex is sited at vacuolar membranes, and

vacuoles are highly fragmented in many ergΔ strains (Heese-Peck et al.,

2002; Munn et al., 1999). It is therefore plausible that the regulation

and activity of TORC1 could be perturbed in ergΔ strains. It is therefore

plausible that the regulation and activity of TORC1 could be perturbed

in ergΔ strains. Alternatively, TORC1 activity could be reduced in ergΔ

strains in response to other physiological conditions that are

unsupportive for growth; multiple signals including nutrient availability,

salt stress, redox stress, and temperature stress regulate TORC1 activ-

ity; however, the mechanisms by which inputs are sensed and inte-

grated remain to be elucidated (Loewith &Hall, 2011).

Yeast endocytosis is commonly investigated by studying uptake

of the lipophilic dye FM4–64, the water-soluble dye Lucifer yellow

(LY), and/or radio-labelled α-factor. Internalisation of FM4–64 has

been observed for all ergΔ strains tested (Heese-Peck et al., 2002),

indicating functional endocytosis of PM. However, defects have been

observed in the internalisation of the mating pheromone α-factor and

of the LY dye (Heese-Peck et al., 2002; Munn et al., 1999).

In wild type cells, the transmembrane receptor of α-factor, Ste2,

undergoes a basal level of endocytosis in the absence of mating
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pheromone. Upon binding α-factor however, Ste2 is

hyperphosphorylated, ubiquitinated, and the receptor-ligand complex

is rapidly internalised (Toshima, Nakanishi, Mizuno, Toshima, & Drubin,

2009). Internalisation of α-factor has been found to be similar to wild

type in erg3Δ and erg4Δerg5Δ strains, delayed in an erg6Δ strain, signifi-

cantly reduced in erg2Δ and erg2Δerg3Δ strains, and strongly reduced in

an erg3Δerg6Δ strain (Heese-Peck et al., 2002; Munn et al., 1999). In

erg2Δerg6Δ and erg3Δerg6Δ strains with the most severe response, the

Ste2 receptor was localised at the PM but not phosphorylated or

ubiquitinated in response to α-factor (Heese-Peck et al., 2002),

suggesting that the reduced internalisation observed in ergΔ strains

could be a result of inefficient modification of Ste2 upon ligand binding.

Notably, ergosterol has been found to interact with the kinase Yck2 (Li,

Gianoulis, Yip, Gerstein, & Snyder, 2010), which has a role in Ste2 phos-

phorylation (Feng & Davis, 2000). It is possible that this kinase does not

function efficiently in strains with modified sterol composition.

In strains where sufficient α-factor is internalised, degradation of

the pheromone has been detected, indicating successful delivery to

the vacuole (Munn et al., 1999). However, vacuolar accumulation of

the water-soluble dye LY is significantly reduced in most ergΔ strains

(Heese-Peck et al., 2002; Munn et al., 1999). Requirements for the

internalisation of LY in fluid phase and the lipophilic dye FM4–64

(chemical structures shown in Figure 4), which binds membranes, may

be different, or basal endocytosis levels may be reduced in ergΔ

strains owing to altered Ypk1 activity. Ergosterol not only copurifies

with the Ypk1 kinase from wild type S. cerevisiae cells but also aug-

ments Ypk1 kinase activity in vitro (Li et al., 2010). Additionally, Ypk1

isolated from erg4Δ cells exhibits five-fold less kinase activity than

Ypk1 isolated from wild type cells. The relationship between Ypk1

and endocytosis is complex. Stimuli that increase PM tension (includ-

ing hypotonic shock, mechanical stress, and inhibition of sphingolipid

biosynthesis) induce TORC2-mediated activation of Ypk1 and a sub-

sequent reduction in endocytosis rates, among other outputs

(Berchtold et al., 2012; Gaubitz, Prouteau, Kusmider, & Loewith,

2016; Leskoske, Roelants, Marshall, Hill, & Thorner, 2017; Niles,

Mogri, Hill, Vlahakis, & Powers, 2012; Roelants et al., 2017). However,

TABLE 1 Membrane trafficking phenotypes of ergosterol pathway mutants
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basal Ypk1 activity is also required for endocytosis. Yeast strains lac-

king Ypk1 fail to accumulate LY dye and exhibit reduced inter-

nalisation of α-factor (deHart, Schnell, Allen, & Hicke, 2002).

Phosphorylation of Ypk1 by Pkh1 or its paralog Pkh2 (at a site distinct

from those phosphorylated by TORC2) is required for both vacuolar

accumulation of LY dye, and Ste2-mediated internalisation of α-factor

(deHart et al., 2002). The reduced uptake of LY dye in ergΔ strains

could therefore result from altered Ypk1 activity, although to the best

of our knowledge, the activation state of Ypk1 in strains other than

erg4Δ has not been assessed.

