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ABSTRACT

Objectives: Current machine learning models aiming to predict sepsis from electronic health records (EHR) do

not account 20 for the heterogeneity of the condition despite its emerging importance in prognosis and treat-

ment. This work demonstrates the added value of stratifying the types of organ dysfunction observed in

patients who develop sepsis in the intensive care unit (ICU) in improving the ability to recognize patients at risk

of sepsis from their EHR data.

Materials and Methods: Using an ICU dataset of 13 728 records, we identify clinically significant sepsis subpo-

pulations with distinct organ dysfunction patterns. We perform classification experiments with random forest,

gradient boost trees, and support vector machines, using the identified subpopulations to distinguish patients

who develop sepsis in the ICU from those who do not.

Results: The classification results show that features selected using sepsis subpopulations as background

knowledge yield a superior performance in distinguishing septic from non-septic patients regardless of the clas-

sification model used. The improved performance is especially pronounced in specificity, which is a current bot-

tleneck in sepsis prediction machine learning models.

Conclusion: Our findings can steer machine learning efforts toward more personalized models for complex con-

ditions including sepsis.

Key words: sepsis, sepsis subtypes, sepsis prediction, machine learning, artificial intelligence in medicine

INTRODUCTION

Sepsis, defined by a life-threatening response to infection and potentially

leading to multiple organ failure, is 1 of the most significant causes of

worldwide morbidity and mortality.1 Sepsis is implicated in 6 million

deaths annually with costs totaling $24 billion in the USA alone.2

Early identification of sepsis is a crucial factor in improving out-

comes.3–5 Yet, traditional score-based screening tools lack the spe-

cificity needed to identify and elevate the care of potentially septic

patients.6–10 In response, machine learning (ML) algorithms have

been developed to recognize sepsis onset from vital signs data.

A select number of ML models have shown improved predictions by

taking advantage of computational power and large-scale data min-

ing11–13 or attempting to optimize the feature set required for pre-

diction.14,15 Nevertheless, current ML models have shown mixed
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results reflecting the heterogeneity of sepsis,16–18 populations,19 and

methodologies.20

The objective of this paper is to highlight the importance of clas-

sifying the clinical heterogeneity of sepsis in enhancing our ability to

anticipate onset, with focus on sepsis developed in the ICU. By ana-

lyzing routine clinical data of patients who develop sepsis in the ICU,

we show that: 1) the clinical presentation of sepsis is underpinned by

distinct combinations of dysfunction patterns that are mostly inde-

pendent of etiology, 2) these patterns exhibit associations with dis-

tinct variations in vital signs and laboratory tests obtained within 24

hours of ICU admission, 3) using the relevant vitals and tests for each

pattern as features in classification experiments produces highly sen-

sitive and specific predictions regardless of the classification algo-

rithm used, reflecting the relevance of the features to the clinical

outcome. The results advocate that future sepsis prediction ML mod-

els can be guided toward better discriminative power by reformulat-

ing the sepsis prediction task to target the recognition of the different

clinical manifestations of sepsis as opposed to the classic definitions

currently in use. Such task will prioritize the features used for predic-

tion using preprocessing steps that map patients’ routinely collected

clinical data to previously derived subpopulations. Although this

work does not aim to devise a sepsis prediction algorithm, it advo-

cates a methodological shift in ML sepsis prediction supported by re-

cent findings of reproducible clinical phenotypes of sepsis.21

MATERIALS AND METHODS

Data and preprocessing
We used the data of ICU stays between 2001 and 2012 obtained

from the anonymized Medical Information Mart for Intensive Care

III (MIMICIII) database.22 We extracted ICU stays of adults scoring

a Sequential Organ Failure (SOFA) severity score � 2 with neither a

primary sepsis diagnosis or suspected sepsis recorded in the ICU ad-

mission notes; we further processed the data to exclude the following:

stays shorter than 24 hours (1756 records), records with incomplete

administrative information (581 records), and records with more

than 15% missing vital signs as they can lead to inadequate imputa-

tion (3962 records). We used pattern matching to identify paragraphs

within the admission notes containing mentions of sepsis. Records

with no mention of sepsis were automatically included in our cohort

(7823 records), while the extracted paragraphs of records with sepsis

mentions (27 041 paragraphs) were manually validated over a 1-year

period to exclude records with ambiguous mentions or suspected or

confirmed sepsis. The final dataset (SQL scripts for recreating the

dataset using the MIMICIII database are available at https://github.

