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Abstract 

The role of the mitochondrial calcium uniporter (MCU) gene (Mcu) in cellular energy 

homeostasis and the generation of electrical brain rhythms is widely unknown. We 

investigated this issue in mice and rats using Mcu-knockout and -knockdown strategies in 

vivo and in situ and determined the effects of these genetic manipulations on hippocampal 

gamma oscillations (30-70 Hz) and sharp wave-ripples. These physiological network states 

require precise neurotransmission between pyramidal cells and inhibitory interneurons, 

support spike-timing and synaptic plasticity and are associated with perception, attention 

and memory. Absence of the MCU resulted in (i) gamma oscillations with decreased 

power (by >40%) and lower synchrony, including less precise neural action potential 

generation ('spiking'), (ii) sharp waves with decreased incidence (by about 22%) and 

decreased fast ripple frequency (by about 3%) and (iii) lack of activity-dependent pyruvate 

dehydrogenase dephosphorylation. However, compensatory adaptation in gene expression 

related to mitochondrial function and glucose metabolism was not detected. These data 

suggest that the neuronal MCU is crucial for the generation of network rhythms, most 

likely by influences on oxidative phosphorylation and perhaps by controlling cytoplasmic 

Ca2+ homeostasis. This work contributes to an increased understanding of mitochondrial 

Ca2+ uptake in cortical information processing underlying cognition and behaviour. 



– FINAL VERSION – 

 4 

 

 

Keywords 

calcium signalling, electrophysiology, mitochondria, neurometabolic coupling, neuronal 

activity 

 

 

Abbreviations 

AAV, adeno-associated virus; ACSF, artificial cerebrospinal fluid; CMR, cerebral 

metabolic rate; DIV, days in vitro; GAM, gamma oscillations; KD, knockdown; KO, 

knockout; LFP, local field potential; MCU, mitochondrial calcium uniporter; Mcu, MCU 

gene; PDH, pyruvate dehydrogenase; PV, parvalbumin; RP; ripple; shRNA, short hairpin 

RNA; SW, sharp wave 



– FINAL VERSION – 

 5 

Introduction 

The integrative role of mitochondrial Ca2+ uptake and cycling in central neurons has been 

established on molecular, cellular and system levels 1-3. This role comprises a variety of 

physiological processes, such as maintenance of intracellular Ca2+ homeostasis, synaptic 

activity, vesicle exocytosis and energy metabolism 4-10. During neurometabolic coupling, 

mitochondrial Ca2+ can act as a feed-forward regulator of oxidative phosphorylation and 

ATP production in mitochondria by affecting the activity of pyruvate dehydrogenase 

(PDH), several TCA cycle enzymes and F1FO-ATP synthase 1, 11, 12. Moreover, the 

detrimental consequences of excessive mitochondrial Ca2+ uptake in neurons have been 

studied under various pathophysiological conditions 1, 13, 14. Excessive mitochondrial Ca2+ 

uptake can trigger several harmful events, including opening of the mitochondrial 

permeability transition pore and loss of mitochondrial membrane potential, which 

potentially lead to bioenergetic failure and neuronal death 15-19. Both initiation and cellular 

consequences of excessive mitochondrial Ca2+ uptake likely differ in ischemia, epilepsy 

and age-related neurodegenerative diseases, however 20-23. 

During neuronal activity, cytoplasmic Ca2+ transients are associated with the uptake of 

Ca2+ into mitochondria and increased mitochondrial matrix Ca2+ concentration 2, 6, 8, 24, 25. 

Importantly, mitochondrial Ca2+ uptake requires the recently identified mitochondrial Ca2+ 
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uniporter (MCU) 26, 27, which is part of a large protein complex 2, 28. Alternative routes for 

mitochondrial Ca2+ uptake, such as ion exchangers and the rapid uptake mode, have been 

also described 2, 29, 30. 

The role of the MCU in the cellular homeostasis underlying the generation of fast neuronal 

network rhythms that associate with cortical information processing in vivo is unknown. 

This role is of particular interest because the awake human brain features per se a high 

metabolic rate that further increases during functional activation of primary cortical 

regions, with mean values of 27 ± 10% and 20 ± 13% for ∆CMRglc and ∆CMRO2, 

respectively 31-33. Therefore, active neurons critically depend on efficient neurometabolic 

coupling and high performance of mitochondrial oxidative phosphorylation 22, 31. In theory, 

such neurometabolic coupling can be achieved both by cytosolic Ca2+ that stimulates 

mitochondrial substrate carriers and by mitochondrial matrix Ca2+ that stimulates TCA 

cycle dehydrogenases. However, whether mitochondrial Ca2+-uptake via the MCU 

complex is required to support physiological neuronal network activity by regulating 

cellular energy metabolism and/or Ca2+ homeostasis is widely unknown 2. 

We started to address this by studying gamma oscillations (30-70 Hz) and sharp wave-

ripples in hippocampal slice preparations 34-37. These physiological network rhythms 

require precise synaptic transmission between excitatory pyramidal cells and inhibitory 
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interneurons and occur during wakefulness and sleep 38, 39. They support, for example, 

spike-timing and synaptic plasticity on the cellular level and are thus thought to contribute 

to the emergence of higher brain functions, such as perception, attention and memory 38-40. 

We used various knockout (KO) and knockdown (KD) strategies of the Mcu in vivo and in 

situ. 