The reduced vacuolar fluorescence of LY dye observed in many

ergΔ strains could potentially also be a result of reduced fusion

between vacuolar compartments in the ergΔ strains. Although wild

type yeast cells typically have one to three vacuolar compartments,

many ergΔ strains contain highly fragmented vacuoles (Heese-Peck

et al., 2002; Munn et al., 1999), with reduced fusion between vacuolar

compartments detected in vitro and in vivo (Kato & Wickner, 2001).

Experiments with isolated vacuoles have indicated that sterol defi-

ciency disrupts the priming step of vacuole fusion, wherein SNARE

(Soluble NSF Attachment Protein Receptor) and HOPS (Homotypic

fusion and vacuole Protein Sorting) complexes are altered (Kato &

Wickner, 2001). It is notable that in the studies by Munn et al. (1999)

and Heese-Peck et al. (2002), erg6Δ was the only ergΔ strain that

exhibited normal vacuole morphology and was also the only strain to

accumulate LY dye similarly to wild type.

With regards to microbial cell factories, these studies indicate that

in strains with altered sterol content, compounds are internalised by

endocytosis at different rates. This is of relevance to microbial cell

factory cultures in which chemicals are added to induce or suppress

specific cellular processes (discussed further in Section 4.4). Mean-

while, the reduced accumulation of Tat2 (a high affinity tryptophan

and tyrosine permease) at PM means that ergΔ strains may have

higher requirements for tryptophan and tyrosine in growth media

(Umebayashi & Nakano, 2003), and indicates that when strains are

engineered to produce heterologous proteins, they may not be traf-

ficked to the anticipated location. For example, Proszynski et al.

(2005) report that in erg6Δ and erg4Δ strains, a GFP-tagged chimera

of Fus2 and Mid2 protein domains accumulated in the Golgi network

rather than at the PM. There are many instances where it may be

desirable to target heterologous proteins to the PM of microbial cell

factories. For example, yeast biosensors in which heterologous PM-

localised receptors interface with native signalling pathways have

been reported (reviewed in Adeniran, Sherer, & Tyo, 2015), and

recently used to develop a bioassay for melatonin production (Shaw

et al., 2019), as well as bioassays for human pathogens (Ostrov et al.,

2017; Shaw et al., 2019). Additionally, heterologous transporters have

F IGURE 4 Structures of compounds
applied to Saccharomyces cerevisiae ergΔ
strains (a) Fluorescent dyes and markers
referenced in this text. FM4–64; N-
(3-triethylammoniumpropyl)-
4-(6-(4-(diethylamino)phenyl)hexatrienyl)
pyridinium dibromide. TMA-DPH;
1-[4-(trimethylamino)pheny]-6-phenyl-
1,3,5-hexatriene. (b) Selected mycotoxic

compounds to which ergΔ strains show
altered tolerance
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been expressed in yeast strains to improve salt tolerance and fermen-

tation performance (Dibalova-Culakova, Alonso-Del-Real, Querol, &

Sychrova, 2018). The subcellular location of heterologous transporters

and other PM proteins should be verified in microbial cell factories

with altered sterol content.

4.3 | Mating

The yeast mating response (reviewed in Bardwell, 2005) is initiated

following detection of mating pheromone at the PM. In S. cerevisiae,

MATa cells produce a-factor and detect α-factor at Ste2 receptors,

whereas MATα cells produce α-factor and detect a-factor at Ste3

receptors. This double receptor system prevents cells from initiating

mating in response to self. The transmembrane Ste2 and Ste3 proteins

are G-protein coupled receptors. Ligand binding to pheromone recep-

tor stimulates the Gα subunit of the associated G-protein to release

Gβ and Gγ subunits, which recruit scaffold protein Ste5 and kinases

Ste20, Ste11, Ste7, and Fus3 to the PM. A kinase cascade then results

in activation of Far1 (which mediates cell cycle arrest) and Ste12

(which mediates activation of mating associated genes, including

FUS1). Mating cells arrest their cell cycle and develop a schmoo mor-

phology, as they project towards the detected mating partner. Upon

contact, the cell walls of the mating pair fuse and are degraded,

enabling the PMs to come into contact and fuse in a mechanism

involving Fus1. Filipin staining has indicated that sterols are concen-

trated at the tip of schmoo mating projections and at sites of contact

between mating pairs (Bagnat & Simons, 2002).

As discussed in Section 4.2, many ergΔ strains display reduced

internalisation of α-factor. The development of schmoo morphology

upon pheromone treatment indicates that the mating response is initi-

ated in these strains (Heese-Peck et al., 2002), however downstream

mating defects have been reported. For example, Jin et al. (2008)

studied mating pairs of deletion mutants expressing GFP in MATa

cells and red fluorescent protein in MATα cells. Mixing of fluorescent

signals was used to indicate successful PM fusion between mating

pairs. Strains lacking Erg2, Erg3, or Erg6 exhibited reduced occurrence

of sterol accumulation at the mating projection tip, reduced expres-

sion from the FUS1 gene promoter, and reduced occurrence of fusion.