com/KHP\-Informatics/sepsis) contained 13 728 ICU stays, with

31% (4256) of the records having the primary outcome of sepsis

(ICD-9 codes 995.91, 995.92, 785.52) (1976) in the discharge

records or satisfying the Third International Definition of Sepsis and

Septic Shock (Sepsis-3) of a life-threatening organ dysfunction (iden-

tified as a SOFA score � 2) caused by a dysregulated host response to

infection and confirmed by positive cultures (2280 records).8

We extracted admission details, comorbidity indices, etiology

details, and the precalculated respiratory, cardiovascular, renal, he-

patic, central nervous system, and coagulation subcomponents of

the SOFA score (Supplementary Appendix A). We calculated 63 vi-

tals and laboratory tests aggregated over the first 24 hours of admis-

sion (Supplementary Appendix B). As in similar studies,23 we

extended the window forward by 24 hours for the infrequently sam-

pled laboratory measurements to improve data completion. We im-

puted missing data using k-nearest neighbor (k¼7).

Figure 1. The overall flow of subtype-based sepsis identification.
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Experimental design
Figure 1 shows our approach. The idea is to cluster the ICU records

with confirmed sepsis using the SOFA subcomponents to uncover

subpopulations with distinct organ dysfunction patterns and then to

perform feature selection on the individual clusters to identify sub-

sets of the 63 vitals with the highest variance in each subpopulation.

We compare classification performance with sepsis diagnosis as out-

come using 2 feature sets selected from: a) the entire septic popula-

tion, and b) individual subpopulations.

Sepsis subpopulations
We used self-organization maps (SOM)24 and clustering to obtain a

2-dimensional visualization of the confirmed sepsis records based on

organ dysfunction patterns as done in.16 A SOM is a powerful ML

model that maps highly dimensional data into a 2-dimensional grid

of neurons, each corresponding to records with extremely similar

features. We trained a 17x17 SOM to aggregate the 4256 records

into 289 neurons—each representing 5–35 ICU stays extremely simi-

lar in organ dysfunction types. SOM parameters were chosen heuris-

tically by minimizing the number of empty nodes and balancing the

number of records mapping to each node.25

Consistent with existing biomedical literature citing SOM superi-

ority,26–30 we did not compare SOM clustering with other techniques.

As our aim is to use the SOM-based similarity to discover any under-

lying clusters, we used a distance-based clustering, mainly hierarchi-

cal, to minimize the within-cluster variance in SOM-generated

distances. We determined 4 as the optimal number of clusters by ex-

amining hierarchical clustering dendograms over 1000 iterations. We

used the R SOM package Kohonen31 and NBClust32 for clustering.

We report summary statistics as median/interquartile range or count/

percentage, as appropriate. We compared the central tendencies of the

features using the Kruskal-Wallis test, using a cutoff value of P¼ .01.

Feature selection
Using the 63 predictors and 4256 records of diagnosed sepsis, we

performed feature selection to identify the most relevant features for

each subpopulation. We used Random Forests (RF)33 with condi-

tional permutation variable importance, to account for spurious cor-

relations among predictors.34,35 For each RF, the target cluster

assignment designated positive outcomes (ie, records with class label

1 for RF1). Additionally, we performed feature selection using all

13 728 records with sepsis diagnosis as outcome.

We trained each RF over 1000 bootstrapped iterations to avoid

overfitting and computed the importance of the 63 predictors after

each. To achieve robustness against statistical fluctuations, the best fea-

tures for every RF were the top quartile of a rank-invariant tally for the

Figure 2. (A) The resulting Kohonen Self-Organizing Map (SOM) depicting overall clusters—color-coded and separated by black lines. Each SOM node contains

5–35 intensive care unit (ICU) stays extremely similar to each other. (D) Shows those same clusters but with depictions of individual sequential organ failure

(SOFA) subscores of the nodes within each cluster. Within each node, the given value is represented by the darkness of the color in the node. Each node is

shaded from white to red, where darker colors represent higher average values (ie, higher SOFA subscores) among the ICU stays in the given node. The distribu-

tion of the SOFA subcomponents shows clear distinctions among the 4 clusters. The patterns visible in (B) suggest that the 4 clusters represent: 1) liver disease,

2) cardiogenic dysfunction with elevated creatinine, 3) minimal organ dysfunction, and 4) cardiogenic dysfunction with hypoxemia and altered mental status.
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number of iterations a feature’s importance was above the mean im-

portance. The resulting feature sets are FS1–FS4 corresponding to each

subpopulation and FSS for the entire septic population (Figure 2a–e).

Sepsis identification
Using the 13 728 ICU records (9472 patients without sepsis and

4256 with sepsis), we performed 2 binary classification tasks with

sepsis diagnosis as outcome. The first task (Class-NoSub) uses the

feature set selected using the entire septic population (FSS), while

the second (Class-Sub) uses the combined feature sets discovered

from the septic subpopulations (FS1–FS4).

