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Abstract: This work focused on studying the influence of dyes, including a thiophene derivative dye
with a cyanoacrylic acid group ((E)-2-cyano-3-(3′,3′′,3′′′-trihexyl-[2,2′:5′,2′′:5′′,2′′′- quaterthiophene]-
5-yl) acrylicacid)(4T), on the photovoltaic performance of titanium dioxide (TiO2)/poly(3-hexyl
thiophene)(P3HT) solar cells. The insertion of dye at the interface improved the efficiency regardless
of the dye used. However, 4T dye significantly improved the efficiency by a factor of three when
compared to the corresponding control. This improvement is mainly due to an increase in short
circuit current density (JSC), which is consistent with higher hole-mobility reported in TiO2/P3HT
nanocomposite with 4T dye. Optical absorption data further revealed that 4T extended the spectral
response of the TiO2/P3HT nanocomposite, which could also enhance the JSC. The reduced dark
current upon dye insertion ensured the carrier recombination was controlled at the interface. This,
in turn, increased the open circuit voltage. An optimized hybrid TiO2/P3HT device with 4T dye
as an interface modifier showed an average efficiency of over 2% under-simulated irradiation of
100 mWcm−2 (1 sun) with an Air Mass 1.5 filter.

Keywords: hybrid solar cells; titanium dioxide; poly(3-hexylthiophene); oligothiophene dye; interface
modifier; photovoltaic; absorption; quantum efficiency; polymers; efficiency

1. Introduction

Hybrid nanoporous metal-oxide polymer photovoltaic devices have been intensively studied for
more than two decades, as these devices offer potential advantages relative to organic acceptors, such as
low cost, facile synthesis via wet chemical processing, control of heterojunction morphology, and the
potential for higher physical and chemical stabilities [1]. A metal-oxide nanoparticle (TiO2, ZnO)
percolation network with thickness in the submicron scale provides a stable and transparent backbone
network for free carrier transport in this type of solar cells [2]. However, the power conversion
efficiency (PCE) of these hybrid devices is limited due to several reasons, including interfacial carrier
recombination [3,4] at the interface, poor mobilities in the metal-oxide polymer nanocomposite,
and poor spectral response of the polymer [5–8]. Typically, the nanoporous metal oxides are the
electron acceptors and the π-conjugated polymers are the donors [9–11] in hybrid metal-oxide polymer
solar cells. The electron transfer from a donor into an acceptor produces a large proportion of charge
carrier pairs across the donor/acceptor interface. In that situation, the Coulombic attraction of these
bound charge carrier pairs limit the device performance by feeding the recombination effects at the
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interface [8,12–14]. It has been shown that engineering the metal-oxide polymer interface can improve
the PCE of hybrid solar cells [12,15–17]. Using nanolayers of absorber materials could improve the
spectral response and reduce the interfacial recombination [18,19]. Organic dye molecules were also
widely investigated as the interface modifier for metal-oxide polymer solar cells. In addition to a
number of natural dyes [20–24], N719 and Z907 are two of the most common Ruthenium-based dyes
successfully used as an absorber material in highly efficient dye-sensitized solar cells [25,26]. These
dyes were also efficiently used as an interface modifier in solid-state hybrid solar cells and were found
to improve the spectral response by participating in carrier generation, limiting the recombination [27]
at the interface and hence improving both short circuit current density (JSC) and the open circuit voltage
(VOC).

Planells M. et al. reported a series of thiophene derivative dyes with a cyanoacrylic acid
group with conjugation length from one to five thiophene units (1T to 5T) as interface modifiers at
TiO2/P3HT solar cells [16]. These dyes are metal ion-free dyes and have an electron-rich thiophene
group. It was found that the dyes improve the VOC due to a dipole moment at the interface [16,28].
Oligothiophenes are discrete, monodisperse molecules, and are distinct from polythiophene, which
inherently exists as a distribution of molecular weights. A pure carboxylated oligothiophene can be
isolated from any unfunctionalized oligomers via column chromatography and recrystallization [28].
Such organic semiconducting oligothiophenes have been intensively investigated and widely used in
organic photovoltaic (OPVs) due to the presence of excellent charge transport properties and tunable
optical/electrochemical properties [29]. These tunable electrochemical properties were successfully
investigated with variation of thiophene unit and show energy gap reduction when increasing the
number of thiophene units from 1T to 5T [16,30].

