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Abstract. Classical Navier-Stokes equations fail to describe some flows in both the

compressible and incompressible configurations. In this article, we propose a new

methodology based on transforming the fluid mass velocity vector field to obtain a

new class of continuum models. We uncover a class of continuum models which we call

the re-casted Navier-Stokes. They naturally exhibit the physics of previously proposed

models by different authors to substitute the original Navier-Stokes equations. The

new models unlike the conventional Navier-Stokes appear as more complete forms of

mass diffusion type continuum flow equations. They also form systematically a class

of thermo-mechanically consistent hydrodynamic equations via the original equations.

The plane wave analysis is performed to check their linear stability under small

perturbations, which confirms that all re-casted models are spatially and temporally

stable like their classical counterpart. We then use the Rayleigh-Brillouin scattering

experiments to demonstrate that the re-casted equations may be better suited for

explaining some of the experimental data where original Navier-Stokes equations fail.
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1. Introduction

Fluid mechanics is one of the oldest field of science and still widely researched due

to its broad spread of applications in many industries [1]. The development of basic

fundamental dynamic laws such as Newton’s law of motion and Newton’s law of viscosity

culminated in the current form of the Navier-Stokes equations; these equations are

still widely accepted as the universal basis of modelling fluid motion [2, 3]. They are

frequently solved by using numerical computational methods. The classical Navier-

Stokes equations are known to be inadequate in describing some compressible flows

accurately [1, 4, 5, 6]. The failure may be tied up to the basic assumptions made while

deriving them [7]. Improving the range of applicability of the Navier-Stokes equations

beyond their limits has been and still is a critical area of research.

In the last decade, the classical Navier-Stokes equations have received a number

of modifications/extensions based on the diffusion transport of mass [8, 9, 10, 11, 12,

1, 13, 14]. In particular, Brenner [8, 9] first proposed a set of modifications to the

equations based on the physical arguments of thermophoretic motion in gases. In the

end, he made a revision to the Newton’s law of viscosity and the Fourier’s law of heat

conduction for compressible fluids. He argued that the velocities presented in the mass

and momentum balance equations differ by a mass-diffusion flux term which he later

adopted in his bi-velocity hydrodynamic theory [10]. Brenner’s bi-velocity theory has

received a fair amount of attention from the fluid mechanics research community due to

its controversial nature that the classical Navier-Stokes equations could be incomplete or

incorrect. Extended Navier-Stokes equations of Brenner type are criticized and rebutted

in Öttinger et al [15] for not satisfying some combined mechanical properties. Following

this, Dadzie [16] derived a new set of continuum equations based on a Boltzmann-like

kinetic equation that satisfies all thermo-mechanical properties. However, unlike the

three classical conservation laws, Dadzie’s model contains four set of transport equations,

where the additional is a non-conservative equation for the volume transport.

Öttinger [11] also proposed earlier a substitute for the classical Navier-Stokes in

his phenomenological GENERIC formalism. In the GENERIC formulation, Öttinger

[11] demonstrated that by assuming the row and the column, which are associated with

the mass density in the friction matrix to be identically zero, leads to the conventional

Navier-Stokes equations. A more general form of friction matrix that includes the basic

fact that particles operate diffusive motions, leads to a revised set of transport equations

that contain two velocities, which are very similar in nature to the volume and mass

velocities. Durst et al . [12] based their arguments on that the absence of mass diffusion

terms in the continuity equation contradicts constitutive relations for momentum and

heat diffusion: when the fluid properties changes spatially in the presence of momentum

and heat diffusions, there should also be present the mass diffusion. They later derived

the Extended Navier-Stokes equations [12, 13, 17] based on the mass-diffusion controlled

formalism. A late suggestion to substitute the Navier-Stokes is given by Svärd [18].

Generally, there are a number of experimental data that standard Navier-Stokes
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fail to predict. Shock wave structure predictions are a ubiquitous example of Navier-

Stokes failure [4, 6, 19, 20]. Experimental data of water flows in carbon nanotubes

or confined pores is another research topic showing large deviations from the classical

Hagen-Poiseuille equation [21, 22]. A convincing theoretical interpretation of this data

is still lacking. Leaving aside non-linear configurations, conventional Navier-Stokes

equations also fail to describe some of the linear flow problems accurately. For example,

it is unsuccessful in describing the actual spectrum shapes in the Rayleigh-Brillouin

scattering problem [23, 24, 25, 26, 27, 28].

In the current work, we provide new insights into the question of finding alternatives

to the Navier-Stokes equations. Starting with the basic conventional Navier-Stokes

equations, we introduce a re-casting methodology. It involves transforming the

fluid velocity field variable within the basic standard fluid flow equations with an

appropriately selected change of variable. Two linear problems are then considered to

test our new derivations: sound wave dispersion in a monatomic gas and the Rayleigh-

Brillouin light scattering experiments. A better prediction of the experiments by the

transformed equations (i.e., the models where the velocity vector field has an implicit

diffusive component embedded) are observed. While the better prediction may not

be trivial on the sound dispersion it is evident on the spontaneous Rayleigh-Brillouin

scattering experiments. In a follow-up paper we show that the transformed equations

perform better also on the description of shock wave profiles in monatomic gases (a

nonlinear problem). These theoretical observations corroborate earlier observations of

the difference between a dye- or photochromic experiments (measuring a fluid’s mass

velocity) and a tracer velocity [29].

The paper is organized as follows: in §2 we derive three different new continuum

models using, initially, three different change of variables. In the following section §3,
linear stability analysis is performed for the new models. Then all re-casted models

are applied to study the Rayleigh-Brillouin scattering problem and compared with the

classical predictions and the experiments in §4. Finally, conclusions are drawn at the

end.

2. Theory

Our new theory starts with the standard Navier-Stokes equations. That is the three

standard conservation equations, closed using Newton’s and Fourier’s Laws representing

the shear stress and the heat flux.

2.1. Classical Navier-Stokes Equations

The standard hydrodynamic equations are a differential form of three classical

conservation laws. Namely, mass, momentum and energy conservation laws that govern

the motion of a fluid. The classical Navier-Stokes equations in an Eulerian reference

frame are given as [16, 19]:
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mass balance/continuity equation

∂ρ

∂t
+ ∇ · [ρU ] = 0, (1)

momentum balance equation

∂ρU

∂t
+ ∇ · [ρU ⊗ U ] + ∇ ·

[
p I + Π(NS)

]
= 0, (2)

energy balance equation

∂

∂t

[
1

2
ρU2 + ρ ein

]
+ ∇ ·

[
1

2
ρU2 U + ρ ein U

]

+ ∇ ·
[
(pIII + Π(NS)) · U

]
+ ∇ · q(NS) = 0, (3)

where ρ is the mass-density of the fluid, U is the flow mass velocity, p is the hydrostatic

pressure and ein is the specific internal energy of the fluid. Further, Π(NS) and q(NS)

represent the shear stress tensor and the heat flux vector, respectively, and I is the

identity matrix. All these hydrodynamic fields are functions of time t and spatial variable

X. Here ∇ and ∇· denotes the usual spatial gradient operator and the divergence

operator, respectively, and U ⊗ U represents the tensor product of two velocity vectors

defined as in (A.2). The expression for the specific internal energy ein is given by

ein =
p

ρ(γ − 1)
, (4)

where γ is the specific heat capacity ratio. The constitutive models for the shear stress

Π(NS) and the heat flux vector q(NS) are:

Π(NS) = −2µ

[
1

2
(∇U + ∇̃U) − 1

3
I (∇ · U)

]
= −2µ ∇̊U, (5)

q(NS) = −κ∇T, (6)

where ∇U is the spatial gradient of U and ∇̃U is the transpose of ∇U . Coefficients

µ and κ are the dynamic viscosity and the heat conductivity, respectively. The shear

stress can be expressed in terms of the symmetric part of the velocity gradient and the

divergence of the velocity field as

Π(NS) = −2µ

[
D (U) − 1

3
(∇ · U) I

]
= − 2µD (U) − λ (∇ · U) I, (7)

where λ = −2
3
µ is the bulk-viscosity co-efficient.

The system (1) - (6) is the well-known conventional fluid flow model for a viscous

and heat conducting fluid. In the limit of vanishing viscous and heat conducting terms,

these equations reduced to the well-known Euler equations, which are used to model

inviscid and non-diffusive flows. It is trivial to observe in this system that continuity

equation (1) does not contain a diffusion term, whereas the momentum and energy

equations do. Hence, the classical Navier-Stokes equations form an incomplete parabolic

system [30]. In other words, they are prohibited from being fully parabolic due to the

absence of diffusion term in the mass balance equation. In the meantime, this system

can be shown to satisfy all required mechanical properties and also associates with a
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second law / entropy equation [15, 31]. It is also important to note that in constitutive

equation (5), no complex contributions from effects such as fluid dilation, temperature

gradient, fluid vorticity, etc. to the shear stress are described. It is this basic form

of the classical fluid flow equations that are traditionally shown to satisfy all known

thermo-mechanical properties [31].

2.2. Re-casted Navier-Stokes equations - I (RNS - I): U → Uv − κm∇ ln ρ

In this subsection we derive the first new set of hydrodynamic equations, by transforming

the velocity field U into a newly defined velocity field Uv. We assume that the flow mean

mass velocity field U can be written in terms of the new velocity field called the mean

volume velocity Uv [8, 9, 32, 33, 34] as

U = Uv − κm∇ ln ρ = Uv − κm
ρ
∇ρ, (8)

where κm is the molecular diffusivity co-efficient. For simplicity, κm is assumed to be a

constant.

2.2.1. Re-casted continuity equation: It is straightforward to see that the classical

continuity equation (1) transforms into a convection-diffusion type equation when the

fluid mass velocity U is replaced by the fluid volume velocity Uv by using relation given

by (8):

∂ρ

∂t
+ ∇ · [ρUv − κm ∇ρ] = 0. (9)

Assuming κm to be a constant, the re-casted mass balance equation have the following

form:

∂ρ

∂t
+ ∇ · [ρUv] = κm∆ρ, (10)

where ∆ denotes the Laplacian operator.

