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Fast online 3D reconstruction of dynamic scenes
from individual single-photon detection events

Yoann Altmann, Member, IEEE, Stephen McLaughlin, Fellow, IEEE and Michael E. Davies, Fellow, IEEE

Abstract—In this paper, we present an algorithm for online 3D
reconstruction of dynamic scenes using individual times of arrival
(ToA) of photons recorded by single-photon detector arrays. One
of the main challenges in 3D imaging using single-photon Lidar
is the integration time required to build ToA histograms and
reconstruct reliably 3D profiles in the presence of non-negligible
ambient illumination. This long integration time also prevents the
analysis of rapid dynamic scenes using existing techniques. We
propose a new method which does not rely on the construction
of ToA histograms but allows, for the first time, individual
detection events to be processed online, in a parallel manner in
different pixels, while accounting for the intrinsic spatiotemporal
structure of dynamic scenes. Adopting a Bayesian approach,
a Bayesian model is constructed to capture the dynamics of
the 3D profile and an approximate inference scheme based on
assumed density filtering is proposed, yielding a fast and robust
reconstruction algorithm able to process efficiently thousands
to millions of frames, as usually recorded using single-photon
detectors. The performance of the proposed method, able to
process hundreds of frames per second, is assessed using a series
of experiments conducted with static and dynamic 3D scenes and
the results obtained pave the way to a new family of real-time
3D reconstruction solutions.

Index Terms—3D reconstruction, Single-photon Lidar,
Bayesian filtering, online estimation

I. INTRODUCTION

Fast reconstruction of 3D scenes using single-photon light
detection and ranging (Lidar) technology is an important chal-
lenge which is important in applications such as autonomous
driving [1], environmental monitoring [2]–[4] and defence [5].
A growing number of 3D imaging modalities is becoming
increasingly popular [6], and single-photon Lidar offers ap-
pealing advantages, including low-power, a capability for long-
range imaging [7], [8] or imaging in complex media such as
fog/smoke [9] and underwater [10], [11] with excellent range
resolution (of the order of millimetres [12]). Recently, several
algorithms have also been proposed to analyse distributed
objects [13]–[18], i.e., when multiple surfaces are visible
within each pixel.

Despite pushing the boundaries of 3D reconstruction in
extreme environments, single-photon Lidar still suffers from 1)
relatively long integration times required to obtain sufficiently
reliable data and 2) significant computational requirements
to process the resulting large volume of data recorded by
single-photon imaging systems. Recent advances in single-
photon avalanche diode (SPAD) detector arrays [19], [20]
have allowed significant reductions in acquisition times over
raster scanning systems [12], [21]–[23], enabling acquisitions

with video frame rates. Yet, robust, automated and scalable
methods allowing for fast analysis of single-photon data are
still required. One of the main bottlenecks of most state-
of-the-art 3D reconstruction methods [16], [24]–[29] is that
they rely on the construction of histograms of photon times
of arrival (ToA) (or batches of detection events), which,
when synchronised with a pulsed laser (time correlated single-
photon counting, TCSPC) correspond to photon times of flight
(ToF), used to infer object ranges. One important exception is
the so-called ”first-photon” imaging approach [30] whereby
the reflectivity and 3D profiles of the scene can be recovered
using a single photon per pixel. However, the approach in [30]
targets primarily raster scanning Lidar systems, allowing the
variable per-pixel acquisition times, i.e., until the first photon
is detected.

In this work, we consider Lidar data acquired using SPAD
arrays and investigate a new 3D reconstruction algorithm that
does not rely on ToF histograms, but on individual photon
detection events. More precisely, we address the problem of
3D reconstruction after each time period (defined in Section
II) during which each SPAD detector can record at most
one detection event. This approach is particularly relevant
for applications where the objects in the scene can move
significantly faster than the integration period or the number
of laser repetitions required to build sufficiently populated
ToF histograms. In such cases, the relative movement of the
scene with respect to the sensor can produce a 3D blur that
produces broader peaks or even multiple returns in some
Lidar waveforms, which can jeopardise the 3D reconstruction
task. By reconstructing a 3D profile after each (short) time
period, our approach, which processes sequentially individual
detection events rather than ToF histograms, is significantly
less prone to 3D blur. It is however important to note that
our method assumes a single visible surface per pixel at
each time instant. Generalisation of this work to multiple
surfaces, which is a significantly more complex problem using
individual detections, is out of scope of this work.

Adopting a Bayesian approach, we consider a likelihood
model based on the standard single-photon Lidar observation
model in the low-flux regime. We then introduce a dynamic
model for the spatiotemporal (ST) evolution of the 3D profile.
Due to the complex nature of the likelihood (mixture of two
distributions) and the structure of the prior model, the stan-
dard online estimation methods based on (extended) Kalman
filtering [31] cannot be used directly. As the complexity of
the resulting model grows prohibitively with the number of
detection events, i.e., over time, we adopt an approximate
estimation strategy based on assumed density filtering (ADF)
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[32]–[34], whereby the posterior distribution of the 3D pro-
file estimated for a given frame is projected onto a family
of more tractable distributions (Gaussian distributions here),
which reduces significantly the complexity of the sequential
estimation procedure. Although particle filters [35] could also
be considered for approximate inference, this would lead to
an increased computational cost induced by the approximation
of densities using a large number of particles. In Sections II
and III, we discuss how our ADF-based approach benefits
from update rules which can be computed analytically and
thus do not require more computationally intensive iterative
optimization procedures as in [11], [15], [18] nor Monte Carlo
sampling steps as in [16], [21]. It is important to note that
the resulting method, which uses each frame (during which
at most one photon can be detected per pixel) only once,
enables online 3D reconstruction of dynamic scenes with
limited memory requirements. Indeed, the individual frames
are processed sequentially, resulting in a fixed computational
cost per frame which is important for any real time implemen-
tation. Moreover, thanks to its intrinsically parallel algorithmic
architecture, the proposed method is extremely scalable to
large arrays and long sequences of frames. Another important
advantage is that it does not require the knowledge of the
(potentially time varying) ambient illumination level.

