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ACOUSTIC MODEL ADAPTATION FROM RAW WAVEFORMS WITH SINCNET

Joachim Fainberg, Ondřej Klejch, Erfan Loweimi, Peter Bell, Steve Renals

Centre for Speech Technology Research, University of Edinburgh, United Kingdom

ABSTRACT

Raw waveform acoustic modelling has recently gained inter-
est due to neural networks’ ability to learn feature extraction,
and the potential for finding better representations for a given
scenario than hand-crafted features. SincNet has been pro-
posed to reduce the number of parameters required in raw-
waveform modelling, by restricting the filter functions, rather
than having to learn every tap of each filter. We study the
adaptation of the SincNet filter parameters from adults’ to
children’s speech, and show that the parameterisation of the
SincNet layer is well suited for adaptation in practice: we
can efficiently adapt with a very small number of parameters,
producing error rates comparable to techniques using orders
of magnitude more parameters.

Index Terms— Acoustic model adaptation, children’s
speech, raw waveform, SincNet

1. INTRODUCTION

Automatic speech recognition models have in recent years ob-
tained impressive word error rates (WERs) [1]. A key com-
ponent to improving performance is to reduce mismatch be-
tween the acoustic model and test data, by explicit adaptation
or normalisation of acoustic factors (e.g. [2, 3, 4, 5, 6]). Meth-
ods such as Vocal Tract Length Normalisation (VTLN) [7],
which aims to mitigate large variations in individual speakers
acoustics, scales the filterbank in standard feature extraction.
There has, however, been a growing interest in reducing the
amount of hand-crafted feature extraction that is required for
acoustic modelling of speech [8, 9, 10, 11]. The motivations
to learn part, or all, of the feature extractor range from aid-
ing interpretability [8, 10], to obtaining more optimal repre-
sentations for the task at hand [12]. Jaitly and Hinton [13],
for example, argued that low-dimensional, hand-crafted fea-
tures, such as Mel-frequency cepstral coefficents (MFCCs),
may lose relevant information that is otherwise present in the
original signals.

From raw time-domain waveforms, convolutional neural
networks (CNN) have shown promising results [8, 9, 14, 15].

This work was partially supported by a PhD studentship funded by
Bloomberg, by the EU H2020 project ELG (grant agreement 825627), and
by the EPSRC project SpeechWave (EP/R012180/1).

It has even been demonstrated that it is possible to learn band-
pass beamformers from multi-channel raw waveforms [15],
and a feature extractor learned from raw frequency represen-
tations of speech has been shown to outperform conventional
methods [16]. Their interpretability, however, is sometimes
limited, and it is not always clear how to apply existing adap-
tation techniques. In a recent approach called SincNet [10],
Ravanelli and Bengio propose to constrain the CNN filters
learned from raw time-domain signals, by requiring each ker-
nel to model a rectangular band-pass filter. The authors show
that this yields improved efficiency, and that the filters are
more easily interpretable.

In this paper we propose to make use of these characteris-
tics for the adaptation of raw waveform acoustic models: we
would like efficient, compact representations that are quick
to estimate and cheap to store. We explore whether we can
obtain this by adapting the cut-off frequencies, and the gains
of the filters in SincNet. This layer may be particularly well
suited for speaker adaptation, as the lower layers are known to
carry more speaker information than the other layers [17, 18].
We will show in Section 2.1 that adapting this parameteri-
sation of the CNN filters has similarities with, and crucial
differences from, VTLN, feature-space Maximum Likelihood
Linear Regression (fMLLR) [3], and Learning Hidden Unit
Contributions (LHUC) [2]. VTLN has been used to mitigate
large variations in vocal tract length for the recognition of
children’s speech [19]. In our experiments we adapt from
adults’ to children’s speech and show that we obtain VTLN-
like scaling functions of the filter frequencies.

There are related approaches in literature that aim to learn,
and update filterbanks on top of e.g. raw spectra [12, 9, 20,
21]. As argued in these papers, fixed filterbanks may not be
an optimal choice for a particular task. Sailor and Patil [22]
indeed showed that their proposed convolutional restricted
Boltzmann machine (RBM) model learns different centre fre-
quencies depending on the task at hand. Our work is per-
haps most closely related to Seki et al. [21], who proposed to
adapt a filterbank composed of differentiable functions such
as Gaussian or Gammatone filters. They demonstrated more
than 7% relative reductions in WER when adapting to speak-
ers in a spontaneous Japanese speech transcription task. Our
work differs in that we propose to adapt the SincNet layer,
which operates on raw waveforms, rather than power spectra.