2.2.2. Re-casted momentum balance equation: We recast the full classical momentum

balance equation (2) by directly substituting (8) into it. The full derivation is given in

Appendix B. The final obtained expression of the momentum balance equation is given

by:

∂

∂t
[ρUv − κm∇ρ] + ∇ ·

[
ρUv ⊗ Uv + p I + Πv +

κ2m
ρ
∇ρ⊗∇ρ− κmUv ⊗∇ρ

−κm∇ρ⊗ Uv

]
= 0. (11)

The above re-casted momentum balance equation can be written with the help of the

re-casted continuity equation (10) as:

∂ρUv

∂t
+ ∇ ·

[
ρUv ⊗ Uv + p I + Πv +

κ2m
ρ

∇ρ⊗∇ρ− κm Uv ⊗∇ρ − κm∇ρ⊗ Uv

]

−κ2m∇∆ρ + κm ∇ (∇ · (ρUv)) = 0. (12)
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From (11), one can extract a new stress tensor Π(RNS)
v as:

Π(RNS)
v = Πv +

κ2m
ρ
∇ρ⊗∇ρ − κm Uv ⊗∇ρ − κm ∇ρ⊗ Uv, (13)

where Πv denotes the transformed stress tensor from the classical stress tensor Π(NS)

and is given by

Π(NS) → Πv = −2µ∇̊Uv + 2µ κm D̃ ln ρ − 2µ

3
κm ∆ ln ρ I, (14)

where D̃ denotes the Hessian operator and its definition is given in (A.1). Hence, another

simplified form of the re-casted momentum balance may be given from equation (12)

as:

∂ρUv

∂t
+ ∇ · [ρUv ⊗ Uv] + ∇ ·

[
p I + Π(RNS)

v

]
+ κm∇ [∇ · (ρUv)]

−κ2m∇∆ρ = 0. (15)

Using the identities listed in Appendix A and later rearranging the terms in (13), the

expression for the new stress tensor Π(RNS)
v becomes:

Π(RNS)
v =

(
2

3

κm µ

ρ2
|∇ρ|2 − 2

3

κmµ

ρ
∆ρ

)
I − 2

κm µ

ρ2
∇ρ⊗∇ρ − 2µD (Uv)

+
2µ

3
(∇ · Uv) I +

κ2m
ρ
∇ρ⊗∇ρ+ 2

κm µ

ρ
D̃ρ− κmUv ⊗∇ρ− κm∇ρ⊗ Uv. (16)

In order to compare the transformed stress tensor with the Korteweg stress tensor, it

is convenient to write the re-casted momentum balance equation (12) in the following

form:

∂ρUv

∂t
+∇ · [ρUv ⊗ Uv] = ∇ ·T(RNS) + κ2m∇∆ρ− κm∇ (∇ · (ρUv)) , (17)

where T(RNS) is negative of the full pressure tensor and is given by:

T(RNS) =

(
−p− 2

3

κm µ

ρ2
|∇ρ|2 + 2

3

κm µ

ρ
∆ρ

)
I + 2

κm µ

ρ2
∇ρ⊗∇ρ+ 2µD (Uv)

−2µ

3
(∇ · Uv) I − κ2m

ρ
∇ρ⊗∇ρ− 2

κm µ

ρ
D̃ρ+ κm Uv ⊗∇ρ+ κm ∇ρ⊗ Uv.(18)

The new stress tensor T(RNS) can be compared with the Korteweg stress tensor, T,

proposed by Korteweg in 1901 [35]. The Korteweg stress is dependant on the gradient

of density in addition to the classical stress tensor, which is in turn dependent on the

gradient of the velocity field alone, and is given by (see, equation (1.1) of [36]):

T =
(
−p + α0 |∇ρ|2 + α1∆ρ

)
I + β (∇ρ⊗∇ρ) + 2µD(v) + λ(∇ · v)I. (19)

Here, p denotes the thermodynamic pressure, D(v) is the symmetric part of the velocity

gradient and α0, α1, β, µ and λ are material moduli that may depend on ρ as well [36].

It is note worthy to point out here that all terms involved in the Korteweg tensor T

are found in T(RNS) which is obtained by just re-casting the classical Navier-Stokes

momentum balance equation in terms of the fluid volume velocity Uv.
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For completeness, we also present the re-casted momentum balance equation in its

non-conservative form (see Appendix C for the detailed derivation) and it is given by:

ρ
∂Uv

∂t
+ ρ (Uv · ∇)Uv + ∇ ·

[
p I + Πv + κ2m

(
∇ρ⊗ ∇ρ

ρ

)]

− κm

[(
∇Uv − ∇̃Uv

)
· ∇ρ− ρ∇ (∇ · Uv)

]
− κ2m∇∆ρ = 0. (20)

2.2.3. Re-casted energy balance equation: The classical energy balance equation (3) can

be re-casted in terms of the fluid volume velocity. The detailed derivation is presented

in Appendix D. The final form of the re-casted energy balance equation is

∂

∂t

[
1

2
ρU2

v + ρ ein

]
+∇ ·

[
1

2
ρU2

v Uv + ρ ein Uv

]
+∇ ·

[
(p I +Πv) · Uv − κmΠv · ∇ ln ρ

]

+∇ ·
[
q(NS) − κm

(
ρ ein ∇ ln ρ+ p I · ∇ ln ρ

)]
+∇ ·

[
κmNv1 + κ2m Nv2 + κ3mNv3

]

+ κmNv4 + κ2m Nv5 + κ3mNv6 = 0, (21)

where

Nv1 = − (Uv · ∇ρ)Uv − 1

2
U2
v ∇ρ, (22)

Nv2 = (Uv · ∇ρ)∇ ln ρ +
1

2 ρ
|∇ρ|2 Uv, (23)

Nv3 = − 1

2 ρ
|∇ρ|2∇ ln ρ, (24)

Nv4 = ∇ ·
[
ρUv ⊗ Uv + p I + Π(RNS)

v

]
· ∇ ln ρ

− Uv ·
[
∇ ln ρ∇ · (ρUv)−∇ (∇ · (ρUv))

]
, (25)

Nv5 = ∆ρ (Uv · ∇ ln ρ) − (Uv · ∇∆ρ) +
1

2

|∇ρ|2
ρ2

∇ · (ρUv) , (26)

Nv6 = − 1

2 ρ2
|∇ρ|2∆ρ. (27)

From the above energy balance equation, it is customary to observe that an expression

for the new heat flux is given by:

q(RNS)
v = q(NS) − κm ρ ein∇ ln ρ − κm p I · ∇ ln ρ. (28)

This final expression for the new heat flux gets also the following form:

q(RNS)
v = −κ∇T − κm

γ

(γ − 1)
p∇ ln ρ. (29)

2.2.4. Re-casted Navier-Stokes equations - I (RNS - I) The final set of the first

re-casted Navier-Stokes equations obtained from the conventional Navier-Stokes by

applying the velocity field transformation, U = Uv−κm∇ ln ρ, is summarised as follows:

∂ρ

∂t
+ ∇ · [ρUv]− κm∆ρ = 0, (30)
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∂ρUv

∂t
+∇ ·

[
ρUv ⊗ Uv + p I +Π(RNS)

v

]
− κ2m∇∆ρ+ κm∇ [∇ · (ρUv)] = 0, (31)

∂

∂t

[
1

2
ρU2

v + ρ ein

]
+ ∇ ·

[
1

2
ρU2

v Uv + ρ ein Uv

]

+ ∇ ·
[
(p I + Πv) · Uv − κmΠv · ∇ ln ρ

]
+ ∇ ·

[
q(RNS)
v

]

+∇ ·
[
κmNv1 + κ2mNv2 + κ3m Nv3

]
+ κm Nv4 + κ2mNv5 + κ3mNv6 = 0. (32)

The continuum flow system (30) - (32) is a type of mass diffusion set of continuum

equations. That is, it contains: (i) a mass diffusion component in the conservation of

mass equation, (ii) explicit fluid dialation terms in the momentum stress tensor, and

(iii) a non-Fourier heat flux term. The form of continuum flow equations (30) - (32)

appears more appropriate for flows involving large density variations/gradients. For

example the Korteweg type shear stress components in (31) are found responsible for a

better prediction of gas mass flow in a microchannel [37].

2.3. Re-casted Navier-Stokes equations - II (RNS - II): U → UT − κT∇ lnT

We derive a second set of re-casted Navier-Stokes by assuming that the flow mean mass

velocity field U can be written in terms of a new velocity field, which we call thermal

diffusion velocity, UT . These two velocity fields are related by the following relation:

U = UT − κT∇ lnT = UT − κT
T

∇T, (33)

where κT is the molecular thermal diffusivity co-efficient. Again, for simplicity, we

assume κT to be a constant.

