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Abstract
Summary: CPLANE is a protein complex required for assembly and maintenance of primary cilia. It
contains several proteins, such as INTU, FUZ, WDPCP, JBTS17, and RSG1 (REM2- and RAB-like
small  GTPase  1),  whose  genes  are  mutated  in  ciliopathies.  Using  two  contrasting  evolutionary
analyses, coevolution-based contact prediction and sequence conservation, we first  identified the
INTU/FUZ heterodimer as a novel member of homologous HerMon (Hermansky-Pudlak syndrome
and MON1-CCZ1) complexes.  Subsequently,  we identified homologous Longin domains that  are
triplicated in each of these six proteins (MON1A, CCZ1, HPS1, HPS4, INTU and FUZ). HerMon
complexes are known to be Rab effectors and Rab GEFs (Guanine nucleotide Exchange Factors)
that regulate vesicular trafficking. Consequently, INTU/FUZ, their homologous complex, is likely to act
as a GEF during activation of Rab GTPases involved in ciliogenesis.
Contact: luis.sanchez-pulido@igmm.ed.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Many diverse cell processes are regulated by small GTPases, switching
between  active  (GTP-bound)  and  inactive  (GDP-bound)  states.  Small
GTPases  are  switched  on  by  guanine-nucleotide  exchange  factors
(GEFs) that promote the exchange of bound GDP by GTP (Bourne et al.,
1990). Mutations in small GTPases and GEFs are frequent in Mendelian
diseases and cancer (Bos et al.,  2007; Blacque et  al., 2018).  Multiple
small  GTPases  of  the  Rab  family,  and  their  GEFs,  for  example,  are
critical for the assembly of cilia  (ciliogenesis)  and can be mutated in
ciliopathies (Blacque et al., 2018).
Mouse mutants for genes encoding the Rab-like small GTPase RSG1 or
ciliopathy-associated proteins Fuzzy (FUZ) and Inturned (INTU) show
developmental abnormalities characteristic of decreased cilia-dependent
Hedgehog signalling (Agbu et al., 2018; Gray et al., 2009; Zeng et al.,
2010). These three proteins interact as members of the ciliogenesis and
planar polarity effector (CPLANE) complex that controls recruitment of
intraflagellar  transport  machinery  to  the  basal  body (Toriyama et  al.,
2016). The precise molecular and cellular roles in ciliogenesis of these
proteins remain unknown. This is in large part, it is proposed, because
they lack discernible domain homologues (Adler and Wallingford, 2017).
INTU protein is a scaffolding subunit of the CPLANE complex and, with

the sole exception of a PDZ (PSD-95/discs large/ZO-1) domain, no other
functional  domain  has  been  identified  within  its  942  residues  length
(Chang et al., 2015; Yang et al., 2017; Wang et al., 2018; Toriyama et al.,
2016;  Adler  and  Wallingford,  2017).  To investigate  the  evolutionary
provenance  of  the  INTU  protein  family,  we  embarked  on  a  deep
sequence  analysis  taking  advantage  of  both  protein  sequence
conservation and coevolution-based contact prediction approaches.

2 Results and discussion

2.1 A new Longin domain in INTU
We initiated our analyses with a JackHMMER iterative search (Finn et
al.,  2015) of  the UniRef50 database (The UniProt  Consortium, 2019)
using the human INTU protein sequence as query. This identified full-
length  INTU  homologues  across  the  animal  kingdom.  A full-length
multiple sequence alignment, generated with T-Coffee (Notredame et al.,
2000),  revealed  an  evolutionarily  conserved  region  (INTU_HUMAN
amino acids 305-439) just after its PDZ domain (Fig. 1).

