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Three key points:  

1) Estimates of annual canopy maintenance respiration, a globally important C flux, vary 

widely among models calibrated from leaf trait data. 

2) Using an optimization framework we show that the canopy properties maximizing C 

export depend strongly on the respiration model used. 

3) Leaf-scale empirical models should be applied cautiously at the canopy-scale, particularly 

in Earth system models with canopy optimization. 
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Plain language summary (200 words):  While we have good understanding of plant 

photosynthesis, its links to climate and leaf nitrogen, and process models to estimate 

photosynthesis, the same is not true for respiration. Measurements of leaf respiration are used 

to calibrate simple respiration models, which are applied at canopy-scale. Here we investigate 

the risks associated with using various alternate simple respiration models in the context of 

viewing plant canopies as economic structures that must produce more carbon through 

photosynthesis than they use in respiration and tissue construction. We model the carbon 

economy of canopies with measured properties (leaf coverage, nitrogen) in arctic and in the 

tropical ecosystems, comparing the results using three different respiration models. First, we 

note the respiration estimates vary greatly among the models, so the models are not 

consistent. Second, we show that the optimal canopy properties (those most economically 

successful), also depend strongly on the respiration model used. This means that the choice of 

respiration model will have significant effects on the predictions of canopy response, and 

therefore C cycling, under global change. Our research highlights the need for more robust, 

process modelling of respiration.  
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Abstract 

Leaf maintenance respiration (Rleaf,m) is a major but poorly understood component of the 

terrestrial carbon cycle (C).  Earth systems models (ESMs) use simple sub-models relating 

Rleaf,m to leaf traits, applied at canopy scale. Rleaf,m models vary depending on which leaf N 

traits they incorporate (e.g. mass or area based) and the form of relationship (linear or non-

linear). To simulate vegetation responses to global change some ESMs include ecological 

optimization to identify canopy structures that maximize net C accumulation. However, the 

implications for optimization of using alternate leaf-scale empirical Rleaf,m models are 

undetermined. Here, we combine alternate well-known empirical models of Rleaf,m with a 

process model of canopy photosynthesis. We quantify how net canopy exports of C vary with 

leaf area index (LAI) and total canopy N (TCN). Using data from tropical and arctic canopies 

we show that estimates of canopy Rleaf,m vary widely among the three models. Using an 

optimization framework, we show that the LAI and TCN values maximizing C export 

depends strongly on the Rleaf,m model used. No single model could match observed arctic and 

tropical LAI-TCN patterns with predictions of optimal LAI-TCN. We recommend caution in 

using leaf-scale empirical models for components of ESMs at canopy-scale. Rleaf,m  models 

may produce reasonable results for a specified LAI, but, due to their varied representations of 

Rleaf,m–foliar N sensitivity, are associated with different and potentially unrealistic 

optimization dynamics at canopy scale. We recommend ESMs be evaluated using response 

surfaces of canopy C export in LAI-TCN space to understand and mitigate these risks.   
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1. Introduction 

Respiration by leaves (Rleaf) is a major component of the global carbon (C) cycle. Rleaf is 

linked to foliar metabolism for the maintenance of leaf function (Rleaf,m) and for leaf 

construction (Rleaf,g). Rleaf has been estimated to comprise ~50% of total autotrophic 

respiration, which is the largest contribution of any plant tissue [Atkin et al. 2007], and 

represents ~ 30 Gt C released globally by terrestrial ecosystems per year [Atkin et al. 2017a], 

a flux much larger than current fossil fuel emissions. At the ecosystem system, Rleaf has been 

estimated to account for 43% of total (vegetation and soils) respiration in a tropical forest 

[Cavaleri et al. 2017], greater than any other component (soils, live wood, and woody 

debris).  Therefore, predicting the dynamics of Rleaf across biomes is critical for simulating 

current and future global C cycling. While detailed and robust biochemical models of 

photosynthesis exist that are applied globally [Farquhar and von Caemmerer 1982], an 

equivalent for leaf maintenance respiration is lacking.  

In lieu of mechanistic models of Rleaf,m, Earth system models (ESM) that simulate global C 

cycling use empirical Rleaf,m models that are derived from the analysis of leaf trait databases. 

Observations of Rleaf,m come largely from direct, instantaneous measurements at the leaf scale 

[Field et al. 1982]. Cuvettes clamped to leaves can measure net photosynthesis and Rleaf,m 

from darkening the cuvette. Sampling provides information on Rleaf,m variation across space 

(i.e., climate), leaf chemistry, species, and time [Atkin et al. 2015, Heskel et al. 2016].  For 

global simulations, leaf trait data is used to parametrize Rleaf,m models designed to scale from 

the leaf to the canopy for different plant functional types [Bonan et al. 2012, Xu et al. 2017].  

This scaling is performed using submodels that simulate Rleaf,m at the leaf scale with the 

simple empirical functions before being summed to the canopy based on leaf area index 

(LAI) or leaf mass. This scaling process is an ongoing challenge because we largely lack 
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direct measurements of integrated Rleaf,m at canopy scale [but see Wehr et al. 2016]. 

Therefore, it is important to evaluate the sensitivities of canopy scale flux predictions to 

assumptions about the leaf-to-canopy scaling, particularly in ESMs models designed to 

simulate C – climate feedbacks across the globe. 

ESMs are increasingly including ideas of optimality and competition in their representations 

of C cycling. For example, dynamic vegetation models aim to predict how different plant 

strategies, including allocation, traits, and structure of canopies, affect competition among 

plants and ecosystem C dynamics [Fisher et al. 2018, Moorcroft et al. 2001]. These models 

rely on leaf trait data on metabolism (e.g., respiration) and structure (e.g., N concentration) 

[Wright et al. 2004] to inform their parameters. The increased use of optimality concepts in 

ESMs builds on a long-standing impetus to link leaf traits to economic theories of optimal 

canopy or plant-scale states and function [Bloom et al. 1985] and to ecosystem fluxes and 

properties [Reichstein et al. 2014]. Optimization concepts in models provide a framework to 

link environmental conditions and resources to canopy processes and properties in order to 

create more robust canopy models [Fisher et al. 2015]. With optimization as a guide, 

economic models aim to predict the climate sensitivity of canopy processes and canopy 

properties, both critical requirements for ESMs.  Optimal canopy properties are those which 

maximize the export of C after other costs are paid [McMurtrie and Dewar 2011]. The key 

properties are LAI and TCN, which are closely linked to photosynthesis via light absorbing 

area (LAI) and Rubisco concentration (TCN), and to respiration via maintenance of 

metabolic capacity (TCN) and growth respiration associated with production of leaves (LAI). 

