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The Lagrangian mass transport by non-dissipating surface gravity wavepackets consists of
the Stokes drift and the wave-induced return flow. We examine how directional spread-
ing and density stratification affect this mass transport for an isolated nondissipating
wavepacket in deep water using a perturbation expansion. For an unstratified ocean,
we show that the net displacement by the return flow is finite, negative, the same at
all vertical levels and inversely proportional to the depth for spanwise-infinite packets
representing unidirectional (2D) seas, but zero for spanwise-localised packets representing
directionally-spread seas (3D). We resolve this 2D-3D difference by demonstrating that
a transition between 2D-like (finite) and 3D-like (zero) displacement occurs on a time
scale inversely proportional to the degree of directional spreading. For a stratified ocean,
we show that in 2D the net displacement profile by the return flow oscillates slowly
with depth, with a wavelength dependent on the ratio of buoyancy frequency to the
surface wave group velocity, and infinite displacements are predicted when the surface
wavepacket resonantly excites internal waves. In 3D, the net displacement remains zero in
the presence of stratification, but finite-time displacements may be appreciably altered.

1. Introduction

The periodic motion of particles beneath surface gravity waves is subject to a small
Lagrangian-mean velocity in the direction of wave propagation, a phenomenon known
as Stokes drift (Stokes 1847). In the ocean, this net motion provides a significant
contribution to the trajectories of drifters (Röhrs et al. 2012), and must be accounted
for in search and recovery missions such as for the 2014 MH370 airplane crash in the
Indian Ocean (Trinanes et al. 2016). Stokes drift can be key in the local modelling of oil
spills (Christensen & Terrile 2009; Drivdal et al. 2014; Jones et al. 2016) and plays a
potentially important yet largely unexplored role in the near-surface mass transport and
dispersion of plastic pollution (e.g. Lebreton et al. (2018)).

Realistic sea states do not consist of regular waves but are made up from wavepackets
(Longuet-Higgins 1984), a feature which is equivalent to a linear superposition of waves
with different wavenumbers and frequencies. Since Stokes drift depends on the square of
the local wave amplitude, its associated mass transport becomes horizontally divergent
on the packet scale. Longuet-Higgins & Stewart (1962) demonstrated that a deep return
flow forms in response to this divergence. The total Lagrangian velocity is given by the
sum of the Stokes drift and the induced return flow (uL = u2+uS, e.g. Bühler (2014)). For
surface wavepackets in infinitely deep water, the Lagrangian-mean mass transport is zero
(e.g. McIntyre (1980)). The Stokes drift is localised near the surface while the return flow



2 C. Higgins, T. S. van den Bremer and J. Vanneste

is more persistent with depth, so that packets induce a depth-dependent mass transport
(e.g. van den Bremer & Taylor (2016)). Due to directional spreading of the underlying
wave spectrum about a peak wavenumber, wavepackets frequently exhibit localisation
in the spanwise direction, which may considerably reduce the magnitude of the return
flow and its associated displacement (e.g. van den Bremer & Taylor (2015)). Recently,
Haney & Young (2017) examined the propagation of a wavepacket on a stratified ocean,
showing that density stratification significantly distorts the return flow.

In this paper, we investigate the Lagrangian transport associated with an isolated
spanwise-localised (or 3D) non-dissipating surface gravity wavepacket, considering un-
stratified and stratified oceans in turn, and focussing on the net displacements induced
by the return flow. We emphasise that the model of an isolated wavepacket we consider is
mainly of theoretical interest and not directly applicable to the real ocean. It is intended
to provide general insight into subtle features of the displacements and potentially provide
a benchmark against which to test the codes of more realistic sea-state models.

We assume throughout that directional spreading is relatively weak, so that the
packet’s width is greater than or equal to its length in the direction of propagation.
We examine wavetrains which are quasi-monochromatic, that is, with narrow-banded
spectra. We also assume the surface waves have wavelengths much smaller than the
water depth (i.e. are deep-water waves). We do not place such a restriction on the
packet’s characteristic length scale relative to the depth, and thus on the scale of the
return flow. For an unstratified ocean, we use perturbation methods to demonstrate that
the net displacement of particles by the return flow is finite and depth-independent for a
spanwise-infinite wavepacket (2D), but vanishes altogether for a spanwise-localised (3D)
packet. In doing so, we correct erroneous numerical predictions by van den Bremer &
Taylor (2016) of more complex 2D displacement profiles and by van den Bremer & Taylor
(2015) of small yet non-zero displacements in 3D. We resolve this contrast between 2D and
3D by exploring displacements over finite time intervals. While displacement underneath
a 3D wavepacket is initially 2D-like (increasing in magnitude), an opposing part of the
return flow brings a particle back to its original position at later times. This opposing
part of the flow forms only in 3D, when the flow may return around as well as beneath
the packet. Reversal of the particle displacement occurs at a time that is proportional to
the packet’s width, hence much later for almost-2D packets.

For a stratified ocean, we show that the net displacement profile by the return flow is
a slowly oscillatory function of depth in 2D, with a wavelength depending on the ratio of
buoyancy frequency N to the surface wave group velocity cg,0. Large net displacements
are predicted when the wavenumber N/cg,0 is close to an integer multiple of π/d (where
d is the ocean depth), corresponding to an exact resonance between cg,0 and the phase
velocity of an internal wave with zero horizontal wavenumber. In 3D, the net displacement
remains zero even in the presence of stratification.

This paper is laid out as follows. First, §2 examines the unstratified case, distinguishing
net displacement in 2D (§2.2), 3D (§2.3), and studying the transition between them over
finite times (§2.4). Second, §3 addresses the stratified case. We examine the implications
of our results in §4 and draw conclusions. Appendix A explores the influence of the
second-order set-down of the free surface on net displacement, and appendix B considers
the otherwise neglected impact of leading-order wave dispersion.
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2. Unstratified flow

2.1. Governing equations

We begin by considering the unstratified case. A three-dimensional body of water
of depth d and infinite lateral extent is assumed, with Cartesian coordinates (x,y,z),
where x and y are the horizontal coordinates, and z the vertical coordinate measured
from the undisturbed water level upwards. Inviscid, incompressible and irrotational flow
is assumed; hence the velocity can be written as the gradient of the velocity potential
u = ∇φ. In addition to the no-flow condition at the bottom (∂zφ = 0 at z = −d),
the governing equation in the fluid interior (Laplace) and the kinematic and dynamic
boundary conditions are(
∂2x + ∂2y + ∂2z

)
φ = 0, ∂zφ |z=h = ∂th+∇Hφ|z=h·∇Hh, ∂tφ|z=h+gh+

1

2
|∇φ|2 |z=h = 0,

(2.1a,b,c)
where the free surface elevation is denoted by z = h(x, y, t), g is acceleration due to
gravity, and ∇H ≡ (∂x, ∂y, 0) is the horizontal gradient.