To summarise, the main contributions of this work are:
• A new Bayesian model for sequential 3D reconstruction

using individual photon-detection events
• An online estimation strategy, proposed to the best of

our knowledge for the first time, for reconstruction of
dynamic 3D scenes from individual photon detection
events. This method based on assumed density filtering
is highly scalable and computationally attractive.

The remainder of the paper is organised as follows. Section
II first recalls the classical observation model for 3D recon-
struction using single-photon measurements in the photon-
starved regime and describes the Bayesian model and inference
strategy proposed for 3D reconstruction using a single frame.
The generalisation of this method to online 3D reconstruction
of dynamic scenes is detailed in Section III. Results of
simulations conducted with simulated single-pixel data and
sequences of frames are presented and discussed in Section
IV and conclusions are finally reported in Section V.

II. SINGLE FRAME ANALYSIS

A. Observation model

In this work, we consider a sequence of N frames, where
each frame of duration T consists of P pixels. This paper
addresses the reconstruction of dynamic 3D scenes where each
single-photon detector, associated with one pixel, is able to
record at most one detection event per pixel and per frame.

Let’s first consider an active illumination scenario where the
laser emits pulses of light with a repetition/illumination period
Tr = T . As described in [28], assuming that a single surface is
visible in each pixel, within each frame n, the average photon
flux at the detector/pixel p can be modelled as

λp,n(t) = rp,ns(t− 2dp,n/c) + bp,n,∀t ∈ [0;Tr) , (1)

where dp,n is the instantaneous distance of the object, c is
the speed of light in the homogeneous medium between the
imaging system and the detector and rp,n is an amplitude
parameter related to the reflectivity of the object. Moreover,
bp,n represents the instantaneous ambient illumination and
dark count level in the pth pixel, which can potentially vary
among pixels. Note that rp,n and bp,n also account for the
quantum efficiency of the detectors that is not further detailed
here for brevity (see [28] for details). Moreover, s(·) is
the overall impulse response of the imaging system, which
includes the shape of the pulse emitted by the laser and the
temporal response of the single-photon detector. As in [28],
we assume that s(·) is known as it can be measured during
the calibration of the Lidar system, and that it can be well
approximated by a Gaussian profile with variance s2. As will
be discussed in Section II, the proposed method can also
be applied when the shape of this impulse response is not
Gaussian and changes from one pixel to another due, for
instance, to the inhomogeneity of the P detectors.

Over the nth illumination period, the detection rate is thus
given by

Λp,n =

∫ Tr

0

λp,n(t)dt = rp,nS +Bp,n (2)

where Bp,n = Trbp,n and where we assume that the object
distance is not too close from the minimum (0) and maximum
(Trc/2) admissible ranges such that the integral S =

∫ Tr

0
s(t−

2dp,n/c)dt remains constant, whatever the value of dp,n. In
the low-flux regime, we have rp,n(t)S +Bp,n � 1, such that
the probability of two photons reaching the same detector in
a given interval Tr is small and such that the dead-time of
the detector can be neglected. In that case, the probability of
detection is given by πp,n = 1 − exp [−Λp,n] ≈ Λp,n and
the probability of a detected photon being associated with the
original emitted pulse, denoted by wp,n is given by wp,n =
(rp,nS)/Λp,n. Let zp,n ∈ (0; 1) be a binary label indicating
a detection event (i.e., when zp,n = 1) in pixel p for the nth
frame, such that

f(zp,n = 1|πp,n) = πp,n. (3)

When zp,n = 1, the observation model for the measured
time of arrival yp,n ∈ [0;Tr) in pixel p and frame n can
be expressed as
f(yp,n|zp,n = 1, wp,n, dp,n)

= wp,nfs

(
yp,n −

2dp,n
c

)
+ (1− wp,n)U[0;Tr)(yp,n), (4)

where U[0;Tr)(·) is the uniform distribution defined on [0;Tr),
and with fs(t − 2dp,n/c) = S−1s(t − 2dp,n/c),∀(p, n).
Moreover, we use the notation yp,n = ∅ when no detections
were recorded in the pth pixel within the nth frame.

