

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Obesity has limited behavioural overlap with addiction and psychiatric phenotypes

Citation for published version:

Vainik, U, Misic, B, Zeighami, Y, Michaud, A, Mõttus, R & Dagher, A 2019, 'Obesity has limited behavioural overlap with addiction and psychiatric phenotypes', *Nature Human Behaviour*. https://doi.org/10.1038/s41562-019-0752-x

Digital Object Identifier (DOI):

10.1038/s41562-019-0752-x

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Nature Human Behaviour

Publisher Rights Statement:

This is the accepted version of the following article: Vainik, U., Misic, B., Zeighami, Y. et al. Obesity has limited behavioural overlap with addiction and psychiatric phenotypes. Nat Hum Behav, which has been published in final form at: https://doi.org/10.1038/s41562-019-0752-x

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

2	
3	Obesity has limited behavioural overlap with addiction and psychiatric phenotypes
4	
5	Uku Vainik ^{1,2*} , Bratislav Misic ¹ , Yashar Zeighami ¹ , Andréanne Michaud ¹ , Rene Mõttus ^{3,2} , Alain
6	Dagher ¹
7	
8	1. Montreal Neurological Institute, McGill University, Canada
9	2. Institute of Psychology, University of Tartu, Estonia
10	3. Department of Psychology, University of Edinburgh, UK
11	* Corresponding author: <u>uku.vainik@gmail.com</u>
12	
13	Final version out now at Nature Human Behavior: <u>https://doi.org/10.1038/s41562-019-0752-x</u>

Obesity is a widespread health condition¹, likely driven by increased availability of inexpensive 14 high-calorie food². People vary in their behavioural response to food plenty. Such variation is 15 likely driven by behavioural styles^{3,4}, as behaviour accounts for entire food intake⁵. A prominent 16 hypothesis is that people with obesity respond to rewards similarly to people with addictions 17 such as alcohol abuse or smoking^{6,7}. For instance, perceived overeating or "Uncontrolled Eating" 18 (UE) is the most common obesity-associated personality trait⁸ and resembles the perceived loss 19 of control seen in drug addiction. Likewise, both obesity and addictive behaviours have similar 20 correlations with broad personality domains³. Here, we seek to empirically test whether obesity 21 22 and UE overlap behaviourally with addiction and psychiatric disorders, collectively referred to as phenotypes. We test for behavioural similarity by linking the personality profiles of each 23 phenotype. NEO Personality Inventory (NEO PI-R/3) profiles of 28 phenotypes were extracted 24 from 22 studies, encompassing summary statistics from 18,611 unique participants. Obesity had 25 moderate and UE high behavioural similarity with addictions. UE also overlapped behaviourally 26 27 with most psychiatric phenotypes, whereas obesity was behaviourally similar with mood disorders and certain personality disorders. Facet-based phenotype profiles provided more 28 29 information than domain-based profiles.

30

Vulnerability to drug use and to overeating have been suggested to have a shared behavioural
basis ^{3,6,7}. For instance, drug use and obesity are associated with similar personality
questionnaires and cognitive tests³. However, the similarities are observational and have not been
quantified. Quantifying the behavioural overlap between obesity and addictions has nosological
and therapeutic implications, and may reveal underlying behavioural mechanisms and risk
factors.

37	Addictive features may also characterise a commonly identified eating-related phenotype,
38	Uncontrolled Eating (UE). UE is conceptualised as high food reward sensitivity combined with
39	poor self-control ⁸ , and this trait explains most of the variance in the common eating-related
40	questionnaires measuring emotional eating, food addiction, or binge eating ^{8,9} . Despite these
41	questionnaires' slightly differing definitions and item content (^{reviewed in 10}), UE-related
42	questionnaires demonstrate similar correlations with other variables, such as obesity 8 and
43	personality traits ¹⁰ . UE may capture aspects of behaviour that resemble addictions, as one of the
44	UE questionnaires, the Yale Food Addiction Questionnaire, is based on the Diagnostic and
45	Statistical Manual of Mental Disorders' criteria for drug abuse. However, the behavioural
46	similarities between addiction, obesity, and UE have not yet been systematically investigated.
47	Addictive features likely explain only part of the behavioural repertoire of obesity, as this
48	condition can develop from multiple behavioural paths ¹¹ . Therefore, we also assessed potential
49	behavioural similarities of obesity and UE with other psychiatric conditions. Obesity and the
50	extreme form of UE, binge eating ⁸ , are comorbid with various psychiatric phenotypes, such as
51	autism ¹² , anxiety ¹³ , mood disorders, including depression and bipolar disorder ¹⁴ , as well as with
52	avoidant, antisocial, and schizotypal personality disorders ¹⁵ . This raises the possibility of an
53	underlying behavioural endophenotype that confers vulnerability to obesity, overeating, and
54	various psychiatric phenotypes. We therefore explored the similarity of the behavioural profiles
55	of obesity and UE with those of several possibly relevant psychiatric phenotypes.
56	To estimate behavioural similarity, we compared the personality profiles of each phenotype
57	derived from a popular and comprehensive personality test, the NEO PI-R/3 ^{16,17} . We use the
58	term behavioural similarity only for simplicity as NEO PI-R/3 summarises people's actions, as
59	well as thoughts, feelings, and goals ¹⁶ . NEO PI-R/3 has 240 questions, which can be summarised

into 30 facets, which in turn belong to five major personality domains: Neuroticism, a tendency
to experience negative affect; Extraversion, a tendency to experience positive affect; Openness, a
preference for novelty and intellectual curiosity; Agreeableness, a tendency for altruism; and
Conscientiousness, an ability to control impulses that facilitates goal-directed behaviour. A
phenotype's personality profile refers to the pattern of associations that this phenotype has with
personality traits.

66 Most profile comparison research has focused on the broad domains level where the phenotypes 67 of interest tend to be behaviourally similar. Several reviews and meta-analyses have shown the 68 tendency for alcohol consumption, smoking, obesity and different psychiatric phenotypes to have a similar underlying personality profile, characterised by high Neuroticism and low 69 Conscientiousness ^{3,4,18,19} (see also Figure 1, domain section). However, this literature ignores the 70 71 more fine-grained information contained in the facets that make up each domain. Two 72 phenotypes seemingly similar based on high Neuroticism and low Conscientiousness domain 73 scores, may, in fact, be very different in their facet-level personality profiles. This is not a mere 74 hypothetical, as obesity is associated only with specific facets within Neuroticism and Conscientiousness ^{e.g., 20}. Therefore, obesity might indeed be less similar with addictions based on 75 76 facet-level behavioural profiles than the domain-based evidence would suggest (compare domain 77 vs facet profiles in Figure 1).