The wave amplitude is assumed small: α ≡ a0k0 � 1, where a0 is the peak amplitude
of the surface elevation and k0 the wavenumber of the carrier wave. We solve the set (2.1)
using a Stokes expansion and consider the first two orders, so that φ = φ1 + φ2 + ... and
h = h1 + h2 + ..., with the subscript denoting the order in α.

2.1.1. First-order solutions: O(α)

We assume that the ocean is deep with respect to the waves (k0d � 1), and that the
packet is quasi-monochromatic, weakly localised in the x and y directions, and propagates
along the x-axis, so that the first-order solution takes the form

h1 = Re
[
A0(εx̃, εRy, ε2t)eiθ(x,t)

]
+O(αε), (2.2a)

φ1 = Re

[
− iω0

k0
A0(εx̃, εRy, ε2t)eiθ(x,t)ek0z

]
+O(αε), (2.2b)

where θ = k0x − ω0t with ω0 =
√
gk0 the angular frequency, and x̃ ≡ x − cg,0t is the

coordinate in a frame moving at the group velocity cg,0 = ω0/(2k0). The amplitude scale
a0 is taken as the envelope maximum sup |A0|. Wavepacket scales are captured by the
bandwidth parameter ε ≡ (2k0σx)−1 � 1 and aspect ratio R ≡ σx/σy, where σx and
σy are the characteristic packet scales in x (length) and in y (width), respectively. The
limit ε → 0 at fixed R recovers the case of a periodic wave. Throughout this paper, we
consider only 0 6 R 6 1, so that packets are never longer than they are wide; a 2D packet
corresponds to R = 0 and a round packet to R = 1. The O (αε) terms in (2.2a,b) are not
needed to compute the leading-order wave-induced forcing, but must be examined when
assessing effects of wave dispersion arising on a timescale ε2t = O(1) (see appendix B).

The Stokes drift is a wave property in the standard sense that it can be calculated
directly from the linear solutions (2.2) as

uS = ∆x1 ·∇u1 = k0

(
ω0|A0|2, 0,−

3

2
εcg,0∂x̃|A0|2

)
e2k0z +O(α2ε2), (2.3)

where the overbar represents an average over the wave phase, and ∆x1 =
∫
u1dt.

2.1.2. Second-order solutions: O(α2)

The return flow is found by solving the wave-averaged governing equations at second
order in steepness. Expanding (2.1b,c) about the undisturbed level z = 0 up to quadratic



4 C. Higgins, T. S. van den Bremer and J. Vanneste

terms and wave-averaging yields forcing equations for the Eulerian-mean flow and wave-
averaged free surface (cf. Longuet-Higgins & Stewart (1962); McAllister et al. (2018)),(

1

g
∂2t + ∂z

)
φ2 = ∇H · (u1h1)− 1

g
∂t

(
h1∂tzφ1 +

1

2
|∇φ1|2

) ∣∣∣∣
z=0

, (2.4)

h2 = −1

g

(
∂tφ2 +

(
h1∂tzφ1 +

1

2
|∇φ1|2

)) ∣∣∣∣
z=0

, (2.5)

where we focus on mean quantities only. The ∂th2 term in (2.1b) has been eliminated
using ∂t(2.1c). The first term on the right of (2.4) is the forcing due to the horizontal
divergence of the transport associated with the waves. In the Eulerian-mean description
used here, the transport is confined to the layer −h 6 z 6 h spanning from the troughs
to the crests of the waves, and is given by u1h1 = M , say, to leading order. In the
Lagrangian-mean description it is distributed over a deeper layer of depth ∼ k−10 as the
Stokes drift, again to leading order. Thus

M ≡ (u1h1) =

∫ 0

−d
uSdz. (2.6)

We refer to M in this paper as the Stokes transport. The second term on the right-
hand side of (2.4) can be understood as the effect of the set-down of the wave-averaged
free surface h2 on the return flow. In deep water (k0d � 1), this set-down does
not contribute to the forcing of the return flow to leading order, because the linear
polarisation relationships for deep-water waves imply that(

h1∂tzφ1 +
1

2
|∇φ1|2

)
= 0 at z = 0, (2.7)

to leading order, as can be seen by substitution from (2.2) after setting ε = 0. Fur-
thermore, the double time-derivative on the left of (2.4) can be ignored when k0d � 1,
so the return flow arises solely from the divergence of the Stokes transport (a rigid-lid
approximation, see also the discussion in appendix A). Equation (2.4) then simplifies to

∂zφ2 (x̃, y, 0) = ∂x̃M +O
(
α2ε2

)
, (2.8)

where M is the x-component of M .

2.2. Unstratified flow in 2D

For two-dimensional flows induced by spanwise-infinite wavepackets, we make use of
the streamfunction ψ2, implicitly defined by u2 = ∇ × (ψ2ŷ) and satisfying a Laplace
boundary-value problem. The surface value of the streamfunction is the Stokes transport,
and the ocean floor is a streamline:(

∂2x̃ + ∂2z
)
ψ2 = 0, ψ2 (x̃, 0) = M, ψ2 (x̃,−d) = 0. (2.9a,b,c)

We are interested in the net (or long-time) displacement by the return flow, defined at
any fixed value of x by

∆x =

∫ ∞
−∞

u2dt =
1

cg,0

∫ ∞
−∞

u2dx̃, (2.10)

where the second equality makes use of the translating reference frame of the packet.
We can compute the net displacement (2.10) without explicitly evaluating ψ2. First, we
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integrate (2.9) over all x̃, noting that the vertical velocity ∂x̃ψ2 is zero at infinity, which
reduces (2.9a) to the ordinary differential equation

d2

dz2

∫ ∞
−∞

ψ2dx̃ = 0, with

∫ ∞
−∞

ψ2dx̃

∣∣∣∣
z=0

=

∫ ∞
−∞

Mdx̃,

∫ ∞
−∞

ψ2dx̃

∣∣∣∣
z=−d

= 0,

(2.11a,b,c)
as boundary conditions. The solution is∫ ∞

−∞
ψ2 (x̃, z) dx̃ =

(
z + d

d

)∫ ∞
−∞

Mdx̃, (2.12)

and the net displacement is deduced by dividing by cg,0 and taking the negative z-
derivative (using (2.10) and u2 = −∂zψ2),

∆x = − 1

cg,0
∂z

∫ ∞
−∞

ψ2 (x̃, z) dx̃ = − 1

cg,0d

∫ ∞
−∞

Mdx̃. (2.13)

We thus obtain the perhaps surprising result that the net displacement by the return
flow is independent of depth. The displacement is finite and negative, unless the ocean
depth is truly infinite (not just k0d� 1), when it goes to zero. Note that (2.13) is valid
for any narrow-banded, unidirectional Stokes transport M .