Both LAI and TCN arise from the contributing population of leaves and leaf-level traits, 

including N content, leaf mass per area, and leaf lifespan.  Overall, Rleaf,m is a major 

component of the interaction of key canopy processes (photosynthesis, allocation, and 

respiration) that determine the optimal canopy structure (LAI and TCN).  However, the 
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empirical models of Rleaf,m that have been used in the simulation of leaf and canopy 

respiration differ in their complexity (i.e., number of parameters and covariates) and 

empirical form (i.e., linear vs. non-linear) – thus requiring further investigation into how the 

form of Rleaf,m influences predictions of canopy processes and structure. 

Here we tested how three alternate, well-known empirical Rleaf,m models [Atkin et al. 2017b, 

Reich et al. 2008, Ryan 1991], influence canopy respiration and optimal LAI and TCN 

predictions. The three respiration models are seemingly similar because they are all 

constructed from databases of leaf traits and predict Rleaf,m as a function of foliar nitrogen. 

However, they differ in whether the relationship is between foliar N concentration or TCN, 

whether the relationship is linear or non-linear, and whether additional covariates are 

included (i.e., climate).  First, we characterize how predictions of total leaf respiration from 

these three model vary when scaled to the canopy.  Second, we analyze how the three Rleaf,m 

models influence predictions of canopy C budgets and optimal canopy structure, and 

therefore competitive outcomes at the ecosystem scale. We hypothesize that using a more 

complex Rleaf,m model (i.e., more parameters and covariates) will lead to closer agreement 

between predicted optimal canopy properties and field observations of canopies because the 

additional covariates represent more variation in the global leaf trait data used in the 

empirical fitting. To test the hypothesis we analyzed the economics of the canopy carbon 

balance and optimal canopy properties (LAI and TCN) using a single model for 

photosynthesis, allocation, and leaf turnover coupled to the three alternate empirical models 

of Rleaf,m. 

Our analysis focused on three canopy types in two different biomes where direct (destructive) 

measurements of LAI and TCN and associated leaf traits are available.  Two of the canopy 

types are low arctic shrubs – one deciduous, one evergreen – from Alaska. The third canopy 
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type is tropical rainforest comprised of broadleaf evergreen trees in Costa Rica. Thus, we are 

able to evaluate the variation in canopy economics and optimal canopy properties across a 

major climate gradient, and across the leaf economic spectrum related to leaf lifespan 

(deciduous versus evergreen) against robust leaf and canopy data.  

2. Methods 

To assess the consistency of the three different Rleaf,m  models at canopy scale, we constructed 

a simple canopy-scale carbon balance model. This model represents photosynthesis, 

allocation, and respiration (each of the three alternate Rleaf,m can be selected), including their 

relationships with canopy N and environmental conditions. We then use the carbon balance 

model to calculate marginal returns on canopy C and N investment and predict optimal 

canopy properties, varying the Rleaf,m sub-model, to address the questions above. 

2.1 Model Description  

We simulate the net canopy carbon export over annual cycles (Cexp, g C m-2 yr-1) as the 

critical optimization variable for canopy economics [McMurtrie and Dewar 2011]. The 

model takes account of photosynthetic uptake, fixed structural costs, and variable metabolic 

costs (Figure 1): 

𝐶𝑒𝑥𝑝  = 𝐺𝑃𝑃 − 𝑅𝑙𝑒𝑎𝑓,𝑚 − 𝑅𝑙𝑒𝑎𝑓,𝑔 − 𝐴𝐿       Equation 1, 

where GPP is gross photosynthesis, Rleaf,m is canopy maintenance respiration, Rleaf,g is canopy 

growth respiration, and AL is the allocation of primary production to foliage (all g C m-2 yr-1).  

The model runs for one year at the daily time-step using meteorology, LAI, TCN, and 
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parameters described below as inputs.  All analyses focus on the annual sums of the fluxes in 

equation 1.   

2.1.1 GPP model 

We derived estimates of GPP by emulating a multi-layer canopy model, SPA [Williams et al. 

1996]. The Soil-Plant-Atmosphere (SPA) model uses detailed photosynthesis equations 

[Farquhar and von Caemmerer 1982], and tracks radiative transfer and leaf level energy 

balance. The key model drivers are physical (temperature, vapour pressure deficit, and daily 

solar radiation) and biological (LAI) and TCN). For the tropical simulations, the optimum 

temperature for electron transport and RuBP regeneration were set to 30ºC [Williams et al. 

1998].  For the arctic simulation, the optima were set to 20ºC [Williams et al. 2000], because 

of known differences in photosynthetic temperature optima [Kumarathunge et al. 2019]. We 

assumed a well-developed root system and well-watered soil (i.e., total soil-to-atmosphere 

hydraulic resistance was not limiting photosynthesis), so the simulations are valid when soil 

moisture is close to field capacity at some point in the rooting profile. Therefore, we restrict 

our analysis to sites where the assumption of sufficient soil moisture for photosynthesis 

generally applies. Canopies were set up with four canopy layers, each with the same leaf area 

density (25% of LAI in each layer). Total canopy N was distributed with an approximately 

exponential decline from canopy top (40% in top layer, 25% in layer 2, 20% in layer 3, to 

15% in the lowest layer). A ~2-fold change in leaf N per area from well-lit to shaded leaves is 

consistent with the results of a global analysis of within-canopy trait data [Niinemets et al. 

2015].  

Because exploration of optimal allocation of plant resources required numerous simulations 

of GPP at different combinations of LAI and TCN, we calibrated the Aggregated Canopy 
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Model, ACM [Williams et al. 1997] to emulate SPA across a global range of drivers 

following Smallman and Williams [2019]. The equations used in the ACM and the methods 

used to construct the emulator can be found in the Supporting Information. 

2.1.2 Rleaf,m models 

Carbon losses from maintenance respiration (Rleaf,m) have been linked to functions of air 

temperature and foliar N [Atkin et al. 2015, Reich et al. 2008, Ryan 1991], but the exact 

shape, whether a linear or power function, remains uncertain.  To allow for flexibility in the 

relationship between leaf N and maintenance respiration and to allow for the use of 

parameters from global analyses of leaf respiration, we used three different formations of 

Rleaf,m. The first form is from Ryan [Ryan 1991] and has been used in ESMs [i.e., Community 

Land Model versions 4.0 and 4.5; Oleson et al. 2010, Oleson et al. 2013].  It linearly scales 

canopy respiration with TCN using a single slope parameter: 

𝑅𝑙𝑒𝑎𝑓,𝑚(𝑟𝑦𝑎𝑛,20) = 𝑚1 × 𝑇𝐶𝑁   Equation 2 

where m1 is a parameter.  The reference temperature is 20ºC.   