The erg3Δ mating pairs showed the strongest defect in membrane

fusion and lowest level of FUS1 expression, although this mutant was

found to internalise α-factor similarly to wild type in the study by

Heese-Peck et al. (2002). Localisation of GFP-Ste5 at the mating pro-

jection tip was also found to be reduced in the erg3Δ strain. The

reduced accumulation of sterols and proteins involved in mating at

the pheromone detection site, and reduced induction of FUS1, indi-

cates defective pheromone response signalling in erg2Δ, erg3Δ, and

erg6Δ strains.

In a similar experimental setup using mating pairs expressing GFP

and mCherry, Aguilar et al. (2010) found pairs of erg4Δ mutants to be

severely defective in mating, with reduced development of schmoo

morphology and reduced occurrence of membrane fusion. In contrast

to the phenotypes reported for erg2Δ, erg3Δ, and erg6Δ strains by Jin

et al. (2008), the erg4Δ MATa cells underwent cell cycle arrest,

induced FUS1 expression and exhibited polarised distribution of ste-

rols and proteins involved in mating upon α-factor treatment,

although a previous study had reported lack of polarised distribution

for Ste20 (Tiedje, Holland, Just, & Höfken, 2007). In the study by

Aguilar et al. (2010), schmoo formation but not cell fusion was res-

cued by exogenously supplying ergosterol. Intriguingly, deletion of

ERG5 in erg4Δ cells restored both schmoo formation and membrane

fusion between mating pairs. These results suggest that accumulation

of the highly unsaturated ergosta-5,7,22,24(28)-tetraenol, which accu-

mulates in the erg4Δ strain, restricts the ability of mating pairs to fuse.

With regards to the development of yeast microbial cell factories,

these studies highlight that mating occurs with reduced efficiency in

strains accumulating altered sterols. Therefore, mating as an engineer-

ing strategy should generally be avoided if sterol content has been

altered. Additonally, biosensors that utilise pheromone response path-

way components (Ostrov et al., 2017; Shaw et al., 2019) may not

function as well in strains with altered sterol content.

Importantly, recent studies have utilised the yeast pheromone

response to separate yeast growth from product generation. The

delay of production until cells have grown to a particular cell density

(reviewed in Venayak, Anesiadis, Cluett, & Mahadevan, 2015) is

advantageous if transgene expression and/or the heterologous prod-

uct is toxic or if production severely starves the cells of metabolites

required for growth. Yu et al. (2017) for example, found separating

S. cerevisiae growth from docosanol production to increase docosanol

yield by four-fold. The engineering of yeast strains to produce mating

pheromone of the opposite mating type, and activate pheromone

response pathways at an appropriate cell density, has been proposed

as a cost-effective means to separate growth from production

(Williams, Nielsen, & Vickers, 2013), with the additional benefit that

pheromone-mediated cell cycle arrest could result in increased flux to

product rather than cell proliferation. Native and engineered

pheromone-responsive promoters have been used to express genes

of interest when sufficient pheromone accumulates in growth media

(Williams et al., 2013), and repression of genes in response to phero-

mone accumulation has also been demonstrated, by introducing

pheromone-responsive RNA interference (Williams et al., 2015). Wil-

liams, Peng, Vickers, and Nielsen (2016) have also explored the pro-

ductivity of cells under pheromone-mediated cell cycle arrest, and

suggest that yeast cells undergoing the mating response are in a meta-

bolically active stationary phase, suitable for the production of a range

of fine chemicals. However, our review of ergΔ strain phenotypes indi-

cates that in some cases, use of the mating response may not be com-

patible with repression of ergosterol biosynthesis. This should be

carefully considered prior to strain development.

4.4 | Tolerance to mycotoxic compounds

Examples of compounds that have been applied to S. cerevisiae ergΔ

mutants are included in Figure 4, and the tolerances of ergΔ strains to

various exogenous compounds are reported in Table 2.
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As discussed in Section 4.2, the reduced vacuolar accumulation of

LY dye in many ergΔ strains could be due to reduced rates of fluid

phase endocytosis; however, in the development of antifungal phar-

maceuticals, blocking ergosterol biosynthesis has been found to

decrease yeast tolerance to a wide range of drugs. Sykes (1979) report

increased susceptibility of Candida albicans and Trichomonas vaginalis

to anisomycin, ascomycin, azalomycin F, brefeldin A, and copiamycin,

when applied synergistically with imidazoles that inhibit ergosterol

biosynthesis. Jensen-Pergakes et al. (1998) report removal of the

ERG6 gene in C. albicans to increase strain susceptibility to terbinafine,

tridemorph, fenpropiomorph, fluphenazine, cycloheximide, cerulenin,

and brefeldin A. Likewise, S. cerevisiae strains are usually tolerant to

TABLE 2 Tolerances of ergΔ strains relative to wild type
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brefeldin A (which in mammalian cells blocks secretion of proteins

from the ER to Golgi); however, brefeldin A inhibits ER to Golgi trans-

port in S. cerevisiae erg6Δ strains, with mycotoxic effect (Graham,

Scott, & Emr, 1993; Vogel, Lee, Kirsch, Rose, & Sztul, 1993).