Assume now that a frame lasts Nr laser repetition periods,
i.e., T = NrTr and that the detector is only able to record at
most one detection event during that frame. If the observation
conditions have not changed during the Nr repetitions, the
probability of detection is given by π̃p,n = 1−exp [−NrΛp,n].
However, in the low-flux regime, Eq. (4) still applies. Con-
sequently, although each frame can result from more than
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one illumination period, the observation models (3) and (4)
is still valid by replacing πp,n by π̃p,n in (3), provided that
the observation conditions have not changed over the period
T . This observation can be useful for practical applications
since the in low-flux regime, imposing rp,nS+Bp,n � 1 (for
each Tr interval) leads to extremely sparse detection events
and large volumes with T = Tr, while using T = NrTr (for
a given Tr) allows both reduced data volume and higher per-
frame detection rates.

In this paper, we address the problem of estimating D =
{dp,n}p,n from the set of observations Y = {yp,n}p,n. As
discussed in the introduction of this paper, although it is
possible to develop batch-based methods for recovering D
given all the NP observations [21], [28], such approaches
can become computationally prohibitive for large numbers
of pixels, but more importantly for long temporal sequences.
Moreover, these existing approaches do not specifically deal
with time varying scenes, and do not use a spatiotemporal
models. Thus, here we adopt a sequential approach where the
N frames are processed one by one and only once, allowing
for fast estimation and reduced memory requirements. In the
remainder of the paper, we thus use (3)-(4) as our observation
model.

The next paragraph introduces the Bayesian model and
estimation strategy used to process a single frame, assuming
that W = {wp,n}p,n is known. The generalisation of the
proposed updated to online 3D reconstruction, including the
sequential estimation of W will be discussed in Section III.

B. Estimation strategy

As mentioned above, we first investigate the estimation of
dn = {dp,n}p from a set of measurements yn = {yp,n}p
associated with the nth frame. Assuming the detection events
in different pixels are mutually independent (given the other
parameters in (4)), the joint likelihood can be expressed as

f(yn|zn,wn,dn) =

P∏
p=1

f(yp,n|zp,n, wp,n, dp,n), (5)

with zn = {zp,n}p, wn = {wp,n}p and f(yp,n = ∅|zp,n =
0, wp,n, dp,n) = 1.

To obtain a tractable and computationally efficient ADF-
based estimation strategy, we propose to define independent
prior distributions for the target ranges in a given frame, i.e.,
f(dn|Θn) =

∏P
p=1 f(dp,n|θp,n). Despite the apparent lack of

prior correlation between the elements of dn (given the set of
parameters in Θn), it is possible to enforce ST correlations
by defining Θn using dn−1, as will be discussed in Section
III. For now, let’s assume that each distance dp,n is assigned a
fully specified mixture of M Gaussian distributions as follows

f(dp,n|θp,n) ∼
M∑
m=1

u(m)
p,nN (dp,n;µ(m)

p,n , σ
2(m)
p,n ), (6)

where N (·;µ(m)
p,n , σ

2(m)
p,n ) is a Gaussian distribution with mean

µ
(m)
p,n and variance σ2(m)

p,n , θp,n =
{
µ
(m)
p,n , σ

2(m)
p,n

}
m

and Θn =

{θp,n}p. The weights {u(m)
p,n }m of the Gaussian mixture model

(GMM) in (6) satisfy
∑M
m=1 u

(m)
p,n = 1,∀(p, n) and their value,

as well as that of M will be discussed in Section III. Since the
joint likelihood (5) and the joint prior distribution (6) can be
factorised over the P pixels, the resulting posterior distribution
given by
f(dn|yn, zn,wn,θp,n) ∝ f(yn|zn,wn,dn)f(dn|Θn))

∝
P∏
p=1

f(yp,n|zp,n, wp,n, dp,n)f(dp,n|θp,n), (7)

can also be factorised over the P pixels and the P range
parameters in dn can thus be estimated independently, in
a parallel manner. Consequently, we simply summarise the
update for one parameter dp,n, i.e., for pixel p. If zp,n = 0,
dp,n does not appear in the data likelihood. In that case,
the posterior distribution of dp,n reduces to its prior (6). If
zp,n = 1, the posterior distribution of dp,n is the following
mixture
f(dp,n|yp,n, zp,n = 1, wp,n,θp,n)

∝ f(dp,n|θp,n)f(yp,n|zp,n = 1, wp,n, dp,n), (8)

which is a mixture of 2M Gaussian distributions when fs(·)
is also Gaussian. Note that although f(dp,n|yp,n, zp,n =
1, wp,n,θp,n) seems to be only known up to a multiplicative
constant, its normalising constant, as well as the mixture
weights and the mean/variances of each component of the
mixture can be computed analytically by integrating (8) with
respect to (w.r.t.) dp,n. The moments of f(dp,n|yp,n, zp,n =
1, wp,n,θp,n), and in particular its mean and variance can then
be computed as for any mixture of distributions [36, Chap.
1]. These summary statistics are then used to obtain a point
estimate (i.e., the mean) of dp,n, as well as corresponding mea-
sures of uncertainty (through the variance). When fs(·) is not
Gaussian, it is in general not possible to compute analytically
the mean and variance of f(dp,n|yp,n, zp,n = 1, wp,n,θp,n),
but it is possible to resort to numerical integration tools [37],
[38] such as Gaussian quadrature or Laplace approximation to
approximate the integrals∫

fs(yp,n − 2dp,n/c)N (dp,n;µ(m)
p,n , σ

2(m)
p,n )ddp,n, (9)

and in turn the moments of f(dp,n|yp,n, zp,n = 1, wp,n,θp,n).