The second form is from a global analysis of leaf respiration provided by Atkin et al. [2015], 

which is used in the Community Land Model version 5.0 (https://escomp.github.io/ctsm-

docs/doc/build/html/users_guide/index.html).  It linearly estimates respiration based on area-

based leaf nitrogen concentrations and temperature using three parameters: 

𝑅𝑙𝑒𝑎𝑓,𝑚(𝑎𝑡𝑘𝑖𝑛,25) = (𝑚2 + 𝑚3𝑁𝑎 − 𝑚4𝑇𝑊𝑄) 𝐿𝐴𝐼         Equation 3 

where m2, m3, and m4 are parameters, Na is the N content per unit leaf area, TWQ is the 

temperature of the warmest three consecutive months of the year, and LAI is the leaf area 

https://escomp.github.io/ctsm-docs/doc/build/html/users_guide/index.html
https://escomp.github.io/ctsm-docs/doc/build/html/users_guide/index.html
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index. The reference temperature is 25ºC. By including a temperature adjustment to the 

respiration at a baseline temperature (the m4 parameter), this model represents the 

acclimation of respiration rates to local climate (TWQ). 

Finally, the third form is from a global analyses of leaf respiration [Reich et al. 2008] that 

uses nitrogen per leaf mass (Nm, g N g leaf biomass-1) as the key leaf trait. It non-linearly 

estimates respiration based on mass-based leaf nitrogen concentrations: 

𝑅𝑙𝑒𝑎𝑓,𝑚(𝑟𝑒𝑖𝑐ℎ,20) = 10𝑚5+𝑚6𝑙𝑜𝑔10(𝑁𝑚)(𝐿𝐴𝐼 ×  𝐿𝑀𝐴 ×  2.0)  Equation 4 

where m5 and m6 are parameters, and the term in the second parentheses converts LAI to 

canopy biomass because the respiration is on a mass basis (hence the carbon to biomass 

conversion of 2.0).  Equation 4 is in log10 form to directly use the parameters from the 

log10-log10 fit reported in Reich et al. [2008]. The reference temperature is 20ºC.    

To scale from the reference temperature to the daily maintenance respiration, we used a Q10 

value of 2 to govern the temperature sensitivity, f(T). All canopy types had the same Q10 

function (the factor by which respiration increases for every 10 ℃ rise in temperature), 

consistent with how temperature sensitivity is often represented in ESMs (i.e., the 

Community Land Model) 

2.1.3 Rleaf,g and AL and models 

C losses from growth respiration (Rleaf,g) were a constant proportion (g) of AL (Rleaf,g= g AL). 

Our estimates of AL assumed a canopy at steady-state, therefore annual AL was equal to the 

annual turnover of C in leaves. For leaf lifespans < 1 year (i.e., deciduous), annual AL and 

turnover were equal to the maximum leaf C associated with the specified LAI and leaf mass 
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per area (LMA). For leaf lifespans > 1 year, annual AL and turnover were defined as the 

maximum leaf C divided by the leaf lifespan. For example, a 300 g C m-2 maximum leaf C 

with a leaf lifespan of three years required 100 g C m-2 of AL to occur in the spring.  

Seasonal phenology was simulated by initiating allocation at a specified leaf-on day of year 

(Table 1) and adding a constant fraction of AL daily over a specified number of days (20 days 

for deciduous, 60 days for evergreen). The seasonal phenology applied to both the arctic 

deciduous and evergreen canopy types, with the evergreen adding foliage to the existing 

canopy during the growing season. Litterfall occurred after a specified day of year (Table 1) 

and was equal to AL, equally spread over a specified number of days (20 days for deciduous, 

120 days for evergreen). Growing season is defined as the difference between the day of year 

for the initiation of leaf growth and day of year for the initiation of leaf drop. Tropical 

evergreen phenology was simulated by setting the leaf C equal to the maximum leaf C 

throughout the year but requiring AL (and litterfall) to be equal to that required to maintain 

the canopy for a given leaf lifespan.  The growing season length was a full year for the 

tropical evergreen canopy.  

2.2 Calculation of Optimal Canopy Properties 

We calculated optimal canopy properties using two different numerical approaches.  First, we 

simulated the annual fluxes for each of the components of equation 1 using a range of LAI 

and TCN values and examined the response surfaces that describe each flux on LAI and TCN 

axes.  Then, using each flux at each LAI – TCN combination, we solve equation 1 to develop 

a response surface describing how 𝐶𝑒𝑥𝑝 varies with LAI and TCN. 

Second, based on economic principles, plants should invest in their canopies to provide 

positive net returns (i.e., income exceeds investment). By calculating the canopy properties 
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that are consistent with such principles, we generated an estimate of optimal canopy structure 

for specific leaf traits and climate. To achieve this, we determined the marginal returns of C 

investment across LAI-TCN phase space by making small adjustments to foliar C (C) at 

each LAI-TCN combination and calculating the impact on Cexp over a full annual cycle (365 

days), in an adjustment to equation 1: 

∂𝐶𝑒𝑥𝑝

∂𝐿𝑒𝑎𝑓𝐶
= (∑

∂GPP 𝑖

∂𝐿𝑒𝑎𝑓𝐶

365
𝑖=1 − ∑

∂𝑅𝑙𝑒𝑎𝑓,𝑚 𝑖

∂𝐿𝑒𝑎𝑓𝐶

365
𝑖=1 ) −

∂𝐿𝑒𝑎𝑓𝐶
𝐿𝐿

∂𝐿𝑒𝑎𝑓𝐶
−

∂𝐿𝑒𝑎𝑓𝐶×𝑔

𝐿𝐿

∂𝐿𝑒𝑎𝑓𝐶
 Equation 5 

Because the additional C (𝜕𝐿𝑒𝑎𝑓𝐶) persists for the leaf-life span, the allocation term (3rd on 

the right-hand side of equation 5) and growth respiration term (4th term on the right-hand side 

of equation 5), were divided by the leaf lifespan (LL) if LL > 1 year.   

We calculated the annual marginal return of C for N investment by adding a small amount of 

N (LeafN) at each LAI-TCN combination to calculate changes in Cexp. The marginal return 

reflects the dependence of GPP on TCN and Rleaf,m on Na. Because the focus is on the export 

of C, the allocation of N was not included in the marginal calculation.  

∂𝐶𝑒𝑥𝑝

∂𝐿𝑒𝑎𝑓𝑁
= (∑

∂GPP𝑖

∂𝐿𝑒𝑎𝑓𝑁

365
𝑖=1 − ∑

∂R𝑙𝑒𝑎𝑓,𝑚 𝑖

∂𝐿𝑒𝑎𝑓𝑁

365
𝑖=1 )   Equation 6 

We numerically solved equations 5 and 6 at range of specified LAI and TCN values to 

generate a response surface of 
∂𝐶𝑒𝑥𝑝

∂𝐿𝑒𝑎𝑓𝐶
 and 

∂𝐶𝑒𝑥𝑝

∂𝐿𝑒𝑎𝑓𝑁
 in LAI – TCN phase space. 