We review SincNet and related methods in Section 2. Sec-



tion 3 presents the experimental setup, with results in Sec-
tion 4. Section 5 concludes the paper.

2. SINCNET

The idea of SincNet [10] is to use rectangular band-pass fil-
ters in place of standard CNN filters for raw-waveform acous-
tic models. A rectangular filter with lower and upper cut-off
frequencies fl and fu has the following time-domain repre-
sentation, represented as the difference between two low-pass
filters:

g[n, fu, fl] = 2fu sinc(2πfun)− 2fl sinc(2πfln). (1)

Consequently, the number of parameters per filter is re-
duced from having to model every tap of each filter (i.e. the
filter length) to only having to model two: the cut-off fre-
quencies of the filters, regardless of filter length. An example
of learned filters are shown in Figure 1. As in [10] we use
Hamming windows [23] to smooth discontinuities towards
the edges:

w[n] = 0.54− 0.46 cos(
2πn

L
), (2)

where L is the filter length. Consequently, the final forward
pass for speech input x[n] with one filter is:

y[n] = x[n] ∗ gw[n, fu, fl] = x[n] ∗ w[n] g[n, fu, fl]. (3)

A set of filters becomes a learnable filterbank of approxi-
mately rectangular filters. A related method by Seki et al. [20]
replaced the standard Mel-filterbank during feature extraction
of Mel-frequency cepstral coefficients (MFCCs) with differ-
entiable Gaussian filters on top of power spectra, enabling the
learning of centre frequencies, bandwidths and gain. Sinc-
Net also learns a filterbank, but in the time-domain on raw
waveform features. For SincNet, Ravanelli and Bengio [10]
chose not to explicitly model the gain of each filter, as it can
be readily learned by later parts of the neural network.

2.1. Relationship with VTLN, fMLLR and LHUC

A learnable filterbank has close relationships with other well-
known methods, as also previously highlighted by Seki et
al. [20]. In this paper we suggest to update the SincNet fil-
terbank for each speaker. This strongly resembles VTLN [7],
which aims to compensate for varying vocal tract lengths
among speakers. It accomplishes this by scaling, or warp-
ing, the centre frequencies of the filters in the Mel-filterbank.
Consequently, adapting the parameters of the SincNet layer
resembles VTLN with a few key differences:

1. SincNet operates in the time-domain, and uses corre-
sponding rectangular filters rather than triangular filters
as in the Mel-filterbank;
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Fig. 1. Examples of learned bandpass filters in the time-
domain.
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Fig. 2. Example of piece-wise linear scaling functions for
VTLN. α = 1 would equal the Mel line.

2. VTLN typically uses a scaling function that is assumed
to be piece-wise linear with a single slope parameter, α
(as shown in Figure 2), whilst if adapting SincNet, the
effective learned scaling functions are less constrained.

3. The slope parameter α is typically determined with a
grid search (although, there exist more sophisticated
methods such as gradient search [24]). With SincNet
we can learn the scaling function using gradient de-
scent.

In the original SincNet formulation [10] the gains of the
filters are held fixed. Downstream layers can learn to scale
the contributions of the filters. However, the filter gains may
be suitable targets for adaptation for which we would like to
attribute importance to the output of individual filters with a
small number of parameters. This has similarly been done
with learnable filterbanks in traditional feature extraction
pipelines [21]. We also briefly note that if we were to scale
the gain of each filter, then this would correspond to a version



of feature-space Maximum Likelihood Linear Regression
(fMLLR) [3] with a diagonal matrix and no bias, or similarly
to Learning Hidden Unit Contritutions (LHUC) [2] which
scales the output of each neuron by a scalar r(i) for filter i:

y(i)[n] = r(i)
L−1∑
l=0

x[l] g(i)w [n− l]. (4)

Clearly, we can view the vector of scalars, r, as either scaling
the features, the gain of the filters, or the output of the layer.

3. EXPERIMENTAL SETUP

Our baseline models are built using the AMI Meeting Cor-
pus [25], which contains about 70 hours of training data
from fictitious design team meetings. We use the individ-
ual head-mounted microphone (IHM) stream, and trained
HMM-GMM systems using Kaldi [26] following the recipe
for AMI1.