Following the same procedure used to derive the first re-casted Navier-Stokes (RNS

- I) given in §2.2, we arrived at another set of equations from the classical equations

and using the change of variable as defined in equation (33). We name these second

re-casted equations, re-casted Navier-Stokes - II (RNS-II) and they are given by:

∂ρ

∂t
+ ∇ · [ρUT ] = κT ρ∆ lnT + κT (∇ρ · ∇ lnT ) , (34)

∂

∂t
(ρUT − κT ρ∇ lnT ) + ∇ · [ρ (UT ⊗ UT )] + ∇ ·

[
p I + Π

(RNS)
T

]
= 0, (35)

∂

∂t

[
1

2
ρU2

T + ρ ein

]
+ ∇ ·

[
1

2
ρU2

T UT + ρ ein UT

]

+ ∇ · [(pIII + ΠT ) · UT − κT ΠT · ∇ lnT ] + ∇ ·
[
q
(RNS)
T

]

+ ∇ ·
[
κT NT1

+ κ2T NT2
+ κ3T NT3

]
+ κT NT4

+ κ2T NT5
= 0, (36)

where Π
(RNS)
T , q

(RNS)
T and ΠT are the new stress tensor, new heat-flux vector and the

transformed classical stress tensor, respectively, and they are given by:

Π
(RNS)
T = ΠT − ρ κT (UT ⊗∇ lnT +∇ lnT ⊗ UT ) + ρ κ2T∇ lnT ⊗∇ lnT, (37)

ΠT = − 2µ ∇̊UT + 2µ κT D̃ lnT − 2µ

3
κT ∆ lnT I, (38)

q
(RNS)
T = q(NS) − κT ρ ein∇ lnT − κT pIII · ∇ lnT, (39)
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and NTi
, i = 1, 2, 3, 4, 5 are additional terms which are given by:

NT1
= − 1

2
ρU2

T ∇ lnT − ρ (UT · ∇ lnT )UT , (40)

NT2
= ρ (UT · ∇ lnT )∇ lnT +

1

2
|∇ lnT |2 ρUT , (41)

NT3
= − 1

2
|∇ lnT |2 ρ∇ lnT, (42)

NT4
= ∇ ·

[
ρ (UT ⊗ UT ) + p I + Π

(RNS)
T

]
· ∇ lnT − ρUT · ∇

(
1

T

∂T

∂t

)
, (43)

NT5
= − 1

2
|∇ lnT |2

(
∂ρ

∂t

)
. (44)

The continuum flow model (34) - (36) is a mass diffusion continuum flow model

similar to RNS - I. The diffusion component in the mass conservation equation is now

driven by the temperature gradient. The temperature gradient term contributions to its

momentum balance shear stress tensor are similar to the Ghost effect term contributions

to the classical Navier-Stokes claimed by [38, 5, 39, 40]. Those terms are responsible for

the predictions of, for example, thermophoresis and other thermal stress driving flows

[38, 5, 39, 40].

2.4. Re-casted Navier-Stokes equations - III (RNS - III): U → Up − κp∇ ln p

In this subsection, we recast the classical Navier-Stokes equations using a new relation

in which the flow mean mass velocity field U is related to the new velocity field called

pressure diffusion velocity, Up, by:

U = Up − κp∇ ln p = Up − κp
p
∇p, (45)

where κp is the molecular pressure diffusivity co-efficient and, for simplicity, is assumed

to be a constant.

We name the re-casted Navier-Stokes derived from equation (45), re-casted Navier-

Stokes - III (RNS - III) and their derivation procedure is the same as that followed to

obtain RNS - I and RNS - II. The re-casted Navier-Stokes - III are then given by:

∂ρ

∂t
+ ∇ · [ρUp] = κp ρ∆ ln p + κp (∇ρ · ∇ ln p) , (46)

∂

∂t
(ρUp − κp ρ∇ ln p) + ∇ · [ρ (Up ⊗ Up)] + ∇ ·

[
p I + Π(RNS)

p

]
= 0, (47)

∂

∂t

[
1

2
ρU2

p + ρ ein

]
+∇ ·

[
1

2
ρU2

p Up + ρ ein Up

]
+∇ · [(pIII +Πp) · Up − κpΠp · ∇ ln p]

+ ∇ ·
[
q(RNS)
p

]
+ ∇ ·

[
κp Np1 + κ2p Np2 + κ3pNp3

]
+ κpNp4 + κ2pNp5 = 0, (48)

where Π(RNS)
p , q

(RNS)
p and Πp are generalized stress tensor, generalized heat-flux vector

and the transformed classical stress tensor, respectively and are given by:

Π(RNS)
p = Πp − ρ κp (Up ⊗∇ ln p+∇ ln p⊗ Up) + ρ κ2p∇ ln p⊗∇ ln p, (49)
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Πp = − 2µ ∇̊Up + 2µ κp D̃ ln p + λ κp∆ ln p I, (50)

q(RNS)
p = q(NS) − κp ρ ein∇ ln p− κp pIII · ∇ ln p, (51)

and Npi, i = 1, 2, 3, 4, 5 are additional terms whose expressions are given by:

Np1 = − 1

2
ρU2

p ∇ ln p − ρ (Up · ∇ ln p)Up, (52)

Np2 = ρ (Up · ∇ ln p)∇ ln p +
1

2
|∇ ln p|2 ρUp, (53)

Np3 = − 1

2
|∇ ln p|2 ρ∇ ln p, (54)

Np4 = ∇ ·
[
ρ (Up ⊗ Up) + p I + Π(RNS)

p

]
· ∇ ln p − ρUp · ∇

(
1

p

∂p

∂t

)
, (55)

Np5 = − 1

2
|∇ ln p|2

(
∂ρ

∂t

)
. (56)

As opposed to the previous re-casted NS, the mass diffusion in (46) - (48) is

now driven by the pressure gradient. Hence, the system (46) - (48) may therefore

be applicable to liquid flows. Consider a two-dimensional isothermal pressure driven

flow, one observes, that the additional contributions of the pressure gradient terms in

the shear stress in equation (47) may lead to additional contributions to the flow rate.

These diffusive terms may also be responsible for interpreting some of the high flows of

water in nano tubes as already demonstrated in gas flows [41].

3. Linear stability analysis and sound dispersion

In this section we examine both temporal and spatial stability analyses of the three new

sets of re-casted Navier-Stokes equations derived in §2.2, §2.3 and §2.4. We consider the

re-casted Navier-Stokes models in a one dimensional flow configuration. An equilibrium

ground state is defined by the flow variables ρo, To, po = R ρo To, uo = 0, with R as the

specific gas constant. A perturbation to the equilibrium ground state is introduced as

follows:

ρ = ρo(1 + ρ∗), T = To(1 + T ∗), u = u∗
√

RTo, p = po(1 + p∗), (57)

where the asterisked variables represent dimensionless quantities with p∗ = ρ∗+T ∗, and

the subscript o denotes the equilibrium ground state flow parameters. The dimensionless

space and time variables are specified using a characteristic length L and a characteristic

time τ by the expressions:

x = Lx∗, t = τ t∗, τ =
L√
RTo

. (58)

The corresponding dimensionless transport coefficients are given by:

µ∗ =
µ

Lρo
√
R To

=
µ

µo

, κ∗m =
κm

L
√
R To

=
κm ρo
µo

, α∗

p =
αp

L
√
R To

=
αp ρo
µo

,

κ∗T =
κT

L
√
R To

=
κT ρo
µo

, κ∗ =
κ

RLρo
√
R To

=
κ

Rµo

, (59)
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where µo is a reference viscosity coefficient chosen such that the Knudsen number, Kn,

is set equal to unity.

The dimensionless form of linearized re-casted Navier-Stokes equations - I (RNS -

I) are given by:

∂ρ∗

∂t∗
+
∂u∗v
∂x∗

− κ∗m
∂2ρ∗

∂x∗2
= 0,

∂u∗v
∂t∗

+
∂ρ∗

∂x∗
+
∂T ∗

∂x∗
−

(
4

3
µ∗ − κ∗m

)
∂2u∗v
∂x∗2

+

(
4

3
µ∗κ∗m − κ∗

2

m

)
∂3ρ∗

∂x∗3
= 0,

∂T ∗

∂t∗
+

2

3

∂u∗v
∂x∗

− 2

3
κ∗m

∂2ρ∗

∂x∗2
− 2

3
κ∗
∂2T ∗

∂x∗2
= 0.

(60)

The dimensionless form of linearized version of re-casted Navier-Stokes equations -

II (RNS - II) are given by:

∂ρ∗

∂t∗
+
∂u∗T
∂x∗

− κ∗T
∂2T ∗

∂x∗2
= 0,

∂u∗T
∂t∗

−
(
4

3
µ∗ − 2

3
κ∗T

)
∂2u∗T
∂x∗2

+
∂ρ∗

∂x∗
+
∂T ∗

∂x∗

+

(
4

3
µ∗ − 2

3
κ∗T − 2

3
κ

)
κ∗T

∂3T ∗

∂x∗3
= 0,

∂T ∗

∂t∗
+

2

3

∂u∗T
∂x∗

− 2

3
(κ + κT )

∂2T ∗

∂x∗2
= 0.

(61)

Finally, the dimensionless form of linearized re-casted Navier-Stokes equations - III

(RNS - III) are given by:

∂ρ∗

∂t∗
+
∂u∗p
∂x∗

− κp
∂2ρ∗

∂x∗2
− κp

∂2T ∗

∂x∗2
= 0,

∂u∗p
∂t∗

−
(
4

3
µ∗ − 5

3
κp

)
∂2u∗p
∂x∗2

+
∂ρ∗

∂x∗
+

(
4

3
µ∗ − 5

3
κp

)
κp
∂3ρ∗

∂x∗3

+
∂T ∗

∂x∗
+

(
4

3
µ∗ − 5

3
κp − 2

3
κ

)
κp
∂3T ∗

∂x∗3
= 0,

∂T ∗

∂t∗
+

2

3

∂u∗p
∂x∗

− 2

3
κp
∂2ρ∗

∂x∗2
− 2

3
(κ + κp)

∂2T ∗

∂x∗2
= 0.

(62)

We assume the disturbances ρ∗, T ∗ and U∗
v to be wave functions of the form

φ∗ = φ∗

a exp[i (ω t∗ −K x∗)], (63)

where ω is the complex wave frequency, K is the complex wave number, and φ∗
a is the

complex amplitude, so that we have

∂φ∗

∂t∗
= i ω φ∗,

∂φ∗

∂x∗
= −iKφ∗,

∂2φ∗

∂x∗2
= −K2 φ∗,

∂3φ∗

∂x∗3
= iK3 φ∗. (64)

Substitution of the plane wave solution (63) into the linearized re-casted Navier-

Stokes - I system given by (60) yields the homogeneous system A(ω,K)φ∗ = 0, where

A(ω,K) =




iω + κ∗mK
2 0 −iK

2
3
κ∗mK

2 iω + 2
3
κ∗K2 −2

3
iK

−iK +
(

4
3
µ∗κ∗m − κ∗

2

m

)
iK3 −iK iω +

(
4
3
µ∗ − κ∗m

)
K2


 (65)
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Figure 1. Stability analysis of the re-casted Navier-Stokes equations: panel (a) spatial

stability and panel (b) temporal stability with κ∗ = 15/4.

and

φ∗ =



ρ∗

T ∗

U∗
v


 . (66)

The corresponding dispersion relation, obtained when the determinant of A(ω,K)

is zero, is

9iω3 + 6K2 (κ∗ + 2µ∗)ω2 − iK2
(
8K2κ∗µ∗ + 15

)
ω − 6K4κ∗ = 0. (67)

We observe that dispersion relation (67) does not depend explicitly upon κ∗m, which

is the dimensionless molecular diffusivity co-efficient. In fact, this dispersion relation

is the same as that of the classical Navier-Stokes equations. In [16] it was shown that

transport coefficients associated with mass/volume diffusion theory may be different

from transport coefficients when the classical theory is in use. Hence, we examine the

stability of the re-casted NS equations by considering different transport coefficients: (i)

κ∗ = 15/4 which corresponds to the value from the classical theory, (ii) κ∗ = 13/4 which

is an assumed value for the re-casted theory, and (iii) κ∗ = 9/4 which corresponds to the

value from the volume-diffusion theory of [16]. Figure 1, shows the spatial and temporal

stability of the re-casted Navier-Stokes for κ∗ = 15/4. For this value of κ∗, the stability

diagram presented in figure 1 is exactly the same as that of the classical Navier-Stokes.