2.3 Site descriptions and observational data 

Canopy types are defined and differentiated by their climate (e.g., temperature, growing 

season length, and solar radiation) and leaf traits of dominant vegetation (e.g., LMA, leaf 
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lifespan). We parameterized and applied the models for three canopy types (two arctic, one 

tropical), each with data on local leaf traits, canopy properties, and climate (Table 1). The 

evergreen tropical canopy type was a moist tropical rainforest recorded at La Selva 

Biological Station in Costa Rica (elevation 37-150 m, 10º20’ N, 83º50’ W) [Clark et al. 

2008]. The two low-stature arctic canopy types were recorded at Toolik Lake [Williams and 

Rastetter 1999] on the north slope of Alaska (elevation 930 m, 68°37’N 149°18’W). These 

three canopies allow comparison between tropic and arctic climates and across the LES fast-

slow gradient (deciduous versus evergreen shrub tundra canopies).  

Each field site had observations of LAI and TCN that we used to simulate canopy fluxes and 

to evaluate model predictions of optimal and optimizing canopy properties across variation in 

climate and leaf traits [Cavaleri et al. 2010, Street et al. 2012]. The observations were direct 

measurements of LAI and TCN for the three canopy types, where all leaves were 

destructively harvested from the top of the canopy to the ground throughout a vertical 

column. The area of all the leaves within each column and their N content were used directly 

to calculate the vertically integrated LAI and TCN, and mean LMA. The complete harvesting 

approach avoids the uncertainties associated with limited sampling at various heights or 

layers in the canopy. Direct harvesting correctly weights the variation of leaf traits through 

the vertical profile. 

For the tropical canopies at La Selva, the average height for the old growth forest was 20 m, 

with some emergent trees from 30-60 m.  The canopy was sampled in columns at 45 

locations, each accessed with a walk-up scaffolding tower. Towers were randomly located in 

mature forest to include variation in the degree of canopy closure [Clark et al. 2008]. The 

area of the column sampled at each tower was 4.56 m2. Leaves from the entire profile were 

collected, sorted into five functional groups, dried and weighed. A functional group sub-
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sample from each 2-m height range was measured for LMA (g m-2) and mass-based foliar 

nitrogen (%N), thus resolving vertical variation in traits. From these data we determined LAI 

or TCN by combining the height profiles of leaf mass with LMA or %N. 

For the arctic canopies at Toolik Lake, we used observations where entire canopies of shrubs 

were harvested by clipping all leaves within the volume over 0.04 m2 quadrats [Van Wijk et 

al. 2005, Williams and Rastetter 1999]. Sampled foliage was divided by species, then dried 

and weighed. A species sub-sample was measured for leaf area to determine LMA, and then 

also for %N. The sampled canopy columns in the arctic survey were characterized as 

deciduous shrubs (Salix spp, Betula nana, Vaccinium uliginosum, n = 32) or evergreen shrubs 

(Ledum palustre, Empetrum nigrum, Vaccinium vitis-idaea, n = 29) by species dominance. 

We determined canopy LAI or TCN by scaling the total sampled dry leaf mass of each 

species with its LMA or %N measurements and summing for all species.  

2.4 Model simulations and analysis 

Our model simulations focused on evaluating the sensitivity of maintenance respiration 

predictions to the underlying respiration-N relationship and on exploring how this 

relationship influences canopy export and optimization of canopy properties. We undertook 

the following simulations for all three canopy types, spanning the LES from slow to fast 

leaves, and from arctic to tropical climates: 

1) We predicted total annual maintenance respiration at the observed LAI-TCN 

combinations for each canopy type to explore the sensitivity of maintenance respiration to 

the three respiration models. 
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2) We modeled the response surface of GPP, Rleaf,m, AL, and Rleaf,g across a full potential 

range of LAI and TCN. A unique response surface was calculated for each of the three 

canopy types and for each maintenance respiration model. These simulations provide 

context for the optimization modeling.  

3) We combined the GPP, Rleaf,m, AL, and Rleaf,g response surfaces to calculate net canopy C 

export (equation 1) for each of the three canopy types and respiration models to locate 

and explain the Cexp maxima in LAI-TCN phase space. By calculating the response 

surface of Cexp to variations in LAI-TCN and Rleaf,m model, the approach identifies TCN-

LAI combinations that are non-viable (e.g., negative Cexp).  

4) We calculated the marginal change in Cexp associated with a small investment in either 

canopy leaf C (𝜕𝐿𝑒𝑎𝑓𝐶) or leaf N (𝜕𝐿𝑒𝑎𝑓𝑁) relative to a given LAI (LAI/LMA) and TCN 

value in the LAI-TCN phase space.  Using the marginal calculations, we determined the 

values of LAI and TCN with positive marginal returns on investment for both C and N 

(i.e., equations 5 and 6 are both positive).  The value of LAI-TCN with positive marginal 

returns is likely a subset of the values of LAI-TCN where Cexp is positive, and defines 

optimal canopy properties.  

Model simulations used daily weather data from meteorological stations at La Selva and 

Toolik Lake (year 2007 data for both sites). The parameters for LMA, leaf lifespan, leaf out, 

and leaf fall day were site- and canopy-specific based on observations at the site or plant trait 

databases (Table 1). Growth respiration was a fixed fraction (g = 0.28) of AL [Waring and 

Schlesinger. 1985]. We used reported values for each of the respiration parameters: m1 = 

0.0106 (Ryan 1991 Figure 1);  m2 = 1.7560, m3 = 0.2061, and m4 = 0.0402 (Atkin et al. 2015 
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Table S4 ESM #2 absolute form); m5 = 0.691 and m6 = 1.639 (Reich et al. 2008; Table 1 All 

Leaves). 

3.0 Results and Discussion 

3.1. Influence of leaf-scale Rleaf,m model on canopy carbon fluxes 

3.1.1 Patterns in canopy respiration across observed LAI and TCN for differing leaf 

respiration models 

The three Rleaf,m models have clear differences in their response surfaces when visualized in 

LAI-TCN phase spaces (Figure 2). The Ryan model (Figure 2 a,d,g) is sensitive only to TCN, 

being entirely determined by total canopy N content and insensitive to its concentration. 