As adaptation data we use children’s speech from the
British English PF-STAR corpus [27], which in total con-
sists of roughly 14 hours of data of read children’s speech.
The children are aged between 4–14, with the majority being
8–10 years old. The data contains a fair amount of mispro-
nunciation and hesitation, making recognition challenging.
It is clearly mismatched from the AMI data, in terms of
what is spoken, the speaking style, and the acoustics of the
speakers (see e.g. [28]).

3.1. SincNet acoustic model

The neural network acoustic model is detailed in Table 1. The
first layer consists of 40 Sinc filters, each with length 129 as
has been used previously in a speech recognition task [29].
We experimented with different methods of initialising the
upper and lower frequencies of each filter as follows:

1. Mel-scale [30] as in Ravanelli and Bengio [10]: the
lower frequencies of the filters are linearly interpolated
between the corresponding mels of fmin and fmax,
with fu[i] = fl[i− 1];

2. Uniformly at random in the same range. This effec-
tively becomes linear when sorted by centre frequency:
fl ∼ U(fmin, fmax), and fu[i] = fl[i− 1];

3. Flat with fl = fmin and fu = fmin + b for each filter
(randomness is induced by the layers above).

For each scheme we set fmin = 30Hz and fmax = sr/2 −
(fmin + b), where sr is the sampling rate (16 kHz in our ex-
periments), and b = 50Hz is the minimum bandwidth. The
remaining layers consist of six 1-D convolution layers with
ReLUs, each with 800 units. Kernel sizes and dilation rates

1github.com/kaldi-asr/kaldi/tree/master/egs/ami

are shown in Table 1. Batchnorm (BN) layers are interspersed
throughout. The final softmax layer outputs to 3,976 tied
states.

The models are trained for 6 epochs using Adam [31] with
a batch size of 256 and a learning rate of 0.0015, unless noted
otherwise. The waveforms are sampled as in [10, 29]: we use
200 ms windows with a shift of 10 ms, i.e. the input size to
the network is 16000 ∗ 0.200 = 3200. We implemented and
trained the models using Keras [32] and Tensorflow [33]. We
decode and score with Kaldi [26]. Our experimental code is
publically available2.

# Type Dim Size Dil Params

1 SincConv 40 129 - 80
- MaxPooling - 3 -
2 BN(ReLU(Conv)) 800 2 1 68,000
- MaxPooling - 3 -
3 BN(ReLU(Conv)) 800 2 3 1,284,000
- MaxPooling - 3 -
4 BN(ReLU(Conv)) 800 2 6 1,284,000
- MaxPooling - 3 -
5 BN(ReLU(Conv)) 800 2 9 1,284,000
- MaxPooling - 2 -
6 BN(ReLU(Conv)) 800 2 6 1,284,000
7 ReLU(Conv) 800 1 1 640,800
8 Softmax(Conv) 3976 1 1 3,184,776

Table 1. Model topology. In total there are 9,029,656 param-
eters (including batchnorm).

3.2. Language model

As the acoustic and language models for AMI are greatly mis-
matched to PF-STAR, we interpolate the standard AMI lan-
guage model based on AMI and Fisher [34] data, with the
training data from PF-STAR. This is similar to other litera-
ture working with PF-STAR [35]. We note, however, that
there is some overlap in the sentences between training and
test sets for PF-STAR, i.e. training a LM on the training set
causes some data leakage. For this paper we believe this is
acceptable, given that we are interested in the acoustic model
mismatch. Without the biased LM, the combined effect of
a mismatched LM, and a mismatched AM, produced WERs
greater than 90% in our preliminary experiments.

We estimate a 3-gram LM with Kneser-Ney discounting
on the PF-STAR training set using the SRILM toolkit [36].
This is interpolated with the AMI model, giving the latter a
weight of 0.7. The vocabulary is restricted to the top 150k
words from an interpolated 1-gram model. Finally, we prune
the interpolated model with a threshold of 10−7.

2github.com/jfainberg/sincnet_adapt

github.com/kaldi-asr/kaldi/tree/master/egs/ami
github.com/jfainberg/sincnet_adapt


4. RESULTS

The results with our models trained on AMI are shown in Ta-
ble 2. The various initialisation schemes produce quite sim-
ilar WERs, but, perhaps surprisingly, the Mel-initialisation
performs least well. The differences are, however, less than
2% relative. Overall these numbers are roughly 5 percent-
age points worse than those produced with cross-entropy sys-
tems in the corresponding Kaldi recipe for AMI. A key dif-
ference may be the use of speed perturbation for data aug-
mentation [37]. Our models are slow to train, but we propose
improving training speed as an area for future work.