It has been hypothesised that suppressing ergosterol biosynthesis

results in increased intracellular accumulation of exogenously applied

chemicals, which reduces the strain's tolerance to mycotoxic com-

pounds. As discussed below, this has been attributed to hyper-

polarisation of the PM, increased membrane permeability, and

decreased activity of efflux pumps such as Pdr5 (an ATP-binding cas-

sette transporter, overexpression of which confers resistance to a

broad range of compounds; Kolaczkowski et al., 1996).

The increased susceptibility of ergΔ mutants to cationic com-

pounds, such as hygromycin B and trimethylammonium, has been par-

tially attributed to an increase in membrane hyperpolarisation, as

indicated by uptake of potentiometric dyes (Barreto et al., 2011;

Kodedová & Sychrová, 2015), although the efflux of such dyes could

be reduced in ergΔ strains (Kodedová & Sychrová, 2015). Meanwhile,

Abe and Hiraki (2009) highlight a correlation between increased cyclo-

heximide susceptibility, and the reduced membrane rigidity of differ-

ent ergΔ strains, as indicated by anisotropy of the fluorescent dye

TMA-DPH. Kaur and Bachhawat (1999) also report increased cyclo-

heximide susceptibility for erg6Δ, erg2Δ, erg3Δ, and erg4Δ strains and

investigated the efflux activity of Pdr5, for which cycloheximide is a

substrate. Kaur and Bachhawat (1999) found the energy-dependent

efflux of the fluorescent dye Rhodamine 6G (another known substrate

for Pdr5), to be much slower than wild type in erg4Δ, erg2Δ, and erg6Δ

strains. Efflux in the erg3Δ strain was also delayed but to a lesser

extent than the other strains. Overexpression of PDR5 increased

cycloheximide tolerance in erg4Δ, erg3Δ, and to a lesser extent in

erg2Δ. Further evidence for sterol composition impacting the activity

of efflux pumps came from a study by Kontoyiannis (2000), in which

the fluconazole resistance imparted by an activated allele of transcrip-

tion factor gene PDR1 (termed PDR1–100), resulting in increased

PDR5 transcription, was found to be diminished in the absence of

Erg3.

In contrast to the reduced tolerance of ergΔ strains to many anti-

fungal compounds, the enhanced fluconazole resistance of many

C. albicans isolates has been attributed to a lack of Erg3 activity (Kelly

et al., 1997; Kelly, Lamb, Corran, Baldwin, & Kelly, 1995; Martel et al.,

2010; Sanglard, Ischer, Parkinson, Falconer, & Bille, 2003; Vale-Silva

et al., 2012). Azoles including fluconazole inhibit Erg11 activity, and

sterol profiling following fluconazole treatment has found that 14α-

methyl-fecosterol accumulates in erg3Δ strains, whereas 14α-

methylergosta8–24(28)dienol accumulates in strains with functional

Erg3. It has therefore been hypothesised that accumulation of 14α-

methylergosta8–24(28)dienol is detrimental to C. albicans. The relative

tolerances of S. cerevisiae ergΔ strains to azole compounds have dif-

fered between reports and are summarised in Table 2.

Certain ergΔ strains also exhibit increased tolerance to antifungals

that interact directly with sterols. For example, many S. cerevisiae ergΔ

strains have been reported to exhibit enhanced tolerance to nystatin

(Bhattacharya, Esquivel, & White, 2018; Kodedová & Sychrová, 2015;

Simons et al., 2006). In an adaptive evolution experiment by Fryberg,

Oehlschlager, and Unrau (1974), nystatin-resistant S. cerevisiae strains

were found to accumulate 5,6-dihydroergsterol rather than ergosterol.