The net Lagrangian displacement ∆xL ≡ ∆x+∆xS is depth-dependent, and is obtained
by integrating (2.3) with respect to time and adding to (2.13),

∆xL =
α2
√
π

k0

(
2k0σxe

2k0z − σx
d

)
, (2.14)

where we have assumed a Gaussian packet A0 = a0 exp
(
−x̃2/(2σ2

x)
)
, resulting in the

Stokes transport M = ω0a
2
0 exp

(
−x̃2/σ2

x

)
/2, and α = a0k0 denotes wave steepness, as

before. Lagrangian particles are displaced forwards above a certain depth and rearwards
beneath it. Depth-integrating (2.14) from −d to 0 gives the total volume transported by
the Lagrangian flow, which vanishes in the limit k0d� 1 considered here. Whenever we
assume Gaussian packets, displacements scaled by α2

√
π/k0 will be denoted by a star,

∆x∗ ≡ k0∆x/(α2
√
π), ∆x∗S ≡ k0∆xS/(α

2
√
π), ∆x∗L ≡ k0∆xL/(α

2
√
π),

(2.15a,b,c)
so that ∆x∗ = −1/d∗ with d∗ = d/σx.

2.3. Unstratified flow in 3D

In 3D, we evaluate the net displacement in two different ways. First, we use a double
Fourier transform in x̃ and y to obtain the potential

φ2(x̃, y, z) =
1

4π2
Re

∫∫
R2

ikM̂√
k2 + l2

cosh((z + d)
√
k2 + l2)

sinh(d
√
k2 + l2)

eikx̃eilydkdl, (2.16)

where M̂(k, l) is the Fourier transform of M(x̃, y). To find the net displacement, we take
the x-derivative of (2.16) to obtain u2 and integrate over all time (here x̃), resulting in
a delta-function in k. This forces the integral to evaluate to zero (unless l = 0):

∆x = − 1

2πcg,0
Re

∫∫
R2

δ(k)
k2M̂√
k2 + l2

cosh((z + d)
√
k2 + l2)

sinh(d
√
k2 + l2)

eilydkdl = 0. (2.17)

This result is in stark contrast with the negative, depth-independent net displacement in
2D (2.13). Second, we can also obtain this result from irrotationality of the return flow,

∂yw2 = ∂zv2, ∂zu2 = ∂xw2, ∂yu2 = ∂xv2. (2.18a,b,c)
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(a) (b)

Figure 1. Scaled finite-time displacement at various depths, obtained from numerical
integration of (2.23). Solid lines correspond to a 3D flow with R = σx/σy = 1/3, and the
dashed lines to a 2D flow (R = 0). Panel (a) shows the displacement for a shallower return flow
(d∗ = 0.5, on the left), and panel (b) for a deeper return flow (d∗ = 5, on the right).

Integrating (2.18b,c) over all time (equivalently, x̃), and assuming the velocity compo-
nents v2 and w2 decay far from the packet (|x̃| → ∞), we obtain the conditions

∂z∆x = 0, ∂y∆x = 0, (2.19a,b)

which together imply the net displacement ∆x is at most a constant. As we also require
the flow to decay as |y| → ∞, we immediately obtain the result that ∆x = 0.

Physical insight into this 2D-3D contrast may be obtained from mass balance argu-
ments. Depth-integrating the incompressibility condition (∇ · u2 = 0), and using (2.6)
and (2.8), we obtain in 3D

∂x̃

∫ 0

−d
(u2 + uS) dz = −∂y

∫ 0

−d
v2dz, (2.20)

where we have also used the boundary condition for w2 at the bottom and rewritten M as
the vertical integral of the Stokes drift, as in (2.6). Thus at each time t, the divergence of
the Lagrangian transport in the propagation direction is counterbalanced by a gradient
of transport in the y direction. In fact, the yz-area integral of the Lagrangian velocity is
zero at each t, which may be seen by y-integrating (2.20) and again noting the decay at
large |x̃| and |y|. Despite the net return-flow displacement ∆x being zero at any point, its
yz-area integral must balance the yz-area integral of the Stokes drift displacement, which
is nonzero since the Stokes drift is depth-limited and inherits the envelope decay of the
packet, decaying rapidly in both y and z. Mathematically, the time and area integrals do
not commute – to put it more starkly,

∫ ∫
∆xdydz is essentially zero times infinity, hence

undefined. This result is independent of the functional form of M . We will now explore
displacements over finite time intervals.

2.4. Finite-time displacement and the 2D-3D transition

We define the symmetric finite-time return-flow displacement (finite-time displace-
ment, for brevity) as the following symmetric time integral evaluated at x = y = 0 over
the time interval [−tI, tI]:

∆x (tI, z, d) =

∫ tI

−tI
u2dt =

1

cg,0

∫ cg,0tI

−cg,0tI
u2dx̃, (2.21)
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thereby examining a particle underneath the centre of the packet at t = 0. We display
the arguments (tI, z, d) on the left of (2.21) to distinguish the finite-time displacement
from its long-time limit, denoted as before by ∆x without arguments. Recall that the
long-time limit ∆x has no z-dependence, either in 3D when it is zero at each (y, z), or in
2D when it is a nonzero constant. In this section we choose the Stokes transport M , and
thereby its Fourier transform M̂ , to be Gaussian,

M =
ω0a

2
0

2
e−x̃

2/σ2
xe−y

2/σ2
y , M̂ =

ω0a
2
0σxσyπ

2
e−k

2σ2
x/4e−l

2σ2
y/4. (2.22a,b)

Differentiating (2.16) with respect to x̃ to obtain u2 and integrating as in (2.21), we
obtain after moving to the nondimensional variables µ ≡ kcg,0tI and λ ≡ lσy,

∆x∗ (τ, z∗, R, d∗) =
−1

2π3/2τ
Re

∫∫
R2

µ sin (µ)√
µ2 + (Rτ)2λ2

e−µ
2/(4τ2)e−λ

2/4

×
cosh

(
(z∗ + d∗)

√
µ2 + (Rτ)2λ2/τ

)
sinh

(
d∗
√
µ2 + (Rτ)2λ2/τ

) dµdλ, (2.23)

where we have replaced z by z∗ ≡ z/σx, d by d∗ ≡ d/σx, and tI by τ ≡ cg,0tI/σx, i.e.,
the half-interval tI scaled by the packet translation time σx/cg,0. As before, the aspect
ratio R ≡ σx/σy so that R→ 0 corresponds to 2D; and ∆x∗ is scaled as in (2.15a).