Figure 1. Personality trait profiles of obesity and selected addictions. Neuroticism has been
reversed to Emotional Stability to avoid inflation of profile correlations. Solid vertical line
separates domains from facets. The horizontal dashed line indicates 0 on y axis. Figure has been
conceptually reproduced from Michaud et al. ³. ALC = Alcohol; GMB = Gambling; OB =
Obesity; OPI = Opioid abuse; *r* = correlation; SMK = Smoking
To assess behavioural similarity between obesity, UE, addiction and psychiatric phenotypes, we
"upcycled" previously published NEO PI-R/3 domain and facet profiles of each phenotype

87 PI-R/3 scores of people with a diagnosis (e.g., depression) to those of a control group, or

86

correlating the NEO PI-R/3 facet scores with a continuous trait, such as body mass index (BMI)

(Supplementary Table 1). The personality profiles were obtained either by comparing mean NEO

89 or a self-report questionnaire score. An example set of profiles is presented in Figure 1. We then

90	formally assessed behavioural similarity of the phenotypes by correlating the personality
91	profiles, obtaining <i>personality correlations</i> (r_p) between them. For most analysis, we present the
92	domain-based results along with the facet-based results, to compare their informativeness.
93	Inspecting personality correlations revealed an overall similarity in all phenotypes, but also some
94	notable clusters among them. See Supplementary Figure 1 for domain-based personality
95	correlations and Supplementary Figure 2 for facet-based personality correlations. The mean
96	absolute personality correlations were stronger within the domain-based analysis (mean r_p = .54,
97	95% CI [.51, .56]) than facet-based analysis (mean r_p = .45, 95% CI [.42, .47], as confirmed by
98	paired two-tailed <i>t</i> -test: <i>t</i> (377) = 9.55, <i>p</i> < .001, <i>d</i> = .49, 95% CI [.35, .64]. This suggests that
99	facet-level profiles demonstrate behavioural differences between phenotypes that are not evident
100	from domain-based profiles. In other words, facets allow for greater discriminant validity among
101	the phenotypes.
102	We next sought to formally assess the extent to which our target phenotypes, obesity and UE had
103	behavioural similarities with addiction and psychiatric phenotypes. As an effect size baseline,
104	our analysis also included education and gender to provide a "null hypothesis" for the
105	associations. As maximum expected effect size, we considered the correlations that
106	addiction/psychiatric phenotypes had with each other.
107	At the domain level, phenotypes varied in the personality correlations they had with addictions
108	$(F(4, 34) = 11.26, p < .001, \eta_p^2 = .57, 95\%$ CI [.27, .68]). This is illustrated in Figures 2a and 2c,
109	where obesity (mean r_p = .73, 95% CI [.52, .94]) and UE (mean r_p = .67, 95% CI [.48, .86])
110	seemed to have considerably stronger personality correlations with addictions than gender (mean
111	r_p = .42, 95% CI [.23, .61]) or education (mean r_p = .48, 95% CI [.26, .69]) . At the same time,

112	there was considerable behavioural similarity between UE, obesity, and addictions, as
113	personality correlations that UE or obesity had with addictions were of similar magnitude as
114	those between the different addictive phenotypes (mean r_p = .85, 95% CI [.78, .92], Figure 2c).
115	To statistically test the differences between the mean values in personality correlations with
116	addictions, we repeated the ANOVA as a regression model where phenotype category predicted
117	personality correlation strength with addictions, setting obesity or UE as a reference category
118	(full model adjusted R^2 = .52, 95% CI [.31,.79], $F(4,34) = 11.26$, $p < .001$). We then extracted
119	the contrasts comparing OB and UE with other phenotypes and corrected p-values across these
120	contrasts with Holm correction. Education had lower personality correlations with addictions
121	than obesity ($b =38, 95\%$ CI [5718], $p = .003$) and than UE ($b =28, 95\%$ CI [4708], p
122	= .03). Similarly, gender had lower personality correlations with addictions compared to obesity
123	(<i>b</i> =43, 95% CI [6323], <i>p</i> = .001) and to UE (<i>b</i> =33, 95% CI [5313], <i>p</i> = .009). At
124	the same time, there were no statistical differences between addiction-related personality
125	correlations of obesity and UE ($b =1$, 95% CI [3 .1], $p = .652$), between obesity and
126	addictions ($b = 0$, 95% CI [16 0.17], $p = .989$), and between UE and addictions ($b = .1$, 95% CI
127	[06 .27], $p = .652$). All reported statistical comparisons are also reported in Supplementary
128	Table 2.

A more nuanced result emerged from facet-level analyses (Figures 2b and 2d). The five groups were better separable in the personality correlations they had with addictions, as suggested by higher effect size (F(4, 34) = 40.82, p < .001, $\eta_p^2 = .83$, 95% CI [.67, .87]). Figure 2d revealed a gradient of similarities with addictions, where education (mean $r_p = .21$, 95% CI [.06, .37]) and gender (mean $r_p = .18$, 95% CI [.11, .24]) were the lowest, followed by obesity (mean $r_p = .36$, 95% CI [.23, .49]), which was followed by UE (mean $r_p = .51$, 95% CI [.36, .66]), and then by

135	addictions (mean r_p = .73, 95% CI [.67, .8]). The gradient was confirmed when comparing
136	differences in personality correlation estimates from the regression model (adjusted R^2 = .81,
137	95% CI [.73,.9], $F(4,34) = 40.82$, $p < .001$.) Regarding baseline phenotypes, gender had weaker
138	personality correlations with addictions than obesity ($b =22$, 95% CI [3609], $p = .006$) and
139	than UE ($b =4$, 95% CI [5427], $p < .001$). Similarly, education had weaker personality
140	correlations with addictions compared to obesity ($b =22$, 95% CI [3609], $p = .006$) and
141	(UE4, 95% CI [5427], p <.001). Intriguingly, UE had higher similarity to addictions than
142	obesity ($b = .18, 95\%$ CI [.04 .31], $p = .019$). Further, addictions had even higher similarities
143	with each other than with UE ($b = .15, 95\%$ CI [.04 .26], $p = .019$) and with obesity ($b = .33$,
144	95% CI [.22 .44], <i>p</i> <.001).

152	personality correlations, thick lines represent mean values, beans represent smoothed densities,	
153	and the rectangles represent 95% confidence intervals. EDU, GEN, OB, UE have 6 personality	
154	correlations, ADD has 15 personality correlations. Horizontal brackets indicate significant	
155	differences in two phenotypes regarding their mean personality correlation with addiction	
156	phenotypes. Differences were detected with multiple regression, using Holm corrected p value	
157	< .05. Full statistics are reported in Supplementary Table 2. ADD = Addictions; ALC = Alcohol;	
158	EDU = Education; GEN = Gender; GMB = Gambling; GMB.A = Gambling with attention	
159	deficit hyperactivity disorder; OB = Obesity; OPI = Opioid abuse; SMK = Smoking; THC =	
160	Cannabis; UE = Uncontrolled Eating.	
161		
162	We repeated the analytic approach with psychiatric phenotypes other than addiction. In the	
163	domain-based analysis, the five groups differed little in their behavioural similarities with	
164	psychiatric condition (Figures 3a and 3c; $F(4, 220) = 3.30$, $p = .012$, $\eta_p^2 = .06$, 95% CI [0, .11]).	
165	Reanalysis with the regression model (R^2 = .04, 95% CI [0,.12], $F(4,220) = 3.3$, $p = .012$)	
166	revealed that there were no significant differences between obesity (mean r_p = .46, 95% CI	
167	[.35, .57]), gender (mean r_p = .49, 95% CI [.34, .65]), and psychiatric conditions (mean r_p = .54,	
168	95% CI [.5, .58]) , apart from UE (mean r_p = .64, 95% CI [.51, .78]) being more similar to	
169	psychiatric conditions than education (mean r_p = .37, 95% CI [.25, .48];31, 95% CI [48	
170	13], $p = .007$). The non-significant contrasts were: obesity-education: $b =1$, 95% CI	
171	[28 .08], <i>p</i> = .63; obesity-gender: <i>b</i> = .04, 95% CI [14 .22], <i>p</i> = .665; obesity-UE: <i>b</i> = .21,	
172	95% CI [.03 .39], <i>p</i> = .135; obesity-psychiatric conditions: <i>b</i> = .09, 95% CI [05 .22], <i>p</i> = .63;	

UE-gender: *b* = -.17, 95% CI [-.35 .01], *p* = .319; UE-psychiatric conditions: *b* = -.12, 95% CI
[-.26 .01], *p* = .319, see also Supplementary Table 3.