Therefore, the N sensitivity is linear to increasing TCN under all combinations of LAI and 

TCN. The Atkin model (Figure 2 b,e,h) is sensitive to both TCN and LAI, responding 

linearly to changes in both of these properties. The Reich model (Figure 2 c,f,i) is also 

sensitive to both LAI and TCN, but responds non-linearly, with the largest changes in 

respiration per change in TCN occurring at higher levels of TCN.   

Simulations based on in situ observations of LAI, TCN, and meteorological drivers revealed 

major differences in predictions of annual, canopy-scale Rleaf,m (Figure 3). In all cases the 

Ryan model tended to generate lower Rleaf,m estimates, on average 33 - 71  % less than other 

models (depending on canopy type and model). The Ryan model also had the lowest spread 

in Rleaf,m across measured ranges in canopy properties.  In the tropics, Reich and Atkin 

models produced similar peak Rleaf,m estimates, but Reich had the greatest Rleaf,m for those 

canopies with high TCN (Figure 2).  
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These results show how these three models, using different empirical relationships to relate 

leaf N to Rleaf,m, produce contrasting outcomes when applied at canopy scale. Therefore, 

naïve use of the Rleaf,m models in C cycle models can have potentially important implications 

for the vegetation C balance. We describe how this variation has important implications for 

how C cycling is optimized in each biome in Section 3.2 

3.1.2 Predicted components of annual canopy carbon budget across observed LAI and 

TCN 

Rleaf,m is a component of the canopy C balance that also includes photosynthesis (GPP), leaf 

allocation (AL), and growth respiration (Rleaf,g). Photosynthesis is maximized by a balance 

between LAI and TCN; a limitation to either of these leads to strong constraint on GPP 

(Figure 4). The underlying photosynthesis model we used predicts C uptake on the basis of 

light absorption and area for gas exchange, both correlated to LAI; and on the carboxylation 

potential, which is correlated with TCN. These factors have typical non-linear responses that 

interact to create a strong gradient with GPP maximized at high LAI and TCN for each 

canopy type. The degree of saturation of GPP with increasing LAI-TCN (i.e., the increasing 

distance between contour lines in Figure 4) is clearest in the tropical canopy types. Rleaf,g and 

AL have similar response surfaces in LAI-TCN space, being determined only by allocation to 

C, not N (Figure 4). The allocation of C to leaves is similar between the three canopy types, 

despite differences in parameterized leaf lifespan and leaf mass per area (Table 1), due to the 

correlation between the two traits: the short-lived deciduous canopy had lower mass per leaf 

area, resulting in similar allocation, for a given LAI, to the arctic evergreen canopy with more 

mass per leaf area. Rleaf,g is parameterized to be a constant proportion of AL.  As a result, there 

is a simple linear increase in Rleaf,g and AL with increasing LAI that does not depend on TCN.  
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Observed canopy LAI-TCN combinations broadly ascend an optimal ‘ridge’ in LAI-TCN 

space for photosynthesis (Figure 4). The GPP predicted at the observed LAI-TCN for the 

three canopy types generated an order of magnitude variation in predicted photosynthesis 

between tropics and arctic, consistent with a similar span in TCN and LAI. The co-

development of LAI and TCN shown in the data (i.e. maintenance of a similar LAI-TCN 

ratio across canopies) supports the hypothesized development of canopies that maximize 

GPP, as indicated by the optimal ridge in the response surface. 

Across canopy types, climate differences lead to greater GPP in the tropics compared to 

arctic vegetation at the same LAI, while AL and Rleaf,g show no such variation (Figure 4). For 

similar LAI-TCN, GPP is ~3-fold larger in the tropics compared to arctic deciduous canopy 

type under local climate conditions. For similar LAI-TCN, both Rleaf,g and AL in the tropics 

are similar compared to arctic deciduous canopy type. Rleaf,g and AL have costs associated 

only with C investment and have no climate sensitivity. 

The ratio of Rleaf,m:GPP is highly variable across Rleaf,m models and canopy types (Figure 3). 

The Ryan model has consistently lower ratios for each canopy type. The Reich model is 

highest for the tropics and the Atkin model is highest for the two arctic canopy types. In the 

tropical case, the Reich and Atkin estimates are unrealistically large, with ratios close to 1. In 

such cases, canopy export is unlikely to be positive, and hence the canopy carbon cycle is not 

competitive or even viable. In the arctic canopy types, the model ratios are consistently 

lower, but still variable across the models.  

These results show that the climate sensitivity of the Rleaf,m models is much larger than the 

GPP model. The pattern of Rleaf,m:GPP for observed canopy types (Figure 3 right panels) is 

similar in pattern to the Rleaf,m distributions (Figure 3 left panels) and the differences between 
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models and across canopy types are significant in the context of overall C budgets. This 

variation in GPP and Rleaf,m across canopy types and Rleaf,m models will influence optimization 

of the carbon available for export from the canopy (Cexp), which is discussed in section 3.2.   

3.1.3 The balance between canopy photosynthesis and respiration in models and 

observations  

An analysis of canopy scale field-based estimates of photosynthesis and leaf respiration from 

both arctic and tropical canopies suggests a broad consistency in their relative magnitudes. 

Cavaleri et al. [2017] estimated a mean canopy photosynthesis (GPP estimated from the 

MAESTRA model) of 4290 gC m-2 yr-1 for the tropical forest site used here, and using 

chamber measurements of components of ecosystem respiration estimated a mean Rleaf of 

1540 gC m-2 yr-1, with a Rleaf:GPP ratio of 0.36. López-Blanco et al. [2017] studied a mixed 

(deciduous and evergreen) shrub tundra in Greenland, combining flux measurements and 

modeling to estimate a mean canopy photosynthesis of 148 gC m-2 yr-1, a mean Rleaf of 47 gC 

m-2 yr-1, with a Rleaf:GPP ratio of 0.32. Rleaf is the combined growth (Rleaf,g) and maintenance 

respiration (Rleaf,m). 

These values of Rleaf:GPP derived from upscaled field observations of fluxes are inconsistent 

with the estimates from the model outputs of this study (Figure 3). For the tropics, the mean 

ratios derived were 0.84 (Atkin), 0.46 (Ryan) and 1.0 (Reich). For the evergreen shrub 

tundra, the mean ratios were 0.36 (Atkin), 0.15 (Ryan) and 0.22 (Reich). And for the 

deciduous shrub, the mean ratios derived were 0.24 (Atkin), 0.10 (Ryan) and 0.18 (Reich). In 

all these comparisons the modelled ratios are poorly related to the independent data estimates 

(apart from Atkin Rleaf,m for evergreen tundra).   
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3.2. Influence of leaf-scale Rleaf,m model on predictions of optimal canopy structure 

3.2.1 Net canopy export is maximized at specific LAI and TCN 

For all models and canopy types there is a clear optimum for Cexp in LAI-TCN phase space 

(Figure 5).  The Cexp response surface is determined as the net of the GPP, Rleaf,m, Rleaf,g and 

AL response surfaces (Figure 2, Figure 4) by equation 1. The contour plots show Cexp rising 

consistently from the origin to a peak value, as increasing LAI and TCN generate positive net 

returns on investment. At higher values of LAI and TCN, Cexp declines from its peak, as the 

costs of maintaining high LAI and TCN exceed the gains in photosynthesis. Photosynthesis 

has a strong saturating response, particularly at the high values of LAI and TCN found in the 

tropics (Figure 4), whereas the costs from Rleaf,g (Figure 4), and AL do not saturate.  