Figure 1 shows results obtained by numerical integration of (2.23) for particles at
various depths in a 3D flow (R = 1/3), and in a 2D flow (R = 0). We plot the scaled
finite-time return flow displacement d∗∆x∗ (τ,R, z∗, d∗) (for brevity, we refer to this as
the scaled finite-time displacement). The τ -axis is logarithmic to show the behaviour
for very small and very large τ . Behaviour for small τ is 2D-like, while for large τ the
continuous lines (3D) tend towards zero and the dashed lines (2D) to −1, as previously
discussed in (2.17) and (2.15a). The two panels compare a shallower return flow (d∗ = 0.5)
and a deeper return flow (d∗ = 5). Whereas the 2D finite-time displacement is very
nearly monotonic for shallower return flows, it can overshoot near the surface for deeper
return flows, reflecting strong negative displacement underneath the centre of the packet
being partly cancelled, subsequently, by positive displacement near the surface at the
packet’s leading and trailing edges. We have been unable to convert (2.23) into a more
insightful form, so we consider the limiting case of a shallow return flow, corresponding
to d∗ = d/σx � 1. In this limit, the return flow’s vertical variation is negligible, and
(2.23) takes the form

∆x∗ (τ,R) = − 2

d∗π3/2

∫ ∞
0

∫ ∞
0

µ sin (µ)

µ2 + (Rτ)2λ2
e−µ

2/(4τ2)e−λ
2/4dµdλ. (2.24)

The integral over λ may be performed analytically, yielding a single integral over µ,

∆x∗ (τ,R) = − 2

d∗
√
π

∫ ∞
0

sinµ

µ
e−µ

2/(4τ2)f (µ/ (2Rτ)) dµ, (2.25)

where the function f(ξ) ≡ ξ exp(ξ2) erfc(ξ) for an arbitrary argument ξ captures how the
finite-time displacement varies with R; its relevant small and large Rτ limits are

lim
Rτ→0

f
( µ

2Rτ

)
=

1√
π
, lim

Rτ→∞
f
( µ

2Rτ

)
= 0. (2.26a,b)
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(a) (b)

Figure 2. Scaled finite-time displacement by shallow unstratified flow: contour plot as a function
of aspect ratio R and half-interval τ , obtained by numerically integrating (2.25) (panel (a)), and
displacement obtained by numerical integration of (2.25) for three aspect ratios (continuous
black and dash-dotted blue and yellow lines, respectively) and (2.28) (red dashed line) as a
function of ζ = Rτ (panel (b)).

We can split (2.25) into the sum of two integrals

∆x∗ (τ,R) =− 2

d∗
√
π

∫ ∞
0

e−µ
2/(4τ2) sinµ

µ

(
f
( µ

2Rτ

)
− 1√

π

)
dµ

− 2

d∗π

∫ ∞
0

e−µ
2/(4τ2) sinµ

µ
dµ, (2.27)

the latter of which equals the 2D finite-time shallow return flow displacement. To examine
the long-time behaviour we take τ � 1, so that the second term approaches −1/d∗

(cf. (2.15a)), and the Gaussian in the first can be set to 1. We examine the regime
R � 1, τ � 1, when the displacement becomes a function of a single, O(1) parameter,
ζ ≡ Rτ = cg,0tI/σy, corresponding to the half-interval tI scaled on the packet width σy
rather than its length σx. We obtain

∆x∗ (ζ) = − 2

d∗
√
π

∫ ∞
0

sinµ

µ

(
f

(
µ

2ζ

)
− 1√

π

)
dµ− 1

d∗
. (2.28)

Figure 2(a) shows contours plots of the scaled finite-time displacement by a shallow
return flow obtained by numerically integrating (2.21), demonstrating that the maximum
negative displacement occurs for τ ∼ 1. From (2.28) and (2.26), it is clear that a transition
between 2D-like behaviour (ζ � 1) and 3D-like behaviour (ζ � 1) occurs when ζ ∼ 1
(tI ∼ σy/cg,0). 2D-like behaviour can thus persist for arbitrarily large τ , given arbitrarily
small amounts of localisation in y (small R, or nearly-unidirectional packets). Figure 2(b)
compares numerical integration of (2.24) with numerical integration of its large-τ limit
(2.28).

We note in passing that incorrect non-zero values of net return-flow displacements
obtained from numerical integration in van den Bremer & Taylor (2016) (2D, infinite
depth) and van den Bremer & Taylor (2015) (3D) resulted from insufficiently large limits
on the integrals; these limits may need to be as large as τ ∼ 102 − 103 for the small R
values used therein.
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3. Stratified flow

3.1. Governing equations

In this section, we consider propagation of surface waves on a stratified fluid. To include
density stratification effects, we decompose the varying density as (Phillips 1977)

ρ = ρ0

(
1 +

1

g

∫ 0

z

N2(z′)dz′ − b

g

)
, (3.1)

where b(x, y, z, t) = −g∆ρ/ρ0 is the buoyancy perturbation, and N is the buoyancy
frequency, which we assume to be constant. Invoking the Boussinesq approximation by
neglecting density differences unless they result in a body force through multiplication
by g, the governing equations are (e.g. Haney & Young 2017)

∇ · u = 0, ∂tu + u ·∇u = −∇p+ bẑ, ∂tb+ u ·∇b+ wN2 = 0, (3.2a,b,c)

where p is the departure from hydrostatic pressure. The system (3.2) must be solved
subject to dynamic and kinematic boundary conditions at the surface. Only the dynamic
boundary condition (ptot = 0 at z = h(x, y, t), where ptot is the total pressure) is modified
by density stratification, and we have, correct to second order (Haney & Young 2017),

w = ∂th+ uH ·∇Hh

∣∣∣∣
z=0

, p+ h∂zp = gh+N2h2/2

∣∣∣∣
z=0

. (3.3a,b)

We solve the set (3.2)-(3.3) using a Stokes expansion as before and consider directly the
3D case.

3.1.1. First-order solutions: O(α)

Following Haney & Young (2017), we neglect the buoyancy force and the vorticity it
generates in the first-order equations. From the linearised equation (3.2c) and boundary
condition (3.3a), we have b1 ∼ −N2h1. Taking the curl of the linearised (3.2b), we thus
obtain for the non-dimensional vorticity

|∇× u1|
k0a0ω0

∼ | (ẑ ×∇H) b1|
k0a0ω2

0

∼ N2

ω2
0

, (3.4)

from which it is evident that vorticity is small provided (N/ω0)2 is small. For surface
gravity waves in the ocean, (N/ω0)2 is at most O(10−3), and so the linear waves may be
treated as irrotational by ignoring the small b1 (see table 1 for typical parameter values).