Figure 2 and figure 3 present stability results for the re-casted Navier-Stokes equations

for κ∗ = 13/4 and κ∗ = 9/4, respectively. The new re-casted Navier-Stokes models

are unconditionally stable in both space and time like the classical Navier-Stokes model

for all these coefficients. The same conclusions are reached for re-casted Navier-Stokes

equations - II (RNS - II) and re-casted Navier-Stokes equations - III (RNS - III).
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Figure 2. Stability analysis of the re-casted Navier-Stokes equations: panel (a) spatial

stability and panel (b) temporal stability with κ∗ = 13/4.
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Figure 3. Stability analysis of the re-casted Navier-Stokes equations: panel (a) spatial

stability and panel (b) temporal stability with κ∗ = 9/4.

We now analyze the re-casted model predictions of sound dispersions as compared

with the experimental data from Meyer and Sessler [42]. The dimensionless inverse

of phase speed and dimensionless spatial damping coefficient are commonly defined as

[43, 42, 44, 45]
√

5

3

Re[K]

ω
and −

√
5

3

Im[K]

ω
. (68)

Predictions by the re-casted model with κ∗ = 15/4 and κ∗ = 9/4 for the inverse

sound speed and damping coefficient are plotted in figure 4 and figure 5, respectively,



Recasting Navier-Stokes 14

Ԃ
Ԃ

Ԃ
Ԃ

Ԃ
Ԃ

Ԃ

Ԃ

Ԃ

Ԃ

Ԃ
Ԃ Ԃ

Ԃ
Ԃ

Ԃ

(a)

10-1 100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

1/̀

1
/s
p
e
e
d

Ԃ

Ԃ

ԂԂ
Ԃ Ԃ

Ԃ
Ԃ Ԃ

Ԃ
Ԃ

Ԃ

Ԃ
Ԃ

Ԃ

Ԃ

Ԃ

Ԃ

Ԃ

Ԃ

Ԃ

Ԃ
Ԃ

(b)

10-1 100 101 102
0.0

0.1

0.2

0��

0.4

1/̀

D
a
m
p
in
g
C
o
e
ff
ic
ie
n
t

Figure 4. Sound dispersion with κ∗ = 15/4: panel (a) inverse sound speed and

panel (b) damping coefficient. Solid and dotted lines represents the results from the

re-casted NS model and the classical NS model, respectively. Filled circles represents

the experimental results by Meyer and Sessler [42].
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Figure 5. Sound dispersion with κ∗ = 9/4: panel (a) inverse sound speed and panel

(b) damping coefficient. Solid and dotted lines represents the results from the re-

casted NS model and the classical NS model, respectively. Filled circles represents the

experimental results by Meyer and Sessler [42].

alongside predictions by classical Navier-Stokes and the experimental data by Meyer

and Sessler [42]. When κ∗ = 15/4 predictions of the inverse sound speed and damping

coefficients by the re-casted NS models exactly coincide with that of the classical NS as

expected. With κ∗ = 9/4, the re-casted NS model achieved a better agreement with the

experimental data as compared to the classical Navier-Stokes model which is evident

from figure 5. This good agreement with the experimental data is the same as that
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obtained in the volume diffusion model of Dadzie [16] using the same coefficient.

4. Application to the Rayleigh-Brillouin light scattering experiment

In order to clearly demonstrate the usefulness of the re-casted Navier-Stokes models

derived in §2.2, §2.3 and §2.4, we analyse the Rayleigh-Brillouin light scattering problem.

When light is passed through a gas, some parts of the light are scattered by the

motion of the gas molecules [23]. The spectral profile/distribution of the scattered

light mainly depends on the scattering mechanism. In particular, the Rayleigh-

Brillouin scattering (RBS) combines two scattering mechanisms: Rayleigh scattering

and Brillouin scattering. Both originate when the light is scattered due to density

fluctuations of gas molecules. An RBS spectrum consists of two dominant components:

the Rayleigh part due to thermal motion of the gas molecules, which causes a Doppler

shift relative to the incident wavelength, and the Brillouin part, which is due to the

exchange of energy between light and acoustic modes in the medium and is associated

with the acoustic effect of gas molecules [46]. Rayleigh-Brillouin scattering is nowadays

a powerful method to investigate thermodynamic properties of transparent media such

as gas, water and optical fibers [47, 48, 49, 50, 51, 52, 53, 54]. RBS is used to determine

the physical properties of gases, such as sound speed, thermal diffusivity, heat capacity

ratios, bulk viscosity, etc. [46]. It is also used in oceanographic studies to find out

the ocean salinity, temperature, sound speed and viscosity [55, 56, 57, 58, 59, 46]. In

addition, this light scattering mechanism is used to demonstrate optical properties of

different micro/nano materials (particles) [60, 61].

4.1. Formulation

The spectrum of the scattered light follows from the knowledge of the gas density

fluctuations (the density-density correlation function) and are obtained from the

linearized hydrodynamic models [24]. The gas density fluctuations can either arise

spontaneously or are created by external optical potentials. Based on the gas density

fluctuations, we have the spontaneous Rayleigh-Brillouin scattering (SRBS) or the

coherent Rayleigh-Brillouin scattering (CRBS). The spectrum of the scattered light

depends on the Knudsen number, which is related to a frequently used y parameter

in RBS experiments [24, 62, 63], intermolecular potentials and the rotational collision

number.

In the spontaneous RBS, an incident light wave vector ki is scattered with scattered-

light wave vector ks due to the spontaneous density variations of gas molecules. If the

scattering angle is θ then the scattering wave number (k) is given by:

k = |ki − ks| = 2 |ki| sin(θ/2). (69)

In the coherent RBS, light is scattered through the density fluctuations of gas molecules

which are generated from the interference pattern induced by two plumb laser beams
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[64, 65]. For the physical process and the experimental set-up of spontaneous RBS and

coherent RBS, readers are referred to references [64, 65].

The one-dimensional, linearized nature and lack of boundary conditions make the

hydrodynamic equations simple and allow for analytical solutions for the Rayleigh-

Brillouin scattering problem [25, 24, 28]. The spectrum of the scattered light is

characterized by the Knudsen number (Kn), which is here the ratio of the mean free

path of gas molecules to the characteristic length scale (L) of the system, identified as

the scattering wave length 2 π/k. We use the same dimensionless variables which are

in line with the previous linear analysis (§3) and one additional parameter, namely, the

Knudsen number to linearize the re-casted Navier-Stokes models derived in §2.2, §2.3
and §2.4.

The linearized form of re-casted Navier-Stokes equations - I is:

∂ρ∗

∂t∗
+
∂u∗v
∂x∗

− κ∗mKn
∂2ρ∗

∂x∗2
= 0,

∂u∗v
∂t∗

+
∂ρ∗

∂x∗
+
∂T ∗

∂x∗
−

(
4

3
− κ∗m

)
Kn

∂2u∗v
∂x∗2

+

(
4

3
κ∗m − κ∗

2

m

)
Kn2 ∂

3ρ∗

∂x∗3
= 0,

∂T ∗

∂t∗
+

2

3

∂u∗v
∂x∗

− 2

3
κ∗mKn

∂2ρ∗

∂x∗2
− 2

3
κ∗Kn

∂2T ∗

∂x∗2
= 0.

(70)

In order to obtain the spontaneous RBS, one needs to apply the temporal Laplace

transform and the spatial Fourier transform of the density fluctuations. Hence, the

spontaneous spectrum of the density fluctuation from the linearized RNS-I can be

obtained by solving the following matrix equation [24]:

B(ω,Kn)ψ = Ds, (71)

where

B =




−iω + 4π2κ∗mKn 2 πi 0

2 πi− 8 π3 i
(

4
3
κ∗m − κ∗

2

m

)
Kn −iω + 4 π2

(
4
3
− κ∗m

)
Kn 2 πi

8
3
π2κ∗mKn 4

3
πi −iω + 8

3
π2κ∗Kn


, (72)

ψ =



ρ∗

U∗
v

T ∗


 and Ds =




1

0

0


 . (73)

In the coefficient matrix B, ω is the angular frequency which is normalized by√
R To/L. Further, the angular frequency ω is related to the frequency shift (fs), which

is normalized by a characteristic frequency
√
2R To/L. Variables ρ

∗, U∗
v and T ∗ are the

spectra of the perturbed density, velocity, and temperature, respectively. The source

column matrix Ds is due to the initial density perturbation for spontaneous RBS. For

the case of coherent RBS, one has to apply the Fourier transform in both spatial and

temporal variables. Then, the coherent RBS spectrum of the density fluctuation can be

obtained by solving the following matrix equation:

B(ω,Kn)ψ = Dc with Dc =




0

1

0


 , (74)
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where the source column matrix Dc is due to the presence of externally induced

acceleration for coherent RBS.

