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A B S T R A C T

Cerebral small vessel disease (SVD) comprises various pathological processes affecting small brain vessels and
damaging white and grey matter. In this paper, we propose a framework comprising region of interest sampling,
dynamic spectral and texture description, functional principal component analysis, and statistical analysis to
study exogenous contrast agent distribution over time in various brain regions in patients with recent mild stroke
and SVD features.We compared our results against current semi-quantitative surrogates of dysfunction such as
signal enhancement area and slope. Biological sex, stroke lesion type and overall burden of white matter hy-
perintensities (WMH) were significant predictors of intensity, spectral, and texture features extracted from the
ventricular region (p-value< 0.05), explaining between a fifth and a fourth of the data variance (0.20 ≤Adj.R2

≤ 0.25). We observed that spectral feature reflected more the dysfunction compared to other descriptors since
the overall WMH burden explained consistently the power spectra variability in blood vessels, cerebrospinal
fluid, deep grey matter and white matter. Our preliminary results show the potential of the framework for the
analysis of dynamic contrast-enhanced brain magnetic resonance imaging acquisitions in SVD since significant
variation in our metrics was related to the burden of SVD features. Therefore, our proposal may increase sen-
sitivity to detect subtle features of small vessel dysfunction. A public version of the code will be released on our
research website.

1. Introduction

Cerebral small vessel disease (SVD) encapsulates multiple patholo-
gical processes disrupting the optimum functioning of perforating cer-
ebral arterioles, capillaries, and some venules, resulting in grey matter
(GM) and white matter (WM) damage [1-3]. SVD is a serious problem
causing between 20% to 25% of strokes, up to 45% of dementias, and
substantial cognitive, psychiatric, and physical disabilities. At a global
scale, SVD may be leading to between three and four million new cases
of stroke [4] and 16 million new cases of dementia per year1 [3]. De-
spite being a worldwide matter and governmental priority, little is
known about its cause(s) since much of SVD is clinically silent and late
[1,4]. Therefore, efforts for understanding the pathophysiological me-
chanisms surrounding SVD and developing techniques to characterise

this disease are of global impact.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) is commonly used to investigate endothelial dysfunction, a pa-
thophysiological component thought to be associated with the SVD
pathogenesis [6], as it permits detecting leakage in tissue and cere-
brospinal fluid (CSF) spaces thought to be caused by an impaired blood-
brain barrier (BBB) or blood-CSF barrier [7-9]. In this imaging mod-
ality, a series of acquisitions are taken before and after injecting a
Gadolinium-based contrast agent intravenously to image its distribution
through brain tissues over time. The contrast agent causes the relaxa-
tion time of water molecules to decrease in T1w. Therefore, its accu-
mulation in the extracellular extravascular space with increased BBB
impairment leads to increased signal enhancement.

In a recent work [10], changes in local signal variations in tissue
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and CSF cavities were quantitatively measured in pre- and post-contrast
study and showed to vary with increased overall SVD and white matter
hyperintensity (WMH) burden. In this work, we aim to study signal
intensity fluctuation on the entire DCE-MRI sequence using established
computer vision descriptors to determine whether specific variation
patterns relate to the health of the patient and their suitability for
acting as a surrogate measure of small vessel impairment.

We consider texture and spectral descriptors. Textures, which en-
code local signal changes within a region of interest, have been suc-
cessfully used to characterise WMH in T2 FLAIR scans [11]; study pre-
vs post-contrast differences in small vessel disease [10]; and classify
breast lesions into benign and malignant, predict chemotherapy re-
sponse, and diagnose prostate cancer [12] in DCE-MRI. Power spectra,
the strength of frequency components into the overall signal, have been
successfully applied in dynamic susceptibility contrast MRI to char-
acterise neurophysiological and hemodynamic patterns of Alzheimer's
disease [13], detect and characterise oscillations in blood oxygen level-
dependent imaging reflecting network connectivity [14], and discern
between conduct disorder and healthy subjects from resting functional
MRI acquisitions [15]. We hypothesise that the application of these
computer vision descriptors to DCE-MRI scans can identify tissue dif-
ferences in brain regions that relate to the burden of SVD features.

We propose a framework to study contrast signal-time trajectory in
healthy and pathological brain regions in DCE-MRI acquisitions. The
proposal comprises region of interest sampling, dynamic texture and
spatial spectral description, functional principal component analysis,
and statistical group comparison and linear regression. The contribu-
tions of this work are: (i) we introduce a fully functional framework to
analyse DCE-MRI acquisitions based on dynamic spectral and texture
descriptors and (ii) we show an application of our framework to the
study of DCE-MRI signals of a cohort (n=42) with a wide range of SVD
burden.

2. Materials and methods

The pipeline consists of four steps, as shown in Fig. 1. First, we
segmented all regions of interest for each patient in the cohort. Second,
we described signals using dynamic spectral and texture descriptors.
Third, we examined the resulting descriptions using a functional prin-
cipal component analysis (FPCA). Fourth, we studied whether scores of
the primary mode of variation were associated with any of the clinical
variables. Details of each step are provided in the following sections.