 

Materials and methods 

Mcu-knockout and Mcu-knockdown strategies 

All animal experiments conformed to national and institutional guidelines including the 

Animals [Scientific Procedures Act] 1986 (UK), and the Council Directive 2010/63/EU of 

the European Parliament, and had full Home Office ethical approval (University of 

Edinburgh Animal Welfare and Ethical Review Body; University of Heidelberg Animal 

Welfare Office and Regierungspraesidium Karlsruhe, licenses T46/14 and T96/15). All 

animals were maintained in pathogen-free and light- (12hr light/ 12hr dark) and 

temperature-controlled (22 °C ± 2 °C) conditions. Food (LasVendi Rod 16 or Rod 18) and 

water were available ad libitum. Animals were group-housed in conventional cages with 

ABBEDD LT-E-001 bedding material and were provided with environmental enrichment. 
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Animal welfare was assessed daily by staff of the animal facility. Experiments were 

performed and reported in accordance with the ARRIVE guidelines. The investigator was 

blinded for the genotype. 

To obtain mice with brain-specific loss of Mcu expression, Mcufl/fl mice (colony name: 

B6N-Atm1Brd-Mcutm1c(EUCOMM)Hmgu/H MGI Allele name: Mcutm1c(EUCOMM)Hmgu, MGI ID: 

5692853, EMMA ID: EM:10448) were crossed with C57BL/6 Emx1-Cre mice 41 in which 

the neo cassette had been removed by crossing with the ROSA26Fki Flp deleter mice 42. 

Mcufl/fl mice were generated by MRC Harwell from targeted ES cells made by The 

European Conditional Mouse Mutagenesis Program, as part of the International Mouse 

Phenotyping Program. Intercrosses of Mcu/Cre+ double heterozygotes with heterozygous 

Mcu/Cre- mice were carried out to generate experimental Mcu knockout (Mcu/Cre+) and 

wildtype controls (Wt/Cre+). Animals were genotyped by PCR using the following primers 

(5’-3’): A: CCCAGGCCCATGGTTGATTT, B: 

GCACCTGCAACACTATAAACATTCAA; C 

GTGCAGGTCTATACTTACACACAAAGGACA, D: 

GAGCTGTGTCTGCACCTGCAACA; Primer pair A-B recognized the wild-type allele 

and primer pair C-D recognized the KO allele. Cre was genotyped using the following 
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primers (5’-3’) F: GAACCTGATGACATGTTCAGG, R: 

AGTGCGTTCGAACGCTAGAGCCTGT.  

Recombinant adeno-associated viral vectors for the expression of short hairpin RNAs 

(shRNAs) contain a ubiquitous U6 promoter for shRNA expression and a CaMKII 

promoter driving mCherry expression. Note that due to the use of a CaMKII promoter the 

fluorescent infection marker is expressed in glutamatergic neurons only, while shRNAs are 

expressed in all infected cells. To verify that serotype 1/2 efficiently targets parvalbumin-

expressing GABAergic basket cells, we infected slice cultures with an rAAV that 

expresses mCherry under the control of a ubiquitous CMV promoter. Immunostaining for 

parvalbumin confirmed reliable infection of basket cells (Suppl. Fig. 2). The following 

shRNA target sequences were used in this study (5′–3′): control shRNA targeting LacZ: 

CCAACGTGACCTATCCCATTA, Mcu shRNA-1: TAGGGAATAAAGGGATCTTAA 

18, Mcu shRNA-2: ATGACGCGCCAGGAATATG, Mcu shRNA-3: 

GGGCTTAGCGAGTCTTGTC 18. Viral particles were produced as described 43. Slice 

cultures were infected with rAAVs on DIV 4-5 by careful application of 1 µl virus solution 

onto each slice. 
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Slice preparations 

Wild type and Mcu-KO male mice (6-12 weeks old) were anaesthetised with CO2 and 

decapitated. The brain was quickly removed and maintained in cooled (4°C) artificial 

cerebrospinal fluid (ACSF), saturated with 95% O2 and 5% CO2. After removal of frontal 

brain structures and the cerebellum, horizontal entorhinal-hippocampal slices (400 µm) 

were prepared using a vibratome (VT 1000s, Leica, Bensheim, Germany). These acute 

slices were stored in a Haas-type interface chamber at 34 ± 1°C for recovery of at least 2 

hours as well as for experimental recordings. Slices with incomplete entorhinal-

hippocampal structures were excluded. 

Slice cultures were prepared as described 36, 44. In brief, hippocampal slices (400 µm) were 

cut with a McIlwain tissue chopper (Mickle Laboratory Engineering Company Ltd., 

Guildford, UK) from 10 day-old male Wistar rats under sterile conditions. Slices with 

intact hippocampal structures were maintained on Biopore™ membranes (Millicell 

standing inserts, Merck Millipore, Darmstadt, Germany) between culture medium, which 

consisted of 50% minimal essential medium, 25% Hank’s balanced salt solution (Sigma-

Aldrich, Taufkirchen, Germany), 25% heat-inactivated horse serum (Life Technologies, 

Darmstadt, Germany), and 2 mM L-glutamine (Life Technologies) at pH 7.3 titrated with 
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Trisbase, and humidified normal atmosphere (5% CO2, 36.5°C) in an incubator (Heracell, 

Thermoscientific, Dreieich, Germany). Slices were randomly assigned to experimental 

groups. The culture medium (1 ml) was replaced three times per week. Slice cultures were 

used after 7-14 days in vitro (DIV), when the tissue had recovered from slice preparation 

and damaged cut surfaces had been re-organized 1, 45. 