175	However, facet-based analyses once again revealed more differences between obesity and UE in
176	their personality correlations with psychiatric conditions (Figures 3b and 3d, $F(4, 220) = 9.42$, p
177	< .001, η_p^2 = .15, 95% CI [.06, .22]). Regression analysis of personality correlations (R^2 = .13,
178	95% CI [.07,.21], $F(4,220) = 9.42$, $p < .001$) revealed that obesity had generally low similarity
179	with psychiatric conditions (mean r_p = .24, 95% CI [.17, .31]). Namely, obesity had similar
180	personality correlations with psychiatric conditions like the two baseline phenotypes of gender
181	(mean r_p = .32, 95% CI [.23, .42]); b = .09, 95% CI [07 .25], p = .794 and education (mean r_p
182	= .27, 95% CI [.2, .34]); <i>b</i> = .03, 95% CI [13 .19], <i>p</i> = 1, and correlations among psychiatric
183	phenotypes were considerably higher than obesity's personality correlations with them ($b = .27$,
184	95% CI [.15 .39], p <.001). UE (mean r_p = .49, 95% CI [.38, .6]) had higher similarity with
185	psychiatric conditions than obesity b = .28, 95% CI [.12 .44], p = .004 or education b =25,
186	95% CI [4109], <i>p</i> = .013, but not gender <i>b</i> =19, 95% CI [3503], <i>p</i> = .085. UE had
187	similar personality correlations with psychiatric conditions to the personality correlations
188	between psychiatric conditions (mean <i>r</i> _{<i>p</i>} = .5, 95% CI [.46, .54]); <i>b</i> =01, 95% CI [13 .11], <i>p</i>
189	= 1 (Supplementary Table 3). This suggests that there was considerable behavioral overlap
190	between UE and many psychiatric phenotypes but obesity had generally lower similarities.

Figure 3. Personality correlations (*r_p*) with psychiatric phenotypes. A and B: Spring-embedded
network graph based on domains (A) or facets (B), using Fruchterman-Reingold algorithm.
Circles mark psychiatric phenotypes, triangles mark targets of the behavioural similarity
analysis, rectangles mark baseline phenotypes. Blue edges mark positive correlations, red edges
mark negative correlations. C and D: Same data as in panels A and B based on domains (C) or
facets (D). Correlations are in absolute values, organised by analysis targets. Points represent

198	individual correlations, thick lines represent mean values, beans represent smoothed densities,
199	and the rectangles represent 95% confidence intervals. EDU, GEN, OB, UE have 18 data points,
200	PSY has 153 data points. Horizontal brackets indicate significant differences in two phenotypes
201	regarding their mean personality correlation with psychiatric phenotypes. Differences were
202	detected with multiple regression, using Holm corrected p value < .05. Full statistics are reported
203	in Supplementary Table 3. ANX = Anxiety disorders; ASD = Autism; ASO = Antisocial; AVO =
204	Avoidant; BDL = Borderline; BIp = Bipolar; DEp = Depression; DPD = Dependent; ED = Non-
205	anorexic eating disorders; EDU = Education; GEN = Gender; HIS = Histrionic; NAR =
206	Narcissistic; OB = Obesity; OCD = Obsessive compulsive disorder; OCPD = Obsessive
207	compulsive personality disorder; PAR = Paranoid; PSY = Psychiatric phenotypes; PTSD = Post
208	traumatic stress disorder; SCH = Schizophrenia; SZD = Schizoid; SZT = Schizotypal; UE =
209	Uncontrolled Eating.

As exploratory analysis, we described psychiatric phenotypes whose personality correlation with 211 obesity was observed of similar magnitude like between obesity and addictions (r_p = .46, Figure 212 4c). A systematic review by Gerlach et al ¹⁵ suggested that cluster C personality disorders related 213 to anxiety and fearfulness may have higher overlap with obesity than other two other personality 214 clusters (cluster A "odd-eccentric" and cluster B "dramatic-emotional"). However, only 215 obsessive-compulsive personality disorder from cluster C had a negative association with obesity 216 in our quantitative analysis (Figures 3b, 4f, and Supplementary Figure 2). Other correlations of 217 218 similar magnitude implicated behavioural similarities between obesity and mood disorders (bipolar and borderline) and cluster B personality disorders (antisocial disorder, narcissistic 219 disorder, histrionic disorder) (Figures 3b, 4d, and 4e, and Supplementary Figure 2). 220

221	To understand which facets from the NEO PI-R/3 tended to account for the behavioral			
222	similarities of addictions, obesity and UE, we plotted the facet-based behavioural profile			
223	correlations. UE's similarity with addictions (Figure 4a) was characterised by high scores on			
224	Neuroticism and no associations with Openness. In contrast, obesity's similarity with addictions			
225	(Figure 4c) was mostly driven by certain specific facets: N5: Impulsiveness, C2: Order, and C5:			
226	Self-discipline. Perhaps su <i>rp</i> risingly, the E5: Excitement-Seeking facet was an outlier as it was			
227	associated with addictions, but not with UE or obesity.			
228	Similarly, the association between UE and psychiatric phenotypes was again driven by high			
229	associations with Neuroticism and generally no associations with Openness (Figure 4b). Because			
230	the behavioural similarity between obesity and psychiatric phenotypes was generally low, we			
231	inspected the few psychiatric phenotypes that had a relatively higher behavioural similarity with			
232	obesity (Figures 4d-f). Again, similarity in associations with specific facets, such as N5:			
233	Impulsiveness, C2: Order, and C5: Self-discipline was prominent. Interestingly, obesity's			
234	association with cluster B personality disorders also highlighted that these phenotypes were			
235	similar in having association with E3: Assertiveness (Figure 4d).			

Figure 4. Scatterplots of personality correlations (r_p) between profiles of Uncontrolled Eating and obesity and addiction and psychiatric phenotypes. Associations for Neuroticism were inverted to avoid inflation of profile correlations as Neuroticism is keyed to the socially undesirable direction, as opposed to the other four domains. X and y values represent correlations of phenotypes with individual facets of NEO PI-R/3. Profiles on y axis in plots A-E have been aggregated across several profiles, See Figure 1, Figure 2, and Supplementary Table 1 for

classification. Data points represent individual personality facets, colour-coded by domain.
OCPD = Obsessive-compulsive personality disorder.