III. ONLINE ESTIMATION

A. Approximation using Assumed Density Filtering

Estimating the posterior mean and variance of dp,n presents
a great advantage for online estimation, beyond simply pro-
viding summary statistics about the current range profile.
It allows, by propagating simply the first and second-order
moments of the current posterior distributions, the use of a
tractable adaptive estimation procedure. Indeed, if the prior
distribution of dp,n consists of M components (as in (6)),
its posterior will contain 2M components and if a classical
Gaussian random walk is then used to model f(dp,n+1|dp,n),
the posterior distribution of dp,n+1 will present 4M terms
after marginalisation of dp,n. That number will thus in-
crease prohibitively as n increases. The basic principle of
assumed density filtering in this case is to approximate
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f(dp,n|yp,n, wp,n,θp,n) by a more tractable distribution that
can then be used to build a new prior distribution for dp,n+1.
While it is possible to construct complex approximations of
f(dp,n|yp,n, wp,n,θp,n) ∝ f(dp,n|θp,n) using a fixed (re-
duced) number of Gaussian components, here we simply use
an approximation based on a single Gaussian q(dp,n). In a
similar fashion to classical assumed density filtering [32], [33]
and expectation-propagation [34], this approximation is found
by minimising the following Kullback-Leibler divergence

KL [f(dp,n|yp,n, wp,n,θp,n)||qp,n(dp,n)] (10)

w.r.t. qp,n(dp,n) which belongs to the family of Gaussian
distributions. This minimisation reduces to matching the
mean and variance of f(dp,n|yp,n, wp,n,θp,n) and qp,n(dp,n),
hence the discussion about the estimation of the moments of
f(dp,n|yp,n, wp,n,θp,n) in Section II-B.

B. Spatiotemporal dynamic model for the range profile

A classical choice for modelling relatively slowly evolving
parameters relies on (Gaussian) random walks. Whilst this
approach is easy to implement, it does not allow, using simply
f(dp,n+1|dp,n),∀p, for rapid changes as might occur when
the imaging system or the scene moves orthogonally to the
direction of observation, whereby a foreground object can
disappear from one pixel and appear in neighbouring pixels.
To alleviate issues associated with such changes while keeping
the estimation strategy tractable, we define, for each pixel,
a local neighbourhood Vp of M neighbours (including the
current pixel) and define the following prior model
f(dp,n+1|θp,n+1)

∝
∑
p′∈Vp

νp′fγ2(dp,n+1|dp′,n)qp′,n(dp′,n), (11)

where {q(dp,n)}p,n are the Gaussian approximating posterior
distributions of {dp,n}p,n computed by minimising (10) and
fγ2(·|dp′,n) = N (·; dp′,n, γ2) is a Gaussian random walk
which models (through its variance γ2) the expected amount
of movement of the objects of the scenes along the direction of
observation, between two frames. More precisely, this mostly
allows displacements smaller than 3γ along that direction
(using the three-sigma rule of thumb). To incorporate larger
displacements which cannot be captured the proposed GMM,
γ can be increased but this makes the model in Eq. (11) less
informative and the results more prone to noise. Note that
in practice γ2 should be smaller than the variance of the
likelihood fs(·) of a signal detection event (e.g., s2 in the
Gaussian case) for the inference process to benefit from the
ST model in Eq. (11). This is however the case for current
Lidar systems using fast laser repetition rates.

In a similar fashion to (8), Eq. (11) is a finite mixture
a M Gaussian distributions whose weights, and individual
means and variances, gathered in θp,n+1 can be computed
analytically by integration of the right-hand side of (11) w.r.t.
{dp′,n}p′∈Vp . Using this strategy, the number of components
of f(dp,n+1|θp,n+1) remains the same as for f(dp,n|θp,n),
that is, M . The parameter M , which controls the size of the
neighbourhood structure, will depend on the actual distance

between pixels and the expected transverse velocity of the
dynamic objects of the scene. In practice, the period T is
expected to be short enough such that an object present in a
given pixel is not expected to move by more than a few pixels
(in the transverse direction) and M can be kept small. In this
work, we used M = 5 using 4 neighbouring pixels, assuming
the scene is moving slowly compared to the time scale given
by T . Larger neighbourhoods can be used if objects are
expected to move by several pixels in the image plane between
successive frames. Note that the overall computational cost of
the method per frame will grow linearly with M (the number
of modes in each posterior distribution (8) is 2M ).

C. Estimation of the other model parameters
Interestingly, the proposed 3D reconstruction method does

not rely on the knowledge of the detection probabilities {πn}n
since they do not intervene in the estimation of dn which only
relies on {yn}n. In particular, this method does require knowl-
edge of the number Nr of illumination periods during each
frame, which is used in the probabilities of detection {π̃p,n}p,n
(see discussion below Eq. (4)). Thus, the only important and
generally unknown parameters are the probabilities of signal
detection events in W .

In a similar fashion to the approach we proposed for D,
the elements of W can be included in a Bayesian model and
assigned sequentially prior distributions for online estimation,
i.e., by computing the posterior distribution of (dn,wn) at
each frame, and by approximating this distribution to build a
tractable prior distribution f(dn+1,wn+1|dn,wn). However,
this is not the approach we adopt here as it makes the estima-
tion procedure more computationally demanding, in particular
when computing the marginal moments, or more generally
expectations w.r.t the posterior distribution of (dn,wn) during
the KL divergence minimisation.