3.1.2. Second-order solutions: O(α2)

At second order we retain the wave-averaged buoyancy, and so the Eulerian-mean flow
is not irrotational. Wave-averaging the set (3.2), and defining the appropriate Bernoulli
function to be $2 ≡ p2 + |u1|2/2, the Eulerian-mean flow equations are (Haney & Young
2017)

∇ · u2 = 0, ∂tu2 = −∇$2 + b2ẑ, ∂tb2 = −w2N
2. (3.5a,b,c)

We have neglected u1 ·∇b1 in (3.5c); by (3.4) this is O((N/ω0)2) smaller than the other
terms. Taking propagation along the x-axis, and using (2.7) with p1 in place of −∂tφ1
since the waves are irrotational, we may rewrite (3.3b) using the Bernoulli function as

w2|z=0 = ∂th2 + ∂xM, $2|z=0 = gh2 +N2h1
2/2, (3.6a,b)

where M is the x-component of M defined in (2.6). After eliminating all variables in
favour of the vertical velocity w2, and making the rigid-lid approximation in (3.6a) (as in
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(2.8)), the original problem (3.5) reduces to solving an evolution equation for w2 subject
to the surface forcing and no-flow bottom boundary condition,(

(∂x̃ − η)
2 (
∂2x + ∂2y + ∂2z

)
+ q2

(
∂2x + ∂2y

))
w2 = 0, w2|z=0 = ∂x̃M, w|z=−d = 0,

(3.7a,b,c)
where cg,0η is a small, positive growth rate which we take to zero from above, ensuring
that any radiated internal waves appear in the packet’s wake, and q ≡ N/cg,0 is the
buoyancy wavenumber. By assuming the packet amplitude has been slowly growing from
t = −∞ (i.e A0(x̃, y)ecg,0ηt), in the packet’s reference frame we have ∂t = −cg,0(∂x̃ + η).
Throughout, we take q (hence N) to be constant. The vertical velocity w2 is obtained
from (3.7) as the Fourier transform

w2 (x̃, y, z, d, q) =
1

4π2
lim
η→0+

∫∫
R2

ikM̂
sinh ((z + d)|k|βη,q(k))

sinh (d|k|βη,q(k))
eikx̃eilydkdl, (3.8)

where we have adopted the compact notation

|k| ≡
√
k2 + l2, βη,q(k) ≡

√
(k + iη)2 − q2

(k + iη)2
. (3.9a,b)

To obtain the horizontal component u2 from w2 we first link vorticity generation to the
rotated gradient of buoyancy by taking the curl of momentum equation (3.5b),

∂t (∇× u2) = − (ẑ ×∇H) b2 = (∂yb2,−∂xb2, 0) , (3.10)

from which it immediately follows that the vertical vorticity component is time-
independent. Assuming this vanishes, ∂yu2 − ∂x̃v2 = 0; combining this with the
incompressibility condition (3.5a) leads to a Poisson-like equation relating u2 to w2,

−
(
∂2x̃ + ∂2y

)
u2 = ∂x̃∂zw2. (3.11)

This equation is vacuously true in unstratified flow when it reduces to Laplace (since
u2 = ∂xφ2 and w2 = ∂zφ2), but nontrivial for a stratified flow. The transform û of u2
may be found from ŵ using (3.11) as û = ik∂zŵ/(k

2 + l2). In physical space,

u2 (x̃, y, z, d, q) = − 1

4π2
lim
η→0+

∫∫
R2

k2M̂

|k|
βη,q(k)

cosh ((z + d) |k|βη,q(k))

sinh (d|k|βη,q(k))
eikx̃eilydkdl.

(3.12)
Setting q to zero recovers ∂x(2.16). As η → 0+, the integral in equation (3.12) is domi-
nated by the region in wavenumber space where the denominator vanishes, corresponding
to ‘resonant curves’ (see Haney & Young 2017, eq. 3.12). These do not lead to meaningful
simplifications of (3.12); to find finite-time displacements we integrate (3.12) numerically
with η small but nonzero.

Due to the stratification-dependent square root βη,q(k) defined in (3.9b), delta-function
arguments for finding the net displacement, e.g. (2.17), become problematic: it is unclear
that û is well-defined at k = 0. Instead, time-integrating the z-component of vorticity
in (3.11) gives ∂y∆x = 0, so that the 3D net displacement is at most a function of z.
Considering the subsequent limit |y| → ∞ forces ∆x to be globally zero, which is borne
out in figure 4, where we show contour plots of finite-time displacements evaluated by
numerical time-integration of (3.12). As incompressibility holds, (2.20) indicates that the
mass-balance argument is not fundamentally altered by the presence of an internal wave
wake in 3D. Nor is the fact that the time and area integrals do not commute altered,
so that the above again depends on taking the time limit before the limit |y| → ∞, as
explained below (2.20).
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Figure 3. Scaled net displacement d∗∆x∗ by the return flow of a 2D packet in stratified flow from
(3.14) as a function of depth z/d for various values of the stratification measure qd = Nd/cg,0.

The special case of a 2D wavepacket is obtained by setting M̂(k, l) = 2πM̂(k)δ(l) in (3.12)
and performing the l-integral. For net displacements, the l-integral must be performed
before the time integral, as discussed in §2.4 (the integrals over δ(k) and δ(l) do not

commute). This gives |k|βη,q(k) = |k/(k+ iη)|
√

(k + iη)
2 − q2, and the velocity integral

becomes, following some small-η approximations,

u2 = − 1

2π
lim
η→0+

∫ ∞
−∞

M̂(k)
√

(k + iη)2 − q2
cosh

(
(z + d)

√
(k + iη)2 − q2

)
sinh

(
d
√

(k + iη)2 − q2
) eikx̃dk.

(3.13)
Integrating over time results in a delta-function at k = 0, so for a Gaussian packet, the
net displacement is then given by

d∗∆x∗ (z/d, qd, d∗) = −qdcos (qd(1 + z/d))

sin (qd)
. (3.14)

Unlike in the unstratified case, the net displacement is now a function of z and the
parameter qd = Nd/cg,0, which measures the ratio of ocean depth d to the vertical scale

(cg,0/N) of the k1 =
√
q2 − π2/d2 = 0 internal wave which would be forced were the

ocean deep enough. Depth-profiles of (3.14) are shown in figure 3 for different qd-values.
We now explore the role of the stratification measure qd. As qd→ 0, a Taylor expansion
of (3.14) gives the dependence of net displacement on weak stratification

∆x∗ = − 1

d∗

(
1 +

q2d2

6
− q2d2

2
(1 + z/d)2 +O

(
(qd)3

))
, (3.15)

which recovers the unstratified result ∆x∗ = −1/d∗ upon neglecting terms O((qd)2). To
leading order, the magnitude of net displacement is predicted to decrease above a depth
z/d = −(1− 1/

√
3) ≈ −0.42, and increase below, as shown in figure 3(a)-(b).