2.1. Subjects and clinical variables

We used data from a prospective study of patients with recent mild
stroke and SVD features (n=42 subjects, 12 women, 19 lacunar
stroke). Of 201 in the original study, we selected 42 on the basis of
considering only high-quality scans (qualitative assessment of trunca-
tion and motion artefacts) and representing a wide spectrum of SVD
feature burden, stroke lesion size, and index stroke lesion type (i.e.
cortical vs lacunar). The sample clinical characteristics have been
published previously [16,17]; those relevant to this work are condensed
in Table 1. The baseline hypertension (y/n) defined as a previous his-
tory of hypertension, or hypertension diagnosed at presented of stroke,
age, and percentages of WMH in intracranial volume were retrieved

Fig. 1. Scheme of our processing pipeline. The inputs are the DCE-MRI sequences (1). Initially, we process each case by sampling all regions of interest using an
anatomically-relevant template (2), describing local signal variations in regions of interest using descriptors (3). Subsequently, we study the dynamic descriptors
using functional principal component analysis (4) and statistical analysis (5). ROI: region of interest. FPCA: functional principal component analysis. T1,…,TTP: each
time point of the DCE-MRIs. Subject1,…,SubjectP: each patient in the cohort. ROI1,…,ROIR: each region of interest.

Table 1
Distribution of demographics, risk factors, and imaging variables in
our sample. Values in the right column correspond to the number of
patients (percentage of the total). White matter hyperintensity values
were normalised by the intracranial volumes.

Clinical variable No. patients (% of the total)

Age
[39, 49] 2 (5%)
(49, 59] 11 (26%)
(59, 69] 15 (36%)
(69, 79] 11 (26%)
(79, 89] 3 (7%)
Biological sex
Male 30 (71%)
Female 12 (29%)
Hypertension
Hypertensive 33 (79%)
Normotensive 9 (21%)
White matter hyperintensity volume
[0.07%, 1.80%] 23 (55%)
(1.80%, 3.53%] 6 (14%)
(3.53%, 5.26%] 7 (17%)
(5.26%, 6.99%] 2 (5%)
(6.99%, 8.73%] 4 (9%)
Total small vessel disease score
0 8 (19%)
1 10 (24%)
2 12 (28%)
3 7 (17%)
4 5 (12%)
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from the study database. Additionally, we considered a visual clinical
rating recorded at inclusion, total SVD [18] score, to account for four
neuroimaging features of the SVD (lacunes, microbleeds, perivascular
spaces, and WMH).

Imaging was carried out on a 1.5 T MRI scanner (Signa HDxt,
General Electric, Milwaukee, WI) using an eight-channel phased-array
head coil. Both diagnostic and dynamic MR imaging acquisition para-
meters have been detailed in [19]. Diagnostic MRI at stroke presenta-
tion consisted of axial T2-weighted imaging (TR/TE=6000/90 s,
24×24 cm field of view, 384×384 Propeller acquisition, 1.5
averages, 28×5mm slices, 1 mm slice gap), axial fluid-attenuated in-
version recovery imaging (TR/TE/TI= 9000/153/2200ms,
24×24 cm field of view, 384× 224 acquisition matrix, 28× 5mm
slices, 1 mm slice gap), gradient echo imaging (TR/TE=800/15ms,
20° flip angle, 24×18 cm field of view, 384× 168 acquisition matrix,
2 averages, 28×5mm slices, 1 mm slice gap) and sagittal 3D T1-
weighted imaging (inversion recovery-prepared spoiled gradient echo
TR/TE/TI= 7.3/2.9/500ms, 8° flip angle, 330×214.5 cm field of
view, 256× 146 acquisition matrix, 100×1.8mm slices). DCE-MRI
acquisitions were obtained at approximately one month after first
stroke presentation and consisted of a 3D T1w spoiled gradient echo
sequence with TR=8.24ms, TE=3.1ms, 24× 24 cm FOV, re-
construction matrix 256×192 and 42×4mm slices. Following a pre-
contrast acquisition, an intravenous bolus injection of 0.1mmol/kg of
gadoterate meglumine (Gd-DOTA, Dotarem, Guerbet, France) was ad-
ministered with the start of 20 further acquisitions with 12° flip angle
and a temporal resolution of 73 s, leading to a DCE-MRI duration of
about 24min (≈21 time points).

2.2. Image processing and region-of-interest sampling

We performed all image analysis blindly to clinical and permeability
data. We aligned all time points of the DCE-MRI acquisition to the 12°
pre-contrast image to correct for bulk patient movement using FSL-
FLIRT [20,21]. For determining the WMH volume percentage in in-
tracranial volume, we applied a segmentation method that has been
evaluated previously against manual annotations in images acquired
with similar scanning protocols [16]. On 150 subjects, the average
difference on ICV was 2.7% (95%CI= 7%). On 20 individuals, the
Jaccard similarity coefficient for WMH was 0.61 (95%CI= ±0.37). In
a test-retest analysis on 14 cases comprising volunteers and patients
with mild non-disabling stroke, the coefficient of variation for repeated
measurements of the segmentation technique was 0.21 [22]. Further-
more, trained analysts double-checked and manually edited these seg-
mentation masks under the supervision of an experienced neuror-
adiologist.

We sampled five brain regions, comprising blood vessels [BL], CSF,
deep GM [GMD], cortical GM [GMC], and WM, using circular non-
overlapping samples that covered approximately 12mm2 in-plane and
were distributed throughout four slices [23-25], as described in Table 2
and exemplified in Fig. 2. The figure illustrates four slices and sampling
points for one of the patients in our cohort, but it does not indicate
sampling points are fixed nor predetermined for every single patient. In
fact, these spots vary to avoid areas with partial volume effects, evident
contrast-enhanced related truncation artefacts, WMH, enlarged

perivascular spaces, mineral depositions, lacunes and ischaemic or
haemorrhagic lesions to avoid biasing our analysis. The samples were
initially placed by a trained analyst using Analyze 11.0 (AnalyzeDirect
Inc., Mayo Clinic), edited by another one, and, finally, agreed between
both observers. We opted for sampling brain regions to reduce the in-
fluence of the spatial densities, partial volume effects, and avoid ob-
vious correlations/associations as a result of descriptors encoding vo-
lumetric information [26].