 

Recording solutions and drugs 

Acute slices and slice cultures were stored in a Haas-type interface chamber and constantly 

supplied with heated (34 ± 1°C) recording solution, i.e. ACSF containing: 129 mM NaCl, 

3 mM KCl, 1.25 mM NaH2PO4, 1.8 mM MgSO4, 1.6 mM CaCl2, 26 mM NaHCO3, and 

10 mM glucose 36, 44. The pH was 7.3 when the recording solution was saturated with 95% 

O2 and 5% CO2. The gas supply to the interface chamber was 1.5 l/min (95% O2 and 5% 

CO2). 

Gamma oscillations were induced by bath application of acetylcholine (2 µM) and 

physostigmine (400 nM) in rat slice cultures or the muscarinic receptor agonist carbachol 

(5 µM) in mouse acute slices 34, 36, 45, 46. 
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Carbachol and physostigmine were purchased from Tocris (R&D Systems GmbH, 

Wiesbaden-Nordenstadt, Germany). Standard salts and acetylcholine were from Sigma-

Aldrich (Taufkirchen, Germany). 

 

Recordings of local field potentials 

In rat slice cultures the local field potential was recorded with glass electrodes (tip 

diameter 3-5 μm) that were pulled from GB150F-8P borosilicate filaments (Science 

Products GmbH, Hofheim, Germany) with a PC-10 vertical micropipette puller (Narishige 

International Ltd., London, UK) and backfilled with ACSF. In mouse acute slices carbon 

fibre electrodes (Kation Scientific, Minneapolis, MN, USA) were used. The 

microelectrodes were positioned in stratum pyramidale of the CA3 region with a 

mechanical micromanipulator (MX-4, Narishige). Extracellular field potentials were low-

pass filtered at 3 kHz, and digitised at 10 kHz using CED 1401 interface and processed 

with Spike2 software (Cambridge Electronic Design, Cambridge, UK) for offline analysis. 

Offline signal analysis of 5 min data segments from local field potential recordings was 

performed using custom-made scripts in MATLAB 2015a (The MathWorks, Inc., Natick, 

MA, USA). Recordings of gamma oscillations were low-pass filtered with a digital 
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Butterworth algorithm at 200 Hz cutoff frequency and processed with Welch’s algorithm 

and fast Fourier transform with a Hamming window size of 32768 points for calculation of 

the power spectral density (power) (bin size of 0.3052 Hz). Gamma oscillations were 

analysed for peak power, frequency and full width at half-maximum (FWHM). Recordings 

of sharp wave-ripples were band-pass filtered with a Butterworth algorithm between 5-60 

Hz corner frequencies to detect the transient sharp wave component. Amplitude and 

incidence of sharp waves were measured and averaged. Ripples superimposed on the sharp 

wave were analysed using continuous wavelet transformation. Multi-unit activity was 

assessed by high-pass filtering of the local field potential with a Butterworth algorithm at 

700 Hz corner frequency. The threshold for unit detection was set to 4.5 standard 

deviations of the local field potential during spontaneous asynchronous activity and the 

correctness of unit detection was checked visually. 

 

Toluidine blue staining and immunohistochemistry 

For toluidine blue staining (Sigma-Aldrich), acute hippocampal slices were fixed overnight 

with 4% paraformaldehyde in phosphate-buffered salt solution (PBS), incubated for 5 h in 

30% sucrose (AppliChem GmbH, Darmstadt, Germany) and cut in thin sections (40 µm) 
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with a CM1850 cryostat (Leica Microsystems GmbH, Nussloch, Germany). Sections were 

mounted on slides, exposed to descending ethanol series, briefly rinsed in double-distilled 

water and then incubated in 0.1% toluidine blue working solution (pH 2.3) for 1-5 min. 

Thereafter, the sections were briefly rinsed in double-distilled water. 95% ethanol with 

traces of glacial acetic acid was used for colour differentiation of the staining. The sections 

were then exposed to ascending ethanol series, a 1:1 mixture of 100% ethanol and xylene, 

and finally xylene for 6-10 min. Afterwards the sections were embedded with 

Entellan®Neu (Merck Millipore, Schwalbach, Germany). 

For GFP, parvalbumin and GFAP staining mice were anaesthetized by intraperitoneal 

injection of sodium pentobarbital and transcardially perfused with 20 ml of PB followed by 

20 ml of ice cold 4% PFA. A vibratome (Leica, UK) was used to cut 50 µm thick sections 

which were stored free-floating in PB at 4˚C until use. Sections were washed in PB, 

blocked with 5% donkey serum for 1 hr and incubated in the following antibodies 

overnight: anti-GFP conjugated to FITC (1:500 Abcam ab6662), mouse anti-parvalbumin 

(1:5000, Swant PV235) and rabbit anti-GFAP (1:1000, Dako Z0334). Sections were then 

washed in PB and incubated in donkey anti-mouse Alexa Fluor 546 antibody (1:500) and 

donkey anti-rabbit Alexa Fluor 546 antibody (1:500) for 1 hr before being washed and 
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mounted onto slides. Sections were imaged using a Leica AF6000LX immunofluorescence 

microscope. 