The optimum Cexp is also directly indicated by the intersection of marginal thresholds for C 

and N allocation (shown by the dashed lines in Figure 5). The intersection indicates the point 

beyond which any further allocation of N and/or C will lead to net reduction in Cexp. This is 

exactly consistent with the contour plotting on the same figures, indicating the robustness of 

the economic calculations independently made here (equation 1 versus equations 5 and 6). 

From the optimum Cexp, we can identify the optimum LAI and TCN that maximize Cexp. For 

canopy properties below these optima, the marginal thresholds define those combinations of 

LAI and TCN that are remunerative, i.e., a lens-shaped region where additions of either N or 

C lead to net gains in Cexp. This region is determined by the positive zone of marginal 

responses for C (to the left of the red dotted line) and N (below the blue dashed line). 

While there is a single optimal pairing of LAI and TCN that maximizes C export, there are 

multiple viable leaf trait pathways towards this optimum within the marginal thresholds. 

Previous explorations of optimization in Dewar [1996], Franklin and Ågren [2002], and 
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McMurtrie and Dewar [2011] are all broadly consistent with our mapping. Both linear and 

non-linear trajectories in how TCN optimally responds to variations in LAI (and vice versa) 

are viable. Canopies can develop with mean leaf traits changing as canopies close (increasing 

LAI); this situation matches the proposed N addition threshold to the optimizing domain 

(blue line). In these non-N limiting situations, our optimization shows that canopies can 

develop initially with investment preferentially into TCN over LAI, using the C returns to 

ultimately invest in LAI and achieve optimality. Canopies can also develop as Franklin and 

Ågren (2011) suggest, with a consistent LAI-TCN, so that mean leaf traits do not vary with 

canopy closure; this situation affords the strongest marginal returns overall, by increasing net 

C export at or close to the steepest possible gradient. Our analysis further shows how strongly 

N-limited canopies could optimize by investing initially in LAI, following the lower, C 

addition threshold of the optimizing domain (red dotted line). 

3.2.2 Optimal canopies for net carbon export 

There is little consistency in the optimal canopy properties generated by the three Rleaf,m 

models for each canopy type (Figure 5). Differences in Rleaf,m models influence predictions of 

optimal canopy structure and therefore competitive outcomes at ecosystem scale. The Atkin 

optimum tropical canopy has LAI = 2.5, TCN = 10.1. The Reich optimum canopy has LAI = 

12.8, TCN = 6.7. For comparison, in the tropics the Ryan model has an optimum canopy LAI 

= 5.1, TCN = 9.1. For arctic evergreen canopies, Ryan and Atkin models produce similar 

optimal canopy properties, LAI = 2.2 - 2.9, TCN = 14.1 - 16.2, suggesting high leaf N 

concentration (TCN/LAI). The Reich model has an optimum with LAI = 3.7, TCN = 8.2, and 

thus much lower leaf N concentration.  For arctic deciduous canopies the pattern is similar to 

the evergreen analysis. Atkin and Ryan models predict similar optima, with lower LAI and 

higher TCN than the Reich model. The variation in leaf traits between fast (deciduous) and 
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slow (evergreen) has little impact on the economics of the canopies at the arctic site. The high 

LMA, long lived (high LL) traits for the evergreen canopy trade-off similarly with the low 

LMA, low LL leaf traits of the deciduous shrubs. There is no obvious interaction of leaf traits 

like LL and LMA with the Rleaf,m models (Figure 2).  

The economic modeling identifies combinations of canopy properties that have negative net 

export (Figure 5) Thus, we can isolate economically non-viable canopies in phase space. The 

Ryan model is associated with the broadest range of viable canopies, with the Cexp > 0 

threshold extending across most of the phase space explored for all canopy types (i.e., 

positive contour lines are throughout LAI-TCN space in Figure 5). The reasons for the 

different behaviour in Cexp among Rleaf,m models can be directly traced to the response 

surfaces of the Rleaf,m models (Figure 2) and their relationships to C gain, GPP (Figure 4). The 

Ryan model tends to have the lowest ratios of Rleaf,m:GPP (Figure 3) which means the C 

remaining for export is greater than the other Rleaf,m models. Hence using Ryan Rleaf,m leads to 

a much large viable set of LAI-TCN combinations in the economic calculations. Atkin and 

Reich have similar Rleaf,m:GPP ratios, but very different viable canopy properties due to the 

differences in how LAI and TCN interact to determine Rleaf,m. The strongly non-linear 

response of the Reich Rleaf,m model to increasing TCN means that low TCN canopies are 

more viable. The steeper response of GPP to TCN variation in the tropics (Figure 4) linked to 

the Rleaf,m response of the Atkin model to mean high TCN, low LAI canopies are more viable. 

In the tropics, the viable canopy phase space is much smaller for Atkin and Reich models, but 

the viable spaces mapped by these two models are nearly completely distinct. The Atkin 

Rleaf,m model suggests that economically viable tropical canopies will tend to high TCN and 

lower LAI. The Reich Rleaf,m model suggests the opposite pattern, with competitive (i.e., high 

Cexp) tropical canopies tending to higher LAI and lower TCN. The trends are similar, but less 
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extreme for arctic canopies. The Atkin Rleaf,m model leads to broader viable coverage of LAI-

TCN phase space than in the tropics, but still tends towards higher TCN canopies being more 

viable. Reich Rleaf,m has a more symmetrical pattern of viable canopies, with no clear 

tendency towards LAI or TCN dominating viability. Again, the arctic canopies do not show 

differences in economies depending on leaf lifespan, showing little sensitivity to coupled 

variation in LMA and LL. 

3.2.3 Net canopy export of observed vs. predicted optimal 

In many cases, in-situ observations of canopy properties do not match the theorized optimum 

canopy properties, or the economically viable areas within Cexp canopy phase space (Figure 

5). We make the comparison between data and theory in two ways, to test our hypothesis that 

a more complex Rleaf,m model should produce more consistent matches of optimal canopy 

properties to observations. First, we evaluate whether the data points sit within the 

economically viable space identified by the marginal threshold curves. Second, we test 

whether the slope of the observed relationship between TCN and LAI data bisects the 

theoretical viable space and intersects the optimal canopy properties. 