Nystatin is a polyene that has been shown to bind ergosterol in syn-

thetic liposomes and form pores in membranes at high concentrations

(Coutinho, Silva, Fedorov, & Prieto, 2004). Amphotericin B (AmB) is

another polyene with mycotoxic effect. Recent studies utilizing chem-

ical derivatives of AmB, membrane permeabilisation assays,

ergosterol-binding assays, and nuclear magnetic resonance spectros-

copy, have indicated that AmB mycotoxicity is relayed primarily

through sequestration of ergosterol into cell surface aggregates

(Anderson et al., 2014; Gray et al., 2012; Palacios, Dailey, Siebert,

Wilcock, & Burke, 2011). Strains deficient in Erg5 (and to a much

lesser extent Erg2, Erg4, or Erg6) have increased tolerance to AmB

(Gazdag et al., 2014). It is plausible that in the strains with enhanced

polyene tolerance, the drug has reduced affinity for the sterols

present.

Steroidal glycoalkaloids have also been reported to permeabilise

membranes via interaction with sterols (Keukens et al., 1992). In a

study by Simons et al. (2006), the steroidal glycoalkaloid α-tomatine

was found to induce electrolyte leakage when applied to S. cerevisiae,

whereas the aglycone tomatidine did not, and both compounds dis-

played mycotoxic effect. When the tolerances of erg2Δ, erg3Δ, and

erg6Δ strains were investigated, erg6Δ was more tolerant to

α-tomatine, whereas erg2Δ and erg3Δ were less tolerant. Conversely,

the erg3Δ strain had greatly enhanced tolerance to the aglycone tom-

atidine. Again, differing affinities of these compounds for different

sterols would explain the phenotypes observed.

During the fermentation of yeast cell factories, chemicals of vary-

ing biochemical properties may be added to cultures to induce, sup-

press, or augment particular cellular processes. For example, the

auxin-inducible degron system from plants has been used to degrade

target proteins in yeast (Nishimura, Fukagawa, Takisawa, Kakimoto, &

Kanemaki, 2009); tetracycline and related compounds have been used

to repress or activate genes (Bellí, Garí, Piedrafita, Aldea, & Herrero,

1998; Garí, Piedrafita, Aldea, & Herrero, 1997); and the hormone

β-estradiol has been used for precise control of gene expression

(Louvion, Havaux-Copf, & Picard, 1993; Ottoz, Rudolf, & Stelling,

2014). Chemicals may also be added to inhibit specific metabolic path-

ways, to increase the intracellular concentration of substrates for fine

chemical biosynthesis. For example, lovastatin inhibits HMG-CoA

reductase activity (Gardner, Shan, Matsuda, & Hampton, 2001), and

terbinafine inhibits squalene epoxidase activity (Ryder, 1992), both of

which result in accumulation of substrates for the synthesis of high-

value terpenes. Lower concentrations of these expensive chemicals

may be required for yeast strains with altered sterol composition,

which could drastically reduce production costs. For example, Cdr1

(the C. albicans homologue of Pdr5) has been found to export

β-estradiol (Krishnamurthy, Gupta, Snehlata, & Prasad, 1998), there-

fore ergΔ strains with reduced Pdr5 activity may accumulate

β-estradiol (which currently costs approximately £1,700 per 100 g) at

a faster rate than wild type. On the other hand, some feedstocks con-

tain inhibitors to yeast growth, such as furfural and coniferyl alcohol
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(Deparis, Claes, Foulquié-Moreno, & Thevelein, 2017), which may

have an increased impact on strains with altered sterol content.

4.5 | Ion homeostasis and osmoregulation

Potassium is necessary for multiple aspects of yeast growth and sur-

vival, while sodium accumulation has toxic effects, through potassium

displacement and induction of hyperosmotic shock. Yeast therefore

maintain relatively high intracellular concentrations of potassium and

low concentrations of sodium (reviewed; Ariño, Ramos, & Sychrova,

2019). Potassium is imported through high affinity transporters such

as Trk1, driven by the membrane potential generated by PM H+-

ATPases, including Pma1. Cytosolic pH is regulated by the activity of

both PM ATPases, which export protons from the cell, and vacuolar

ATPases (V-ATPases), which acidify the vacuole (Martínez-Muñoz &

Kane, 2008).

Pyranine and pHlourin fluorescence measurements indicate that

intracellular pH is lower in strains with reduced ergosterol levels

(Calahorra, Lozano, Sánchez, & Peña, 2011; Kodedová & Sychrová,

2015), and ergΔ strains have a reduced ability to control intracellular

pH upon treatment with sodium chloride (Kodedová & Sychrová,

2015). The pH of vacuolar compartments in erg2Δ, erg3Δ, erg6Δ, and

erg24Δ strains was reported to be higher than wild type by Zhang

et al. (2010). In this study, vacuolar fragments isolated from an erg24Δ

strain exhibited reduced V-ATPase activity. Fragmented vacuoles and

perturbed activities at vacuolar membrane have also been reported in

many ergΔ strains (Heese-Peck et al., 2002; Kato & Wickner, 2001).