Figure 3 demonstrates how the initialisation schemes lead
to different final responses in the filters. The flat initialisa-
tion is essentially forced to change significantly, otherwise
each filter would extract identical information. After train-
ing it begins to approximate a Mel-like curve. This is in line
with similar research [9, 22]. We noted in Section 3.1 that
the uniform initialisation effectively creates a linear initial-
isation. It remains largely linear after training, with some
shifts in higher frequencies, and changes to bandwidths. Note
that each response is markedly different, yet the correspond-
ing WERs are similar. This may be explained by the ability of
the downstream network to learn to use the extracted features
in different ways [21]. We also experimented with a larger
number of filters than 40 (e.g. 128), but saw no benefit to
WERs; instead, the filter bandwidths become quite erratic, as
demonstrated in Figure 4.

We use the model trained from a flat initialisation for our
further experiments.

Initialisation Eval Dev

Mel 30.6 28.0
Flat 30.2 28.0
Uni 30.3 27.9

Table 2. Results (% WER) on AMI with various filter initial-
isation.

4.1. Domain adaptation to children’s speech

We next investigate supervised domain adaptation of the Sinc-
Conv layer from AMI to PF-STAR (from adults’ to children’s
speech). As shown in Table 3, the AMI model is initially
highly mismatched with PF-STAR, with a WER of 68.19%,
which aligns with what is expected from the literature [19].
For reference we include a model trained from scratch on PF-
STAR, which obtains 20.46% WER. Adapting the SincConv
layer of the AMI model for a single epoch to the training set of
PF-STAR reduces the error rate to 31.65%. We include num-
bers showing the effect of updating the statistics of the batch-
norm layers. Freezing the batchnorm layers demonstrates that
the primary improvement comes from adapting the 80 param-
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Fig. 3. Upper and lower learned frequencies per filter with
different initialisation schemes, after six epochs of training
on AMI. In contrast to Mel and Uniform, Flat is forced to
change in order to extract different information in each filter.
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Fig. 4. Cut-off frequencies per filter for filterbanks with 40-
filters or 128-filters after training with a Mel-initialised filter-
bank, plotted against their respective centre frequencies for
comparison. We observed similar WERs, with simply more
noisy bandwidths, with an increased number of filters.

eters in the SincConv layer. We freeze the batchnorm layers
in all experiments that follow. This experiment shows that we
can effectively adapt a very small number of parameters in
the model, improving the out-of-domain model by over 50%
relative, and coming within 12 percentage points of a model
trained from scratch with all 9M parameters. Adapting the
SincConv layer amounts to adapting less than 0.0009% of the
total number of parameters in the model (see Table 1).

Figure 5 shows that adapting the SincConv layer shifts
the upper frequency distribution of the filters, and their band-
widths. This is reflected in the corresponding VTLN func-
tion. This suggests that the model has adjusted to higher fre-
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Fig. 5. (Left) SincNet filters before and after domain adaptation to PF-STAR. (Right) SincNet centre frequency adapted vs
unadapted (e.g. VTLN-like function).

Model WER (%)

AMI 68.19
PF-STAR 20.46

Adapt+batchnorm 29.90
Adapt–batchnorm 31.65

Table 3. Results (% WER) on the PF-STAR test set, after
adapting the AMI model for one epoch. A PF-STAR model
is shown for reference. The models have 40 filters that were
originally initialised flat.

quency content in the children’s speech data. Figure 6 shows
average power spectra from a the corresponding log-mel fil-
terbank features of AMI and PF-STAR which supports this
notion.

We note that the VTLN-like function is nearly piecewise-
linear; i.e. similar to the assumptions made during typical use
of VTLN. However, it was here obtained through backpropa-
gation instead of grid-search or other methods.

Table 4 demonstrates the effect of the number of adapta-
tion utterances. As the amount of data increases adapting all
parameters (excluding SincConv) produces lower error rates,
as should be expected. The models begin to diverge at about
three utterances (roughly 1 minute for PF-STAR).