By solving the in-homogeneous matrix equations (71) and (74) for the spectrum

of the density fluctuations ρ∗, we obtain the spontaneous RBS and coherent RBS

spectra, respectively. Further, quantities ℜ[ρ∗] and |ρ∗|2 describes the spectra for the

spontaneous and coherent RBS, respectively. The spontaneous spectra using newly

derived hydrodynamic models, namely, RNS-I, RNS-II, RNS-III along with the classical

Navier-Stokes predictions are given by:

SRNS−I
s = ℜ[ρ∗] = ℜ

[N I

D

]
, SRNS−II

s = ℜ
[N II

D

]
,

SRNS−III
s = ℜ

[N III

D

]
, SNS

s = ℜ
[NNS

D

]
,

(75)

where

N I = 128 i κ∗
(
1− 3

4
κ∗m

)
π4Kn2 + 24

(
2 + κ∗ − 3

2
κ∗m

)
π2Knω − 9 i ω2 + 24 i π2,

N II = 128 i κ∗ π4Kn2 + 24 (2 + κ∗)π2Knω − 9 i ω2 + 24 i π2 = NNS,

N III = 128 i κ∗
(
1− 3

4
κ∗p

)
π4Kn2 + 24

(
2 + κ∗ − 3

2
κ∗p

)
π2Knω − 9 i ω2 + 24 i π2,

D = 128 κ∗ π4Kn2 ω − 24 i (2 + κ∗)π2Knω2 + 96 i κ∗ π4Kn − 9ω3 + 60 π2 ω.

Expression for the coherent RBS spectrum is the same for all models discussed and

is given by:

Sc =

∣∣∣∣
6π (8 κ∗ π2Kn − 3 iω)

D

∣∣∣∣
2

. (76)

4.2. Results and interpretation

An RBS spectrum typically consists of a central Rayleigh peak near fs = 0 and two

Brillouin side peaks at an equidistance from the central Rayleigh peak. These Brillouin

side peaks are located at fs =
√
γ/2, where γ is the ratio of heat capacity. In the

typical spectra of the spontaneous RBS, one can identify the contributions from the

central Rayleigh peak and the Brillouin side peaks. They are clearly separated from

each other when the gas flow is in the hydrodynamic regime (Kn ≤ 0.001). When Kn

lies in the regime 0.001 ≤ Kn ≤ 0.1 contributions from the central Rayleigh part and

the Brillouin side part become mixed and then the widths of both parts broaden due

to the increased dissipation in sound propagation. Further increase of Kn results in

vanishing contribution of the Brillouin part and the whole spectrum becomes nearly

Gaussian [66, 26, 27, 28]. In the typical spectra of the coherent RBS, one can notice

the presence of Brillouin peaks only when the gas flow is in the hydrodynamic regime

(Kn ≤ 0.001). As Kn increases further, both peaks (the central Rayleigh and the two

Brillouin side peaks) are present and the relative intensity of these peaks becomes large

and later on the whole spectrum becomes Gaussian [26, 27, 28].
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Figure 6. Spectra of the spontaneous RBS, when (a) Kn = 0.02, κ∗ = 15/4, κ∗

m
= 2/5,

(b) Kn = 0.04, κ∗ = 13/4, κ∗

m
= 1/2, (c) Kn = 0.05, κ∗ = 13/4, κ∗

m
= 1/2, (d)

Kn = 0.06, κ∗ = 13/4, κ∗

m
= 1/2, (e) Kn = 0.08, κ∗ = 11/4, κ∗

m
= 0.85, and (f)

Kn = 0.1, κ∗ = 11/4, κ∗

m
= 0.85. Black dotted line, red solid line and blue filled circles

represents the results from the Classical NS, re-casted NS and LBE for Maxwellian

gases from Wu [28].
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Figure 7. Spectra of the coherent RBS when (a) Kn = 0.02, κ∗ = 15/4, (b)

Kn = 0.04, κ∗ = 13/4, (c) Kn = 0.05, κ∗ = 9/4, (d) Kn = 0.06, κ∗ = 9/4, (e)

Kn = 0.08, κ∗ = 3/2, and (f) Kn = 0.1, κ∗ = 1. Black dotted line, red solid line

and blue filled circles represents the results from the Classical NS, re-casted NS and

LBE for Maxwellian gases from Wu [28].
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Table 1. Spontaneous RBS spectra: Knudsen number vs values of different transport

coefficients for which the re-casted NS models have a best fit with the LBE Spectral

lines.

Kn κ∗ κ∗m κ∗T κ∗p

0.02 15/4 2/5 – 2/5

0.04 13/4 1/2 – 1/2

0.05 13/4 1/2 – 1/2

0.06 13/4 1/2 – 1/2

0.08 11/4 0.85 – 0.85

0.1 11/4 0.85 – 0.85

From the spontaneous spectrum expression (75), which is predicted by our re-

casted Navier-Stokes, we observe that the spontaneous RBS spectra depends explicitly

on the Knudsen number, the new molecular diffusivity coefficients, and the thermal

conductivity coefficient. The coherent RBS spectra expression is the same for all models

and appears to depend only on the Knudsen number, Kn, and the thermal conductivity

coefficient κ∗. As transport coefficients associated with volume/mass diffusion theory are

different from those in the classical theory, we here compare the spectral lines results

from re-casted Navier-Stokes models by considering transport coefficients which give

best match with the LBE spectral lines. A coherence is found as those best coefficients

appear to depend on the Knudsen number and listed later in Tables (1) and (2). Classical

Navier-Stokes coefficients are kept to their exact values, i.e., κ∗ = 15/4. RBS spectrum

is symmetric about the position of the central Rayleigh peak, fs = 0. So we only plot

and compare the half of the spectrum corresponding to the positive frequency shift fs.

Furthermore, in all figures, the RBS spectrum has been normalized by the maximum

value.

First, we compare the spontaneous RBS spectra solutions obtained from the re-

casted Navier-Stokes with that of the classical Navier-Stokes solutions and also with the

results calculated based on the Linearized Boltzmann equation (LBE) for Maxwellian

gases and taken fromWu [28]. Figure 6 illustrates the spontaneous RBS spectra obtained

from the re-casted Navier-Stokes-I model along with the spectra obtained from the

classical Navier-Stokes and the LBE. In figure 6, panel (a), (b), (c), (d), (e) and (f)

we show the spontaneous spectra results for Kn = 0.02, 0.04, 0.05, 0.06, 0.08 and 0.1,

respectively, in which the black dotted line, the red solid line and the blue filled circles

correspond to the solution by the classical NS, the re-casted NS and the LBE solutions

[28], respectively. When Kn = 0.02, we found that the re-casted Navier-Stokes spectrum

have an excellent agreement with the LBE spectrum line for the choice of transport

coefficients κ∗ and κ∗m to be 15/4 and 2/5, which can be seen from figure 6 (a). At this

Knudsen number, classical Navier-Stokes also predicts the actual spectrum line.
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Typical profiles of the spontaneous RBS spectra for Kn = 0.04, 0.05 and 0.06

are shown in figure 6 (b), figure 6 (c) and figure 6 (d), respectively. From these

spectral solutions, we observe that the re-casted Navier-Stokes solutions achieved the

best agreement with that of LBE solutions with κ∗ = 13/4 and κ∗m = 1/2, while classical

Navier-Stokes solutions deviate significantly from the LBE solutions. Moreover, it is

noteworthy to mention that classical Navier-Stokes predicts the higher spectrum near

the Brillouin side peaks whereas our re-casted Navier-Stokes (RNS-I and RNS-III) are

successful in predicting the actual spectrum like LBE solutions. Figures 6 (e) and (f)

show the profiles of the spontaneous RBS for Kn = 0.08 and Kn = 0.1, respectively.

Even at this higher Knudsen numbers, the predictions of re-casted Navier-Stokes with

the choice of κ∗ = 11/4 and κ∗m = 0.85 have showed better agreement with that of LBE

solutions, while the classical Navier-Stokes fails to predict the spectrum. Overall, one

can conclude from Figures 6 that the re-casted Navier-Stokes models, namely, RNS-I

and RNS-III performed better in predicting the spontaneous spectrum as compared with

LBE spectrum up to Kn = 0.1 with coefficients as listed in Table 1. Figure 7 shows

the typical shapes of the coherent RBS spectra obtained from the re-casted NS and

classical NS models. In all panels, the black dotted and red solid lines represent the

solutions from classical Navier-Stokes and re-casted NS and blue filled circles represent

the LBE solutions from [28]. In figure 7, panels (a), (b), (c), (d), (e) and (f) show

the spectrum solutions for Kn = 0.02, 0.04, 0.05, 0.06, 0.08 and 0.1, respectively, with

the corresponding thermal conductivity coefficient κ∗ listed in Table 2. Like in the

case of the spontaneous spectra, the classical Navier-Stokes model performs well up to

Kn = 0.02, as evident from figure 7 (a). It is customary to conclude from figure 7 (a) that

at Kn = 0.02, both classical NS and re-casted NS models shows a perfect agreement with

the LBE solutions. When Kn = 0.04, 0.05 and 0.06, the coherent spectra solutions from

re-casted NS models with respectively associated κ∗ = 13/4, 9/4 and 9/4, yield better

agreement with the LBE solutions, than the classical NS model, which is evident from

figure 7 (b), figure 7 (c), and figure 7 (d), respectively. At these Knudsen numbers, one

can observe from the classical NS solution that the position of the Brillouin peak shifted

towards the left as compared to the LBE and re-casted NS solutions but qualitatively

predicts the spectral line shape as that of the LBE solution. Observing the coherent

RBS spectral solutions at Kn = 0.08 and 0.1 presented in figure 7 (e) and figure 7 (f),

respectively, one can conclude that classical NS model will not be able to produce the

actual shape of the spectral lines but re-casted NS model are still successful in predicting

the actual shape of the coherent RBS spectrum. Re-casted NS models, however, predict

higher spectrum at the central Rayleigh part than that of LBE predictions and are able

to predict the Brillouin part contributions accurately.

Based on the spontaneous and coherent spectral lines presented in figure 6 and

figure 7, one can conclude as follows: for the case of spontaneous RBS, RNS-I and

RNS-III models perform well up to Kn ≈ 0.1. Classical NS model seems to perform

well up to Kn ≈ 0.02 only (see figure 6). For the case of coherent RBS, like in the case

of the spontaneous RBS, the accuracy of classical NS model is limited to Kn ≈ 0.02
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Table 2. Coherent RBS spectra: Knudsen number vs values of thermal conductivity

coefficient for which the re-casted NS models have a best fit with the LBE Spectral

lines.