A number of studies using the fluorescent potentiometric dye

3,30-dipropylthiacarbocyanine iodide have indicated that reduced

ergosterol content results in hyperpolarisation of the PM (Calahorra

et al., 2011; Kodedová & Sychrová, 2015), although the enhanced

accumulation of this dye could also result from reduced rates of efflux

through multidrug resistant pumps (Kodedová & Sychrová, 2015). The

increased susceptibility of ergΔ mutants to cations has been

highlighted as another indicator of membrane hyperpolarisation.

Welihinda et al. (1994) report S. cerevisiae erg6Δ to be less tolerant to

lithium and sodium cations, associated with three- to four-fold higher

rates of influx, while efflux rates remained similar to wild type.

Kodedová and Sychrová (2015) have since reported erg2Δ, erg3Δ,

erg4Δ, and erg6Δ strains to have reduced tolerance to high levels of

lithium ions and sodium chloride, although an erg5Δ strain had similar

tolerances to wild type in this study.

Meanwhile, erg2Δ and erg6Δ strains have been found to exhibit

reduced growth in low potassium conditions, with erg3Δ, erg4Δ, and

erg5Δ strains impacted to a lesser extent (Barreto et al., 2011). Confo-

cal microscopy of Trk1-GFP has indicated reduced PM localisation of

this high affinity potassium transporter in erg6Δ strains (Barreto et al.,

2011). Therefore, the reduced growth in low potassium reported for

certain ergΔ mutants could be due to reduced presence of potassium

transporters at the PM.

Some ergΔ strains have also been found to be less tolerant to

treatment with high concentrations of glucose or sorbitol, which

would induce osmotic pressure (Kodedová & Sychrová, 2015). In addi-

tion to potentially being more susceptible to osmotic stress, due to

disrupted ion homeostasis, ergΔ strains may exhibit defects in their

response to osmotic stress. The kinase Ssk22 is involved in relaying

the osmotic stress response in yeast, as part of a MAP kinase cascade

that activates Hog1 (Posas et al., 1996), and studies by Li et al. (2010)

indicate a role for ergosterol in maintaining Ssk22 protein levels. Con-

versely, the hyperosmotic stress response in yeast involves rapid

repression of ERG2 and ERG11 (mediated by the MAP kinase Hog1),

and overexpression of the ergosterol pathway confers increased sus-

ceptibility to salt stress (Bhattacharya et al., 2018; Montañés, Pascual-

Ahuir, & Proft, 2011). These cellular responses are coherent when

considering the wider context of the hyperosmotic stress response,

which involves cell cycle arrest (Clotet et al., 2006; Escoté, Zapater,

Clotet, & Posas, 2004) and diversion of metabolic resources towards

glycerol biosynthesis (reviewed in Hohmann, 2002).

These studies suggest that careful design of growth media is

required in fermentations using strains with altered sterol content.

For example, such strains may be less tolerant to high sugar and salt

concentrations and may also require higher concentrations of potas-

sium. Alternatively, strains may be further engineered to increase ion

homeostasis (Deparis et al., 2017). The latter may be of preference; in

first generation bioethanol production (utilising food crop biomass),

streams of 35% sugar are used in order to attain ethanol titres of

16–18% (Deparis et al., 2017). In second generation bioethanol pro-

duction (utilising nonfood crops as feedstock), fermentations are usu-

ally limited to 12% sugar; however, high concentrations of sodium salt

may be present, due to feedstock pretreatment conditions and/or

accumulation of sodium salt in pipelines and fermenters (Deparis

et al., 2017). Certain feedstocks also contain metal cations, to which

ergΔ strains may be more susceptible. For example, sugarcane bagasse

usually contains Mg2+, Fe2+, Mn2+, Cu2+, and Zn2+ (Deparis et al.,

2017).

4.6 | Ethanol tolerance

Many yeast including S. cerevisiae rapidly convert sugars to ethanol, as

a means to outcompete competitors in sugar-rich environments

(Dashko, Zhou, Compagno, & Piškur, 2014). Such yeasts are able to

withstand ethanol concentrations that would be lethal to other micro-

organisms. However, higher ethanol concentrations are detrimental to

yeast, and under certain circumstances fermentations can become

“stuck” despite sugar still being available. Ethanol is considered to

intercalate at the lipid-water interface of bilayers, increasing lipid head

group spacing, and increasing the fluidity and ion permeability of

membranes. At high ethanol concentrations, lipid bilayers become

interdigitated, reducing membrane thickness by up to 30%, and dis-

rupting PM processes including amino acid and glucose uptake

(reviewed in Henderson & Block, 2014).