 

Western blotting 

Wild type, Mcu/Cre- and Mcu-KO mice were anaesthetized with isoflurane and 

decapitated. Brains were quickly removed, the hippocampus dissected and CA3 

microdissected using a scalpel blade. The tissue was snap frozen and stored at -80˚C until 

required. Samples were homogenized in RIPA buffer (50mM Tris-HCl (pH 7.5), 150mM 

NaCl, 1mM EDTA, 0.1% SDS, 0.5% sodium deoxycholate) containing protease and 

phosphatase inhibitors (Roche, UK). The samples were then lysed in 1.5x LDS sample 

buffer (NuPage, Life Technologies) and boiled at 100°C for 10 min. Approximately 10 µg 

of protein was loaded onto a precast gradient gel (4–16%; Invitrogen) and subjected to 

electrophoresis. Western blotting onto a PVDF membrane was then performed using the 

Xcell Surelock system (Invitrogen) according to the manufacturer's instructions. Following 

the protein transfer, the PVDF membranes were blocked for 1 hr at room temperature with 

5% (w/v) non-fat dried milk in TBS with 0.1% Tween-20. The membranes were incubated 

at 4°C overnight with the primary antibodies diluted in blocking solution: Rabbit anti-
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MCU (1:4000, Sigma HPA016480) and rabbit anti-beta actin (1:50000, Abcam ab8227). 

For visualisation of Western blots, HRP-based secondary antibodies were used followed 

by chemiluminescent detection on Kodak X-Omat film. Western blots were digitally 

scanned and densitometric analysis was performed using Image J. 

 

Gene expression analysis 

Wild type and Mcu-KO mice (6-12 weeks old) were anaesthetised with CO2 and 

decapitated. Hippocampal area CA3 was rapidly dissected and flash frozen in liquid 

nitrogen. RNA was isolated from frozen tissue using an RNeasy Microarray Tissue Mini 

kit (Qiagen) with additional on-column DNase I digestion according to the manufacturer’s 

instructions. 460ng RNA per sample were used to prepare cDNA using a RT2 First Strand 

Kit (Qiagen) according to the manufacturer’s instructions. Real-time PCR was performed 

on an ABI StepOnePlus system using RT2 SYBR® Green ROX™ qPCR Mastermix and 

RT2 Profiler PCR Arrays PAMM-087ZA (mouse mitochondria) and PAMM-006ZA 

(mouse glucose metabolism). Expression of target genes was normalized against the 

geometric mean of Actb, Gapdh, and Gusb as endogenous control genes. Heatmaps (Figure 

7) were generated with Heatmapper 47. 
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pPDH analysis 

Acute slices were recorded in standard buffer in a recording chamber, or were treated with 

carbachol in a recording chamber for 40 min. Slices were then fixed overnight with 4% 

formaldehyde at 4 °C. After keeping the slices in 30% sucrose (AppliChem, Darmstadt, 

Germany) they were resliced into 50µm sections on a cryotome (CM1850, Leica 

Microsystems, Wetzlar, Germany). Free floating sections were blocked and permeabilised 

with 5% normal goat serum and 0.3% Triton X-100 for 90 minutes at RT, then labelled 

overnight at 4°C with a mixture of primary antibodies (mouse anti-PDH E1-alpha, Life 

Technologies 456600, lot 456600/G0529, 1:500; rabbit anti-pPDH Ser293, Millipore 

ABS204, lot 2315725, 1:2,000), and then labelled over night at 4°C with a mixture of 

secondary antibodies (Alexa 594-labelled goat anti-mouse IgG, Thermo Fisher Scientific 

A-11005, and Alexa 488-labelled donkey anti-rabbit IgG, Thermo Fisher Scientific 

R37118; both 1:1,000). Sections were counterstained with Hoechst 33258 (Sigma-Aldrich, 

1 μg/ml), and mounted in Mowiol 4-88 (Calbiochem). 

Images were recorded in sequential mode on a Leica TCS SP8 confocal microscope 

equipped with a Leica HC PL APO CS2 63x NA 1.4 oil-immersion objective (pixel size 
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240nm x 240nm). Images were imported into FIJI 48 and converted to 32-bit. 488 nm and 

552 nm excitation channels were split and a threshold was set in both channels to contrast 

mitochondria. The 488 nm excitation channel (pPDH) was divided by the 552 nm 

excitation channel (total PDH). The resulting 488 nm/552 nm ratio image was displayed in 

fire lookup table. The 488 nm/552 nm ratio was measured in stratum pyramidale (as 

identified in the Hoechst channel) and data were exported to Microsoft Excel. Image 

acquisition and data analysis were done blind to genotype. 

 

Calculations and statistics 

Electrophysiological data are presented as median with 25th and 75th percentile derived 

from 'n' acute slices (cultured slices) from 'N' mice (rats), unless stated otherwise. 

Statistical significance, P < 0.05 or confidence interval (CI) was determined using 

SigmaPlot 12.5 (Systat Software, San Jose, CA) and GraphPad Prism (GraphPad Software 

Inc., La Jolla, USA). Data distribution was checked for normality with Shapiro-Wilk test. 

Comparisons among paired data were made with Wilcoxon signed-rank test. Comparisons 

among unpaired data were made with Kruskal-Wallis ANOVA on ranks followed by 

Dunn's post hoc test. Figures were generated with MATLAB 2015a (MathWorks), and 
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CorelDRAW (Corel Corporation, Ottawa, Ontario, Canada). Quantitative 

immunofluorescence data are presented as mean + 95% CI. Data distribution was checked 

for normality with Shapiro-Wilk test and P value was determined by unpaired two-tailed 

student’s t-test using GraphPad Prism (GraphPad Software Inc., La Jolla, USA). 

 

Results 

We used a combined experimental approach to determine the role of the MCU in the 

generation of fast neuronal network rhythms in the hippocampus of mice and rats. 