Kn 0.02 0.04 0.05 0.06 0.08 0.1

κ∗ 15/4 13/4 9/4 9/4 3/2 1

only. All re-casted NS models perform well up to Kn ≈ 0.06 and also shows better

agreement with LBE solutions up to Kn ≈ 0.1. Overall, one can say that the re-casted

Navier-Stokes equations are successful in predicting the shape of the RBS spectral lines

up to Kn ≈ 0.1.

5. Discussion

In order to improve accuracy of the original fluid flow equations, extra terms are usually

constructed to modify constitutive equations for the shear stress tensor and/or the heat

flux vector only. Chapman-Enskog expansion to obtain solutions to the Boltzmann

equation is typically the method used to obtain high order equations for rarefied gas

flows. However, constitutive equations obtained in this manner are well-known to lead

to equations that violate mechanical properties or the second law. The methodology

introduced in this article is a systematic method involving the three conservation

equations combined. Our three new constructed continuum flow models can be reverted

by the following trivial change of variables:

Uv = U + κm∇ ln ρ , (77)

UT = U + κT∇ lnT , (78)

and

Up = U + κp∇ ln p. (79)

Substituting equation (77), (78) and (79) into the continuum flow system (30) - (32),

(34) - (36) and (46) - (48), respectively, by reversing the procedure as described in

the Appendices, is expected to lead back to the system (1) - (3) they originated

from. This original system satisfies all known mechanical properties [31]. It may

therefore be concluded, at first, that all our three re-casted models are fully thermo-

mechanically consistent equations via the original. The new systems exhibit new physics

(e.g., Korteweg shear stress and Sone’s Ghost effect stress) not seen in the original

equations. Subsequently, while the original Navier-Stokes and its transformed version

may be mathematically convertible from one to the other, they do display different

physics. Comparing solutions of the transformed equations in terms of the new velocity

variables to experiments do not systematically equals comparing solutions of the original
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to experimental data. This is demonstrated here by our comparisons with the Rayleigh-

Brillouin light scattering experiments. It serves as a direct theoretical support to

Brenner’s observation of the experimental difference between a dye- or photochromic

experiments (measuring a fluid’s mass velocity) and a tracer velocity [29], which led him

to initiate the first Bi-velocity hydrodynamics theory. As it was already observed that

continuum flow equations written with explicit diffusive component in the continuity

equation violates mechanical properties [67], we conclude that the form of the equations

that should be used to analyse their mechanical properties is their equivalent form

written in terms of the mass velocity. In this particular case, the original system (1) -

(3) which already satisfies those properties. In other words, differentiating properly

between the different type of velocities is also primordial to fully analyse the flow

equation mechanical properties as listed in Öttinger et al .[15]. An advantage of the

present strategy to construct new continuum flow models may therefore be maintaining

the conservation of those mechanical properties via the original Navier-Stokes equations.

The transformation technique presented to obtain the new models made use of

the three basic thermodynamics variables, namely, density, temperature and pressure.

The methodology can be extended by combining these variables or form more complex

change of variables to obtain more complex and systematically thermo-mechanically

consistent continuum flow models. For example, using the following change of variable:

U = Uτ − κτ ∇× Uτ , (80)

will incorporate fluid vorticity contributions to the shear stress tensor. Then, it is

trivial that the accompanying mass diffusion in the continuity equation will be driven by

fluid vorticity. Burnett and super-Burnett equations for rarefied gases involve complex

coupling terms in shear stress and heat flux, for example, coupling between velocity

gradient and temperature gradient etc., [31]. To produce a re-casted Navier-Stokes that

introduces high order terms of the type of Burnett or super-Burnett terms, the following

types of velocity transformations may be constructed:

U = UπT − κT
T

∇T ·ΠπT ; U = Uπp −
κp
p
∇p ·Ππp, (81)

with

ΠπT = −2µ ˚∇UπT ; Ππp = −2µ ˚∇Uπp. (82)

Finally, although the original Navier-Stokes equations is used to demonstrate the new

strategy, the methodology itself is applicable to other continuum equations with original

strong mechanical properties.

6. Conclusion

We have introduced a new framework based on a transformation of the velocity

vector field within the standard Navier-Stokes equations to obtain new continuum

flow equations of volume/mass diffusion types. The new continuum flow equations

termed the re-casted Navier-Stokes equations are systematically thermo-mechanically
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consistent via the original. The new equations also display various important physics

that the original lacks. Based on the plane wave analysis, we confirm that the dispersion

relation for all re-casted NS equations is the same and it coincides with that of the

classical Navier-Stokes dispersion relation; hence all re-casted NS models are shown

to be both temporally and spatially stable. Our analysis of the Rayleigh-Brillouin

scattering experimental data demonstrated that the re-casted Navier-Stokes equations

are capable of describing the RBS spectrum shapes better than the untransformed

equations. This comes in support for potential existence of various meaningful different

fluid flow velocities. As future works we will apply these new re-casted Navier-Stokes

models to test other configurations where the original fails such as in the description

of shock wave structures. The methodology will also be deployed to obtain new flow

equations to other problems such as particle-laden flows.

7. Acknowledgments

This research is supported by the UK’s Engineering and Physical Sciences Research

Council (EPSRC) under grant nos. EP/N016602/1, EP/R007438/1, EP/R008027/1,

and EP/N034066/1. JMR acknowledges the support of the Royal Academy of

Engineering under the Chair in Emerging Technologies scheme. SKD acknowledges

the support of The Leverhulme Trust under grant Ref. RPG-2018-174.

Appendix A. Useful definitions and some vector identities

(i) The Hessian operator/matrix is denoted by D̃ and is defined by

D̃f =
∂

∂Xi

∂

∂Xj

f =
∂2f

∂Xi∂Xj

. (A.1)

For continuous scalar field f , the order of the differentiation does not matter.

(ii) The tensor (dyadic) product of two vectors a and b is denoted by a ⊗ b and is

defined as

a⊗ b = abT = aibj =



a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


 (A.2)

(iii) The divergence of dyadic product of two vectors a and b is given by

∇ · (a⊗ b) = b(∇ · a) + (a · ∇)b (A.3)

(iv) For any scalar filed f and vector field F

∇ · (fF) = f∇ · F+ F · ∇f (A.4)

(v) Useful Identities:

−2µ∇̊Uv = − 2µD (Uv) − λ (∇ · Uv) I, (A.5)
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D̃ ln ρ = − 1

ρ2
∇ρ⊗∇ρ +

1

ρ
D̃ρ, (A.6)

∆ ln ρ =
1

ρ
∆ρ − |∇ρ|2

ρ2
. (A.7)

(vi) U2 in terms of Uv

U2 = U2
v − 2 κm (Uv · ∇ ln ρ) + κ2m (∇ ln ρ · ∇ ln ρ) where∇ =

∂

∂Xi

(A.8)

(vii) We remark that

∇(Uv · ∇ρ)−
∇ρ
ρ

(Uv · ∇ρ)− ρ(Uv · ∇)
∇ρ
ρ

= ∇̃Uv · ∇ρ (A.9)

Proof: Consider the quantity

∇(Uv · ∇ρ)−
∇ρ
ρ

(Uv · ∇ρ)− ρ(Uv · ∇)
∇ρ
ρ

=
∂

∂Xi

(
Uvj

∂ρ

∂Xj

)
− 1

ρ

∂ρ

∂Xi

(
Uvj

∂ρ

∂Xj

)
− ρ

(
Uvj

∂

∂Xj

)
1

ρ

∂ρ

∂Xi

=
∂Uvj

∂Xi

∂ρ

∂Xj

+ UvjD̃ρ− 1

ρ
Uvj

∂ρ

∂Xi

∂ρ

∂Xj

− ρUvj

(−1

ρ2

)
∂ρ

∂Xj

∂ρ

∂Xi

− UvjD̃ρ

=
∂Uvj

∂Xi

∂ρ

∂Xj

= ∇̃Uv · ∇ρ

(A.10)

Appendix B. Re-casting the momentum balance equation

The conservative form of the classical momentum balance equation is given by

∂ρU

∂t
+ ∇ · [ρU ⊗ U ] + ∇ · [pIII + Π(NS)] = 0. (B.1)

Here, we present the detailed algebra involved while re-casting the above momentum

balance equation (B.1) using the relation given in (8). The first term in (B.1) can be

transformed as:

∂ρU

∂t
=

∂

∂t
[ρUv − kmρ∇ ln ρ] =

∂ρUv

∂t
− κm

∂

∂t
∇ρ

=
∂ρUv

∂t
− κm∇

∂ρ

∂t
[∵ As X and t are independent variables]

=
∂ρUv

∂t
− κm∇ [−∇ · (ρUv) + κm∆ρ] [∵ Equation(9)]

=
∂ρUv

∂t
+ κm∇ [∇ · (ρUv)] − κ2m∇∆ρ

(B.2)

∴
∂ρU

∂t
=
∂ρUv

∂t
+ κm∇ [∇ · (ρUv)] − κ2m∇∆ρ (B.3)
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Similarly, the term ∇ · [ρU ⊗ U ] on L.H.S of (B.1) can be transformed as:

∇ · [ρU ⊗ U ]

= ∇ · [ρ (Uv − κm∇ ln ρ)⊗ (Uv − κm∇ ln ρ)]

= ∇ ·
[
ρUv ⊗ Uv − ρκmUv ⊗∇ ln ρ− ρκm∇ ln ρ⊗ Uv + ρκ2m∇ ln ρ⊗∇ ln ρ

]

= ∇ ·
[
ρUv ⊗ Uv − κmUv ⊗∇ρ− κm∇ρ⊗ Uv +

κ2m
ρ
∇ρ⊗∇ρ

]
(B.4)

∴ ∇ · [ρU ⊗ U ] = ∇ ·
[
ρUv ⊗ Uv − κmUv ⊗∇ρ− κm∇ρ⊗ Uv +

κ2m
ρ
∇ρ⊗∇ρ

]
(B.5)

The classical shear stress tensor Π(NS) is transformed to Πv (classical shear stress

in terms of volume velocity) as

Π(NS) = − 2µ

[
1

2
(∇U + ∇̃U)− 1

3
I∇ · U

]
= −2µ

[
1

2

(
∂Ui

∂Xj

+
∂Uj

∂Xi

)
− 1

3
δij
∂Uk

∂Xk

]

= − 2µ

[
1

2

(
∂Uvi

∂Xj

− κmD̃ ln ρ+
∂Uvj

∂Xi

− κmD̃ ln ρ

)
− δij

3

(
∂Uvk

∂Xk

+ κm∆ ln ρ

)]

= − 2µ

[
1

2

(
∂Uvi

∂Xj

+
∂Uvj

∂Xi

)
− 1

3
δij
∂Uvk

∂Xk

]
+ 2µ κm D̃ ln ρ− 2µ

3
δij κm∆ ln ρ

= − 2µ∇̊Uv + 2µ κmD̃ ln ρ− 2µ

3
δij κm ∆ ln ρ = Πv.