Experiments with model membranes have demonstrated that

ergosterol is highly effective at reducing interdigitation of lipid bila-

yers in the presence of ethanol (Dickey, Yim, Yim, & Faller, 2009;
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Tierney, Block, & Longo, 2005; Vanegas, Contreras, Faller, & Longo,

2012; Vanegas, Faller, & Longo, 2010). Elevated levels of unsatu-

rated fatty acids and ergosterol have been associated with increased

ethanol tolerance in a number of studies (reviewed in Henderson &

Block, 2014). For example, Aguilera, Peinado, Millán, Ortega, and

Mauricio (2006) compared the ethanol tolerance and lipid composi-

tion of five S. cerevisiae strains and found increased ergosterol, oleic

acid, and palmitoleic acid content to be highly correlated with etha-

nol tolerance. The hypothesised role of ergosterol in ethanol toler-

ance is supported by the decreased ethanol tolerance of certain

ergΔ strains. In a study by Liu et al. (2017), an erg3Δerg5Δ strain

was found to grow at 35% the rate of a wild type strain in the pres-

ence of 5% (v/v) ethanol, whereas the individual erg3Δ and erg5Δ

strains grew similarly to wild type. Inoue et al. (2000) determined a

strain unable to grow in 7% (v/v) ethanol to be deficient in Erg6.

Compared with ergosterol, these ergΔ strains accumulate sterols

with altered aliphatic tails; the erg3Δerg5Δ strain accumulates sterols

like ergosta-7-enol and episterol, with highly saturated aliphatic tails,

whereas the erg6Δ strain lacks methyl substitution in its sterol ali-

phatic tails.

The increased susceptibility of certain ergΔ strains to ethanol

should therefore be considered when engineering strains for bio-

ethanol production, where high ethanol concentrations are required

for efficient extraction (Abdel-Banat, Hoshida, Ano, Nonklang, &

Akada, 2010). A minimum concentration of 4–5% (v/v) ethanol is usu-

ally required for ethanol distillation to be economically viable, and

corn ethanol production often reaches final ethanol titres of 16–18%

(Deparis et al., 2017). High ethanol concentrations may also be

reached in the production of fine chemicals, when sugar-rich growth

media is used. Many target genes for increasing ethanol tolerance

have been identified over the years (reviewed in Deparis et al., 2017),

and these findings could be utilised to increase the ethanol tolerance

of microbial cell factories.

4.7 | High temperature

Although both high temperature and ethanol stress increase mem-

brane fluidity and show an overlap in stress response pathways, the

tolerance of ergΔ mutants to these stresses is very different. In an

adaptive laboratory evolution experiment by Caspeta et al. (2014),

nonsense mutations in ERG3 were identified in all seven evolved

strains with increased thermotolerance. To determine the impact of

Erg3 deficiency, one of the identified mutations was reconstructed in

the parental strain, and determined to confer 86% of the evolved

strain's thermotolerant phenotype. The thermotolerant strains accu-

mulated fecosterol under the culture conditions tested, with overall

sterol content similar to the parental strain. The authors postulated

that bended sterols are able to better maintain membrane dynamics

at higher temperatures. Transcriptomics of the thermotolerant strains

has also indicated, however, that these strains activate a heat stress

response at lower temperatures and so are primed for growth at

higher temperatures (Caspeta, Chen, & Nielsen, 2016). Liu et al.

(2017) subsequently compared the thermotolerance of erg2Δ, erg3Δ,

erg4Δ, erg5Δ, erg3Δerg4Δ, erg3Δerg5Δ, and erg4Δerg5Δ strains and

found them to exhibit a higher growth rate than wild type at 39.5�C.

Of the individual mutants, erg3Δ and erg5Δ had the highest

thermotolerance, and these mutations had an additive effect, with the

erg3Δerg5Δ strain showing 2.24-fold increase in growth rate relative

to wild type at 39.5�C (Liu et al., 2017).

As explored by Abdel-Banat et al. (2010), there are many poten-

tial cost savings associated with increasing the thermotolerance of

microbial cell factories. In the production of ethanol from starch for

example, starch is liquefied at 90�C with a thermostable α-amylase,

cooled for either separate or simultaneous saccharification and fer-

mentation (32–35�C), and then heated again for ethanol extraction.

During the fermentation phase, cooling is also required, as fermenta-

tions generate heat (Deparis et al., 2017). Abdel-Banat et al. (2010)

estimate that for a 30,000-kL scale ethanol plant, a 5�C increase in

fermentation temperature would save approximately US $30,000 per

year in cooling costs, and up to US $250,000 per year in expenditure

on hydrolase enzymes applied during fermentation, as most biomass-

hydrolysing enzymes function optimally between 40�C and 50�C

(Choudhary, Singh, & Nain, 2016). For example, the glucoamylase

cocktail OPTIDEX L-300 (Genencor International, Inc.) has a two-fold

higher activity at 40�C compared with 32�C (Abdel-Banat et al.,

2010). Additionally, Abdel-Banat et al. (2010) demonstrate efficient

vacuum extraction of ethanol at 40�C, but not at 35�C, suggesting

that simultaneous fermentation and ethanol extraction by vacuum

extraction may be feasible with higher temperature fermentations. In

addition to reducing heating costs, simultaneous fermentation and

ethanol extraction would be of benefit as ethanol has an inhibitory

effect on yeast growth rate.