First, we used acute hippocampal slices from conditional Mcu-KO mice. These mice were 

generated by crossing a floxed Mcu mouse line to Emx1-Cre mice that express Cre-

recombinase in cortical glutamatergic neurons 41. Notably, in these mice the MCU is still 

present in GABAergic interneurons, such as parvalbumin-positive, fast-spiking inhibitory 

interneurons important for the generation of gamma oscillations and sharp wave-ripples 34, 

41, 49, 50. The Mcu-KO mice showed no gross differences in the hippocampal 

cytoarchitecture (Fig. 1 A and B). Western blotting of extracts from the hippocampal CA3 

molecular layer confirmed significant knockout of MCU (Fig. 1 C and D) as compared to 

wild type and Mcu/Cre- mice. To confirm the distribution and identity of Emx1-Cre 
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expressing cells, Emx1-Cre mice were crossed with B6;129S4-

Gt(ROSA)26Sortm9(EGFP/Rpl10a)Amc/J mice, in which Cre-mediated excision results in 

eGFP expression. This revealed expression in neurons throughout the cortex and 

hippocampus, consistent with previous studies 41 (Fig. S1 A and B). 

Immunohistochemistry confirmed the lack of GFAP (astrocyte marker) and parvalbumin 

(interneuron marker) co-expression with eGFP (Fig. S1 C-J). 

As a second approach, we used organotypic hippocamal slice cultures from rats 36, 44. In 

these slice cultures, Mcu was knocked down by recombinant adeno-associated virus-

mediated expression of Mcu-directed short hairpin RNAs (shRNAs) in excitatory and 

inhibitory neurons 18 (Suppl. Fig. 2). 

In these slice preparations (Fig. 1 E), we performed local field potential recordings, 

including fast Fourier transform, to characterize the properties of cholinergically-induced, 

persistent gamma oscillations and spontaneously-occurring, recurrent sharp wave-ripples, 

both of which share many features with their counterparts in vivo 36, 37, 46, 51. We focussed 

on the CA3 region, which is an intrinsic generator of gamma oscillations and sharp wave-

ripples in the hippocampus 34, 50, 51, and shows a higher Mcu-expression of about 2-fold 

compared with the CA1 region 52. 
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Disturbances of gamma oscillations 

Gamma oscillations with a frequency of around 32 Hz were present in the CA3 region of 

wild type and Mcu-KO mice (Fig. 2 A, B and D). However, Mcu-KO mice showed a 

strong decrease in the power of gamma oscillations by about 87% (Fig. 2 C) as well as an 

increase in full width at half maximum (FWHM), reflecting less precision (Fig. 2 E). We 

note that the oscillation power increases with number and synchrony of postsynaptic 

currents at gamma-frequency, whereas FWHM increases with jitter in the timing of 

postsynaptic currents 37. 

Similar disturbances in the power of gamma oscillations were present in the CA3 region of 

rat slice cultures expressing shRNAs against Mcu. To obtain robust results, we used three 

different shRNA sequences. Expression of sh1 and sh2 resulted in a decrease in the power 

of gamma oscillations by about 40.9% and 65.9%, respectively (Fig. 3 A-G). The increase 

in FWHM was only present in slice cultures expressing sh2 and was accompanied by an 

increase in gamma oscillation frequency (Fig. 3 H and I). By contrast, expression of sh3 

resulted in a decrease in FWHM (Fig. 3 G-I). Thus, we broadly confirm our findings in 

Mcu-KO mice with two out of three variants of shRNAs in rat slice cultures. 
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These findings suggest that the MCU is required for proper generation of gamma 

oscillations. 

 

Disturbances of neuronal spiking synchronization 

We further characterized the synchronization of neuronal action potential generation 

('spiking') during gamma oscillations. For this purpose, multi-unit activity was extracted 

from local field potential recordings (Fig. 4 A). In wild type mice, there was a second peak 

of the multi-unit intervals present at 20-30 ms, reflecting synchronized neuronal spiking at 

the gamma-band rhythm (Fig. 4 B). Notably, this second peak of multi-unit intervals was 

absent in Mcu-KO mice. In addition, the timing of multi-unit activity was less concentrated 

at the negative peak of the gamma-band cycle in Mcu-KO mice and thus less precise (Fig. 

4 C). The frequency of multi-unit activity was similar in wild type and Mcu-KO mice (Fig. 

4 D), excluding an overall decrease in neuronal excitability in the mutant. 

These findings suggest that the MCU is required for proper synchronization of neuronal 

spiking during gamma oscillations. 
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Disturbances of sharp wave-ripples 

To test whether the disturbances on the network and cellular level described above are 

specific for gamma oscillations, we additionally characterized the properties of sharp 

wave-ripples. Recurrent sharp wave-ripples were present in the CA3 region of wild type 

and Mcu-KO mice (Fig. 5 A). Whereas the amplitude of sharp waves was similar in wild 

type and Mcu-KO mice (Fig. 5 B), the incidence of sharp waves decreased by about 22% 

in Mcu-KO mice (Fig. 5 C). The frequency of fast ripples (Fig. 5 D) decreased by about 

3%, and also the number of ripples per sharp wave (Fig. 5 E) was lower in Mcu-KO mice. 

These findings suggest that the MCU is also required for proper generation of sharp wave-

ripples. 

 

Alterations of neurometabolic coupling 

Cortical information processing depends on ATP supply by neuronal mitochondria 22. We 

therefore reasoned that impaired Ca2+-mediated activation of mitochondrial oxidative 

metabolism might be one mechanism that underlies the disturbances in neuronal network 

oscillations in Mcu-KO mice. To assess neurometabolic coupling in wild type and Mcu-

KO mice, we measured activity-dependent PDH dephosphorylation, which is an indicator 
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of mitochondrial TCA cycle stimulation 11, after 40 minutes of gamma oscillations in acute 

hippocampal slices (Fig. 6). In slices from wild type mice, PDH phosphorylation was 

markedly reduced. In contrast, PDH phosphorylation was unchanged in slices from Mcu- 

KO mice. 