∴ Π(NS) → Πv = − 2µ∇̊Uv + 2µ κmD̃ ln ρ + λ κm∆ ln ρ I. (B.6)

Using (B.6), the last term on L.H.S of (B.1) can be transformed into

∇ · [pI +Πv] . (B.7)

The re-casted form of the momentum balance equation (B.1) is

∂

∂t
(ρUv − κm∇ρ) + ∇ ·

[
ρUv ⊗ Uv − κmUv ⊗∇ρ− κm∇ρ⊗ Uv +

κ2m
ρ
∇ρ⊗∇ρ

]

+ ∇ · [p I +Πv ] = 0. (B.8)

Let us assume that

Π(RNS)
v = Πv − κmUv ⊗∇ρ− κm∇ρ⊗ Uv +

κ2m
ρ
∇ρ⊗∇ρ, (B.9)

then the final form of the re-casted momentum balance equation gets the following form.

∂

∂t
(ρUv − κm ∇ρ) + ∇ · [ρUv ⊗ Uv] + ∇ ·

[
p I + Π(RNS)

v

]
= 0,

or (B.10)

∂ρUv

∂t
+ ∇ · [ρUv ⊗ Uv] +∇ ·

[
p I +Π(RNS)

v

]
+ κm∇ [∇ · (ρUv)]− κ2m∇∆ρ = 0.
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Appendix C. Non-conservative form of re-casted momentum equation

The non-conservative form of the classical momentum balance equation (B.1) is given

by:

ρ

[
∂U

∂t
+ (U · ∇)U

]
+ ∇ · [pIII +Π(NS)] = 0. (C.1)

Let us consider the first term in (C.1) which can be transformed as:

ρ
∂U

∂t
= ρ

∂Uv

∂t
− κm ρ∇

(
∂ ln ρ

∂t

)
, (∵ As X and t are independent variables)

= ρ
∂Uv

∂t
+ κm

∇ρ
ρ

∂ρ

∂t
− κm∇

(
∂ρ

∂t

)
,

= ρ
∂Uv

∂t
+ κm

∇ρ
ρ

[κm∆ρ−∇ · (ρUv)]− κm∇ [κm∆ρ−∇ · (ρUv)] ,

(∵ Equation(10))

= ρ
∂Uv

∂t
+ κm

[
∇ (∇ · (ρUv))−

∇ρ
ρ

∇ · (ρUv)

]
− κ2m

[
∇∆ρ− ∇ρ

ρ
∆ρ

]
,

(C.2)

∴ ρ
∂U

∂t
= ρ

∂Uv

∂t
+ κm

[
∇ (∇ · (ρUv))−

∇ρ
ρ

∇ · (ρUv)

]
− κ2m

[
∇∆ρ− ∇ρ

ρ
∆ρ

]
. (C.3)

Similarly, the second term on L.H.S of (C.1) can be transformed into

ρ (U · ∇)U = ρ (Uv − κm ∇ ln ρ) · ∇ (Uv − κm ∇ ln ρ) ,

= ρ (Uv · ∇)Uv − ρκm (Uv · ∇)∇ ln ρ− ρκm (∇ ln ρ · ∇)Uv + ρ κ2m(∇ ln ρ · ∇)∇ ln ρ,

= ρ (Uv · ∇)Uv − κm

[
(∇ρ · ∇)Uv + ρ (Uv · ∇)

∇ρ
ρ

]
+ κ2m (∇ρ · ∇)

∇ρ
ρ
,

(C.4)

∴ ρ(U · ∇)U = ρ (Uv · ∇)Uv − κm

[
(∇ρ · ∇)Uv + ρ (Uv · ∇)

∇ρ
ρ

]
+ κ2m(∇ρ · ∇)

∇ρ
ρ
. (C.5)

The momentum balance equation in terms of the volume velocity can be

transformed to the following form:

ρ
∂Uv

∂t
+ κm

[
∇ (ρ (∇ · Uv))−∇ρ (∇ · Uv) +∇(Uv · ∇ρ)−

∇ρ
ρ

(Uv · ∇ρ)
]

− κ2m

[
∇∆ρ− ∇ρ

ρ
∆ρ

]
+ ρ(Uv · ∇)Uv − κm

[
(∇ρ · ∇)Uv + ρ(Uv · ∇)

∇ρ
ρ

]

+ κ2m(∇ρ · ∇)
∇ρ
ρ

+∇ · [pI +Πv] = 0,

or

ρ
∂Uv

∂t
+ ρ(Uv · ∇)Uv + κmρ∇ (∇ · Uv)− κm

[
∇ρ · ∇Uv − ∇̃Uv · ∇ρ

]

− κ2m

[
∇∆ρ− ∇ρ

ρ
∆ρ− (∇ρ · ∇)

∇ρ
ρ

]
+∇ · [pI +Πv] = 0,
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or

ρ
∂Uv

∂t
+ ρ(Uv · ∇)Uv − κm

[
∇ρ · ∇Uv − ∇̃Uv · ∇ρ− ρ∇ (∇ · Uv)

]

− κ2m

[
∇∆ρ− ∇ρ

ρ
∆ρ− (∇ρ · ∇)

∇ρ
ρ

]
+∇ · [pI +Πv] = 0.

Using (A.4), we observe that the divergence of ∇ρ⊗∇ρ

ρ
can be written as

∇ ·
[
∇ρ⊗ ∇ρ

ρ

]
=

∇ρ
ρ

(∇ · ∇ρ) + (∇ρ · ∇)
∇ρ
ρ

=
∇ρ
ρ

∆ρ+ (∇ρ · ∇)
∇ρ
ρ
. (C.6)

With identity given in (C.6), the final form of the re-casted momentum balance

equation is

ρ
∂Uv

∂t
+ ρ(Uv · ∇)Uv +∇ ·

[
pI +Πv + κ2m∇ ·

(
∇ρ⊗ ∇ρ

ρ

)]

− κm

[(
∇Uv − ∇̃Uv

)
· ∇ρ − ρ∇ (∇ · Uv)

]
− κ2m∇∆ρ = 0. (C.7)

Appendix D. Re-casting the energy balance equation

Consider the energy balance equation given by (3)

∂

∂t

[
1

2
ρU2 + ρ ein

]
+ ∇ ·

[
1

2
ρU2U + ρ einU

]
+ ∇ ·

[
(pIII +Π(NS)) · U

]

+ ∇ · q(NS) = 0. (D.1)

Our aim is to recast the above energy balance equation which is initially derived in

terms of the fluid mass velocity U into an equation in terms of the fluid volume velocity

Uv.

By using the expression for U2 given in (A.8), the first term in the energy balance

equation (D.1) becomes

∂

∂t

[
1

2
ρU2 + ρ ein

]
=

∂

∂t

[
1

2
ρU2

v + ρ ein − κm ρUv · ∇ ln ρ +
1

2
κ2m∇ρ · ∇ ln ρ

]
,

=
∂

∂t

[
1

2
ρU2

v + ρ ein

]
− κm

∂

∂t
[ρUv · ∇ ln ρ]

+
1

2
κ2m

∂

∂t
[∇ρ · ∇ ln ρ] . (D.2)

Consider the term ∂
∂t
[ρUv · ∇ ln ρ]

∂

∂t
[ρUv · ∇ ln ρ] =

∂(ρUv)

∂t
· ∇ ln ρ + ρUv ·

∂

∂t
∇ ln ρ,

=
∂(ρUv)

∂t
· ∇ ln ρ + ρUv · ∇

[
∂

∂t
ln ρ

]
,

=
∂(ρUv)

∂t
· ∇ ln ρ + Uv ·

[
∇

(
∂ρ

∂t

)
− ∇ ln ρ

∂ρ

∂t

]
. (D.3)
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Using (B.10), the expression for ∂
∂t
[ρUv · ∇ ln ρ] becomes

∂

∂t
[ρUv · ∇ ln ρ] =

{
− ∇ ·

[
ρUv ⊗ Uv + p I + Π(RNS)

]
− κm ∇ [∇ · (ρUv)]

+ κ2m∇∆ρ

}
· ∇ ln ρ + Uv ·

[
∇ ln ρ∇ · (ρUv) − ∇ (∇ · (ρUv))

− κm∆ρ∇ ln ρ + κm ∇∆ρ
]
. (D.4)

Expression for ∂
∂t
[∇ρ · ∇ ln ρ]:

∂

∂t
[∇ρ · ∇ ln ρ] =

(
∂

∂t
∇ρ

)
· ∇ ln ρ + ∇ρ ·

(
∂

∂t
∇ ln ρ

)

= ∇
(
∂ρ

∂t

)
· ∇ ln ρ+∇ρ · ∇

[
1

ρ

∂ρ

∂t

]
,

= ∇
(
∂ρ

∂t

)
· ∇ ln ρ+∇ρ ·

[−1

ρ2
∇ρ∂ρ

∂t
+

1

ρ
∇∂ρ

∂t

]
,

= ∇
(
∂ρ

∂t

)
· ∇ ln ρ− 1

ρ2
∇ρ · ∇ρ∂ρ

∂t
+

1

ρ
∇ρ · ∇∂ρ

∂t
,

= 2∇
(
∂ρ

∂t

)
· ∇ ln ρ− |∇ρ|2

ρ2
∂ρ

∂t
,

= 2∇ [−∇ · (ρUv) + κm∆ρ] · ∇ ln ρ− |∇ρ|2
ρ2

[−∇ · (ρUv) + κm∆ρ] .