Instead, we use the following simple heuristic method
which provides satisfactory results in practice. Let w̄n be
an estimate of wn obtained from the previously observed
data {yn}n=1,...,n−1. Our aim here is to propose an estimate
w̄n+1 of wn+1, which depends on w̄n and the data yn. We
first define an instantaneous estimator ŵn = {ŵp,n}p with
ŵp,n = w̄p,n if yp,n = ∅. If yp,n 6= ∅, ŵp,n is obtained from
(8) where wn has been replaced by w̄n. More precisely, the
posterior distribution f(dp,n|yp,n, zp,n = 1, w̄p,n,θp,n) con-
sists of a mixture of 2M Gaussian distributions with different
weights. One half of the Gaussian components correspond to
possible positions of the surface assuming the detected photon
is a background photon. They are obtained by multiplying the
GMM prior by the uniform distribution in Eq. (4). The other
M Gaussian components correspond to possible positions of
the surface assuming the detected photon is a ”signal” photon
and they are obtained by multiplying the GMM prior with
the term involving fs(·) in Eq. (4). Thus ŵn is obtained
by summing the weights of the latter M components, which
corresponds to the posterior probability of the current detection
event to be a signal detection. The updated vector of proba-
bilities is obtained using w̄n+1 = (1 − α)w̄n + αŵn, where
α ∈ (0; 1) is an attenuation parameter to be tuned depending
on the expected variations of wn over time.
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Note that it is also possible to apply a smoothing post-
processing step, e.g., standard gaussian filtering to w̄n+1 to
further refine the estimate of wn+1 since these parameters
are often expected to be spatially correlated in each frame.
As mentioned above, this strategy is simple and does not
significantly degrade the performance of the 3D reconstruction
method in most scenarios. The pseudo-code of the proposed
method, referred to as O3DSP (for Online 3D reconstruction
using Single-Photon data) is presented in Algo. 1.

ALGORITHM 1

O3DSP algorithm

1: Fixed input parameters: Variance of RW for dynamic model:
γ2, Neighbourhood size M , temporal smoothing parameter α,
parameter of GMM ν.

2: Initialization (n = 0)
3: Set (w̄p,1, qp,0(·)), ∀p.
4: for n = 1, . . . N do
5: for p = 1, . . . P do
6: Compute prior model f(dp,n|θp,n) from (11).
7: Compute exact posterior distribution

f(dp,n|yp,n, w̄p,n,θp,n) in (8).
8: Compute qp,n(dp,n) using (10).
9: Set the estimated depth d̂p,n as the mean of qp,n(dp,n).

10: if yp,n = ∅ then
11: Set ŵp,n = w̄p,n.
12: else
13: Compute ŵp,n using (8) by replacing wn by w̄n.
14: end if
15: end for
16: Compute w̄n+1 = (1− α)w̄n + αŵn.
17: Optional: Apply smoothing operator to w̄n+1.
18: end for

Another important issue that might arise is the occurrence
of a new object in the field of view. A particularly challenging
scenario is the appearance of an object initially occluded
by another object. In such cases, it is possible to add an
extra component in (11), e.g., whose mean and variance
can be related to the mean/median and dispersion of the
{dp′,n}p′ , respectively. This approach would be efficient to
capture new objects appearing between a foreground object
and the background. However, as will be shown in Section
IV, such extra term does not seem necessary as the proposed
ST model naturally enforces large variances around edges,
which in turn allows initially occluded to be detected. Note
that more complex and principled strategies should be develop
to handle more challenging occlusion scenarios and situations
where pixels do not contain any objects, which are out of scope
of this work. This point will be discussed in the conclusion
of this study. New objects can also enter the field of view
from any side. To address this problem, we include, for the
pixels around the edges of the image, and additional Gaussian
component (with a large variance) in the mixture (11) such
that the resulting prior allows at the same time, ranges similar
to those in nearby pixels but also significantly different ranges
induced by the presence of new objects.

Finally, the proposed algorithm can also be applied in the
presence of faulty pixels for which πp,n = 0. For these pixels,
the range information will be inferred using the inpainting
capability of the model in (11).

IV. RESULTS

In this section, we discuss the performance of O3DSP
through a series of experiments conducted with simulated data
whereby ground truth is available for comparison. We first
investigate the main parameters influencing the reconstruction
performance using individual pixels, i.e., without accounting
for information provided by neighbouring pixels. Then, we
investigate the reconstruction of static and dynamic scenes
using photon-starved measurements.

A. Single-pixel experiments

In Sections II and III, we have assumed that the mea-
sured times of arrivals follow continuous distributions, i.e.,
they are either uniformly distributed over [0;Tr) or Gaussian
distributed. However, SPAD detectors have a finite timing
resolution, whereby the measured times of arrival follow
discrete distributions defined on a finite support. Fortunately,
state-of-the-art SPADs [19]–[21] present a timing resolution
which is much smaller that the support of fs(·) and thus than
Tr. Consequently, assuming continuous measurements does
not significantly bias the estimation performance. Should the
temporal resolution of the SPADs be coarser, O3DSP can still
be applied using dither on the discrete measured ToAs [39].