The 4T dye at the interface was found to increase the hole-mobility in TiO2/P3HT polymer
nanocomposite by a magnitude of 10 times compared to the corresponding untreated nanocomposite.
This is due to passivation of surface traps by the dye, as well as improved packing of the polymer with
the nanocrystals through effective inter-chain interactions of 4T with P3HT [8]. The molar extinction
coefficient (MEC) is an important parameter in defining the amount of material to be loaded on an
electrode for maximum energy conversion, particularly at thin layers of the acceptors. It was also
reported that the dyes with higher MEC can improve the stability of dye-based solar cells [31]. Given
that the 4T dye can improve the performance of TiO2-P3HT solar cells by involvement in photocurrent
generation, the amount of dye molecules at the interface needs to be optimized. It was found that the
MEC of 4T dye is higher than that of N719 and Z907 dyes. This work enhanced the performance of
hybrid TiO2/P3HT polymer solar cells by optimizing the device fabrication conditions with dyes and
investigates the role of 4T dye at the metal-oxide polymer interface in enhancing the performance of
hybrid TiO2/P3HT polymer solar cells.

2. Materials and Methods

Solar Cell Fabrication: The solar cells were made using indium tin oxide (ITO) coated glass substrates
(12 mm × 12 mm, 10 Ω/square). All the chemicals and solvents used in this work were purchased
from Sigma Aldrich. The cleaned ITO substrates were first spray-coated with a diluted solution of
titanium (iv) isopropoxide and acetylacetone mixture [8] in ethanol at a substrate temperature of
500 ◦C and baked at the same temperature for 30 min in order to form a ~50 nm-thick dense/blocking
TiO2 layer. Thereafter, a mesoporous TiO2 layer was spin-coated on top of the dense TiO2 with the
solution (240 mg ml−1) of TiO2 paste (18NRT) (Dyesol, Queanbeyan, Australia) [30,32,33] dissolved in
tetrahydrofuran [8] and allowed to sinter at 450 ◦C for 30 min [34]. As in previous studies [8,11,35],
we used 0.3 mM concentrated dyes Z907 (Mw = 870.10), N719 (Mw = 1188.55), and 4T (Mw = 678.05)
by dip-coating for 16 h at 90 ◦C in order to modify the mesoporous TiO2 films. The chemical structures
of the dyes and polymer used in this work are shown in Figure 1.
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Figure 1. Chemical structure of dyes and polymer used: (a). Z907 [8], (b). N719 [8], (c). 4T [8,16], and
(d) P3HT.

The influence of the concentration of the interface modifier on the device performance was
examined with various concentrations of 4T dye. In each situation, the dye solutions were prepared
using a 1:1 volume ratio solvent mixture of acetonitrile with tert-butanol [8,30,32]. After dye dipping,
the electrodes were washed in 1:1 volume ratio mixture of acetonitrile with tert-butanol to remove
excess dye in the nanoporous layer [8]. The dye-modified electrodes were first dip-coated with 2.5 mg
ml−1 P3HT (Merck KGaA, Germany) and then spin-coated with (25 mg ml−1) P3HT solution dissolved
in chlorobenzene. Next, 100 nm of Gold top contact was deposited as described in [3,18,19] by thermal
evaporation under high vacuum through an Edwards E306 thermal evaporator (Moorfield, Cheshire,
UK). Finally, the fabricated solar cell devices were allowed to anneal process with nitrogen medium at
120 ◦C for 10 min in order to improve the interfacial characteristics [36].

Optical Characterization: Absorbance spectra of the dye-coated TiO2 films were recorded using
a JENWAY 6800 UV/Vis. Spectrophotometer (OSA, UK), which was controlled using Flight Deck
software. The thickness of TiO2 and P3HT layers were recorded by field emission scanning electron
microscopy (FESEM, ZEIS Sigma, UK)

Electrical Characterization: The electrical characterization of both polymer and solid-state solar cells
were tested, and the current-voltage curves were recorded with a computer-controlled Keithley 2400
source meter unit under the conditions of dark and 100 mW/cm2 illuminations of the solar simulator
(SCIENCE TECH, Ontario, Canada) with an Air Mass (AM) 1.5 spectral filter. The external quantum
efficiency (EQE) measurements were carried out with a Monochromator (Newport, CA, USA) and a
calibrated silicon photodiode (Newport, CA, USA).