For the tropical case each Rleaf,m model produces a very different evaluation. The Ryan model 

outputs match the slope of the observed TCN-LAI well. But the predictions of optimum LAI 

and TCN using the Ryan model are about half the observed maximum observed LAI and are 

less than the mean LAI-TCN (Figure 5). Furthermore, many of the in-situ data exceed the 

predicted canopy optima. For predictions using the Atkin model the mismatch between the 

model and the data is clear. Nearly all the in-situ data are outside the economically viable 

region of phase space; the predicted optimum is much lower than observed maxima for LAI 

and TCN, and the observed slope LAI-TCN is much shallower than that predicted. For 
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predictions using the Reich model, the mismatch is also very clear, with the slope of observed 

LAI-TCN relationship steeper than expected, although the maximum value of LAI predicted 

is similar to the observed maximum. 

For the arctic evergreen canopies, the range of observed LAI and TCN is low (LAI <<2). 

This means that most of the data sit within the economically viable envelopes of the 

economic modeling (Figure 5). However, for Ryan and Atkin there is a large mismatch 

between predicted optimum canopy properties and the slope of LAI-TCN from observations. 

The modeling suggests the canopy should prioritize investment into N rather than LAI, 

whereas the data suggest a more balanced allocation. For Reich Rleaf,m, the slope of the LAI-

TCN data is much closer to bisecting the economically viable space from theory. If canopies 

were to develop along the slope they would be following an economically viable trajectory.   

For arctic deciduous canopies there is a broader range of in-situ observations to support the 

analysis of model consistency (0 < LAI < 5). While the patterns among Rleaf,m models are 

similar to those from the arctic evergreen comparison, there are clearer indications that Ryan 

and Atkin Rleaf,m models estimate a TCN optima that is inconsistent with observations. In both 

cases the models suggest very high TCN is optimal, whereas the data support a more 

conservative relationship for TCN-LAI. For the Reich Rleaf,m model, there is closer 

agreement. The optimum canopy TCN:LAI from the model is a close, though not exact match 

to the data, and the range of LAI and TCN predicted to be economically viable is broadly 

consistent with the range of observations. 

The analysis of the processes driving net carbon export suggests that the modeling of 

temperature sensitivity of the component processes drives the differences in Cexp across phase 

space. We see that the low temperature arctic ecosystems have reduced maintenance 
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respiration costs (Figure 2) relative to the fixed costs of growth respiration and allocation to 

leaf biomass (Figure 4). This temperature adjustment explains the tendency for optimization 

to favour higher TCN:LAI ratios (Figure 5) in arctic canopy types compared to the tropical 

rain forest.  

From this visual analysis, we learn that none of the Rleaf,m models produced upscaled 

estimates of respiration that were economically consistent across all the canopy types we 

investigated, and we reject our hypothesis on model complexity. The models have 

identifiable strengths and weaknesses. The Ryan model (one parameter) has the least biased 

estimate of canopy properties for the tropical canopy – it balances the LAI and TCN costs 

best, although its optimum is lower than the site mean LAI-TCN. The Reich Rleaf,m model 

(two parameters) produced outputs most consistent with data for both arctic canopies. The 

observed maxima and predicted optima were similar. The Atkin model (three parameters) 

was weakest overall, with a strong tendency for predicting higher TCN relative to LAI than 

was ever observed in the data.  

3.2.4 How do we cope with variance in data when evaluating optimization? 

It is possible to calibrate the parameters each of the Rleaf,m models to match the in situ data 

better (results not shown). However, the calibration process is under-determined because we 

cannot isolate the optimum canopy properties from measurements. Indeed, we do not know 

the correct sampling scale for understanding economic optimization. For example, should the 

optimum in the tropics be optimized to the maximum observed LAI value (13) or the mean 

across the samples (6)?  The large difference between the mean and maximum observed 

value could be due to variation in limitations to growth (e.g. competition for light capture or 

nutrient limitation) that should be captured in the model.  However, it could also be an 
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artifact of the spatial scale of sampling, particularly its relation to the size of the organisms 

and the underlying disturbance regime [Hurtt et al. 2016]. Overall, work is needed to identify 

the correct scale of comparison for model and data and to identify the appropriate spatial 

scale for accessing the maximum LAI of a canopy within a site.   

The basis of our optimization is that a specific arrangement of leaves (represented at canopy 

scale by LAI-TCN) will maximize canopy C economics. However, the optimization is 

dependent on exogeneous factors, such as climate, soil moisture and nutrient availability. Our 

scheme calculates how optimization of Cexp varies with mean climate, but we have not 

explored the effect of inter-annual variation in climate on optimization, nor long term climate 

change effects. We have not explored soil moisture effects; we could implement adjustments 

to the GPP model to include soil moisture controls on stomatal closure and photosynthesis. 

Nor have we evaluated soil nutrient effects, as doing so requires a link to root development 

and activity and would generate more complex economic feedbacks around allocation above 

and below ground. Likewise, we have not include leaf aging effects in our optimization, for 

simplicity [Xu et al. 2017]. 

We suggest that the limitation of observed arctic canopy properties to values below the 

optima suggested by the model is likely linked to nutrient limitations (i.e., restrictions to 

TCN). This conclusion is consistent with experimental fertilization studies that have shown 

that LAI and production for shrubs at Toolik Lake can more than double under N addition 

[Shaver et al. 2001]. However, our results are tentative, because the calculated optimal LAI-

TCN is so sensitive to the choice of Rleaf,m model and its parameterization. We urgently 

require process resolving models of leaf metabolism to advance our understanding of C 

economy of canopies. 
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3.3 Implications for Earth System Models 

Our analysis clearly maps out the risks in using leaf-trait-based models of plant processes, 

like Rleaf,m, within ecosystem carbon cycle models. Such models are core components of 

ESMs, and drive their biogeochemical cycling. The leaf trait data represent a major 

community effort and their analysis provides important insights into links between leaf 

structure and process. However, upscaling to the canopy scale for implementation within 

ecosystem models in demonstrably challenging. The leaf trait databases have large variations 

that are summarized through statistical regression to generate empirical models for 

hypothesis testing, e.g., to examine climate sensitivity or covariation with other leaf traits.  

However, we show that directly using an empirical form from leaf trait analysis may 

potentially generate problems in ESMs. The implications of using the empirical forms in 

ESMs, particularly those that include the optimization of canopy N, should be more closely 

examined.  Transitions between empirical models that use similar covariates, similar to the 

transition between the Ryan and Atkin models that occurred between the Community Land 

Model 4.5 and 5.0, could have unintended consequences on the canopy C balance. 