2.3. Description of regions of interest

2.3.1. Power spectrum
We used the radial power spectrum (RPS) to account for spatial

variations in the strength of the signal frequency components. First, we
sampled the signal using the anatomical-relevant template. Second, we
used the 3D discrete Fourier transform to obtain a representation of
each volume in the frequency domain. Let I ∈ℝN×N×N be a brain MR
volume, the corresponding discrete Fourier transform,

∑= ⎛
⎝

−
+ + ⎞

⎠
F u v w I i j k ιπ

ui vj wk
N

( , , ) ( , , ) exp 2 .
i j k, , (1)

Third, we computed the magnitude spectra and averaged all the
frequencies over concentric rings of width 1 using the following for-
mula

∫ ∫=R r
π

F r θ ϕ r θ ϕ r θ

dθdϕ

( ) 1
(2 )

| ( sin( )cos( ), sin( )sin( ), cos( ))|

,

π π

2 0

2

0

2

(2)

where = + +r u v w2 2 2 , = −θ w rcos ( / )1 , and = −ϕ v utan ( / )1 represent
the corresponding spherical coordinates. For each time point and region
of interest, signals were described using 256 frequencies.

2.3.2. Grey-level co-occurrence matrix based descriptors
We measured local signal variations using metrics of homogeneity

and variability extracted from grey-level co-occurrence matrices
(GLCM). These matrices summarise the co-appearance of intensity va-
lues in an image, i.e. they quantify the frequency at which two intensity
values occur in the same neighbourhood. Mathematically speaking, a
co-occurrence matrix is calculated as follows:

�

∑ ∑= ⎧
⎨⎩

= ∧ =

∈ ∈

C a b
x a y b

( , )
1, if

0, otherwise.x I y x( ) (3)

where � x( ) denotes the set of voxels in the neighbourhood of x. The
matrix C reveals information of the region of interest. For instance, the
higher the values in the diagonal, the more homogeneous the region
under examination.

Haralick et al. [27] proposed various measures of homogeneity and
heterogeneity of region of interest based on the normalised GLCM va-
lues. The process for computing them was four-fold. First, we quantised
each region of interest in 24 grey levels. Second, we computed the
GLCM using an eight-connected neighbouring structure. Third, we
normalised the GLCM by dividing each cell by the total number of voxel
pairs. Fourth, we computed energy, contrast, correlation, variance, in-
verse difference moment, sum average, sum variance, sum entropy, and

Table 2
Slice and sampling point selection criteria. The number in parenthesis corresponds to the total number of sampling points per slice for a certain region of interest.

Slice Criteria Sampling points

Low Must include brainstem, carotid arteries, basilar artery and superior sagittal sinus Carotid arteries (1), basilar artery (1), and sagittal sinus (1)
Low-middle Must include basal ganglia (i.e. caudate heads and lentiform nuclei), thalami, third ventricle, and

horns of the lateral ventricles
Superior sagittal sinus (1), CSF (12), GMD (12), GMC (12),
and WM (10)

Middle-high Must be two-four slices above the previous slice in which basal ganglia are not visible, but centrum
semiovale and ventricles

Superior sagittal sinus (1), CSF (8), GMC (6), and WM (28)

High Must be the first or second slice above the ventricles Superior sagittal sinus (1), GMC (6), and WM (28)
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entropy [27], as condensed in Table 3. For each time point and each
region of interest, the number of GLCM features per patient was 9.

2.3.3. Local binary patterns descriptors
Local binary patterns (LBP) are another visual descriptor that

quantify local signal variations. The original approximation char-
acterises the way voxels relate to their neighbourhood using binary
codes and summarises them for the entire region of interest using a
histogram. The process is three-fold. First, the binary code for each
voxel is computed by analysing the way its intensity relates to the ones
of its neighbours: if the value is higher than the one of its neighbour, we
assign a zero; and a one otherwise. For instance, if the voxel value is
equal to 4 and the neighbouring intensities are
1− 2− 3− 4− 5− 6− 7− 8, then the corresponding code would
be 1− 1− 1− 0− 0− 0− 0− 0. Second, the frequency of each one
of these codes is totalised. Third, the resulting histogram is divided by
its sum to express probability. The normalised histogram is used as a
texture descriptor.

In this work, we considered two variants of the original approx-
imation called uniform local binary patterns (ULBP) [28] and local
configuration patterns (LCP) [29]. The former maps the original set of
codes (28= 256 different binary patterns) to a subset of 59 codes to
reduce the cardinality of the histogram and provide the descriptor with
a simple rotation invariance. The latter combines the LBP with rotation
invariance and another descriptor which quantifies local linear de-
pendencies between a voxel and its neighbours. We calculated these
descriptors for each region of interest for each patient using a radius
equal to 1. For each time point and each region of interest, the number
of ULBP and LCP features per patient were 59 and 81, in that order.

2.4. Functional principal component analysis

Comparing the resulting dynamic descriptors could be an intricate
task due to the dimensionality of the problem:

• RPS: 128 features× 21 time points× 42 patients;

• GLCM: 9 features× 21 time points× 42 patients;

• ULBP: 59 features× 21 time points× 42 patients;

• LCP: 81 features× 21 time points× 42 patients.