Each of the classification tasks was implemented using 3 differ-

ent algorithms via the R package MLR36: Random forest, eXtreme

gradient boosting (XGBoost) and support vector machines (SVM)

using a Gaussian kernel to accommodate nonlinearity in the feature

space. We optimized each classifier’s parameters through a boot-

strapped grid search over the respective classifier’s hyperparameter

space. All classifiers were trained over 1000 iterations of a 10-fold

cross-validation.

RESULTS

The clustering procedure uncovered 4 subpopulations with distinct or-

gan dysfunction patterns in septic patients in the MIMICIII database

(Figure 2c). Further characteristics of the 4 clusters are given in Table 1.

The clusters have been found to represent (1) liver disease, (2) cardio-

genic and renal dysfunction, (3) minimal organ dysfunction, and (4)

cardiogenic dysfunction with hypoxemia and altered mental status.

The subpopulations identified are mostly independent of the origins of

sepsis, with etiology being widely distributed across clusters. All predic-

tors showed significant difference across clusters (all P values < .01).

The identified feature sets FS1–FS4 exhibit direct relevance to

the types of organ dysfunction prevalent in the corresponding clus-

ter (detailed in Figure 3a–e). In contrast, the feature set FSS includes

a subset of the combined FS1–FS4 but largely consists of general

signs of deterioration (eg, systolic blood pressure, white blood cell

count) which have been found to be good indicators of acuity but

nondiscriminative between septic and nonseptic patients.37 The fea-

ture selection performance (Figure 3f) indicates the promising con-

tribution of the respective high-resolution feature sets in reducing

the error rates of their respective classifiers compared to the low-

resolution features.

The classification results comparing Class-Sub and Class-NoSub

using RFs, SVMs, and XGBoost are presented in Table 2. As the table

shows, while XGBoost outperformed other algorithms in all cases, all

classifiers showed notably improved performance in the Class-Sub

classification task (using the combined feature set FS1–FS4).

The improved performance is especially pronounced in the specificity

of predictions in which classification without subpopulation features

consistently underperforms by not distinguishing septic patients from

those with inflammations and comorbidities—a general bottleneck in

ML sepsis prediction.11

DISCUSSION

The principle goal of this work is to evaluate the importance of ac-

counting for the heterogeneity of sepsis in improving early diagnosis.

Current ML prediction models operate by linking vital signs to sepsis

without acknowledging the heterogeneity of the condition. The subpo-

pulations we derived here exhibit distinct patterns of organ dysfunc-

tion and outcome distributions and are mostly independent of severity

or etiology of sepsis. Instead, there exist significant correlations in each

sepsis subpopulation between specific combinations of vital sign values

Table 1. Cluster Descriptive Statistics of the clusters formed using 31% of the records with an ICD-9 diagnosis of sepsis

Liver Disease Cardio & Renal

Dysfunction

Minimal Organ

Dysfunction

Cardio, Resp.

& CNS Dysfunction

All Septic

Population

Count 983 1441 953 879 4256

Age (IQR) 62 (51,72) 69 (59,79.1) 69 (57,81) 76 (68,86) 68 (58,81)

Female 43% (412) 39% (533) 39% (371) 46% (404) 40% (1720)

Total SOFA (IQR) 11.2 (8.5,12.3) 11.8 (11.1,16.9) 6.7 (3.4,8.2) 12.1 (9.5,15.7) 11.1 (4,15)

Pulmonary SOFA 0.3 (0,0.6) 0.8 (0,1.2) 1.1 (0,2.4) 3.2 (2,4) 1.2 (0,3)

Coagulation SOFA 3.1 (1.8,4) 1.5 (0,2.1) 1 (0,2.1) 0.5 (0,1) 1.53 (0,2.9)

Hepatic SOFA 3.3 (2.5,4) 0.7 (0,1.1) 0.7 (0,1.1) 0.4 (0,1) 0.9 (0,1.2)

Cardio SOFA 0.8 (0,2) 3.5 (3,4) 1.8 (0,4) 3.8 (3,4) 2.9 (0,4)

CNS SOFA 0.3 (0,1) 0.6 (0,1) 0.9 (0,2) 3 (0,4) 0.7 (0,2)

Renal SOFA 1.7 (0,2) 3.1 (1,4) 1.4 (0,2.1) 1.3 (0,2) 2.6 (1,3.1)

Comorbidity Elixhauser Index (IQR) 12.4 (5,18.9) 16 (8.7,21.8) 7.3 (5,16) 14 (6,19) 14.1 (6.6,21)