These findings indicate that during gamma oscillations the Ca2+-dependent stimulation of 

the mitochondrial TCA cycle is dysfunctional in Mcu-KO mice. 

 

Absence of adaptations in gene expression 

We next asked if the reduced capability to activate mitochondrial oxidative 

phosphorylation in Mcu-KO mice results in compensatory changes in the expression of 

metabolic genes. For this purpose, we isolated the CA3 region from hippocampus of 

control and Mcu-KO mice, and analysed mRNA expression of a panel of 168 genes that 

are related to mitochondrial function or glucose metabolism using RT2 Profiler PCR 

Arrays (Fig. 7, Suppl. tables 1 and 2). Using a threshold of 2-fold up- or downregulation to 

identify differentially expressed genes, we found no difference between WT and KO mice 

in any of the analysed genes. 
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These findings suggest that under basal conditions there are no compensatory adaptations 

in energy metabolism in Mcu-KO mice, at least at the transcriptional level. 

 

Discussion 

Mcu-KO and Mcu-KD strategies 

In this study, we used two complementary approaches to investigate the role of the MCU 

during fast neuronal network rhythms. First, we generated a brain-specific Mcu-KO mouse 

line that lacks expression of the MCU in excitatory cortical and hippocampal neurons. The 

specific advantage of this approach is the complete lack of MCU expression in targeted 

neurons, and normal expression elsewhere. However, Emx1 promoter-driven expression of 

Cre recombinase starts early during development, which potentially allows for 

compensatory adaptations to occur. In addition, the Emx1 promoter does not drive 

expression of Cre recombinase in parvalbumin-positive GABAergic interneurons that are 

important for the generation of fast network oscillations. In a second approach, we 

therefore used recombinant adeno-associated viruses of serotype 1/2 to express shRNAs 

against Mcu in both excitatory and inhibitory neurons in rat organotypic hippocampal slice 

cultures (Suppl. Fig. 2). Compared to acute hippocampal slices, the use of organotypic 
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cultures provides the advantage of better tissue recovery from brain isolation and slice 

preparation. In addition, the transient knock-down of Mcu, albeit less efficient than the 

genetic knock-out, provides less time for compensatory cellular adaptions to develop. 

Although all three shRNAs were able to reduce MCU protein levels in rat neurons (Suppl. 

Fig 3), only two shRNAs were able to phenocopy the mouse knock-out. The reason for the 

different results obtained with the third shRNA is not clear, but might involve unidentified 

off-target effects of the third shRNA. However, this observation is not uncommon and, in 

fact, underscores the importance of using multiple shRNA sequences and additional 

complementary approaches 53. Together, using ex vivo slices and slice cultures from the 

mouse and the rat hippocampus, we conclude that the MCU is required for neurometabolic 

coupling and generation of proper fast neuronal network rhythms. 

 

Disturbances of gamma oscillations and sharp wave-ripples 

The role of the MCU complex in neurometabolic coupling has been addressed in a number 

of previous experimental studies. These studies, however, focused on widely undefined 

activation stages of cultured neurons using artificial stimuli 54 or on intense metabolic 

stress during hypoxic-ischemic brain injury 55. 
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Here, we used gamma oscillations and sharp wave-ripples as models of physiological 

neuronal network rhythms. Gamma oscillations emerge in many cortical areas in awake 

mammals, including humans and have been associated with sensory perception, attentional 

selection, motor activity and memory formation 22, 39. Sharp wave-ripples arise in the 

hippocampus during waking immobility, consummatory behaviour and slow-wave sleep. 

They assist in transferring compressed hippocampal information to distributed neocortical 

circuits to support memory consolidation 38, 39. In addition, sharp wave-ripples have been 

implicated in erasure of hippocampal memory traces and certain aspects of active spatial 

navigation 38-40. 

Gamma oscillations and sharp wave-ripples rely on the precise synaptic transmission 

between excitatory pyramidal cells and GABAergic interneurons, in particular 

parvalbumin-positive, fast-spiking interneurons, such as basket cells 34, 35, 50, 51. In 

generating these patterns of activity, pyramidal cells excite fast-spiking inhibitory 

interneurons that in turn transiently inhibit the perisomatic region of pyramidal cells 

through rhythmic GABA release. During gamma oscillations, for example, individual 

pyramidal cells generate action potentials at 1-3 Hz, whereas fast-spiking inhibitory 

interneurons show much higher firing rates (>20 Hz) 22, 34. We note that fast-spiking 
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inhibitory interneurons were not targeted with our Mcu-KO strategy, but we nevertheless 

see a strong phenotype. 

We demonstrate disturbances in the generation of gamma oscillations and the underlying 

neuronal spiking. In addition, we report the lack of activity-dependent PDH 

dephosphorylation in Mcu-KO mice. This indicates that the Ca2+-dependent stimulation of 

the mitochondrial TCA cycle is impaired, in line with other reports 30, 56 but see 55. 

Therefore, our data might primarily reflect an energy deficit in excitatory pyramidal during 

gamma oscillations that feature high energy expenditure 22, 37. Similar results have been 

reported for the skeletal muscle during strenuous work in a different Mcu–/– mouse mutant 

30. Since the overall spiking rates were similar in our wild type and Mcu-KO mice, the 

energy deficit might arise in specific subcellular compartments with high energy 

expenditure, such as glutamatergic presynaptic terminals 57, 58. This might, for example, 

result in less precise excitation of fast-spiking inhibitory interneurons through alterations 

of the synaptic vesicle cycle 10, 22, 59. 