Conventional feature reduction approaches, such as traditional
principal component analysis (PCA) or auto-encoders, are not suitable
for this problem since the data temporality would be neglected in
principle. Therefore, we resorted to applying the functional principal
component analysis (FPCA) method proposed by Happ and Greven [30]
which allows us to model each descriptor as a function in time, reduce
the time dimension respecting its nature, and obtain a single score per
principal mode of variation. In a nutshell, the idea is to reduce the
cardinality in one dimension (time) and then on another one (space).
Each one of the elements of each descriptor can be seen as a function in
time. In such a way, we could find the eigenvalues and eigenfunctions
that better describe them. Let D be the number of elements under study,
P=42 the number of patients, and R={R(1),…,R(D)} the set of ele-
ments, each of them described by the corresponding measurements, r j

1
( ),

…r r, ,j
P

j
2
( ) ( ), j=1,…,D, the overall process is four-fold. First, each com-
ponent was centred by subtracting its mean value. Second, eigenfunc-
tions and scores were calculated for each component using the FPCA.
The principal component functions were obtained constructively by
finding orthogonal functions Φk

j( ), k=1,…,M(j), for which principal
component scores ξik

j( ), i=1,…,P, mathematically expressed as

Fig. 2. Example of selected regions of interest on four slices. From left to right, low, low-middle, middle-high, and high slices. Colour code is red, green, light blue,
dark blue, and yellow for arteries and sagittal sinus, CSF, WM, GMD and GMC, respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 3
Considered texture descriptors based on the grey-level co-occurrence matrix. Ca+b(k) represents the grey level sum distribution, expressed as Ca+b(k)= ∑ a ∑ b{C(a,b)
if a+ b= k,0 otherwise}. SA in the sum variance formula denotes the sum average operation.

GLCM metric Brief description Formula

Contrast Overall contrast. The higher the co-occurrence of low and high intensity values, the higher the contrast. ∑ a,b|a− b|2C(a,b)
Correlation Linear dependency between neighbouring voxels. Values close to 1 reflect high correlation. ∑ − − C a b( , )a b

a μa b μb
σaσb,

( )( )

Energy Second angular moment measuring uniformity. Energy increases with increased homogeneity. ∑ a,bC2(a,b)
Variance Dispersion of values around the mean. Variance increases with increased heterogeneity. ∑ a(a− μa)2 ∑ bC(a,b)
Entropy Measurement of randomness. Higher entropy values indicate higher heterogeneity. − ∑ C a b C a b( , )log ( , )a b,
Inverse difference moment Overall homogeneity. Higher values indicate higher homogeneity. ∑

+ +a b
C a b

a b,
( , )

1 | |2

Sum average Mean grey level sum distribution value. ∑ cc Ca+b(c)
Sum entropy Disorder of the sum distribution. Higher values of sum entropy indicate higher heterogeneity. − ∑ + +C c C c( )log ( )c a b a b

Sum variance Dispersion of values around the sum average. Higher values of sum variance relate to higher heterogeneity. ∑ c(c− SA)2 ∑ bCa+b(c)
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∫=ξ t r t dtΦ ( ) ( ) ,ik
j

k
j

i
j( ) ( ) ( )

(4)

maximised ∑ ξi ik
j( )2, subject to =||Φ || 1k

j( ) 2 . We set M(j) to five as resulting
eigenvectors accounting for the 99% of the univariate variation. Third,
all of these scores ξik

j( ) were arranged in a matrix form, ∈ ×∑Ξ P M j( )
,

such that the ith row contained … … …ξ ξ ξ ξ( , , , , , , )i iM i
D

iM
D

1
(1) (1)

1
( ) ( )

D(1) ( ) . Fourth,
scores were calculated using eigenanalysis on the covariance matrix of
Ξ. We resorted to analysing the first mode of variation. The output was
a single score per subject and per region of interest.

2.5. Validation against clinical parameters

We applied statistical tests to determine whether patients with si-
milar health status exhibit similar principal component (PC) scores. We
used the Kruskal-Wallis test for testing differences in PC scores between
patients grouped by overall burden of SVD features. We considered
multiple linear regression to establish whether age, WMH volume,
biological sex, and stroke lesion type were associated with the PC scores
(i.e. PC score= β0+ βAge ⋅Age+ βWMH ⋅WMH vol+ βSex ⋅Sex+ βLac
⋅Lac, where each β ∈ℝ is a standardised regression coefficient).

2.6. Comparison against other techniques

We compared our proposal against two surrogate measures of small
vessel dysfunction: area under the enhancement curve (AUEC) [31] and
signal enhancement slope [32,33]. The idea behind both approaches is
as follows. The former computes integral of the enhancement curve
over time since higher accumulation of contrast agent leads to higher
enhancement (thus, higher AUEC). The latter calculates the slope of the
enhancement curve (assuming linearity after the bolus arrival peak)
relates to the degree of contrast agent leakage. In both cases, we
computed the enhancement curve on the sampling points described in
Section 2.2, measured AUEC and slope, and used the statistical tests in
Section 2.5 to establish the relationship between these measurements
and clinical variables.

3. Experiments and results

We applied our framework to the 42 cases by segmenting each of
the 42 DCE-MRI scans, sampling the signal in each region of interest,
describing signal in each time point and region of interest, and applying
FPCA on the resulting dynamic descriptions to analyse directions of
variations within the data. We explored whether these variations were
associated with clinical variables.