If qd = π/2, the net return-flow displacement remains negative and monotonic through-
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out the entire depth, but is zero at the surface,

d∗∆x∗ = −π
2

sin

(
π

2

|z|
d

)
. (3.16)

This is illustrated in figure 3(c). The stratification is not yet strong enough to support
a wake of internal waves with phase speeds > cg,0, but is sufficiently strong to bring the
near-surface displacement to zero. For somewhat greater stratification π > qd > π/2, the
net displacement becomes positive near the surface, as illustrated in figures 3(d)-(f).

Only when qd > π are free internal waves generated in the wake of a 2D packet (figure
3(g)-(i)). This corresponds to N > πcg,0/d. As qd traverses π (more generally nπ), the
displacement profile undergoes a sign change (cf. figure 3(f)-(g)). When qd→ nπ, with n
a positive integer, the displacement becomes singular (and very large in close proximity,
cf. figure 3(f)-(g)), corresponding to a resonance in which cg,0 matches the x-phase speed

of a long internal wave with kn =
√
q2 − n2π2/d2 = 0.

The Stokes drift is unaltered by stratification when the waves are treated as irrota-
tional, so the net Lagrangian displacement in 2D is obtained as the expression

∆x∗L =

(
2k0σxe

2k0z − 1

d∗
(qd)

cos (qd (1 + z/d))

sin (qd)

)
. (3.17)

The depth integral of (3.17) from−d to 0 remains zero, so the return flow still balances the
transport M : density stratification alters the manner in which the return flow transports
mass without changing the vertically-integrated mass balance.

Finally, figure 4 summarises the combined effect of directional spread and stratification
by showing contours of scaled finite-time displacement as a function of the stratification
measure qd/π and aspect ratio R at different τ = 1, 10, 100. To focus on what is realistic
for the ocean, we take 0 6 qd/π 6 0.6 (see table 1), so stratification generally reduces
the magnitude of the displacement near the surface and enhances it to become more
negative at depth (cf. figure 3(a)-(d)). At small τ = 1 (figure 4(a) and (d)), stratification
does not have an impact at the surface where the displacements reach their peak
values, but its effects can be observed at depth, despite the very small displacements
here. At intermediate τ ∼ 10 (figure 4(b) and (e)), negative displacement near the
surface is mainly reduced by the influence of spanwise localisation, and only weakly
by stratification. The contours at depth resemble those at smaller τ ∼ 1 albeit with
larger magnitudes, as particles at the bottom begin to experience the flow but have not
yet been affected by R. At large τ ∼ 100, displacements have practically vanished for
all but very small aspect ratios, recovering the 2D long-time limit (3.14) as R → 0 (cf.
figure 3(a)-(d)).

4. Conclusions

We have examined the Lagrangian displacement induced by isolated non-dissipating
surface gravity wavepackets and, in particular, the displacement associated with the wave-
induced return flow, focussing on the effects of localisation in the spanwise coordinate
y (as a proxy for weak directional spreading) and density stratification. For spanwise-
infinite wavepackets (2D) on an unstratified flow, the net displacement associated with
the return flow - where ‘net’ means computed over an infinite time interval as the packet
propagates from x = −∞ to x =∞ – is independent of the depth coordinate z. The net
displacement is inversely proportional to the ocean depth d, and therefore goes to 0 when
d→∞, as dictated by mass conservation. In the presence of any localisation of the packet
in y, the net displacement becomes zero at each (y, z), regardless of the depth d. Over a
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(a) (b) (c)

(d) (e) (f)

Figure 4. Contours of scaled finite-time displacement: panels (a)-(c) correspond to z = 0 and
panels (d)-(f) to z = −d. Moving from left to right, the half-interval τ is increased sequentially
by a factor of 10, from (a) and (d) plotted at τ = 1, to (c) and (f) plotted at τ = 100.

finite, symmetric time interval, with the wavepacket starting a finite distance behind the
x-origin and propagating to the same distance ahead (see (2.21)), the return flow in 3D
initially displaces particles in the same manner as in 2D, but ultimately brings particles
back to their original positions as the flow returns around as well as underneath the
packet. This 2D-3D transition occurs on a timescale ∼ σy/cg,0, where σy is the packet’s
width (proportional to the degree of directional spreading) and cg,0 is the surface wave
group velocity.

Density stratification alters the profile of the net displacement by the return flow of
2D packets: the net displacement becomes an oscillatory function of z with a wavelength
dependent on the parameter qd, where q ≡ N/cg,0 is the vertical buoyancy wavenumber, d
is the ocean depth, and N is the (constant) buoyancy frequency. For qd < π, as is typical
for the ocean, stratification diminishes displacements near the surface and enhances them
at depth. When qd → π (more generally, for qd → nπ), the net displacement becomes
singular due to a resonance between cg,0 and the phase velocity of a long internal wave
mode, while for qd > π, it is finite but of opposite sign. In the presence of any localisation
of the packet in y, the net displacement again reduces to zero. Stratification may, however,
appreciably alter the finite-time displacement, with the signature of the internal wave
wake generally present for all times at depth, and only for larger times at the surface.

In order to obtain a quantitative estimate of magnitudes of the displacements, we
recall from (2.15) the displacement scale α2

√
πσx/(k0d), with α ≡ a0k0, by which we

multiply the colour scale in figure 4 to obtain dimensional displacements. To consider
how large this displacement scale can be, we take the largest possible value of α = 0.3,
the smallest value of k0d = 3 for the deep-water assumption to still hold, and σx =
(2k0ε)

−1 = 3.1× 102 m, corresponding to typical values ω0 = 2π/10s, d = 75 m, ε = 0.04
(see table 1). We then obtain a displacement scale α2

√
πσx/(k0d) = 17 m. For a more

usual depth d = 3.1 × 103 m, this reduces to 0.41 m and even further to 0.011 m for the
more typical steepness α = 0.05. For unstratified flow in 2D, the displacement scale gives
the dimensional net return-flow displacement (times −1). We will now consider typical
values of qd and R = σx/σy.
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Parameter Range Typical value

α 0 − 0.3 0.05
d [m] 3 × 101 − 1.1 × 104 3.1 × 103

ω0

[
s−1

]
2π/20 − 2π/1.0 2π/10

ε 0 − 0.15 0.04

σθ [deg] 0 − 30 5.0
R 0 − 1 4.9 × 10−3

N
[
s−1

]
2π/

(
2.0 × 103

)
− 2π/

(
1.3 × 103

)
2π/

(
1.3 × 103

)
qd/π 0 − 1 0.6

Table 1. Realistic parameter ranges and typical values chosen (compiled from Haney & Young
(2017); van den Bremer & Taylor (2015); Ewans (2002); Toffoli & Bitner-Gregersen (2017)).