3. Results

Figure 2a–c compares optical absorption spectra of dyes (4T, N719, and Z907) dissolved in
tert-butanol and acetonitrile solution with 0.3 mM concentration, dye dip-coated nanoporous TiO2

electrodes, and dye polymer dip-coated nanoporous TiO2 electrodes. It is clear that the peak MEC of 4T
dye is a factor of two higher than the other two standard dyes. P3HT has broader absorption spectrum
in the visible region when compared to the metal-complex dyes, and the absorption spectrum of the
4T dye compliments the polymer absorption in the visible region. Figure 2 further shows that the
polymer uptake and visible light absorption of the electrode treated with 4T dye was much higher
than the electrodes treated with N719 and Z907 dyes. This is probably due to higher MEC of 4T and
better compatibility between thiophene based dye and poly(3-hexyl thiophene). The combination
of thiophene units of 4T with poly(3-hexyl thiophene) increased the overall thiophene units in the
π-conjugated system, which led to the red-shifted and broadened absorbance spectrum under the
UV/visible region [37].
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Figure 2. Optical absorption spectra of (a) 0.3 mM concentration of dyes dissolved in tert-butanol and
acetonitrile solution, (b) dye dip-coated nanoporous TiO2 electrodes, and (c) dye polymer dip-coated
nanoporous TiO2 electrodes.

To confirm the dimensions of the layer, we performed FESEM on the samples. A completed device
was cut into two and the cross-section of the device was examined. The cross-sectional FESEM image
of the completed device is shown in Figure 3. It clearly shows that thickness of the TiO2/4T/P3HT
nanocomposite was about 780 nm, in which about 150 nm excess polymer layer could serve as an
electron blocking layer (to block direct contact between TiO2 nanoparticles and top contact). For FESEM
images of each layer, please refer to the Figures SM1–SM4 in the Supplementary Materials.
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Figure 3. Cross-sectional field emission scanning electron microscopy (FESEM) image for the fabricated
TiO2/4T/P3HT solar cell.

Figure 4a and Table 1 clearly show that the insertion of dye molecules at the TiO2/P3HT interface
increased the short circuit current density (JSC), open circuit voltage (VOC), and subsequently the
PCE. However, the devices with 4T dye-treated electrodes showed a maximum efficiency of about 2%,
which was five-fold higher than that of the corresponding control TiO2/P3HT devices without any dye
treatment. This is mainly due to a four-fold increment in the JSC. This can be attributed to increased
hole-mobility of P3HT due to the insertion of 4T dye [8] at the interface between the TiO2/polymer
interface. Figure 4b shows that the dark current was significantly suppressed in dye-treated devices
when compared with the corresponding control. This is an indication of reduced back electron
transfer [38]. The lowest dark current was observed in 4T dye-treated devices, and was three orders
of magnitude lower than that of the corresponding control device. This may suggest that the metal
complex dyes have a more beneficial effect in shifting up the TiO2 conduction band energy. Then,
the external quantum efficiency (EQE) spectra of the dye-treated and untreated TiO2/P3HT devices
were measured. Figure 5 illustrates the EQE spectra of all devices tested. The conversion efficiency in
polymer increased regardless of the dyes used. Figure 5 clearly shows that the influence of dyes N719
and Z907 carrier generations were minimal in the fabricated devices, while influence of 4T dye on
carrier generation was dominant, with the peak external quantum efficiency over 60% higher than the
peak absorption of 4T dye. This is probably attributed to the improved hole-mobility caused by the 4T
dye and better compatibility of the oligothiophene dye with the poly(3-hexyl thiophene) polymer.
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Figure 4. (a) J-V characteristics of the fabricated TiO2/P3HT and dye-modified TiO2/P3HT solar cells
under simulated irradiation of 100 mW cm−2 (1 sun) with Air Mass 1.5 filter and (b) semi-log J-V plot
of the solar cells in dark. The complete structure of control device is ITO/TiO2/P3HT/Au, and the dye
modified cells have the structure ITO/TiO2/dye/P3HT/Au. Here, dyes Z907, N719, and 4T were used as
the interface modifiers.
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Table 1. Current density vs. voltage measurement data for the control device and other corresponding
dye-modified devices.