∴

∂

∂t
[∇ρ · ∇ ln ρ] = − 2∇ [∇ · (ρUv)] · ∇ ln ρ + 2 κm∇∆ρ · ∇ ln ρ

+
|∇ρ|2
ρ2

∇ · (ρUv) − κm |∇ρ|2
ρ2

∆ρ. (D.5)

Finally, using (D.4) and (D.5) in (D.2) we have

∂

∂t

[
1

2
ρU2 + ρ ein

]
=

∂

∂t

[
1

2
ρU2

v + ρ ein

]
+ κm∇ ·

[
ρUv ⊗ Uv + p I + Π(RNS)

]
· ∇ ln ρ

+κ2m∇ [∇ · (ρUv)] · ∇ ln ρ − κm Uv ·
[
∇ ln ρ∇ · (ρUv) − ∇ (∇ · (ρUv))

]

−κ3m∇∆ρ · ∇ ln ρ + κ2m (Uv ·∆ρ∇ ln ρ) − κ2m (Uv · ∇∆ρ) − κ2m∇ [∇ · (ρUv)] · ∇ ln ρ

+ κ3m∇∆ρ · ∇ ln ρ +
1

2
κ2m

|∇ρ|2
ρ2

∇ · (ρUv) − 1

2
κ3m

|∇ρ|2
ρ2

∆ρ, (D.6)

or

∂

∂t

[
1

2
ρU2 + ρ ein

]
=

∂

∂t

[
1

2
ρU2

v + ρ ein

]
+ κm∇ ·

[
ρUv ⊗ Uv + p I + Π(RNS)

]
· ∇ ln ρ

−κm Uv ·
[
∇ ln ρ∇ · (ρUv) − ∇ (∇ · (ρUv))

]
+ κ2m (Uv ·∆ρ∇ ln ρ)

−κ2m (Uv · ∇∆ρ) +
1

2
κ2m

|∇ρ|2
ρ2

∇ · (ρUv) − 1

2
κ3m

|∇ρ|2
ρ2

∆ρ, (D.7)
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or

∂

∂t

[
1

2
ρU2 + ρ ein

]
=

∂

∂t

[
1

2
ρU2

v + ρ ein

]
− κ3m

|∇ρ|2
2 ρ2

∆ρ

+ κ2m

{
(Uv ·∆ρ∇ ln ρ) − (Uv · ∇∆ρ) +

1

2

|∇ρ|2
ρ2

∇ · (ρUv)

}

− κm

{
Uv ·

[
∇ ln ρ∇ · (ρUv) − ∇ (∇ · (ρUv))

]

− ∇ ·
[
ρUv ⊗ Uv + p I + Π(RNS)

]
· ∇ ln ρ

}
. (D.8)

Now, let us consider the second term ∇ ·
[
1
2
ρU2U + ρeinU

]
in the energy equation

(C.1). In terms of the new velocity field Uv, the expression
1
2
ρU2U+ρeinU is transformed

to
1

2
ρU2 U + ρ ein U =

1

2
ρU2

v Uv + ρ ein Uv − κm ρ ein ∇ ln ρ − κm (Uv · ∇ρ)Uv

− 1

2
κm U

2
v∇ρ − κ3m

2 ρ
|∇ρ|2∇ ln ρ + κ2m (Uv · ∇ρ)∇ ln ρ +

1

2

κ2m
ρ

|∇ρ|2 Uv. (D.9)

Furthermore, we observe that(
p I + Π(NS)

)
· U = (p I + Πv) · (Uv − κm ∇ ln ρ)

= (p I + Πv) · Uv − κm (p I + Πv) · ∇ ln ρ. (D.10)

Finally, one can write the re-casted energy balance equation using (D.8), (D.9) and

(D.10). The energy balance equation in terms of the volume velocity Uv is then,

∂

∂t

[
1

2
ρU2

v + ρ ein

]
− κm

∂

∂t
[ρUv · ∇ ln ρ] +

1

2
κ2m

∂

∂t
[∇ρ · ∇ ln ρ]

+ ∇ ·
[
1

2
ρU2

v Uv + ρ ein Uv − κm ρ ein∇ ln ρ − κm (Uv · ∇ρ)Uv − 1

2
κm U

2
v∇ρ

− κ3m
2 ρ

|∇ρ|2∇ ln ρ + κ2m (Uv · ∇ρ)∇ ln ρ +
1

2

κ2m
ρ

|∇ρ|2 Uv

]

+ ∇ ·
[
(p I + Πv) · (Uv − κm∇ ln ρ)

]
+ ∇ ·

[
q(NS)

]
= 0, (D.11)

or

∂

∂t

[
1

2
ρU2

v + ρ ein

]
+ ∇ ·

[
1

2
ρU2

v Uv + ρ ein Uv

]
+ ∇ ·

[
(p I +Πv) · Uv

]

+ ∇ ·
[
− κmΠv · ∇ ln ρ

]
+∇ ·

[
q(NS) − κm ρ ein∇ ln ρ− κm p I · ∇ ln ρ

]

+∇ ·
[
− κm (Uv · ∇ρ)Uv −

1

2
κm U

2
v∇ρ − κ3m

2 ρ
|∇ρ|2∇ ln ρ + κ2m (Uv · ∇ρ)∇ ln ρ

+
1

2

κ2m
ρ

|∇ρ|2 Uv

]
− κm

∂

∂t
[ρUv · ∇ ln ρ] +

1

2
κ2m

∂

∂t
[∇ρ · ∇ ln ρ] = 0, (D.12)

or

∂

∂t

[
1

2
ρU2

v + ρ ein

]
+ ∇ ·

[
1

2
ρU2

v Uv + ρ ein Uv

]
+ ∇ ·

[
(p I + Πv) · Uv

]
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− ∇ ·
[
κmΠv · ∇ ln ρ

]
+ ∇ ·

[
q(NS) − κm ρ ein∇ ln ρ − κm p I · ∇ ln ρ

]

+ ∇ ·
[
− κm (Uv · ∇ρ)Uv − 1

2
κm U

2
v∇ρ − κ3m

2 ρ
|∇ρ|2∇ ln ρ + κ2m (Uv · ∇ρ)∇ ln ρ

+
1

2

κ2m
ρ

|∇ρ|2 Uv

]
− κm

{
Uv ·

[
∇ ln ρ∇ · (ρUv) − ∇ (∇ · (ρUv))

]

−∇ ·
[
ρUv ⊗ Uv + p I + Π(RNS)

v

]
· ∇ ln ρ

}

+ κ2m

[
(Uv ·∆ρ∇ ln ρ)− (Uv · ∇∆ρ) +

1

2

|∇ρ|2
ρ2

∇ · (ρUv)

]
− κ3m

|∇ρ|2
2 ρ2

∆ρ = 0. (D.13)

Rearranging the terms in the above equation, we obtain the final form of the re-

casted energy balance equation as

∂

∂t

[
1

2
ρU2

v + ρ ein

]
+ ∇ ·

[
1

2
ρU2

v Uv + ρ ein Uv

]
+ ∇ ·

[
(p I + Πv) · Uv

]

−∇ ·
[
κmΠv · ∇ ln ρ

]
+ ∇ ·

[
q(NS) − κm (ρ ein ∇ ln ρ + p I · ∇ ln ρ)

]

+∇ ·
{
κm

[
− (Uv · ∇ρ)Uv − 1

2
U2
v ∇ρ

]
+ κ2m

[
(Uv · ∇ρ)∇ ln ρ +

1

2 ρ
|∇ρ|2 Uv

]

+ κ3m

[
− 1

2 ρ
|∇ρ|2∇ ln ρ

]}

+κm

{
∇ ·

[
ρUv ⊗ Uv + p I +Π(RNS)

v

]
· ∇ ln ρ

−Uv ·
[
∇ ln ρ∇ · (ρUv)−∇ (∇ · (ρUv))

]}

+ κ2m

[
(Uv ·∆ρ∇ ln ρ) − (Uv · ∇∆ρ) +

1

2

|∇ρ|2
ρ2

∇ · (ρUv)

]

+ κ3m

[
− 1

2 ρ2
|∇ρ|2∆ρ

]
= 0. (D.14)

Let us assume that

Nv1 = − (Uv · ∇ρ)Uv − 1

2
U2
v ∇ρ, (D.15)

Nv2 = (Uv · ∇ρ)∇ ln ρ +
1

2 ρ
|∇ρ|2 Uv, (D.16)

Nv3 = − 1

2 ρ
|∇ρ|2∇ ln ρ, (D.17)

Nv4 = ∇ ·
[
ρUv ⊗ Uv + p I + Π(RNS)

v

]
· ∇ ln ρ

− Uv ·
[
∇ ln ρ∇ · (ρUv) − ∇ (∇ · (ρUv))

]
, (D.18)

Nv5 = (Uv ·∆ρ∇ ln ρ) − (Uv · ∇∆ρ) +
1

2

|∇ρ|2
ρ2

∇ · (ρUv) , (D.19)

Nv6 = − 1

2 ρ2
|∇ρ|2∆ρ, (D.20)
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then the final form of the re-casted energy balance equation is given by

∂

∂t

[
1

2
ρU2

v + ρ ein

]
+ ∇ ·

[
1

2
ρU2

v Uv + ρ ein Uv

]

+ ∇ ·
[
(p I + Πv) · Uv − κm Πv · ∇ ln ρ

]

+ ∇ ·
[
q(NS) − κm

(
ρ ein ∇ ln ρ + p I · ∇ ln ρ

)]

+ ∇ ·
[
κmNv1 + κ2m Nv2 + κ3mNv3

]

+ κmNv4 + κ2mNv5 + κ3m Nv6 = 0. (D.21)
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