244

The current analysis provides a quantitative estimation of behavioural similarities between 245 obesity, UE, and addictions. This was achieved by employing the personality profile comparison 246 247 approach. Although the similarity was highly uniform based on five broad personality domains, higher-resolution facet-based analysis revealed that behavioural overlap between obesity and 248 addiction was smaller than those of UE and addictions or among addictions themselves. Facet-249 250 based behavioural similarity analyses further revealed that UE had considerable behavioural similarity with most psychiatric phenotype tested, whereas obesity's behavioural similarity 251 pertained to mood disorders, cluster B personality disorders and obsessive-compulsive 252 personality disorder. 253

254 The moderate behavioural similarity between obesity and addictions provides empirical support 255 for comparing these phenotypes in more detail ³. Specifically, we also highlighted the personality facets possibly characterising both obesity and addictions. The similarity was mostly driven by 256 high N5: Impulsiveness and low Conscientiousness. This is in accordance with previous 257 evidence ¹⁸ and suggests that similar self-regulation therapeutic approaches can be developed for 258 both obesity and addictions²¹. But unlike addictions, obesity does not have a consistent 259 association with sensation-seeking ^{3,18}, here measured by the E5: Excitement-seeking facet of the 260 NEO PI-R/3, which characterises craving excitement and stimulation. Therefore, sensation-261 seeking aspects of addictions might not translate to obesity. 262

263 Intriguingly, UE had more similarity with addictions than obesity. UE may therefore be 264 considered as a useful phenotype to summarise addiction-like behaviours potentially contributing to obesity. It is important to note that the UE profile was derived from questionnaires that were 265 not based on the "food addiction" concept ²². Therefore, we suggest that creating and using a 266 food addiction-specific questionnaire is not crucial to understand the common substrate between 267 addictions and overeating or UE^{e.g., 23}. In the current study, the behavioural similarity between 268 UE and addictions was driven by Neuroticism, a tendency towards negative mood states and 269 anxiety driven behaviours. Several mechanisms are possible: either traits encompassed by 270 Neuroticism could be common causes contributing to overeating and addictive behaviours, or 271 overeating and addictive behaviours contribute to a person focusing on the negative aspects of 272 these behaviours, leading to higher Neuroticism scores ^{10,24}. 273 As obesity is less addiction-centred than UE, we explored whether the behavioural profile of 274 obesity could be similar to profiles of other psychiatric phenotypes. Only a handful psychiatric 275 phenotypes seemed to have behavioural similarity with obesity with an effect size close to the 276 association between obesity and addictions. Note that the similarities were descriptive and not 277 278 statistically tested. These were mood disorders, cluster B personality disorders, and obsessivecompulsive personality disorder. Their overlap with obesity was driven by associations with N5: 279 280 Impulsiveness and Conscientiousness. As a novel finding, similarities with cluster B personality 281 disorders was further driven by the positive association between obesity and the E3: 282

Assertiveness facet of Extraversion. While assertiveness (or dominance) has been implicated in previous NEO PI-R/3 studies of obesity ^{e.g., 20}, it has not been considered in behavioural models of obesity. Individuals with Cluster B personality disorders, particularly individuals with narcissism are known to have an exaggerated sense of superiority²⁵, which may explain their higher scores

in E3: Assertiveness. At first, it is hard to imagine most people with obesity having a heightened
sense of superiority, as people with obesity typically have lower self-esteem²⁶. However, it could
be speculated that low self-esteem in obesity is a response to the increased status-driven
individualism²⁷, which may be indexed by higher E3: Assertiveness. Alternatively, higher E3:
Assertiveness may index increased reward sensitivity in people with obesity³. Future focused
analysis will have to disentangle this association.

A caveat is that each personality correlation was based on 5 domains or 30 facets. At the same 292 293 time, the "scores" for domain or facets were not single-participant data points, but average scores of at least 52 participants – at times even thousands of participants. While each correlation had 294 only 3 or 28 degrees of freedom, it borrowed power from the studies that the average facet scores 295 were based on. Future methodological developments are required to properly assess the role of 296 sample sizes that correlation profiles are based on, providing more accurate standard errors and *p* 297 values for personality correlations. Until then, less emphasis should be put on their p values than 298 on their relative magnitudes. In addition, profiles based on smaller sample sizes may provide 299 noisier estimates which lowers the personality correlations. However, there was no statistically 300 301 detectable association between profiles ranked by sample size and by profiles' average of absolute personality correlations (domains: rho = -.14, 95% CI [-.57, .35], n = 18, p = .59; facets: 302 *rho* = -.31, 95% CI [-.68, .18], *n* = 18, *p* = .21). 303

Another caveat is that the personality profile of phenotypes may vary depending on the diagnostic instrument as well as the personality trait measure used ²⁸. This is not a major concern for BMI, whose behavioural profile correlates $r_p = .96$ -.99 with other measures of adiposity ²⁰. Regarding the personality measure, current analysis was mostly limited to the NEO PI-R/3, which is intended for use in normal populations. For now, we find that these limitations are

offset by the NEO PI-R/3 profiles' wide availability. Future research of this kind may benefit 309 from operationalising behavioural profiles using more numerous and more specific personality 310 characteristics, possibly operationalised as single test items (nuances)²⁹. Indeed, as recently 311 reviewed ^{30,31}, there is a considerable amount of reliable information present in the 240 NEO PI-312 R/3 items that is lost when the single items are aggregated into the 30 facets and, especially, the 313 five domain scores. Therefore, researchers should make their data available at the item level, 314 enabling more sophisticated profile comparison based on hundreds of specific behavioural 315 characteristics. Until these more detailed profiles become widespread, researchers are forced to 316 work with the 30 NEO PI-R/3 facets, which "are not likely to be the ideal specification of lower 317 level traits, but for now they are a serviceable one, with known reliability, validity, and utility." ³² 318 Even at the facet level, as used here, the behavioural similarity analysis can bring novel insights 319 into similarities between phenotypes. Currently, we focused on addiction and psychiatric 320 321 phenotypes as there was a priori theoretical and empirical evidence for potential overlap. In the explorations, obesity and UE can be related to any other phenotype for which a NEO PI-R/3 322 profile has been published. This "upcycling" approach is more cost-effective than measuring all 323 324 the phenotypes and obesity in a single study. Once behavioural similarity is established, the analysis on the particular facets driving the similarity can provide insights into how the 325 326 behavioural similarity emerges. These insights can inform study design when obesity and the 327 behaviourally similar phenotypes are finally included in the same study. For instance, current results suggest that obesity, personality disorders, and E3: Assertiveness-related behaviours 328 329 should be studied together in greater detail.

In summary, obesity has behavioural similarity with addictions. The main overeating-related
trait, UE is even more addiction-related, suggesting that UE is a useful summary of food-related

addictive behaviours. However, obesity cannot only be explained by a propensity to addictive
behaviours. Comparison with psychiatric phenotypes highlighted that cluster B personality
disorders might bring additional insight into understanding the behavioural profile of obesity.
Our study provides a general framework for quantifying the behavioural similarity across many
phenotypes.

337 Methods

338 Justification for NEO PI-R/3. We chose to conduct behavioural profiling based on the 30 personality traits forming the facets of the five-factor model as operationalised in the NEO PI-R/ 339 3^{16,17}. The 30 NEO PI-R/3 facets are designed to comprehensively sample aspects of behaviour 340 related to the Five-Factor Model of personality (or the Big Five)³³, and the questionnaire has 341 been related to a wide range of phenotypes. While the questions are designed to be used in 342 normal populations ³⁴, the NEO PI-R/3 performs surprisingly well in subpopulations with 343 addiction or psychiatric phenotypes – theoretical factor structure can be recovered, the 344 345 questionnaire has test-retest reliability, and the questionnaire is also responsive to treatment of a psychiatric condition ^{35–37}. Here we analyse the personality domain and facet profiles of 346 347 phenotypes of interest based on previously published associations.