30-day Mortality 28% (220) 55% (724) 25% (238) 37% (325) 35% (1507)

Length of stay (IQR) 4.3 (1.1,4.8) 5.6 (2,6.1) 3.8 (1.8,4.2) 8.5(3.2,11.9) 5.4 (1.8,6.2)

Etiology (%)

Pneumonia 30% (295) 31% (447) 35% (334) 43% (379) 38% (1617)

Urinary Tract 21% (206) 32% (461) 27% (257) 13% (115) 23% (979)

Abdominal 9% (88) 8% (115) 7% (67) 11% (98) 8% (341)

Biliary 12% (118) 2% (29) 2% (19) 2% (19) 3% (128)

Soft Tissue 12% (118) 15% (216) 11% (104) 9% (80) 11% (468)

Other 16% (158) 12% (173) 18% (172) 21% (186) 17% (723)

Abbreviations: CNS, central nervous system; IQR, interquartile range; SOFA, sequential organ failure.

Comparing the central tendencies using the Kruskal–Wallis test and found that the clusters significantly differ in length of stay (P value < .01), Elixhauser-

Quan comorbidity score (P value < .01) and in-hospital 30-day mortality (P value < .01). Etiology values showed no significant differences (P value � .01)
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and sepsis diagnoses. Because the results show the superiority of

subpopulation-specific features in discriminating septic from nonseptic

patients, further research in early sepsis diagnosis can improve predic-

tion quality by focusing on the recognition of the patterns of vital sign

changes of specific relevance to sepsis subpopulations as opposed to

the generic features currently used in ML prediction models.

It is important to place our findings in the context of the goal of

this work: The clusters identified are representative of ICU admis-

sions in a single hospital and are only used to support our central hy-

pothesis—not to suggest the discovery of new sepsis subtypes.

Similarly, although the experiments show an improved predictive

power, they do not constitute a new sepsis prediction algorithm;

Figure 3. Feature selection results: (A) FS1 comprises high-profile hepatic and coagulation indicators (including bilirubin, Alanine transaminase [ALT], and the Interna-

tional Normalised Ratio [INR]); (B) FS2 features mainly comprise cardiovascular (troponin, lactate, d-dimer) and renal (creatinine, potassium, and urea) indicators; (C)

FS3 features are relevant to all SOFA subcomponents, reflecting the heterogeneity of the minimal organ dysfunction; (D) FS4 features are of respiratory (CO2, CaO2, and

PO2), and cardiovascular relevance (including mean arterial pressure [MAP]). (E) In contrast, FSS includes a portion FS1–FS4, but largely consists of general signs of de-

terioration (eg, systolic blood pressure, temperature, white blood cell count [WBC]), which have been found to be good indicators of mortality but nondiscriminative be-

tween septic and nonseptic patients.31 (F) shows the out-bag-error rates over 1000 iterations of bootstrapped feature selection.
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doing the latter requires examining the temporal evolution of

predictors, which we chose to exclude from our evaluations as it

adds a level of complexity not needed to evaluate our premise. Nev-

ertheless, by choosing the most abnormal value for each variable,

we single out the maximal physiological derangement connecting

the given feature to the outcome. In addition, our findings are not

intended to discover new rules for manual scoring systems, but to di-

rect future development of EHR-integrated decision support tools.

Besides early diagnosis, the direction provided by the subpopula-

tions can be further developed to issue justifications and explana-

tions to clinicians including embedded visualizations.

The particular nature of MIMICIII renders the results specific

to sepsis developed in the ICU. While early diagnosis of sepsis in

ICU settings is an important problem,38 our findings have not been

verified in non-ICU wards where more than 50% of sepsis cases are

identified. However, by obtaining aggregate values of patient vitals

over the first 24 hours of ICU admission, we aimed to obtain a clini-

cal picture similar to the worst value obtained over the last hours in

hospital wards. Nonetheless, our ongoing work targets the generali-

zation of the model to non-ICU settings.

Finally, suspicion of sepsis, as defined by the co-occurrence of

culture and antibiotic, is systematically underrepresented in a large

portion of MIMICIII records.15 Therefore, although ICD codes do

not constitute a perfect representation of the true incidence of sepsis

in EHR records,39 we used them in conjunction with culture results

to identify septic records.

CONCLUSIONS

Current sepsis prediction tools are yet to take into account the known

heterogeneity of the condition. Our study found that accounting for

clinically meaningful subpopulations within a large ICU sepsis cohort

highly improved predictive power. The findings of our work can guide

future sepsis prediction toward more accurate and explainable mod-

els. However, more multi-center studies are warranted on the etiologi-

cal and vital variations within septic patients, and for evaluation.
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