Fig. 1: Probability density functions (p.d.f.) of the time of
arrival of a signal photon (red) for d = 750 and a background
photon (blue), for Tr = 1500 and s2 = 200.

In all the simulation results presented in this paper, we use
the arbitrary illumination period Tr = 1500 (unless stated
otherwise) and fs(·) is modelled by a Gaussian distribution
with variance s2 = 200 and without loss of generality, with
use c/2 = 1. The distributions of the times of arrival of signal
and background photons for d = 750 are depicted in Fig. 1.
To initialise the algorithm, we used w̄p,0 = 0.5,∀p and the
Gaussian initial approximations qp,0(·),∀p are set identically
such that their mean is Tr/2 and their variance allows the
entire interval (1, Tr) to be in the high probability region.
This leads to a weakly informative initialisation that we use to
assess the convergence of the algorithm. As will be discussed
below, more efficient initialisations can also be used.

First, we investigate, the impact of wp,n on the estimation
of dp,n for a given probability of detection πp,n. Here the
number of frames is set to N = 500, πp,n = 0.5, dp,n = 300
and α = 0.01. Figs. 2 and 3, compare the convergence of
{dp,n}n and {w̄p,n}n for wp,n = 0.8 (Fig. 2) and wp,n = 0.3
(Fig. 3). The top subplots depict the frames during which
background (in black) and signal (in red) detections are
recorded. The middle subplots depict the mean (red lines) and
±3 standard deviation intervals (black dashed lines) obtained
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by minimising (10). The bottom subplots represent the online
estimates {w̄p,n}n (red lines) of wp,n. As can be seen from
Figs. 2 and 3, the estimate of dp,n converges faster with
wp,n = 0.8 than with wp,n = 0.3 (faster convergence to the
ground truth and smaller uncertainty). This phenomenon is
to be expected as the number of signal detections increases
with wp,n, which in turn increases the amount of information
about dp,n. On the other hand, the convergence of w̄p,n seems
similar in both cases (around 200-300 frames).

Fig. 2: Top: Examples of background (black) and signal (red)
detection events for N = 500, πp,n = 0.5, wp,n = 0.8.
Middle: Estimation of {dp,n}n for α = 0.01 and γ2 = 100.
Bottom: online estimates {w̄p,n}n (red lines) of wp,n for
α = 0.01 and γ2 = 100.

Fig. 3: Top: Examples of background (black) and signal (red)
detection events for N = 500, πp,n = 0.5, wp,n = 0.3.
Middle: Estimation of {dp,n}n for α = 0.01 and γ2 = 100.
Bottom: online estimates {w̄p,n}n (red lines) of wp,n for
α = 0.01 and γ2 = 100.

Fig. 4 shows the estimation of dp,n and wp,n with πp,n =
0.8, dp,n = 300 and wp,n = 0.3. As expected, the convergence
of {dp,n}n is faster than in Fig. 3 since its estimation is

directly related to the number of signal detections which
increases with πp,n (for a fixed wp,n).

Fig. 4: Top: Examples of background (black) and signal (red)
detection events for N = 500, πp,n = 0.8, wp,n = 0.3.
Middle: Estimation of {dp,n}n for α = 0.01 and γ2 = 100.
Bottom: online estimates {w̄p,n}n (red lines) of wp,n for
α = 0.01 and γ2 = 100.

Reducing the probability of detection has an impact on the
estimation of dp,n and wp,n, as can be seen in Fig. 5, where
πp,n = 0.1 and wp,n = 0.3. In this case, with an average
of 50 detection events for N = 500 frames (30% of which
being signal detections), the convergence speed of {w̄p,n}n
is reduced and the uncertainty about dp,n increases due to
the lack of information provided by the data. In such difficult
scenarios, the proposed method might not converge toward the
correct solution without using additional information, which is
a well known potential limitation of ADF [34]. However, as
will be shown in Section IV-B, the proposed ST model using
information contained in neighbouring pixels (see (11)) yields
satisfactory results in the photon-starved regimes considered
here.

We also evaluate the performance of O3DSP by analysing
a single-pixel measurement where the object range describes
a sine wave and where wp,n experiences two sudden changes
(see Fig. 6). This figure has been obtained with πp,n = 0.5.
As can be seen in the top and bottom subplots of Fig. 6, the
probability of signal detection wp,n is changed successively
from wp,n = 0.3 to wp,n = 0.8 and back to wp,n = 0.3.
This figure shows that O3DSP is able to satisfactorily track
the changes of dp,n without noticeable delay and that about
200 − 300 frames are required for w̄p,n to converge around
the correct value.

To highlight the benefits of our online approach over batch-
based methods we also consider the single-pixel measurements
used in Fig. 6 and compare our approach to the classical
cross-correlation method (see details in [21]). This approach
is chosen as it is the fastest batch-based method which pro-
cesses all the pixels independently. Although the comparison
could have been performed using image sequences and more
advanced methods, the competing methods would have led to
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Fig. 5: Top: Examples of background (black) and signal (red)
detection events for N = 500, πp,n = 0.1, wp,n = 0.3.
Middle: Estimation of {dp,n}n for α = 0.01 and γ2 = 100.
Bottom: online estimates {w̄p,n}n (red lines) of wp,n for
α = 0.01 and γ2 = 100.