We grouped the PC scores by the total SVD score and applied the

Kruskal-Wallis test to determine whether there were significant differ-
ences between groups. The results are displayed in Table 4. We ob-
served significant differences using three descriptors: RPS extracted
from blood vessels [low slice], deep GM, and WM [middle-high slice]
(9.28 ≤ χ2 ≤ 15.56, p-value ≤ 0.05, df=4); ULBP from WM [low-
middle, middle-high, and high slices] (10.83 ≤ χ2 ≤ 11.45, p-value ≤
0.05, df=4), and LCP from blood vessels [low slice] and WM [middle-
high slice] (χ2= 9.69, p-value<0.05, df=4 and χ2= 10.26, p-
value< 0.05, df=4, respectively). The other four descriptors did not
vary significantly with the overall burden of SVD in any of the tissues in
any of the four slices: signal enhancement, GLCM metrics, area under
the enhancement curve, and enhancement curve slope.

We carried out multiple linear regression to investigate whether
biological sex, age, WMH volume, and stroke lesion type were asso-
ciated with the observed PC score. The results are condensed in Table 5.
Overall, we observed that (i) these four covariates influenced the fea-
tures in blood vessels, CSF, deep GM, and WM, but not the ones on the
cortical GM region, and (ii) the analysis of the signal enhancement
slope did not result in significant associations.

Concerning CSF, the regression results indicate that the resulting
models explained between a fifth and a fourth of the variance and were
significant predictors of the observed PC scores (p-value ≤ 0.05) in six
of evaluated descriptors: signal enhancement (both low-middle and
middle-high slices), RPS (only low-middle slice), GLCM metrics (only
low-middle slice), ULBP (only low-middle slice), LCP (only low-middle
slice), and AUEC (both low-middle and middle-high slices). Three out of
four covariates, WMH volume, sex, and stroke lesion type, were re-
levant predictors of the observed intensity, spectral, texture features
measured in the CSF region. WMH volume was a strong predictor in all
six models: signal enhancement (β=0.38;p-value<0.05), RPS
(β=−0.32;p-value= 0.05), GLCM metrics (β=0.37;p-value< 0.05),
ULBP (β=−0.32;p-value<0.05), LCP (β=−0.34;p-value< 0.05),
and AUEC (β=−0.38;p-value<0.05). While biological sex con-
tributed significantly to models built on GLCM metrics (β=0.40;p-
value< 0.05), ULBP (β=0.29;p-value= 0.05), LCP (β=0.29;p-
value= 0.05), stroke lesion type appeared to be significant predictors
in the models built on RPS (β=−0.33;p-value<0.05), ULBP
(β=−0.32;p-value= 0.05), AUEC (β=−0.36;p-value<0.05). The
age of the patients did not seem to influence considerably the features
observed in any of the models.

Regarding blood vessels (carotid arteries, basilar artery, sagittal
sinus), the regression results implied strong relationships health status
and observed intensity and spectral features (signal enhancement, RPS,
and AUEC), explaining approximately 20% of the data variation and
being significant predictors of these models (p-value<0.05). Signal

Table 4
Kruskal-Wallis values obtained by grouping PC scores by total SVD score. The results are expressed concerning χ2 and Pr (p-value). The degrees of freedom were four.
Enh, RPS, GLCM, ULBP, LCP, AUEC and slope stand for signal enhancement, radial power spectrum, grey co-occurrence matrix metrics, uniform local binary patterns,
linear configuration model, area under enhancement curve, and enhancement curve slope, respectively. Values in bold are significant (p-value< 0.05).

Method Low Low-middle Middle-high High

BL CSF BL GMD GMC WM BL CSF GMC WM BL GMC WM

Enh χ2 4.93 3.38 4.00 3.53 3.20 6.50 2.88 4.02 3.00 8.09 4.97 7.57 5.35
Pr 0.29 0.50 0.41 0.47 0.52 0.16 0.58 0.40 0.56 0.09 0.29 0.11 0.25

RPS χ2 10.49 7.69 2.32 15.56 8.35 5.87 5.91 7.54 10.15 9.28 6.58 6.64 8.97
Pr 0.03 0.09 0.68 0.01 0.08 0.21 0.21 0.11 0.04 0.05 0.16 0.16 0.06

GLCM χ2 2.32 4.70 4.55 2.44 5.03 6.01 3.46 5.52 2.65 6.50 0.44 0.92 6.06
Pr 0.67 0.32 0.33 0.65 0.28 0.19 0.48 0.24 0.61 0.17 0.97 0.92 0.19

ULBP χ2 4.31 5.16 1.00 4.41 3.25 10.83 2.17 2.52 2.72 11.45 1.06 6.54 11.09
Pr 0.37 0.27 0.91 0.35 0.52 0.03 0.70 0.64 0.61 0.02 0.90 0.16 0.03

LCP χ2 9.69 6.57 0.55 4.19 3.85 7.56 2.59 4.62 0.98 10.26 2.64 3.78 7.76
Pr 0.04 0.16 0.97 0.38 0.43 0.11 0.63 0.33 0.91 0.03 0.62 0.44 0.10

AUEC χ2 4.99 3.45 6.32 3.64 4.28 6.50 2.82 3.39 2.97 8.62 5.50 7.65 5.45
Pr 0.29 0.49 0.18 0.46 0.37 0.16 0.59 0.49 0.56 0.07 0.24 0.11 0.24

Slope χ2 4.40 3.30 4.60 1.62 2.35 1.61 6.39 5.44 7.98 2.29 4.08 2.26 1.66
Pr 0.35 0.51 0.33 0.80 0.67 0.81 0.17 0.24 0.09 0.68 0.40 0.69 0.80
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Table 5
Multiple linear regression analysis between PC scores for each descriptor and for each region of interest as response variable and age, WMH volume, biological sex,
and stroke lesion type as predictor variables. The regression results are expressed concerning adjusted R2, Pr (p-value), and β values. Enh, RPS, GLCM, ULBP, LCP,
AUEC, and slope stand for signal enhancement, radial power spectrum, grey co-occurrence matrix metrics, uniform local binary patterns, linear configuration model,
area under enhancement curve, and enhancement curve slope, respectively. Values in bold are significant (p-value< 0.05).