4.1. Quantitative effect of directional spreading

In order to relate the value of the packet aspect ratio R to typical values of the (root-
mean-square) directional spreading of the energy spectrum σθ reported in the literature
(e.g. Ewans (2002)), we use the relationship R ≈

√
2εσθ, which is only valid in the limit

of weak directional spreading. Taking a value of σθ = 5.0◦ typical of swell conditions
(Ewans 2002) and ε = 0.04, we obtain R = 4.9 × 10−3, increasing to R = 1.9 × 10−2

for a very narrow-banded packet with ε = 0.15, and further to R = 0.11 for a highly
directionally-spread packet with σθ = 30◦. The timescale on which the transition from
2D-like to 3D-like behaviour occurs ∼ σx/(cg,0R) = (Rεω0)−1, can thus be as large as
8.1 × 103 s (R = 4.9 × 10−3, ε = 0.04) or 3.6 × 102 s (R = 0.11, ε = 0.15) for the typical
ω0 = 2π/10 s−1 considered before, with corresponding much shorter packet-translation
times of σx/cg,0 ≈ 40 s and 11 s, respectively.

4.2. Quantitative effect of stratification

Taking a typical ocean depth d = 3.1 × 103 m and a (constant) value of N =
2π/1333 s−1, we obtain qd/π = 0.6. The 2D net return-flow displacement is then zero at
z = −5.0× 102 m (cf. panel (d) of figure 3). Net displacement at the surface is positive,
and its maximum (negative) value occurs at the ocean floor. The behaviour predicted
for larger qd values, including the resonance at qd = nπ, is unlikely to arise in the real
ocean, since stratification is generally too weak to satisfy this resonance. Furthermore,
the depth-variability of N observed in real oceans (e.g. exponential, or piecewise-linear
in a crude approximation) would likely weaken the role of stratification predicted here,
and prevent exact resonances. Large displacements are also likely to be mitigated by
viscous dissipation, and we expect that, near resonance, transfer of energy from the
surface wavepacket to the internal wave wake may lead to disintegration of the packet.

4.3. Neglected effects: wave dispersion, viscosity and the earth’s rotation

In this paper, in addition to considering the abstract case of an isolated wavepacket, we
have ignored the effects of wave dispersion beyond leading order in ε, viscosity (resulting
in a non-dissipating wavepacket) and the earth’s rotation. We will explore the potential
consequences of these assumptions below. In terms of wave dispersion, we have examined
only leading-order solutions in the small bandwidth parameter ε; at the next order, two
effects need to be accounted for. First, we used the rigid-lid approximation to neglect
the set-down of the wave-averaged free surface h2 (given by (2.5)) when calculating
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return flow displacements. In appendix A, we show that including the set-down results
in multiplication of the net displacement by at most a factor (1 − ε2σx/d)−1, with the
largest correction occurring for a 2D shallow return flow. Even for larger ε, this effect
is small. Second, we have assumed that the packet propagates without any change in
shape. In appendix B we find that, to leading order, the enhancement of displacement
due to wave dispersion is (1 + ε2/2), which again is small even for large ε.

Longuet-Higgins (1953) introduced viscous boundary layers, of the type studied by
Rayleigh (1883), in which mean vorticity is generated and then slowly diffused into the
fluid interior, eventually altering the mass transport profiles. The viscous boundary layer
thickness δ =

√
2ν/ω0, where ν is the kinematic viscosity of seawater is generally of the

order of millimetres. When a20 � δ2, the relevant case for a wavepacket, vorticity diffuses
into the fluid interior on a timescale ∼ σx/

(
a2ωk

)
= α−2ε−1ω−10 . This process takes

multiple packet translation times, so vorticity will not have had sufficient time to diffuse
into the fluid interior before the packet has propagated past. Nevertheless, the long-time
behaviour may be affected.

On a rotating earth, Ursell (1950) demonstrated that a steady Stokes drift would violate
conservation of circulation, implying that the Lagrangian-mean velocity accompanying a
regular, horizontally uniform wavetrain must be zero in the long-time average over many
inertial periods. It follows that there must be a long-time-average Eulerian-mean ‘anti-
Stokes flow’ possessing vorticity, cancelling the Stokes drift. In an initial-value problem
starting with an irrotational Stokes wave with its Stokes drift - as with swell arriving
in previously calm water - the Coriolis force induces free inertial oscillations. Further
aspects of this problem were explored in Hasselmann (1970). As periods associated with
the Earth’s rotation are much longer than the translation timescale of a narrow-banded
packet (see also Herbers & Janssen (2016)), we anticipate that Coriolis effects can be
neglected when considering net displacements by the return flow. Two dimensionless
numbers may play a role: fσx/cg,0 and fσy/cg,0. The first (fσx/cg,0) is only appreciably
large for a long, slow-moving packet, or for strong rotation. However, the second is large
for almost-unidirectional waves, leaving open the possibility that rotation affects the
mean flow, which we hope to examine in future work. We also note that, when rotation
and eddy viscosity are included together, the mean flow may be appreciably changed
over the associated Ekman depth ∼ (2ν/f)1/2, which in real oceans is comparable to
the Stokes depth ∼ (2k0)−1 (e.g. Xu & Bowen (1994)). We do not consider these effects
herein.

Acknowledgements. The authors thank two anonymous referees for many useful
comments which have improved our paper.

Appendix A. Inclusion of the set-down

In this appendix, we consider how the set-down of the wave-averaged free surface,
h2, affects the net displacement by a 2D return flow. We have previously used the
rigid-lid approximation to neglect the set-down (given by (2.5)), which corresponds to
ignoring ∂2t φ2 on the left-hand side of (2.4) when calculating the return-flow potential.
Up to O(α2ε3) the overbarred term in (2.4) is zero and the Stokes transport M remains
unchanged, so only the linear operator acting on φ2 is altered by including the set-down,(

c2g,0
g
∂2x̃ + ∂z

)
φ2

∣∣∣∣
z=0

= ∂x̃M, (A 1)
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where we have moved into the group frame x̃ ≡ (x− cg,0t). The solution to the Laplace
equation which obeys (A 1) and a no-flow bottom boundary is

φ2 =
ω0a

2
0σxσy
8π

∫∫
R2

ike−k
2σ2
x/4−l

2σ2
y/4

√
k2 + l2 − εc2g,0k

2

g tanh(d
√
k2+l2)

cosh((z + d)
√
k2 + l2)

sinh(d
√
k2 + l2)

eikx̃eilydkdl.