Finding papers. Studies profiling obesity, UE, addiction, and psychiatric phenotypes with the
NEO PI-R/3 were searched for in Google Scholar by entering "NEO PI-R/3" together with
phenotype names, such as obesity, smoking, gambling, drug use, and other phenotypes listed in
Supplementary Table 1. The goal of the search was not to be exhaustive, but to find a broad set
of addiction and psychiatric phenotypes. When several papers were available on the phenotype,
the effect sizes were either merged (see below), or previously calculated meta-analytic estimates
were preferred over individual studies. Only papers reporting NEO PI-R/3 facet-based

associations were included. 21 empirical papers ^{20,35,38–56} were kept in the analysis, which 355 analysed data from 19 different samples (Supplementary Table 1). We also included results from 356 357 one meta-analysis summarising 16 different empirical studies analyzing 18 independent samples ²⁸. Altogether, the analysis is based on the summary statistics from 18,611 unique participants. 358 Besides the phenotypes outlined in the introduction, we also included personality profiles of 359 360 education and gender. As true null association between profiles cannot be expected, we provide education and gender as reference effect sizes for interpreting the effect sizes of obesity and UE. 361 We further use personality correlations among addiction/psychiatric themselves as maximum 362 expected correlations. 363

364 **Data extraction, transformation, aggregation.** Our goal was to present all associations 365 between personality traits and phenotypes in a common metric – correlation. Correlation or 366 another measure of effect size was readily available in fewer than half of the empirical papers ^{20,38–44}. In other papers, correlations were obtained in the following way. Most papers reported 367 368 NEO PI-R/3 facet T-score means and standard errors / standard deviations (SD) for one or more 369 study group (s) and control group. For some of the traits, multiple groups were available, for instance smokers, never smokers, and former smokers ⁵⁰ or underweight, normal weight, 370 overweight, and obese ⁵¹. In these cases, we focused on the phenotype group vs control group, 371 372 for instance smokers vs never smokers; normal weight vs obese. We excluded former drug users, as for instance former smokers have a different personality than current and never smokers ⁵⁵. 373 We extracted the mean, SD, and sample size for study groups [psychiatric, current users, obese 374 (body mass index BMI \ge 30 kg/m²)], and control group [never users, normal weight (BMI 375 between 18.5 and 24.9 kg/m²). Using control group data from the included studies was preferred, 376 as this approach reduces cross-cultural differences that may occur when the study and control 377

groups come from different countries or regions ³⁸. However, when control group data was not 378 available, the NEO PI-R/3-R US normative sample (mean = 50, SD = 10, n = 1000)¹⁶ was used. 379 380 US normative sample data was also used in cases where the control group consisted of participants with psychiatric disorders ⁵². In one case, findings were available for two time 381 points; these measurement were aggregated ³⁵. When *SD* was not available ^{35,45}, it was calculated 382 from standard error, or assumed to be 10, as per the NEO PI-R/3-R manual ¹⁶. 383 The mean difference between the study group and the control group in a personality trait was 384 converted into a correlation in the following way. First, a summarised *t*-test was performed 385 386 between the control group and the study group for each domain and facet, using the extracted means, *SD*-s and sample sizes. Unequal variances were used as per previous recommendations ⁵⁷. 387 The procedure was conducted using tsum.test() from the R package BSDA ⁵⁸. The *t*-test was two-388 sided with a *p*-value of .05. However, the *p*-values were not used in the further effect size 389 conversion process. Obtained effect sizes were converted to a correlation coefficient using 390 conversion formulas implemented in the compute.es R package, which first convert the *t*-test 391 values into Cohen's *d*, which is then converted into a correlation, using standard formulas ^{59,60}. 392 We tested the effect size conversion procedure using data from a paper ²⁰ that provided both trait 393 mean and *SD* for both groups that had either normal weight or obesity, as well as continuous 394 trait-BMI correlations ²⁰. The trait-obesity correlations reported in that paper ²⁰ were almost 395 396 identical to the trait-obesity status correlations calculated from contrasting the group having normal weight with the group having obesity ($r_p = .99$). 397

When several papers were available, the correlations were aggregated using meta-analytic
 random effects aggregation. Random effects aggregation accounts for variation in study
 methodology between different study sites ⁶¹. Before meta-analysing, correlations were

401	transformed based on Fischer's <i>r</i> -to- <i>z</i> transformation (from Pearson- <i>r</i> to normal distribution <i>z</i> -
402	score), which is a recommended approach as r is not normally distributed ⁶¹ . These steps were
403	conducted by the metacor() function of the meta R package ^{62,63} . We also aggregated data for
404	conceptually similar smaller samples, for instance phobias and anxiety disorders. There, the
405	sample size weight was the size of the study group (see phenotype group column in
406	Supplementary Table 1). Since many eating-related traits are highly similar ^{8,9} , we also
407	aggregated emotional and external eating ³⁹ into UE. Some papers omitted facets with small
408	effect size; missing facets were then replaced with domain level effect sizes. Two papers ^{38,54}
409	omitted domain-outcome correlations. We then used the other 26 profiles to train a model that
410	predicted each domain-outcome correlation from the facet-outcome correlations belonging to
411	that domain. 5-fold cross-validation within the 26 profiles revealed that mean absolute error
412	ranged from $r = .03$ to $r = .04$ for different domains. Only self-reported profiles were used ^{e.g., 43} .
413	Data sources and meta-analytic aggregations are summarised in Supplementary Table 1.
414	Data analysis. Profile similarity was assessed by shape similarity, which is computed with
415	Pearson correlations between profiles ⁶⁴ . We focus on similarity based on profile shape, as shape
416	is the most fundamental element for personality profile comparison and drives other similarities
417	⁶⁴ . We inverted the scores of Neuroticism, to avoid inflation of profile correlations due to
418	Neuroticism being keyed to the socially undesirable direction, while the other four domains are
419	keyed in the socially desirable direction. For an initial presentation (Supplementary Figures S1
420	and S2), the resulting correlation matrix was clustered with the "wa $rp.d2$ " method ⁶⁵ . We
421	conducted separate analysis for addiction and psychiatric phenotypes. Subsets of the main
422	correlation matrix were visualised with a network with spring-embedded layout 66 that creates
423	clusters of more strongly related variables (Figures 1a, 1b, 2a, and 2b).

424	We first sought to establish, if there were any differences in how addiction/psychiatric
425	phenotypes related to baseline, target, and other addiction/psychiatric phenotypes. Therefore,
426	personality correlations of addiction/psychiatric phenotypes were organised into five groups:
427	correlations with 1) education, 2) gender, 3) obesity, 4) UE, and 5) other addiction/psychiatric
428	phenotypes. Those groups were used as predictors of absolute personality correlation in a one-
429	way ANOVA model. Post-hoc tests were run in a linear regression model where target
430	phenotype (obesity or UE) was the reference category, whose absolute correlations with
431	addiction/psychiatric phenotypes were compared with the correlations that variables within four
432	other variable sets had with the same phenotypes (Supplementary Tables S2 and S3). <i>p</i> values of
433	post-hoc comparisons of interest were two-sided and corrected for multiple comparison with
434	Holm method.
435	To understand which facets of NEO PI-R/3 drive the correlations, scatterplots between the
436	profile correlations were inspected. To limit the number of scatte <i>rp</i> lots, the profiles of addiction
437	or psychiatric phenotypes were aggregated by the categories outlined in Supplementary Table 1,
438	using meta-analytic principles, but keeping the sample sizes equal (e.g. $n = 100$), as we wanted
439	each phenotype to contribute equally to the aggregated profile.
440	All analysis was conducted in Microsoft R Open 3.5.1 62 using the August 2018 version of
441	several addon packages ^{58,59,63,67–77} . Analysis code is available as described in code availability
442	section.