Fig. 6: Analysis of dynamic scene (single pixel) with smooth
changes of dp,n and sudden changes of wp,n. Top: Examples
of background (black) and signal (red) detection events for
N = 2000, πp,n = 0.5. Middle: Estimation of {dp,n}n for
α = 0.01 and γ2 = 100. Bottom: online estimates {w̄p,n}n
(red lines) of wp,n.

significantly higher computational costs. To apply the cross-
correlation, we first discretise the detection events uniformly
over [0;Tr) with a stepsize of 1, which is much smaller and
s2 = 200 such that the discretisation bias can be neglected. For
each batch of N0 frames, the depth is then estimated by finding
the delay that maximises the cross-correlation between the his-
togram of times of arrival within this batch and the discretised
version of s(·). Fig. 7 compares the depth estimates obtained
via cross-correlation for batches of N0 = 10, N0 = 50 and
N0 = 100 frames to those obtained using O3DSP. While
small values of N0 can lead to more accurate instantaneous

estimates of the ranges, this figure shows that the results are
also more sensitive to background detections due to the small
number of detections within each batch of N0 frames. Note
that in extreme cases where πp,n is small, there might even
be no detection in some batches. Note also in the top plot of
Fig. 7 that the performance of the cross-correlation method
is affected by the relative amount of background detections
(larger errors for wp,n = 0.3 than for wp,n = 0.8, i.e., for
n ∈ [600; 1100]). Here, we initialised the proposed method
using weakly informative parameters but it could be initialised
using a batch-based method, such as cross-correlation, with the
first few frames to improve the convergence speed.

Fig. 7: Three top plots: depth estimates obtained via cross-
correlation for batches of N0 = 10, N0 = 50 and N0 = 100.
Bottom: Estimation of {dp,n}n using the proposed method
with α = 0.01 and γ2 = 100. The solid blue (resp. dashed
red) curves depict the estimated (resp. actual) ranges. The data
used to generate this figure are the same as for Fig. 6.

B. Analysis of static and dynamic 3D scenes

Fig. 8: Ground truth parameters used for assessing the perfor-
mance of the proposed method for reconstruction of a static
scene.

In this section, we first analyse the performance and con-
vergence speed of O3DSP using simulated data based on real
Lidar measurements conducted in [21], [22]. More precisely,
we consider a series of N = 5000 frames composed of
129 × 95 pixels and associated with a static scenes whose
range profile, probabilities of signal detection {wp,n}p and
probabilities of detection {πp,n}p are depicted in Fig. 8. Here,
we used Tr = 2500. Note that for most pixels πp,n < 5%,
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which corresponds to realistic observation conditions in the
photon-starved regime.

Fig. 9: Online range estimation performance for a static scene:
Estimated instantaneous means (first and third columns) and
±3 standard deviation confidence intervals (CI) (second and
fourth column) after N = 100 frames (top), N = 500 frames
(middle) and N = 5000 frames (bottom). The two columns on
the left-hand side (resp. right-hand side) have been obtained
with (resp. without) the proposed ST model.

Fig. 10: Online range estimation performance for a static
scene: Estimated images of w̄n after N = 100 frames (left),
N = 500 frames (middle) and N = 5000 frames (right). The
top (resp. bottom) row has been obtained with (resp. without)
the proposed ST model.

First, we compare the performance of O3DSP processing all
the pixels independently, i.e., without smoothing of w̄ and with
ν = 1 to the version using the proposed ST model. In this case,
we used M = 5 neighbours, ν = 0.99 and w̄ was smoothed
using a Gaussian filter with standard deviation 0.5 pixels. In
the two scenarios, we used (α, γ2) = (0.1, 10). Fig. 9 depicts
the estimated means and variances of the range estimates
after 100, 500 and 5000 frames (top to bottom), with (left
columns) and without (right columns) the ST model. These
results illustrate the benefits of the ST model which improves
the convergence speed of the algorithm and which reduces the
number of isolated pixels with poorly estimated range (see
bottom row of Fig. 9). O3DSP with the ST model is able to
clearly identify regions of high uncertainty, i.e., the boundaries
of the head where the range is likely to change suddenly,

should the head move. Moreover, the uncertainty increases
with the range difference between close pixels. For instance,
the uncertainty is larger at the boundary of the head than in the
neck/chin boundary. Similarly, Fig. 10 compares the estimated
values of {wp,n} obtained with (top row) and without (bottom
row) the ST model and spatial smoothing of w̄. Here w̄p,1 has
been set to w̄p,1 = 0.5,∀p. This figure illustrates that the ST
model not only improves the depth estimation but also the
estimation of w̄ when used in conjunction with the spatial
smoothing of w̄, which further improves the convergence of
w̄.

To assess quantitatively the convergence of the method, we
use the range root mean square error (RMSE) defined as

RMSEn =

√
1

P
||d̂n − dn||22, (12)

where dn and d̂n are the actual and estimated range profiles in
the frame n, respectively. Fig. 11 confirms that the proposed
ST model improves the convergence speed and estimation
performance in terms of RMSE. To ease the visualisation of
these results, the generated data associated with this static
scene, as well as the estimated range profiles are provided in
a supplementary video (Video 1) associated with this paper.

Fig. 11: Range RMSEs obtained with (red lines) and without
(blue lines) the proposed spatiotemporal (ST) model for the
static scene considered in Fig. 8.