To test the translatability of their findings to other fungal species,

Liu et al. (2017) removed the ortholog of S. cerevisiae Erg5 from the

filamentous fungus Penicillium oxalicum, and found the mutant strain

to exhibit significantly improved growth at 37�C relative to wild type.

This is of industrial relevance as P. oxalicum grows optimally at 30�C

but secretes cellulases that function optimally at 50�C. Hence, modifi-

cation of sterol content could be a promising approach to develop a

range of fungal strains for high-temperature fermentation.

5 | CONCLUSIONS

The viable mutants of the ergosterol biosynthesis pathway exhibit a

range of phenotypes, including altered localisation of specific PM pro-

teins, fragmentation of vacuoles, reduced completion of mating,

altered susceptibility to chemical treatment, PM hyperpolarisation,

increased tolerance to high temperatures, and reduced tolerance to

other stresses such as high ethanol, salt and solute concentrations.

Notably there are differences in the severity of phenotype

between different ergΔ mutants, reflecting the impact of different ste-

rol compositions. The removal of methyl groups from the carbon

4 and carbon 14 of lanosterol would appear to be critical for sterol

function, as strains deficient in Erg11, Erg25, Erg26, Erg27 or Erg28
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are non-viable, although interestingly the erg24Δ strain can grow

under specific conditions (Crowley et al., 1996).

Of the viable ergΔ mutants, strains lacking Erg2 often have the

strongest phenotype. Time-resolved fluorescence anisotropy mea-

surements indicate that there is greatly elevated freedom of rotational

movement within the PM of this strain, and increased disorder (Abe &

Hiraki, 2009). The erg2Δ strain accumulates sterols with unsaturation

in carbon position 8(9), which differs considerably from the carbon 7

(8) unsaturation in ergosterol (Figure 2). These altered sterols could

account for the striking differences in PM dynamics. Meanwhile, the

lack of a carbon 24 methyl group in erg6Δ strains, is likely to alter

interactions of the sterol side chain with fatty acid tails within the

hydrophobic core of lipid bilayers.

In some instances, the accumulation of a specific sterol structure

is hypothesised to impact a specific process. For example, the accu-

mulation of ergosta-5,7,22,24(28)-tetraenol in erg4Δ strains is postu-

lated to impede membrane fusion between mating cells (Aguilar et al.,

2010). As discussed in section 4.3, the aliphatic tail of this sterol is

particularly rigid due to the presence of two double-bonds.

Many of the phenotypes observed are due to altered processes at

cell membranes. For example, reduced activity of efflux pumps and

reduced V-ATPase activity. Multiple studies indicate that signalling

processes are disrupted or respond differently in strains with altered

sterol content. For example, the reduced phosphorylation of Ste2 in

the presence of mating pheromone (Heese-Peck et al., 2002), and the

trafficking of Tat2 to vacuoles as opposed to the PM (Estrada et al.,

2015). Notably, in the analysis of metabolites that co-purify with

kinases, ergosterol was found to co-purify with 15 different kinases

(Li et al., 2010), including Ypk1 which regulates rates of endocytosis

(deHart et al., 2002), Yck2 which is involved in Ste3 phosphorylation

(Feng & Davis, 2000), and Ssk2 which is involved in responding to

osmotic stress (Posas et al., 1996). Furthermore, ergosterol was found

to augment Ypk1 kinase activity in vitro (Li et al., 2010), suggesting

that yeast sterols could have a physiological role in facilitating the

activity of some kinases.

The implications of ergΔ phenotypes in the development of yeast

as microbial cell factories are many. In some cases, removing specific

ergosterol biosynthesis genes may be beneficial. For example, when

increased susceptibility to an expensive drug is desirable, or if it is

optimal for fermentations to take place at higher temperatures. It may

also be beneficial to suppress ergosterol biosynthesis in order to maxi-

mize flux towards an alternate pathway. Notably, suppression of spe-

cific enzymes in ergosterol biosynthesis has been found to increase

expression of most genes in the ergosterol pathway (Caspeta et al.,

2014), potentially increasing the availability of precursors of interest.

However, there are important considerations to factor into the design

of growth media when sterol profiles are altered; namely, the reduced

tolerances of strains with altered sterol content to osmotic stress, high

ethanol content, and low concentrations of specific amino acids

and ions.

In conclusion, there are many potential benefits to modifying ste-

rol composition in yeast cell factories, however the phenotypes of

strains with altered sterol content are wide-ranging and should be

considered when engineering strain and culture conditions in order to

maximize productivity.
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