Method Low Low-middle Middle-high High

BL CSF BL GMD GMC WM BL CSF GMC WM BL GMC WM

Enh R2 0.08 0.19 0.14 0.10 0.10 0.11 0.20 0.19 0.10 0.10 0.18 0.13 0.11
Pr 0.14 0.02 0.05 0.10 0.10 0.09 0.02 0.02 0.11 0.09 0.02 0.06 0.08
PrAge 0.08 0.57 0.42 0.85 0.77 0.93 0.18 0.70 0.99 0.94 0.53 0.98 0.89
PrWMH 0.20 0.02 0.05 0.02 0.02 0.02 0.06 0.00 0.02 0.02 0.03 0.01 0.02
PrSex 0.59 0.14 0.19 0.56 0.52 0.48 0.04 1.00 0.57 0.52 0.05 0.49 0.56
PrLac 0.25 0.03 0.06 0.16 0.14 0.12 0.07 0.05 0.11 0.13 0.07 0.10 0.11
βAge −0.31 0.09 −0.14 −0.03 0.05 0.01 −0.22 0.06 0.00 0.01 −0.10 0.00 0.02
βWMH 0.21 0.38 0.31 0.40 0.38 0.39 0.29 0.46 0.38 0.39 0.35 0.41 0.40
βSex −0.08 −0.21 −0.20 −0.09 −0.10 −0.11 −0.30 0.00 −0.09 −0.10 −0.29 −0.10 −0.09
βLac 0.19 0.35 0.31 0.23 0.25 0.26 0.29 0.32 0.27 0.26 0.29 0.27 0.27

RPS R2 0.15 0.17 0.07 0.20 0.11 0.15 0.11 0.04 0.07 0.15 0.21 0.12 0.15
Pr 0.04 0.03 0.15 0.01 0.09 0.04 0.09 0.24 0.16 0.04 0.01 0.07 0.05
PrAge 0.22 0.24 0.12 0.59 0.07 0.50 0.15 0.30 0.86 0.60 0.03 0.78 0.65
PrWMH 0.01 0.05 0.09 0.00 0.06 0.02 0.09 0.16 0.06 0.02 0.01 0.04 0.02
PrSex 0.25 0.14 0.27 0.09 0.38 0.09 0.66 0.58 0.36 0.10 0.73 0.16 0.11
PrLac 0.17 0.04 0.40 0.13 0.38 0.15 0.11 0.16 0.11 0.16 0.12 0.06 0.15
βAge 0.21 −0.19 0.28 −0.09 0.32 0.11 0.25 −0.18 −0.03 0.09 0.36 −0.05 0.08
βWMH −0.40 −0.32 −0.28 0.45 −0.30 −0.37 −0.28 0.23 −0.32 −0.39 −0.39 −0.33 −0.39
βSex −0.17 0.22 0.17 0.25 −0.13 −0.26 0.07 −0.09 −0.14 −0.25 0.05 −0.21 −0.24
βLac −0.22 −0.33 −0.14 0.24 −0.15 −0.24 −0.27 0.24 −0.28 −0.23 −0.24 −0.32 −0.24

GLCM R2 −0.05 0.24 −0.06 0.01 −0.05 −0.05 0.00 −0.09 −0.02 0.14 −0.02 0.05 0.08
Pr 0.72 0.01 0.79 0.39 0.75 0.69 0.40 0.94 0.52 0.05 0.55 0.22 0.13
PrAge 0.66 0.75 0.89 0.93 0.56 0.72 0.13 0.55 0.34 0.01 0.51 0.07 0.08
PrWMH 0.75 0.02 0.90 0.25 0.74 0.93 0.32 0.92 0.69 0.86 0.52 0.26 0.25
PrSex 0.26 0.01 0.33 0.13 0.87 0.40 0.55 0.96 0.87 0.06 0.17 0.39 0.04
PrLac 0.59 0.50 0.52 0.73 0.35 0.21 0.71 0.79 0.30 0.24 0.62 0.72 0.56
βAge 0.08 −0.05 −0.02 −0.02 −0.11 −0.07 −0.28 −0.11 0.17 −0.45 −0.12 −0.33 −0.31
βWMH −0.06 0.37 −0.02 0.20 0.06 0.01 0.17 −0.02 −0.07 0.03 0.11 0.19 0.19
βSex 0.19 0.40 −0.16 0.24 0.03 −0.14 0.10 0.01 −0.03 −0.28 −0.23 0.13 −0.32
βLac −0.10 −0.10 0.12 −0.06 0.17 −0.22 0.07 0.05 −0.18 −0.19 0.09 0.06 −0.10