Adapt/utts 0 1 2 3 20

Sinc 68.19 56.67 47.87 40.36 31.06
All–Sinc 68.19 56.70 47.42 35.89 21.34

Table 4. Results (% WER) on the PF-STAR test set given
number of adaptation utterances when adapting from the AMI
model. As the amount of data increases, adapting all parame-
ters surpass only adapting the SincConv layer.
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Fig. 6. Average log-mel filterbank spectra for random subsets
of AMI and PF-STAR data. The shaded region denotes mean
plus-minus one standard deviation.

4.2. Speaker adaptation

A more realistic, practical scenario, is to adapt to a few
utterances obtained per speaker. In these experiments we
adapt from the AMI model to 12 individual speakers in PF-
STAR’s eval/adapt set, testing on the corresponding speak-
ers in eval/test. The results are shown in Figure 7 which
shows the evolution with the number of epochs of adaptation.
LHUC0 indicates using LHUC on the output of the SincConv
layer (40 parameters), and LHUC1 is LHUC on the output of
the first CNN layer (800 parameters). We use a learning rate
of 0.8 for LHUC0 and LHUC1, as LHUC can characteristi-
cally use very large learning rates without overfitting [2, 4].
When using LHUC1 in combination with SincConv, we use
the standard 0.0015 learning rate for SincConv, but a multi-
plier of 500 for LHUC. For Sinc+LHUC0 we did not find
this beneficial and used the same learning rate for both.
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Fig. 7. Speaker adaptation over epochs with various tech-
niques. The unadapted model obtains 59.06% WER.

The un-adapted WER is 59.06%. Adapting the 80 pa-
rameters of the SincConv layer yields only slightly worse
results than LHUC1 with 10 times fewer parameters. In-
terestingly, the two are complementary, as demonstrated by
Sinc+LHUC1, and at best produces WERs similar to adapt-
ing all 9M parameters (excluding SincConv). ALL-Sinc is
more sensitive to overfitting as evident from the figure.

Adapting the gain of the filters improves substantially
over the unadapted model, but does not provide similar per-
formance to any of the other approaches. One factor may
be that the these parameters were fixed during the training
of the baseline model as in [10], hence the rest of the net-
work may have compensated by other means. It is, however,
complementary with adapting the filterbank frequencies, with
Sinc+LHUC0 slightly outperforming Sinc. A summary of
the results after adapting for eight epochs is shown in Table 5.

Figure 8 shows VTLN-like functions obtained from the
adapted SincConv layer to each speaker. There is a clear dif-
ference between each function, which is in line with what
one might expect given the variability of the acoustics of chil-
dren’s data [19].

5. CONCLUSIONS

We have shown that adapting the filterbank frequencies from
raw waveforms with SincNet is extremely parameter effi-
cient, obtaining substantial improvements in WERs with a
fraction of the total model parameters on a children’s speaker
adaptation task. It is also complementary with the standard

Method WER (%) Params

Unadapted 59.06 -

Sinc 20.34 80
LHUC0 32.37 40
Sinc+LHUC0 19.93 120
LHUC1 18.33 800
Sinc+LHUC1 16.52 880
ALL-Sinc 14.92 ∼ 9M

Table 5. Results (% WER) adapting from AMI to individual
speakers in PF-STAR for 8 epochs.

1000 2000 3000 4000 5000 6000

Frequency (Hz)

0

2000

4000

6000

A
d

ap
te

d
fr

eq
u

en
cy

(H
z)

Fig. 8. Corresponding VTLN scaling functions for individual
speakers (colours) adapted with Sinc. The majority of the
scaling occurs in the higher frequencies.

LHUC technique, producing results similar to adapting all
9 million model parameters (excluding the filterbank layer).
We also show that the parameterisation of SincNet affords
interpretability during adaptation: during domain adaptation
to children’s speech, the layer learns to pay more attention
to higher frequencies. Similarly for speaker adaptation, the
change in the filter frequencies effectively resembles VTLN,
producing individual scaling functions for each speaker. Fi-
nally, we noted that adapting the gain is related to LHUC
and fMLLR, and this proved complementary to adapting the
filterbank frequencies.

In future work we would like to explore the use of meta-
learning (as in [4]) to learn filter-specific learning rates, as
well as experimenting with unsupervised, test-time adaptation
of the SincConv layer, and exploring the layer’s response to
noise. Finally, we would like to experiment with the inclusion
of feature-based adaptation methods such as i-vectors [38],
which has previously been shown to be complementary to
model-based adaptation [39].
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