For completeness, we also generated data with the same pa-
rameters as above but with probabilities of detection {πp,n}p,n
multiplied by 10, when compared to those depicted in Fig. 8
(middle subplot), leading to an average probability of detection
of 20% per pixel and per frame. Fig. 12 compares the
convergence of the RMSEs for the original data (referred to as
”low detection probability”) and the new data set (referred to
as ”high detection probability”). As expected, increasing πp,n
yields faster convergence and lower RMSEs at convergence
due to the additional amount of (more frequent) detections
available.

Finally, we applied our algorithm to the 3D reconstruction
of a synthetically generated dynamic scene which consists of
flat homogeneous rectangles, in front of a static backplane.
For this experiment, we used N = 2400 frames of 100× 100
pixels with πp,n = 0.5,∀(p, n) and Tr = 2500. During the
first 800 frames, two objects are present. The first object is
static while the second object describes a counterclockwise
circular trajectory, centred at the centre of the image (rotation
of 0.45◦ per frame). During this rotation, the second object
completely occludes the first one which then reappears. During



9

Fig. 12: Range RMSEs obtained for the static scene using the
parameters defined in Fig. 8 (red lines) and by multiplying
the probabilities of detection in Fig. 8 (middle subplot) by 10
(blue lines).

the next 800 frames, the firs objects disappears suddenly and
the second one describes the same trajectory as before (while
its range remains unchanged) but its size varies. At frame
1600, a third object enters the field of view from the left and
describes an horizontal movement (constant range), while the
first object moves away from the backplane. Moreover, we set
wp,n = 0.5 for the pixels associated with the backplane and
wp,n = 0.7 for those associated with the two objects. This
scenario is chosen to assess the robustness of the algorithm
to occlusions and appearance of new objects. The parameters
of the algorithm have been set to M = 5, α = 0.1, ν = 0.5
and γ2 = 100. The observed data as well as the estimated
range profiles are provided in the second supplementary video
associated with this paper (see Video 2). As an example, Fig.
13 depicts estimated range profiles and associated uncertainties
for three frames, namely before, during, and after the occlusion
of one of the objects. Here, the range uncertainty is measured
using the width on the confidence intervals (CI) defined as
6 times (±3) the standard deviations of the approximating
Gaussians. For the three frames, we observe, as expected,
higher uncertainties at the boundaries of the small rectangles.
Moreover, this figure illustrates that the proposed method is
able to recover occluded objects when they become visible
again.

Fig. 13: Example of range estimation for a dynamic scene with
occlusion of one object. The full estimated range sequence can
be seen in the supplementary Video 2.

As mentioned in Sections II and III, one important property
of the method is that, for a given frame, all updates (expect
the smoothing step in line 11 of Algo. 1) can be performed in
parallel, using only estimates from one previous frame. In this
work, the method has been implemented using Matlab 2017b
running on a MacBook Pro with 16GB of RAM and a 2.9
GHz Intel Core i7 processor, leading to a average processing
time of 4ms per frame (with P = 104 pixels).

V. CONCLUSION

In this work, we presented a first 3D reconstruction algo-
rithm using individual photon detection events for online anal-
ysis of dynamic scenes. Based on assumed density filtering, the
proposed method is computationally efficient as the data are
processed partly in a parallel fashion (pixels in a given frame)
and sequentially (successive frames). The results presented
in this paper have illustrated the flexibility and ability of
the method to be used for static and slowly moving scenes
(compared to the frame rate). Whilst the code has not been
fully optimised, preliminary results conducted with a tailored
implementation using a Titan Xp GPU indicate significant
computational improvement (well below 1ms per frame),
paving the way to new and efficient streaming and processing
of data directly from actual SPAD detector arrays. While the
proposed method is able to track relatively slow changes of the
3D profile, ongoing work include the development of more so-
phisticated models, able the better predict the dynamics of the
3D profile and in particular, sudden changes associated with
the appearance of objects or the occurrence of new objects.
This problem is also related to the potential presence of an
unknown number of objects per pixel, as in [16] for instance,
which should be addressed in future work, in particular for fast
object detection. Although the range estimation does not seem
to be significantly affected by the quality of the estimation of
the probability of signal detection in the scenarios investigated,
it would be also interesting to investigate in future studies
whether the proposed methodology can be made more robust
to extreme ambient illuminations where wp,n � 1.
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[36] S. Frühwirth-Schnatter, Finite Mixture and Markov Switching Models,
ser. Springer Series in Statistics. Springer New York, 2006. [Online].
Available: https://books.google.co.uk/books?id=f8KiI7eRjYoC

[37] M. P. Wand, J. T. Ormerod, S. A. Padoan, and R. Frhwirth, “Mean field
variational Bayes for elaborate distributions,” Bayesian Anal., vol. 6,
no. 4, pp. 847–900, 2011.

[38] A. Perelli, M. A. Lexa, A. Can, and M. E. Davies,
“Denoising message passing for X-ray computed tomography
reconstruction,” CoRR, vol. abs/1609.04661, 2016. [Online]. Available:
http://arxiv.org/abs/1609.04661

[39] J. Rapp, R. M. A. Dawson, and V. K. Goyal, “Improving Lidar depth
resolution with dither,” in 2018 25th IEEE International Conference on
Image Processing (ICIP), Oct 2018, pp. 1553–1557.