ULBP R2 0.08 0.17 −0.09 0.09 0.08 −0.06 −0.02 −0.06 0.01 0.13 −0.04 −0.08 0.25
Pr 0.14 0.03 0.96 0.12 0.14 0.80 0.55 0.79 0.37 0.06 0.66 0.91 0.01
PrAge 0.54 0.79 0.93 0.23 0.09 0.79 0.14 0.77 0.18 0.40 0.99 0.72 0.26
PrWMH 0.20 0.04 0.90 0.54 0.76 0.47 0.43 0.40 0.52 0.01 0.48 0.48 0.01
PrSex 0.04 0.05 0.50 0.06 0.39 0.52 0.69 0.33 0.39 0.28 0.36 0.70 0.02
PrLac 0.45 0.05 0.73 0.67 0.41 0.38 0.24 0.87 0.13 0.55 0.45 0.64 0.54
βAge −0.11 −0.04 −0.02 −0.21 −0.30 −0.05 0.27 −0.05 −0.25 0.14 −0.00 0.07 −0.18
βWMH −0.21 −0.32 0.02 −0.10 −0.05 −0.12 −0.13 0.15 −0.11 −0.45 −0.12 −0.12 −0.40
βSex 0.32 0.29 0.11 0.29 −0.13 −0.11 0.06 −0.16 −0.14 −0.16 −0.15 0.06 −0.33
βLac −0.13 −0.32 −0.06 0.07 0.14 −0.16 0.21 0.03 −0.27 −0.10 0.14 −0.09 −0.09

LCP R2 −0.01 0.20 −0.07 0.11 0.05 −0.06 −0.02 −0.03 −0.06 0.25 −0.02 −0.08 0.36
Pr 0.47 0.02 0.86 0.09 0.22 0.78 0.53 0.59 0.80 0.01 0.54 0.92 0.00
PrAge 0.19 0.36 0.46 0.02 0.15 0.92 0.19 0.67 1.00 0.47 0.93 0.41 0.15
PrWMH 0.45 0.03 0.75 0.39 0.79 0.25 0.26 0.36 0.93 0.00 0.78 0.57 0.00
PrSex 0.24 0.05 0.48 0.15 0.18 0.82 0.98 0.17 0.96 0.15 0.39 0.78 0.01
PrLac 0.28 0.06 0.80 0.79 0.41 0.89 0.27 0.81 0.26 0.69 0.21 0.85 0.71
βAge −0.24 −0.15 0.14 −0.4 −0.25 0.02 0.25 0.08 0.00 0.11 0.02 −0.15 0.21
βWMH 0.13 −0.34 −0.05 0.14 0.04 0.20 −0.19 −0.16 0.02 −0.56 0.05 0.10 0.47
βSex −0.19 0.29 0.12 0.22 −0.21 0.04 0.00 0.22 −0.01 −0.20 0.14 0.05 0.35
βLac −0.19 −0.30 −0.05 −0.04 0.14 −0.02 0.20 −0.04 −0.21 −0.06 −0.22 −0.03 0.05

AUEC R2 0.10 0.20 0.12 0.10 0.11 0.11 0.21 0.19 0.10 0.10 0.19 0.13 0.11
Pr 0.10 0.02 0.08 0.10 0.08 0.09 0.01 0.02 0.10 0.09 0.02 0.06 0.08
PrAge 0.06 0.57 0.48 0.85 0.87 0.94 0.17 0.70 1.00 0.94 0.52 0.99 0.89
PrWMH 0.14 0.02 0.07 0.02 0.01 0.02 0.06 0.00 0.02 0.02 0.02 0.01 0.01
PrSex 0.58 0.14 0.05 0.56 0.61 0.48 0.04 0.99 0.57 0.52 0.05 0.49 0.55
PrLac 0.25 0.03 0.26 0.16 0.13 0.12 0.07 0.04 0.10 0.13 0.06 0.10 0.11
βAge 0.33 −0.09 0.12 0.03 0.03 −0.01 0.22 −0.06 0.00 −0.01 0.11 −0.00 −0.02
βWMH −0.24 −0.38 −0.30 −0.40 −0.41 −0.39 −0.29 −0.46 −0.38 −0.39 −0.36 −0.41 −0.40
βSex 0.08 0.21 0.31 0.09 0.08 0.11 0.31 −0.00 0.09 0.10 0.29 0.10 0.09
βLac −0.19 −0.36 −0.18 −0.24 −0.25 −0.26 −0.29 −0.33 −0.27 −0.26 −0.30 −0.27 −0.27

Slope R2 0.02 0.01 −0.09 −0.05 −0.02 0.04 0.05 −0.00 0.02 0.10 0.03 0.07 0.01
Pr 0.33 0.35 0.93 0.69 0.51 0.26 0.20 0.42 0.34 0.10 0.28 0.16 0.39
PrAge 0.14 0.54 0.93 0.29 0.18 0.67 0.48 0.91 0.24 0.07 0.69 0.01 0.34
PrWMH 0.93 0.44 0.88 0.33 0.50 0.68 0.37 0.21 0.32 0.39 0.24 0.59 0.68
PrSex 0.60 0.13 0.86 0.53 0.30 0.92 0.34 0.67 0.10 0.05 0.47 0.73 0.13
PrLac 0.55 0.71 0.40 0.97 0.62 0.04 0.09 0.26 0.98 0.39 0.07 0.22 0.35
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enhancement values were associated to the overall burden of WMH in
low-middle (β=0.31;p-value= 0.05) and high (β=0.35;p-value<
0.05) slices and the biological sex of the patients in middle-high
(β=−0.30;p-value<0.05) and high (β=−0.29;p-value=0.05)
slices. These associations were similar for AUEC, except that the fea-
tures measured in the low-middle slices were not significant (p-
value>0.05).

In the low-middle slice, the overall burden of WMH contributed
significantly to the observed spectral features in deep GM (β=0.45;p-
value<0.01) and WM (β=−0.37;p-value<0.05), describing ap-
proximately 20% and 15% of their variability. However, no other de-
scriptor seemed to encode any relevant information for these two tis-
sues in this slice.