Condition JSC(mAcm−2) VOC(V) FF% Efficiency %

Without dye
(control) 2.09 0.44 44 0.41

N719 3.33 0.65 39 0.86
Z907 3.70 0.71 38 1.01

4T 7.30 0.57 49 2.04
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Further, Figure 4 shows that dye treatment, especially 4T dye, significantly suppressed the dark
current and increased both the VOC and JSC under simulated solar irradiation, relative to the case of the
device without dye. This is consistent with the schematic energy band diagram of the TiO2/4T/P3HT
device shown in the Figure 6, where deep LUMO levels of 4T relative to P3HT were present. The 4T
layer was expected to obstruct hole transfer between P3HT and TiO2, and thus to localize hole-polarons
in the P3HT away from the TiO2 surface. Energy levels for TiO2 [18], 4T [16], and P3HT [16,18,39] in
Figure 6 were directly taken from literature.Polymers 2019, 11, x FOR PEER REVIEW 7 of 11 
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As in Figure 3a, the extinction coefficient of the 4T dye was higher than that of N719 and Z907
dyes. To find the optimum dye concentration for maximum energy conversions, TiO2 electrodes
with different concentrations of 4T dye were studied. Figure 7 summarizes the variation of photon
conversion efficiencies (PCEs) of six cells fabricated with three different concentrations of 4T dye.
The average power conversion efficiency was at maximum at 0.15 mM, with a champion efficiency over
2.0%. Table 2 compares the PCEs of solar cells in this work with recently reported TiO2/P3HT solar cells
with various interface modifiers including dyes. The Table 1 clearly shows that the 4T dye-modified
devices showed the best PCE of devices with pristine P3HT and nanoporous TiO2 electrodes. It should
be noted that our devices have TiO2 nanoparticles which did not undergo TiCl4 treatment.
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Table 2. Photon conversion efficiencies (PCEs) of recently reported TiO2/P3HT solar cells with various
interface modifiers including dyes.

Device Structure—Different Interface Modifiers Efficiency % Year Reference

TiO2/carboxylated oligothiophene/P3HT 0.11 2015 [28]
TiO2/BT5 oligomer/P3HT 0.21 2019 [10]

TiCl4 treatment/TiO2 nanorod/ACA/P3HT 0.28 2015 [40]
TiO2/TiCl4 treatment/[6,6]-Phenyl C61 butyric acid/P3HT 0.37 2015 [41]

TiO2/TiCl4 treatment/D131/P3HT 1.53 2015 [41]
TiO2/TiCl4 treatment/squaraine dye SQ2/P3HT 2.22 2015 [41]

TiO2 nanorod/P3HT/PEDOT:PSS 0.43 2012 [15]
TiO2 nanorod(650 nm)/D149/P3HT/PEDOT:PSS 1.58 2012 [15]
TiO2 nanorod(1.5 µm)/D149/P3HT/PEDOT:PSS 3.12 2012 [15]

TiO2 nanorod/Z907/P3HT/PEDOT:PSS 0.94 2012 [15]
TiO2 nanowires/Pyridine/P3HT 0.45 2015 [42]
TiO2/Z907/P3HT/PEDOT:PSS 0.53 2017 [35]

TiO2 nanowires/TiCl4 treatment/CdS/P3HT 0.7 2015 [42]
TiO2 nanofibers/N719/P3HT 0.90 2010 [43]

TiO2/Nitro Benzoic Acid treatment/P3HT/PEDOT:PSS 1.05 2017 [3]
TiO2 nanofibers/N719 + PPA/P3HT 1.09 2010 [43]

TiO2/Methoxy Benzoic Acid treatment/P3HT/PEDOT:PSS 1.24 2017 [3]
TiO2/Al2O3/N719/P3HT/PEDOT:PSS 1.4 2014 [38]
TiO2/TiCl4 treatment/4T/doped P3HT 1.54 2014 [16]
TiO2/TiCl4 treatment/5T/doped P3HT 2.32 2014 [16]

TiO2 nanorod/TiCl4 treatment/D149/TBP/P3HT/PEDOT:PSS 1.83 2012 [44]
TiO2/triphenylamine dye/P3HT 2.01 2016 [45]

TiO2/Z907/P3HT 1.01 2019 Current work
TiO2/N719/P3HT 0.86 2019 Current work

TiO2/4T/P3HT 2.04 2019 Current work
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4. Conclusions

Three different dyes, including a metal-free 4T dye as an interface modifier on TiO2/P3HT
solar cells, were investigated. It was found that the commercial dyes N719 and Z907 improved the
performance of the solar cells by improving the hole-mobility of the polymer and by reducing the
back-electron transfer at the interface. Among all the dyes used, the insertion of 4T dye improved the
efficiency by five-fold, which was higher when compared to other dyes used. Optimized nanoporous
TiO2/P3HT solar cells with 4T dye yielded maximum efficiency over 2% under 1 sun illumination
with an AM 1.5 filter. This is attributed to a combination of charge carrier generation due to 4T dye,
as shown by EQE spectra data, and improved morphology and mobility of the P3HT caused by the 4T.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/11/1752/s1,
Figure SM1: Cross sectional FESEM image for fabricated TiO2/4T/P3HT solar cell. The thickness of ITO layer
was found to be 201.2 nm, Figure SM2: Cross sectional FESEM image for fabricated TiO2/4T/P3HT solar cell
with individual thickness for each layer, Figure SM3: Cross sectional FESEM image for fabricated TiO2/4T/P3HT
solar cell. The thickness of P3HT layer was found to be 177.7 nm, Figure SM4: Cross sectional FESEM image for
fabricated TiO2/4T/P3HT solar cell.
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