(A 2)
This is similar to (2.16), but the denominator is now modified due to the set-down term;
since k2/ tanh

(
d
√
k2 + l2

)
is always positive, the set-down enhances the return flow. As

we have shown that the net displacement disappears in 3D (see (2.17)) but is 2D-like for
short times (see §2.4, tI < σy/cg,0), we will only consider the 2D displacement here. The
horizontal velocity in 2D is given by

u2 = −ωa
2
0σx

4
√
π

∫ ∞
−∞

ke−k
2σ2
x/4

1− εc2g,0k

g tanh(kd)

cosh (k (z + d))

sinh (kd)
eikx̃dk. (A 3)

Integrating over all time (all x̃/cg,0 in the co-moving packet frame) results in a delta-
function at k = 0, so the net displacement (dimensional and scaled respectively) is

∆x = −ω0a
2
0

√
π

2cg,0

σx
d

1(
1− εc2g,0/(gd)

) , ∆x∗ = − 1

d∗
1

(1− ε2/(2d∗))
, (A 4a,b)

with d∗ ≡ d/σx the ocean depth scale with respect to the packet length. Inclusion of
the set-down in 2D therefore results in multiplication of the net displacement by (1 −
εc2g,0/gd)−1, which may alternatively be written as (1 − ε2/(2d∗)) using the definition
ε ≡ (2k0σx)−1. Hence, when k0d� 1 and ε� 1 such that d∗ = 2ε(k0d)� 1, it is justified
to make the rigid-lid approximation by neglecting ∂th2 in (2.1b) when calculating the
leading-order return flow in deep water. We note from (A 4b) that the effect of the set-
down is largest when the return flow is 2D (R = 0) and shallow (d∗ ≡ d/σx � 1); for a
large bandwidth ε = 0.125 and a depth scale d∗ = 1/2, the correction is about 3%.

Appendix B. The leading-order effect of wave dispersion

In this appendix, we explore the effect of wave dispersion on the net Lagrangian
displacement in unstratified flow, over times t satisfying ε2t = O(1). To do so, we update
the linear quantities (2.2) to include dependence on a slow timescale T = ε2t in §B.1
(see also e.g. Kinsman (2002)), and in §B.2 we determine the mean-flow forcing equation
(2.4) at O(α2ε2) accordingly, examining the full 3D case.

B.1. First-order solutions O(α)

From the combined linear boundary condition (∂2t + g∂z)φ1|z=0 = 0, we obtain an
evolution equation for A0 in terms of the O(ε2) timescale and its Fourier-space solution,

∂TA0 = i
c2g,0
2ω0

∂x̃x̃A0, Â0(k, l, T ) = Â0(k, l)eik
2γ0T/2, (B 1a,b)

where γ0 ≡ ∂2ω0/∂k
2
0 = −

√
g/k30/4 is the dispersive parameter. Assuming the surface

profile is Gaussian, inverting the transform (B 1b) shows that the surface maintains its
Gaussian shape, but now evolves on the slow, dispersive timescale,

A0 (x, y, T ) = aDisp

0 e
−x̃2/

(
2(σDisp

x )
2
)
e−y

2/(2σ2
y), (B 2)
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where the ‘Disp’ superscript denotes inclusion of leading-order dispersion, and slowly-
varying parameters are

aDisp

0 =
a0

4
√

1 + γ20t
2/σ4

x

, σDisp

x = σx

√
1 + γ20t

2/σ4
x. (B 3a,b)

Dispersion is hence important for times & σ2
x/|γ0|. Over time, the packet decreases in

amplitude and widens as it translates at the group velocity cg,0. It is therefore no longer
steady in its own reference frame.

B.2. Second-order solutions O(α2)

From appendix A the set-down contribution is O(ε2/d∗), so we include the ∂2t term on
the left-hand side of (2.4), whilst emphasising that this term is due to the set-down rather
than wave dispersion. It is found that O(α1ε1) terms in (2.2a,b) do not contribute to the
right-hand side of (2.4) at O(α2ε2); the wave forcing obtained by multiplying O(α1ε1)
terms by O(α1ε0) terms in (2.2) disappears under wave-averaging. Consequently, we need
only account for functional dependence of A0 (see (B 1)) on T = ε2t = O(1) to calculate
the updated M . At O(α2ε2), the mean flow is still forced solely by the Stokes transport,
which is now slowly evolving. The boundary condition for φ2 is(

c2g,0
g
∂2x̃ + ∂z

)
φDisp

2

∣∣∣∣
z=0

= ∂x̃M
Disp. (B 4)

Solving (B 4) in Fourier space, we obtain

φDisp

2 =
ω0|aDisp

0 |2σDisp
x σy

8π

∫∫
R2

ike−k
2(σDisp

x )
2
/4−l2σ2

y/4

√
k2 + l2 − εc2g,0k

2

g tanh(d
√
k2+l2)

cosh((z + d)
√
k2 + l2)

sinh(d
√
k2 + l2)

eikx̃eilydkdl.

(B 5)
The finite-time 3D return flow displacement is expressed as the triple integral (with
t̂ = cg,0t/σx dimensionless packet-time, κ = kσx and λ = lσy),

∆x∗,Disp (τ,R, z∗) = − 1

2π3/2

∫∫
R2

∫ τ

0

κ2e−λ
2/4e−κ

2(1+ε2 t̂2)/4
√
κ2 +R2λ2 − ε2κ2

tanh(d∗
√
κ2+R2λ2)

cos
(
κt̂
)

×
cosh

(
(z∗ + d∗)

√
κ2 +R2λ2

)
sinh

(
d∗
√
κ2 +R2λ2

) dκdλdt̂. (B 6)

Using complex exponentials, we can first exactly evaluate the finite-time integral∫ τ

0

e−
ε2κ2 t̂2

4 cos
(
κt̂
)
dt̂ =

√
π

2κ

e−
1
ε2

ε
Re

{
erf

(
εκτ

2
+
i

ε

)}
. (B 7)

In the long-time limit, (B 7) is dominated by its behaviour near κ = 0 (e.g. the delta-
function result (2.17)), and so over long times we must expand the error function for
εκτ � 1/ε when τ � 1. Taking exp(−ε2κ2τ2/4) ≈ 1, the dispersive correction is O(ε2):

√
πe−

1
ε2

2ε
Re

{
1

κ
erf

(
εκτ

2
+
i

ε

)}
=

sin(κτ)

κ

(
1 +

ε2

2
+O(ε4)

)
. (B 8)

The delta function results implies the condition εκτ � 1/ε, which suggests we must
expand the error function as in (B 8) to be consistent with the separation of scales. While
the net displacement remains zero in 3D (sin(κτ)/κ → πδ(κ) as τ → ∞), dispersion
weakly enhances the finite-time displacement.
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