Data availability

444 The correlation profiles of phenotypes used in the analysis are available at https://osf.io/zfsxd/
445 and also as Supplementary Data and part of Supplementary Software.

446	Code	availa	ability

- 447 The analysis script used to generate results based on the correlation profiles is available at
- 448 https://osf.io/zfsxd/ and also as Supplementary Software

449 **References**

- 1. Abajobir, A. A. *et al.* Global, regional, and national comparative risk assessment of 84
- 451 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–
- 452 2016: a systematic analysis for the Global Burden of Disease Study 2016. *The Lancet* **390**,

453 1345–1422 (2017).

- 454 2. Drewnowski, A. Obesity and the food environment: dietary energy density and diet costs.
- 455 *Am. J. Prev. Med.* **27**, 154–162 (2004).
- 456 3. Michaud, A., Vainik, U., García-García, I. & Dagher, A. Overlapping Neural
 457 Endophenotypes in Addiction and Obesity. *Front. Endocrinol.* 8, 1–15 (2017).
- 4. Vainik, U., Dagher, A., Dubé, L. & Fellows, L. K. Neurobehavioural correlates of body mass
 index and eating behaviours in adults: A systematic review. *Neurosci. Biobehav. Rev.* 37,
 279–299 (2013).
- 461 5. Blundell, J. E. & Finlayson, G. Is susceptibility to weight gain characterized by homeostatic
 462 or hedonic risk factors for overconsumption? *Physiol. Behav.* 82, 21–25 (2004).
- 463 6. Volkow, N. D., Wang, G.-J., Tomasi, D. & Baler, R. D. Obesity and addiction:
 464 neurobiological overlaps. *Obes. Rev.* 14, 2–18 (2013).
- Tang, D. W., Fellows, L. K., Small, D. M. & Dagher, A. Food and drug cues activate similar
 brain regions: A meta-analysis of functional MRI studies. *Physiol. Behav.* 106, 317–324
 (2012).

468	8.	Vainik, U., Neseliler, S., Konstabel, K., Fellows, L. K. & Dagher, A. Eating traits
469		questionnaires as a continuum of a single concept. Uncontrolled eating. <i>Appetite</i> 90 , 229–
470		239 (2015).
471	9.	Price, M., Higgs, S. & Lee, M. Self-reported eating traits: Underlying components of food
472		responsivity and dietary restriction are positively related to BMI. <i>Appetite</i> 95 , 203–210
473		(2015).
474	10.	Vainik, U., García-García, I. & Dagher, A. Uncontrolled eating: a unifying heritable trait
475		linked with obesity, overeating, personality and the brain. <i>Eur. J. Neurosci.</i> 0 , 1–16 (2019).
476	11.	Blundell, J. E. & Cooling, J. Routes to obesity: Phenotypes, food choices and activity. <i>Br. J.</i>
477		Nutr. 83 Suppl 1, S33-38 (2000).
478	12.	Murphy, C. M. et al. Autism spectrum disorder in adults: diagnosis, management, and health
479		services development. Neuropsychiatr. Dis. Treat. 12, 1669–1686 (2016).
480	13.	Gariepy, G., Nitka, D. & Schmitz, N. The association between obesity and anxiety disorders
481		in the population: a systematic review and meta-analysis. <i>Int. J. Obes.</i> 34 , 407–419 (2010).
482	14.	McElroy, S. L. et al. Are Mood Disorders and Obesity Related? A Review for the Mental
483		Health Professional. J. Clin. Psychiatry 65, 634–651 (2004).
484	15.	Gerlach, G., Loeber, S. & Herpertz, S. Personality disorders and obesity: a systematic
485		review. Obes. Rev. 17, 691–723 (2016).
486	16.	Costa, P. T. & McCrae, R. R. Revised NEO Personality Inventory (NEO-PI-R) and NEO
487		Five-Factor Inventory (NEOFFI) – professional manual. (Psychological Assessment
488		Resources, Inc., 1992).
489	17.	McCrae, R. R., Costa, Jr., P. T. & Martin, T. A. The NEO–PI–3: A More Readable Revised
490		NEO Personality Inventory. J. Pers. Assess. 84, 261–270 (2005).

491	18.	Emery, R. L. & Levine, M. D. Questionnaire and behavioral task measures of impulsivity are
492		differentially associated with body mass index: A comprehensive meta-analysis. <i>Psychol</i> .
493		Bull. 143, 868–902 (2017).
494	19.	Malouff, J. M., Thorsteinsson, E. B. & Schutte, N. S. The Relationship Between the Five-
495		Factor Model of Personality and Symptoms of Clinical Disorders: A Meta-Analysis. J.
496		Psychopathol. Behav. Assess. 27, 101–114 (2005).
497	20.	Sutin, A. R., Ferrucci, L., Zonderman, A. B. & Terracciano, A. Personality and obesity
498		across the adult life span. J. Pers. Soc. Psychol. 101, 579–592 (2011).
499	21.	Jansen, A., Houben, K. & Roefs, A. A Cognitive Profile of Obesity and Its Translation into
500		New Interventions. <i>Front. Psychol.</i> 6 , 1–9 (2015).
501	22.	van Strien, T., Frijters, J. E. R., Bergers, G. P. A. & Defares, P. B. The Dutch Eating
502		Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating
503		behavior. Int. J. Eat. Disord. 5, 295–315 (1986).
504	23.	Finlayson, G. Food addiction and obesity: unnecessary medicalization of hedonic overeating.
505		Nat. Rev. Endocrinol. 13, 493–498 (2017).
506	24.	Ormel, J. <i>et al</i> . Neuroticism and Common Mental Disorders: Meaning and Utility of a
507		Complex Relationship. Clin. Psychol. Rev. 33, 686–697 (2013).
508	25.	American Psychiatric Association. <i>Diagnostic and Statistical Manual of Mental Disorders</i> .
509		(American Psychiatric Association, 2013). doi:10.1176/appi.books.9780890425596
510	26.	Lillis, J., Luoma, J. B., Levin, M. E. & Hayes, S. C. Measuring Weight Self-stigma: The
511		Weight Self-stigma Questionnaire. Obesity 18, 971–976 (2010).
512	27.	Lemaitre, B. Connecting the obesity and the narcissism epidemics. <i>Med. Hypotheses</i> 95 , 10–
513		19 (2016).
		27