Only spectral and textural features measured in the WM region in
the middle-high and/or high slices displayed relevant relationships
with health status. Model covariates explained between 14% and 36%
of the variance of RPS, GLCM metrics, ULBP, and LCP features. WMH
volume contributed significantly to the RPS features in both slices
(β=−0.39;p-value<0.05 and β=−0.39;p-value< 0.05, respec-
tively), ULBP in the high slice (β=−0.40;p-value< 0.05), LCP in the
both slices (β=−0.56;p-value<0.01 and β=0.47;p-value< 0.01,
respectively). Biological sex predicted significantly the features of two
descriptors, ULBP (β=−0.33;p-value<0.05) and LCP (β=0.35;p-
value<0.05). Age significantly influenced the values of GLCM
(β=−0.45;p-value<0.05). Stroke lesion type did not appear relevant
in any of the models built with data from middle-high or high slices.

4. Discussion

In this paper, we propose a framework incorporating dynamic
spectral and textural descriptors and functional principal component
analysis to study dynamic brain MRI signals of brain pathology. In
particular, we applied our processing pipeline to the study of SVD tissue
changes using DCE-MRI acquisitions. We analysed the dynamic de-
scriptors from blood vessels, CSF, grey and white matter brain regions
of a population with features of SVD of differing extents to examine
whether subjects with different biological sex, age, WMH volume,
stroke lesion type, and overall load of SVD features exhibited distinctive
patterns. To the best of our knowledge, this is the first time that these
dynamic descriptors have been examined jointly for this purpose. Of
note, our framework could be used for analysing other dynamic and
non-dynamic brain MR acquisitions, with further testing.

Most of the features extracted from the CSF cavities near the choroid
plexus (low-middle slice) were significantly associated with the biolo-
gical sex or stroke lesion type, and the overall burden of WMH. We
observed that the overall enhancement in the CSF cavities increased if
patients were female or had a lacunar stroke, and with decreasing WMH
burden. In accordance with previous findings [10], we observed a re-
lationship between burden of features of SVD and leakage of Gadoli-
nium-based contrast agent into CSF. However, our results suggest that
the CSF enhancement might be inversely proportional to the burden of
WMH. Bigger sample size and further testing are needed to determine
the direction of the relationship. Our framework found features corre-
lated with WMH burden and, as increased WMH load is known to be
associated with blood-brain barrier leakage [9], our proposal shows

promise for studying subtle small vessel dysfunction.
We observed that surrogate measures of small vessel disruption

extracted from the signal enhancement curve, such as area under the
enhancement curve, could capture relevant information linked with the
health status of the patients, but some of the texture and spectral de-
scriptors were more sensitive to variations in the deep GM or WM. In
fact, we noticed that while both the slope and area under the en-
hancement curve measurements in WM did not reflect the health status
significantly, but spectral and texture descriptors did. This might be a
consequence of spectral and texture descriptors taking into account and
encoding neighbouring relationships. The power spectrum reflected
information associated with overall WMH burden in blood vessels, CSF,
deep GM, and WM; being an encouraging outcome since it shows the
analysis of the power spectra is more descriptive than current semi-
quantitative surrogates of dysfunction.

The current proposal exhibits two drawbacks: the region sampling
strategy and the generalisability. First, region sampling prevents de-
scriptors from encoding volumetric information, but sample selection is
tedious and not resilient to motion. Due to the prolonged scanning
process, brain DCE-MRI acquisitions are prone to head motion artefacts.
In small vessel dysfunction assessments, imaging artefacts confound
whether tenuous enhancements are a consequence of subtle blood-brain
barrier abnormalities and, although the repercussions of motion have
not been documented for this particular problem, we believe that they
compromise both the interpretation and subsequent result interpreta-
tion. Notwithstanding that we realigned all time points to the pre-
contrast scans to correct for bulk patient movement, this approximation
does not compensate for possible information loss or k-space dephasing
due to motion. Second, the imaging protocol influences the features
that are captured by the different descriptors as none of them is scale-
invariant in principle and also the synthesis step as lower temporal
resolution results in less information in the time domain. Even though
the acquisition protocol was fixed in this study, their application to
multi-centre studies might be restricted.

Future work should contemplate finding automatically anatomi-
cally-relevant regions proximal to arterial territories or in which signal
to noise ratios are the highest. In such a way, we could enlarge our
sample size to (i) draw stronger conclusions, (ii) establish clearer links
between computer vision descriptors and underlying physiopatholo-
gical processes, and (iii) determine whether these descriptors are useful
in dysfunction classification problems. Additionally, the current pro-
posal needs to be tested on diagnostic sequences and pre- vs post-con-
trast analyses to examine whether they capture dysfunction-related
information.

Our findings add confidence to previous studies in which DCE-MRI
signals from patients with different age, health status, and premorbid
brain condition exhibited different tendencies [26,33]. Our proposed
framework seems promising and feasible, but it needs further testing on
a larger sample and on pre- vs post-contrast and cross-sectional studies.

Declaration of competing interest

None.

Table 5 (continued)

Method Low Low-middle Middle-high High

BL CSF BL GMD GMC WM BL CSF GMC WM BL GMC WM

βAge −0.27 −0.11 0.02 −0.20 −0.25 −0.08 −0.12 0.02 −0.21 −0.32 0.07 −0.46 −0.17
βWMH −0.01 −0.13 0.03 0.17 0.11 0.07 0.15 −0.22 0.17 0.14 0.20 0.09 0.07
βSex 0.08 0.24 0.03 0.10 0.17 −0.02 −0.15 0.07 −0.27 0.30 −0.11 −0.05 0.25
βLac 0.10 0.07 0.16 −0.01 −0.09 −0.37 0.30 0.20 0.00 −0.14 0.32 −0.21 −0.16
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