However, we also demonstrate disturbances in the generation of sharp wave-ripples that 

are thought to involve less energy expenditure compared with gamma oscillations 37. 

Therefore, the functions of the MCU in excitatory pyramidal cells may not be restricted to 

neurometabolic coupling and energy metabolism (Fig. 7 E). Similar to other excitable 



– FINAL VERSION – 

 29 

cells, the MCU also has an important role in Ca2+ homeostasis in neurons 2, 60, 61. During 

neuronal activity, mitochondrial Ca2+ uptake significantly shapes cytoplasmic Ca2+ 

transients and thereby modulates neural excitability 9, 62, 63 and the release of 

neurotransmitters 4, 7, 59, 64, 65, including nitric oxide 45, 66, 67. Thus, loss or dysfunction of the 

MCU might affect neuronal signalling on different levels. 

Disturbances of gamma oscillations and sharp wave-ripples might affect spike-timing and 

synaptic plasticity in local cortical networks as well as information transfer between 

remote cortical networks 38-40. 

Our data suggest that dysfunction of the MCU might result in cognitive impairment, with 

putative relevance to several neurological and psychiatric disorders 2, 13, 22, 68, 69. 

 

Absence of adaptations in gene expression 

Similar to previous studies in different MCU loss-of-function models 30, 55, 56, we found no 

evidence for impaired cellular function under basal conditions in our newly generated 

Mcu-KO mouse line. As suggested previously 2, these moderate phenotypes might be due 

to compensatory mechanisms. However, we found no adaptations in gene expression 

related to mitochondrial functions and glucose metabolism. Therefore, our data support the 
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notion that stimulation of mitochondrial metabolism by matrix Ca2+ is dispensable for 

basal neuronal function 2. In fact, recent work has shown that modest stimulation of 

neurons leading to moderate workloads and moderate increases in cytosolic Ca2+ 

concentration can stimulate mitochondrial ATP production via Ca2+-regulated 

mitochondrial substrate carriers, such as the Aralar/AGC1 malate-aspartate-shuttle system 

and SCaMCs (small calcium-binding mitochondrial carriers) 54. Moreover, mitochondrial 

oxidative phosphorylation is further regulated by a variety of Ca2+-independent 

mechanisms, such as the ratios of ADP/ATP, NAD/NADH or CoA/acetyl CoA 70, 71. 

Consistent with its high Ca2+ concentration threshold for Ca2+-uptake 72, 73, recruitment of 

the MCU complex for neurometabolic coupling might therefore be especially relevant 

during neuronal network activity states that feature large increases in intracellular Ca2+ and 

high energy expenditure, such as gamma oscillations. 

 

Conclusions 

We provide substantial evidence that the neuronal MCU is crucial for the generation of fast 

cortical network rhythms, most likely by adapting oxidative phosphorylation, and perhaps 

by controlling cytoplasmic Ca2+ homeostasis. Our study might contribute an increased 
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understanding of the functions of the MCU during neuronal information processing. Future 

studies on neuronal Ca2+ homeostasis and synaptic transmission as well as on the 

behavioural level will further clarify these relationships. 
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Figure legends 

Fig. 1. Cytoarchitecture of the hippocampus in wild type (WT) and Mcu-KO (KO) mice. 

(A) Acute hippocampal slices were stained with toluidine blue (TB) in WT and KO mice. 

(B) The CA3 region is shown at higher magnification. Note that the cytoarchitecture of the 

hippocampus is well preserved. The extracellular local field potential electrode was 

positioned in stratum pyramidale (strongly stained layer with densely packed neuronal 

somas; black arrows). (C) Immunoblot analysis of microdissected hippocampal area CA3 

confirms lack of MCU protein expression in Mcu/Cre+ mice. Blots have been cropped for 

conciseness. (D) Quantification of immunoblot experiments. Round symbols represent 

individual animals, bars represent mean, error bars indicate standard deviation. P-values 

are indicated in the graph and were determined by one-way ANOVA followed by Tukey’s 

multiple comparisons test. (E) Scheme of the experimental design in mice. WT (Wt/Cre+) 

and Mcu-KO (Mcu/Cre+) littermates were used in each experiment. Acute (ex vivo) 

hippocampal slices were used for electrophysiological local field potential (LFP) 

recordings, immunostaining or qPCR arrays to obtain various readouts. The experimental 

design for WT and Mcu-KD slice cultures of the rat was similar. 
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Fig. 2. Gamma oscillations in mouse acute slices. Persistent gamma oscillations were 

recorded in stratum pyramidale of the CA3 region in acute hippocampal slices of the 

mouse. (A) Sample traces of local field potential recordings and corresponding wavelet 

transform of gamma oscillations in wild type (blue trace) and Mcu-KO (magenta trace) 

mice. (B) Sample power spectra of gamma oscillations calculated from 5 min intervals in 

slices from wild type (blue) and Mcu-KO (magenta) mice. Power spectra in (B) correspond 

to gamma oscillations in (A). Gamma oscillations in hippocampal slices from wild type 

(WT) (n = 23, N = 6) and Mcu-KO (n = 20, N = 6) mice were analysed for (C) the peak of 

the power spectrum (Power), (D) the peak frequency (f) and (E) the full width at half 

maximum (FWHM). Mann-Whitney rank sum test was applied for statistical analysis and 

Shapiro-Wilk test for normality. Statistical significance is marked by asterisks (P < 0.05). 