Our economic modeling provides a robust a priori framework for evaluating trait-functional 

parameterizations, and hence can transparently link plant trait datasets to ESM calibration 

and evaluation. We suggest that ecosystem and Earth system models should be evaluated 

using the response surfaces of annual photosynthesis, maintenance respiration, and leaf 

allocation in LAI-TCN space. This approach will guide understanding of the implicit trade-

offs in the model and compare the domains of inferred optimizing canopies to the LAI-TCN 

relationships presented here. This need is particularly important for models that include 

competitive outcomes or allow internal trait adjustment.  
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4. Conclusions 

Leaf trait data are routinely used to fit various proposed models of leaf respiration for use as 

components in Earth system models. We found that the form of the Rleaf,m model leads to 

markedly different predictions when scaled to the canopy. Thus, Rleaf,m model structure plays 

a more significant role than do databases of leaf trait measurements in determination of 

canopy C balance, and C sequestration in ESMs. Leaf traits, e.g., foliar N content, influence 

both C uptake (photosynthesis) and loss (Rleaf,m), and these trait-process connections are 

represented in ESMs. ESMs also link and upscale leaf traits and processes to canopy 

properties, such as LAI and TCN, thereby coupling C and N cycles. Choice of Rleaf,m model 

influences process-property interactions, particularly affecting the optimal (maximizing C 

export) properties of a canopy. Examination of how C processing (photosynthesis, Rleaf,m) 

varies across LAI and total canopy N phase space provides insight into process interactions 

within models. This mapping also shows how optimization in LAI and TCN would proceed 

to maximize C export. Differences in Rleaf,m model structure and parameterization strongly 

influence predictions of optimal canopy structure and therefore competitive outcomes at 

ecosystem scale. Our results raise questions about how trait-based models and 

parameterizations are selected for inclusion in ESMs, and for how optimization is included in 

ESMs. Comparison against observed patterns in LAI and total canopy N presented here are a 

starting point for ESM diagnosis, and for evaluating optimization schemes. 
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Table 1 Climatic conditions and leaf traits for the three canopy types in two different biomes 

used to evaluate the canopy optimization model. Note C units for LMA. Leaf area index (LAI) 

mean and range from in-situ data are shown. 

 

Canopy Type  Temp 

(°C) 

Radiation 

(MJ day-1) 

Season 

(days) 

LMA     

(g C m-2) 

Leaf lifespan 

(days) 

Leaf 

growth 

start 

(day of 

year*) 

First day 

of leaf 

drop (day 

of year*) 

Mean LAI    

(range) 

Arctic deciduous 10.2 16.3 90 41 90  160 260 1.32 (0.10 – 4.16) 

Arctic evergreen 10.2 16.3 90 85 800 160 260 0.50 (0.07 – 1.04) 

Tropical 

evergreen 

26.5 14.8 365 44 440 N/A N/A 6.03  (1.2 – 12.94) 

* January 1st is the first day-of-year. 
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Figure 1 . The canopy carbon balance equation and its inputs, shown here, defines the canopy 

carbon economy. The equation determines how the mass of carbon exported from the canopy 

(Cexp) is derived from canopy properties (underlined), climate, and leaf traits (bold). Gross 

primary production (GPP), maintenance and growth respiration (Rleaf,m, Rleaf,g) and the C cost 

of investment (leaf allocation, AL) are the canopy processes that govern how the canopy 

properties, climate, and leaf traits alter canopy carbon export. Leaf traits include leaf mass per 

area (LMA), leaf lifespan, and parameters (Rleaf,m model specific) that control the response of 

maintenance respiration to canopy properties.  NUE, Q10, and g are parameters that govern the 

response of photosynthesis to canopy N, the response of Rleaf,m to temperature, and the 

proportion of AL used for growth respiration, respectively. 
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Figure 2. Variation in annual maintenance respiration (Rleaf, m) across LAI - TCN phase space 

for three different canopy types (rows show tropical evergreen, arctic evergreen, arctic 

deciduous canopies) as estimated using three different Rleaf, m models: column 1 is from 

equation 2, column 2 is from equation 3, and column 3 is from equation 4 in the text.   Contours 

are annual sum of Rleaf, m for the canopy in units of g C m-2 yr-1. Symbols show the LAI and 

TCN combinations from the three field sites;  the values of the contours at these points indicate 

the expected range of Rleaf, m for each respiration model at these LAI and TCN values. 
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Figure 3.  The density distribution of canopy maintenance respiration (Rleaf,m)(panels a, c, e) 

and the ratio of Rleaf,m to gross photosynthesis (GPP) (panels b, d, f) as estimated using the three 

different Rleaf,m models, for three different canopy types (one for each panel), using observed 

data on LAI and TCN as inputs. The distribution of the observed LAI - TCN is shown as dots 

in Figure 2. 

  



 

©2019 American Geophysical Union. All rights reserved. 

 

 

Figure 4. Variation in annual gross photosynthesis (GPP), leaf allocation (AL) and growth 

respiration (Rleaf, g) across canopy phase space for three different canopy types (rows show 

tropical evergreen, arctic evergreen, arctic deciduous examples) as estimated by specific 

models for each process (columns). Contours are the annual sum of GPP, AL, and Rleaf, g in 

units of g C m-2 yr-1. Symbols show the LAI and TCN combinations for observed canopies at 

the two field sites in the Arctic and one in the tropics; the values of the contours at these points 

indicate the expected annual rate for each process at realistic combinations of LAI and TCN. 
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Figure 5. Variation in annual net canopy C export (Cexp) across canopy phase space for three 

different canopy types (rows show tropical evergreen, arctic evergreen, arctic deciduous 

examples) as estimated using equation 1 with three different Rleaf, m models.  The calculation 

of Cexp used the values for GPP, AL, and Rleaf, g from Figure 4 and Rleaf, m from Figure 2 at the 

range of LAI-TCN combinations in the figures. Contours are Cexp in units of g C m-2 yr-1. 

Symbols show the observed LAI and TCN collected at the three field sites; the values of the 

contours at these points indicate the expected range of Cexp at realistic LAI-TCN combinations 

using the three different respiration models. The red dotted and blue dashed lines are the 

marginal threshold curves of carbon export determined via analytical calculations delimiting 

positive marginal returns on investment into N (blue dashed) and carbon (red dotted, carbon is 

related to LAI). The marginal threshold curves define the areas of phase space which will result 

in positive or negative returns on investment. Only in the area that is both below the blue dashed 

curves and above the red dashed curve will there be positive returns on both N and C 

investment. The optimal canopy, which maximize C export, is indicated by the non-zero point 

where the two curves intersect. The black line shows the regression through the LAI-TCN data. 