514	28. Samuel, D. B. & Widiger, T. A. A meta-analytic review of the relationships between the
515	five-factor model and DSM-IV-TR personality disorders: A facet level analysis. <i>Clin</i> .
516	<i>Psychol. Rev.</i> 28 , 1326–1342 (2008).
517	29. Mõttus, R., Kandler, C., Bleidorn, W., Riemann, R. & McCrae, R. R. Personality traits below
518	facets: The consensual validity, longitudinal stability, heritability, and utility of personality
519	nuances. J. Pers. Soc. Psychol. 112, 474–490 (2017).
520	30. Mõttus, R. Towards More Rigorous Personality Trait–Outcome Research. Eur. J. Personal.
521	30 , 292–303 (2016).
522	31. Mõttus, R., Bates, T. C., Condon, D. M., Mroczek, D., & Revelle, W. Leveraging a more
523	nuanced view of personality: Narrow characteristics predict and explain variance in life
524	outcomes. Preprint at https://doi.org/10.31234/osf.io/4q9gv (In revision).
525	32. McCrae, R. R. The Place of the FFM in Personality Psychology. <i>Psychol. Inq.</i> 21 , 57–64
526	(2010).
527	33. John, O. & Srivastava, S. The Big Five trait taxonomy: History, measurement, and
528	theoretical perspectives. in <i>Handbook of personality: Theory and research</i> 102–138
529	(Guilford Press, 1999).
530	34. Haigler, E. D. & Widiger, T. A. Experimental Manipulation of NEO-PI-R Items. J. Pers.
531	Assess. 77, 339–358 (2001).
532	35. Carter, J. A. <i>et al</i> . Short-term stability of NEO–PI–R personality trait scores in opioid-
533	dependent outpatients. Psychol. Addict. Behav. 15, 255–260 (2001).
534	36. Costa, P. T., Bagby, R. M., Herbst, J. H. & McCrae, R. R. Personality self-reports are
535	concurrently reliable and valid during acute depressive episodes. J. Affect. Disord. 89, 45–55
536	(2005).

- 37. Kentros, M. *et al.* Stability of personality traits in schizophrenia and schizoaffective disorder:
 a pilot project. *J. Nerv. Ment. Dis.* 185, 549–555 (1997).
- 38. Costa, P. J., Terracciano, A. & McCrae, R. R. Gender differences in personality traits across
 cultures: Robust and surprising findings. *J. Pers. Soc. Psychol.* 81, 322–331 (2001).
- 39. Elfhag, K. & Morey, L. C. Personality traits and eating behavior in the obese: Poor selfcontrol in emotional and external eating but personality assets in restrained eating. *Eat. Behav.* 9, 285–293 (2008).
- 40. Mõttus, R., Realo, A., Vainik, U., Allik, J. & Esko, T. Educational Attainment and
 Personality Are Genetically Intertwined. *Psychol. Sci.* 28, 1631–1639 (2017).
- 41. Ruiz, M. A., Pincus, A. L. & Dickinson, K. A. NEO PI-R Predictors of Alcohol Use and
 Alcohol-Related Problems. *J. Pers. Assess.* 81, 226–236 (2003).
- 548 42. Sutin, A. R. *et al.* The association between personality traits and body mass index varies with
 549 nativity among individuals of Mexican origin. *Appetite* (2015).
- 550 doi:10.1016/j.appet.2015.02.036
- 43. Vainik, U., Mõttus, R., Allik, J., Esko, T. & Realo, A. Are Trait–Outcome Associations
- 552 Caused by Scales or Particular Items? Example Analysis of Personality Facets and BMI.
 553 *Eur. J. Personal.* 29, 688–634 (2015).
- 44. Wakabayashi, A., Baron-Cohen, S. & Wheelwright, S. Are autistic traits an independent
 personality dimension? A study of the Autism-Spectrum Quotient (AQ) and the NEO-PI-R. *Personal. Individ. Differ.* 41, 873–883 (2006).
- 45. Bienvenu, O. J. *et al*. Anxiety and depressive disorders and the five-factor model of
- 558 personality: A higher- and lower-order personality trait investigation in a community sample.
- 559 Depress. Anxiety **20**, 92–97 (2004).

560	46.	Davtian, M., Reid, R. C. & Fong, T. W. Investigating facets of personality in adult
561		pathological gamblers with ADHD. <i>Neuropsychiatry</i> 2 , 163–174 (2012).
562	47.	Rector, N. A., Bagby, R. M., Huta, V. & Ayearst, L. E. Examination of the trait facets of the
563		five-factor model in discriminating specific mood and anxiety disorders. Psychiatry Res.
564		199 , 131–139 (2012).
565	48.	Quirk, S. W., Christiansen, N. D., Wagner, S. H. & McNulty, J. L. On the usefulness of
566		measures of normal personality for clinical assessment: evidence of the incremental validity
567		of the Revised NEO Personality Inventory. <i>Psychol. Assess.</i> 15 , 311–325 (2003).
568	49.	Bagby, R. M. <i>et al</i> . Relationship between the five-factor model of personality and unipolar,
569		bipolar and schizophrenic patients. <i>Psychiatry Res.</i> 70 , 83–94 (1997).
570	50.	Terracciano, A., Löckenhoff, C. E., Crum, R. M., Bienvenu, O. J. & Costa, P. T. Five-Factor
571		Model personality profiles of drug users. BMC Psychiatry 8, 22 (2008).
572	51.	Terracciano, A. <i>et al</i> . Facets of personality linked to underweight and overweight.
573		Psychosom. Med. 71 , 682–689 (2009).
574	52.	Morey, L. C. <i>et al</i> . The representation of borderline, avoidant, obsessive-compulsive, and
575		schizotypal personality disorders by the five-factor model. J. Personal. Disord. 16, 215–234
576		(2002).
577	53.	Rector, N. A., Hood, K., Richter, M. A. & Michael Bagby, R. Obsessive-compulsive
578		disorder and the five-factor model of personality: distinction and overlap with major
579		depressive disorder. <i>Behav. Res. Ther.</i> 40 , 1205–1219 (2002).
580	54.	Levallius, J., Clinton, D., Bäckström, M. & Norring, C. Who do you think you are? -
581		Personality in eating disordered patients. J. Eat. Disord. 3, (2015).

- 582 55. Terracciano, A. & Costa, P. T. Smoking and the Five-Factor Model of Personality. *Addict*.
 583 *Abingdon Engl.* 99, 472–481 (2004).
- 584 56. Bagby, R. M. *et al.* Pathological gambling and the five-factor model of personality.
 585 *Personal. Individ. Differ.* 43, 873–880 (2007).
- 586 57. Ruxton, G. D. The unequal variance t-test is an underused alternative to Student's t-test and
 587 the Mann–Whitney U test. *Behav. Ecol.* 17, 688–690 (2006).
- 588 58. Arnholt, A. T. BSDA: Basic Statistics and Data Analysis. (2012).
- 589 59. Re, A. D. compute.es: Compute Effect Sizes. (2014).
- 60. Borenstein, M. Effect sizes for continuous data. in *The handbook of research synthesis and meta-analysis, 2nd ed* (eds. Cooper, H., Hedges, L. V. & Valentine, J. C.) 221–235 (Russell
- 592 Sage Foundation, 2009).
- 593 61. Shadish, W. R. & Haddock, C. K. Combining estimates of effect size. in *The handbook of*
- 594 *research synthesis and meta-analysis, 2nd ed* (eds. Cooper, H., Hedges, L. V. & Valentine, J.
- 595 C.) 257–277 (Russell Sage Foundation, 2009).
- 596 62. R Core Team. R: A language and environment for statistical computing. R Foundation for597 Statistical Computing, Vienna, Austria. (2013).
- 598 63. Schwarzer, G. meta: General Package for Meta-Analysis. (2017).
- 64. Furr, R. M. The Double-Entry Intraclass Correlation as an Index of Profile Similarity:
 Meaning, Limitations, and Alternatives. *J. Pers. Assess.* 92, 1–15 (2010).
- 65. Murtagh, F. & Legendre, P. Ward's Hierarchical Agglomerative Clustering Method: Which
 Algorithms Implement Ward's Criterion? *J. Classif.* **31**, 274–295 (2014).
- 603 66. Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force-directed placement. *Softw.*
- 604 *Pract. Exp.* **21**, 1129–1164 (1991).