 

Fig. 3. Gamma oscillations in rat slice cultures. Persistent gamma oscillations were 

recorded in stratum pyramidale of the CA3 region in hippocampal slice cultures of the rat. 

(A-C) Sample traces of local field potential recordings and corresponding wavelet 

transform of gamma oscillations in control (A, ShLacZ) and Mcu-knockdown (KD) slice 

cultures (B, Sh1; C, Sh2). (D-F) Sample power spectra of gamma oscillations calculated 

from 5 min intervals in control (D) and KD slice cultures (E, Sh1; F, Sh2). Gamma 
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oscillations in control (ShLacZ, n = 26, N = 6) and KD slice cultures (Sh1, n = 25, N = 7; 

Sh2, n = 15, N = 4; Sh3, n = 25, N = 8) were analysed for (C) the peak of the power 

spectrum (Power), (D) the peak frequency (f) and (E) the full width at half maximum 

(FWHM) of the gamma power. (G-I) Mann-Whitney rank sum test was applied for 

statistical analysis and Shapiro-Wilk test for normality. Statistical significance is marked 

by asterisks (P < 0.05). 

 

Fig. 4. Spiking synchronization during gamma oscillations in mouse acute slices. 

Persistent gamma oscillations were recorded in stratum pyramidale of the CA3 region in 

acute hippocampal slices of the mouse. (A) Sample traces of the local field potential (top), 

with 700 Hz high-pass filter (middle) and extracted multi-unit ('spiking') activity (bottom) 

during gamma oscillations in slices from wild type (blue traces) and Mcu-KO (magenta 

traces) mice. (B) Distribution of multi-unit intervals calculated from 5 min intervals in 

wild type (blue, 58380 ± 3930 events, n = 23, N = 6) and Mcu-KO (magenta, 61500 ± 

7710 events, n = 20, N = 6) mice. Red dots denote significant differences. Note that the 

second peak of multi-unit intervals at 20-30 ms is absent in Mcu-KO (magenta). (C) 

Distributions of the timing of multi-unit activity relative to the negative peak of the 

gamma-band cycle (0 ms). Red dots denote significant differences. Note that the timing of 
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multi-unit activity is less precise in Mcu-KO mice. (D) Frequency of multi-unit activity in 

wild type (WT) and Mcu-KO mice. Mann-Whitney rank sum test (B, C) and student’s t-

test (D) were applied for statistical analysis and Shapiro-Wilk test for normality. Statistical 

significance (P < 0.05). 

 

Fig. 5. Sharp wave-ripples in mouse acute slices. Spontaneously-occurring, recurrent sharp 

wave-ripples were recorded for 5 min in stratum pyramidale of the CA3 region in acute 

hippocampal slices of the mouse. (A) Sample traces of local field potential recordings and 

corresponding wavelet transform of single sharp wave-ripples in wild type (blue trace) and 

Mcu-KO (magenta trace) mice. Sharp wave-ripples in wild type (WT) (922 ± 183 events, n 

= 17, N = 6) and Mcu-KO (717 ± 283 events, n = 16, N = 5) mice were analysed for (B) 

amplitude of the sharp wave (local field potential) and (C) incidence (events/s) of sharp 

waves as well as (D) the frequency of ripples (RP f) and (E) the number of ripples per 

sharp wave (#RP/SW). Mann-Whitney rank sum test and t-test were applied for statistical 

analysis and Shapiro-Wilk test for normality. Statistical significance is marked by asterisks 

(P < 0.05). 
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Fig. 6. Gamma oscillation-mediated dephosphorylation of PDH in mouse acute slices. (A) 

Immunofluorescence labelling of acute mouse hippocampal slices. Anti-phospho PDH 

labelling, anti-total PDH labelling, and a pPDH/PDH ratio image are shown for a control 

slice (CTL) and for a slice that underwent 40 minutes of gamma oscillations (GAM). Both 

slices are from the same wild type mouse. Scale bars represent 20 µm. (B) Quantification 

of pPDH/PDH ratio in control slices (CTL) and slices that underwent 40 minutes of 

gamma oscillations (GAM). Slices from three animals were analysed for both conditions in 

each genotype. Round symbols represent individual animals; bars represent mean ratio. 

Values were normalized to average ratio in wild type control slices. (C) Quantification of 

gamma oscillation-mediated PDH dephosphorylation in wild type and Mcu-KO acute 

slices. Round symbols represent individual animals, horizontal lines represent mean 

difference between control and gamma oscillations, error bars indicate 95% CI. P value 

was determined by unpaired two-tailed student’s t-test. 

 

Fig. 7. Expression of genes related to glucose metabolism and mitochondria in the mouse 

hippocampal region CA3 and summary scheme. (A, B) Heatmaps illustrating the results of 

RT2 Profiler PCR Array gene expression analyses of glucose metabolism-related (A) and 

mitochondria-related (B) genes. N = 5 mice per genotype. Colour scale represents log10 of 
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normalized expression (2-dCT). (C, D) Comparison of average expression per gene in wild 

type versus Mcu-KO mice for glucose metabolism-related (C) and mitochondria-related 

(D) genes. Dotted lines indicate 2-fold up- or down-regulation. (E) Summary of the main 

findings and potential pathophysiological mechanisms triggered by loss of the neuronal 

MCU. The relative contributions of impaired oxidative energy metabolism and impaired 

intracellular Ca2+ homeostasis to different abnormal neuronal network rhythms as well as 

the disturbances of higher brain functions need to be investigated in future studies. For 

details, see main text. 
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