- 605 67. Epskamp, S. *et al.* qgraph: Network visualizations of relationships in psychometric data. *J.*606 *Stat. Softw.* 48, 1–18 (2012).
- 607 68. Phillips, N. yarrr: A Companion to the e-Book 'YaRrr!: The Pirate's Guide to R'. (2017).
- 608 69. Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research.
 609 (2014).
- 610 70. Wei, T. & Simko, V. corrplot: Visualization of a Correlation Matrix. (2016).
- 611 71. Wickham, H. & RStudio. *tidyverse: Easily Install and Load the 'Tidyverse'*. (2017).
- 612 72. Wilke, C. O. & Wickham, H. *cowplot: Streamlined Plot Theme and Plot Annotations for*613 '*qqplot2*'. (2016).
- 614 73. Partners, P. *Imvar: Linear Regression with Non-Constant Variances*. (2018).
- 615 74. Gromer, D. apa: Format Outputs of Statistical Tests According to APA Guidelines. (2019).
- 616 75. Stanley, D. *apaTables: Create American Psychological Association (APA) Style Tables.*617 (2018).
- 618 76. Torchiano, M. effsize: Efficient Effect Size Computation. (2018).
- 619 77. Slowikowski, K. et al. ggrepel: Automatically Position Non-Overlapping Text Labels with
 620 'ggplot2'. (2018).

622 Acknowledgements

- 623 We would like to thank Jüri Allik, Kenn Konstabel, Margit Kõiv-Vainik, and Taavi Tillmann for
- 624 their helpful comments on the manuscript.
- 625 Uku Vainik was supported by Personal Post-doctoral Research Funding project PUTJD654 and
- 626 by Fonds de recherche du Québec Santé (FRQS) foreign post-doctoral training award.
- 627 Andréanne Michaud was supported by Canadian Institutes of Health Research (CIHR). This
- work was supported by a CIHR Foundation Scheme award to Alain Dagher. The funders had no
- role in the conceptualization, design, data collection, analysis, decision to publish, or preparation
- 630 of the manuscript.

631 **Competing interests**

632 The authors declare no competing interests

633 Author contributions.

- All authors read and contributed significantly to the manuscript and approved the submitted
- 635 version.
- 636 U.V: collected data, analysed data, wrote the paper.
- 637 B.M: contributed to data analysis
- 638 Y.Z.: contributed to data analysis methods
- 639 A.M.: contributed to inte*rp*retation
- 640 R.M.: contributed to data analysis methods and interpretation

641 A.D.: contributed to data analysis methods and inte*rp*retation

642

643 Figure legends

644	Figure 1. Personality trait profiles of obesity and selected addictions. Neuroticism has been
645	reversed to Emotional Stability to avoid inflation of profile correlations. Solid vertical line
646	separates domains from facets. Figure has been conceptually reproduced from Michaud et al. 3.
647	ALC = Alcohol; GMB = Gambling; OB = Obesity; OPI = Opioid abuse; <i>r</i> = correlation; SMK =
648	Smoking

649	Figure 2. Personality correlations (r_p) with addiction phenotypes. A and B: Spring-embedded
650	network graph based on domains (A) or facets (B), using Fruchterman-Reingold algorithm.
651	Circles mark addiction phenotypes, triangles mark targets of the behavioural similarity analysis,
652	rectangles mark baseline phenotypes. Blue edges mark positive correlations, red edges mark
653	negative correlations. C and D: Same data as in panels A and B based on domains (C) or facets
654	(D). Correlations are in absolute values, organised by analysis targets. Points represent individual
655	personality correlations, thick lines represent mean values, beans represent smoothed densities,
656	and the rectangles represent 95% confidence intervals. EDU, GEN, OB, UE have 6 personality
657	correlations, ADD has 15 personality correlations. Horizontal brackets indicate significant
658	differences in two phenotypes regarding their mean personality correlation with addiction
659	phenotypes. Differences were detected with multiple regression, using Holm corrected p value
660	< .05. Full statistics are reported in Supplementary Table 2. ADD = Addictions; ALC = Alcohol;
661	EDU = Education; GEN = Gender; GMB = Gambling; GMB.A = Gambling with attention
662	deficit hyperactivity disorder; OB = Obesity; OPI = Opioid abuse; SMK = Smoking; THC =
663	Cannabis; UE = Uncontrolled Eating.

664	Figure 3. Personality correlations (r_p) with psychiatric phenotypes. A and B: Spring-embedded
665	network graph based on domains (A) or facets (B), using Fruchterman-Reingold algorithm.
666	Circles mark psychiatric phenotypes, triangles mark targets of the behavioural similarity
667	analysis, rectangles mark baseline phenotypes. Blue edges mark positive correlations, red edges
668	mark negative correlations. C and D: Same data as in panels A and B based on domains (C) or
669	facets (D). Correlations are in absolute values, organised by analysis targets. Points represent
670	individual correlations, thick lines represent mean values, beans represent smoothed densities,
671	and the rectangles represent 95% confidence intervals. EDU, GEN, OB, UE have 18 data points,
672	PSY has 153 data points. Horizontal brackets indicate significant differences in two phenotypes
673	regarding their mean personality correlation with psychiatric phenotypes. Differences were
674	detected with multiple regression, using Holm corrected p value < .05. Full statistics are reported
675	in Supplementary Table 3. ANX = Anxiety disorders; ASD = Autism; ASO = Antisocial; AVO =
676	Avoidant; BDL = Borderline; BIP = Bipolar; DEP = Depression; DPD = Dependent; ED = Non-
677	anorexic eating disorders; EDU = Education; GEN = Gender; HIS = Histrionic; NAR =
678	Narcissistic; OB = Obesity; OCD = Obsessive compulsive disorder; OCPD = Obsessive
679	compulsive personality disorder; PAR = Paranoid; PSY = Psychiatric phenotypes; PTSD = Post
680	traumatic stress disorder; SCH = Schizophrenia; SZD = Schizoid; SZT = Schizotypal; UE =
681	Uncontrolled Eating.
682	Figure 4. Scatter plots of personality correlations (r_p) between profiles of Uncontrolled Eating
683	and obesity and addiction and psychiatric phenotypes. Associations for Neuroticism were
684	inverted to avoid inflation of profile correlations as Neuroticism is keyed to the socially
685	undesirable direction, as opposed to the other four domains. X and y values represent
686	correlations of phenotypes with individual facets of NEO PI-R/3. Profiles on y axis in plots A-E

- have been aggregated across several profiles, See Figure 1, Figure 2, and Supplementary Table 1
- 688 for classification. Data points represent individual personality facets, colour-coded by domain.
- 689 OCPD = Obsessive-compulsive personality disorder.