© The Author(s) 2019. Published by Oxford University Press. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the 
original work is properly cited. 
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Fig. 1. A) HerMon family domain architecture. Domains coloured in gold are the Longin domains identified first by Kinch and Grishin in MON1A, CCZ1, 
HPS1, and HPS4 (ovals labelled M1, C1, H11, and H41) (Kinch and Grishin, 2006). The similarity between the N-terminal regions of Ccz1 and Hps4 was 
originally found by Hoffman-Sommer et al. (Hoffman-Sommer et al., 2005) and termed the CHiPS domain, corresponding to Longin domains labelled C1 
and H41. The first and third Longin FUZ domains (F1 and F3; coloured in blue) were previously proposed, without statistical evidence from sequence 
similarities, using the GenTHREADER method of structure prediction (Toriyama et al., 2016; Gray et al., 2009; Lobley et al., 2009). In the second Longin 
domains of HPS1 and HPS4 there are long insertions showing poor evolutionary conservation (H12 and H42; broken ovals). The PDZ domain of INTU 
annotated in the SMART domain database (hexagon coloured in green) (Letunic and Bork; 2018). Newly-identified Longin domains are shown in red (F2, I1, 
I2, I3, M2, M3, C2, C3, H12, H13, H42, and H43). B) MON1A contact maps. Cartoon of the Longin domain structure of C. thermophilum MON1 (PDB: 
5LDD_A; amino acids 222-316) core structure (β-strands are labelled 1 to 5 and coloured in purple, cyan, green, yellow, and red, respectively) generated 
using PyMOL (https://pymol.org/). Anti-parallel β-strand pairs are clearly observable in the contact map calculated from the first Longin domain (M1) of C. 
thermophilum MON1 (PDB: 5LDD_A) (see β-strand pairs 1/2, 1/5, 3/4, and 4/5), whose structure is known (Kiontke et al., 2017), generated using the 
Cocomaps server (input: 5LDD_A versus 5LDD_A, cut-off distance value = 7 Ångstroms) (Vangone et al., 2011). Two similar contact patterns, predicted 
with RaptorX (Wang et al., 2017), are observed in two conserved regions in human MON1A protein (M2 and M3, amino acids 316-415 and 444-544, 
respectively) (Supplementary Fig. S3, S10 and S12). C) HHpred comparison E-values among pairs of HerMon Longin domains. Numbers overlaid onto 
green arrows correspond to HHpred profile-versus-profile comparison Erpt -values (Soding et al., 2005). Erpt is the estimated number of alignments with a 
particular score, or higher, in a reduced search space of 18 Longin domain profiles (those shown in panel A) (Soding et al., 2005) and indicates the 
significance of profile-profile alignment scores conditional to these proteins harbouring at least one Longin domain. Numbers overlaid on red arrows 
correspond to HHpred profile-versus-profile comparison Erpt -values of 6 profiles that each represent each of the three Longin domains in FUZ, MON1A and 
HPS1, or in INTU, CCZ1 and HPS4 (indicated within circles with dotted lines). Multiple sequence alignments, on which these profiles are based, are 
provided in Supplementary Figures 1, 2, 9, 10, 11, and 12. Arrows indicate the profile search direction. Only E-values < 0.005 are shown.
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HHpred  searches  against  the  PDB70  profile  database  (Söding et  al.
2005) using this conserved region as input detected significant sequence
similarity  with  the  Longin  domain  from  Chaetomium  thermophilum
CCZ1 (Kiontke et al., 2017) with an E-value of 0.01 (Probability: 95.4).
Moreover,  in  support  of  this  top  match,  the  next  most  statistically
significant  similarities  were  with  additional  members  of  the  Longin
superfamily.  Furthermore,  the  predicted  secondary  structure  (Jones,
2017) of this INTU conserved region was consistent with known Longin
domain structures (Supplementary Fig. S1).
Longin domains were described initially as evolutionarily conserved N-
terminal regions of VAMP7 (Vesicle-associated membrane protein 7) and
Ykt6  protein  families  (Filippini  et  al.,  2001).  Structural  analysis
subsequently identified similarities between two AP2 (adaptor protein 2)
complex subunits (AP2A2 (subunit alpha-2) and AP2M1 (subunit mu))
and  Sec22b  protein  and  Ykt6  Longin  domain  (Collins  et  al.,  2002).
Longin domains have since been found widely across eukaryotes (Pfam
family  Longin,  accession:  PF13774;  InterPro,  accession:  IPR011012)
(Punta et al., 2012; Mitchell et al., 2019) and have often been implicated
in  aspects  of  membrane  dynamics  regulation  (Daste  et  al.,  2015).  In
structural  terms,  the  Longin  core,  and  its  related  roadblock  fold,  are
composed of an α/β fold containing two α-helices organised around a
central  β-sheet  of  five  anti-parallel  β-strands  (Fig.  1)  (Kiontke et  al.,
2017; Levine et al., 2013; Kinch and Grishin, 2006).
These  similarities  in  primary  sequence  and  secondary  structure
correspondence indicate that INTU is a previously undescribed member
of  the  Longin  domain-containing  protein  family.  We were  struck  by
INTU's interacting partner FUZ also containing a proposed N-terminal
Longin  domain  (Toriyama et  al.,  2016)  because  Longin  domains
commonly heterodimerise with other Longin domains (Kiontke et  al.,
2017; Levine et al., 2013; Kinch and Grishin, 2006).
Consequently,  we  decided  to  further  analyze  this  putative  N-terminal
Longin  domain  in  FUZ  (amino  acids  10-141)  and  found  it  to  have
statistically significant sequence similarity to the Longin domain of  C.
thermophilum MON1 (HHpred  E-value  =  1.7x10-8;  Probability:  98.6)
(Kiontke et al., 2017) (Supplementary Fig. S2). This pair of N-terminal
INTU/FUZ Longin domains were thus strikingly each found, by HHpred
searches,  to  be  homologues  of  the  pair  of  Longin  domains  that
heterodimerise in CCZ1 and MON1, respectively.
Our analysis thus indicates that INTU/FUZ is a third and unanticipated,
heterodimer of the HerMon family that was previously represented by
only  MC1  (MON1/CCZ1  heterodimer)  and  BLOC3  (Biogenesis  of
lysosome-related organelles complex 3) complexes (the latter composed
of the HPS1/HPS4 heterodimer) (Supplementary Figs S1 and S2) (Barr,
2014; Kinch and Grishin, 2006; Kiontke et al., 2017; Gerondopoulos et
al.,2012; Carmona-Rivera et al., 2013; Nazarian et al., 2003; Chiang et
al., 2003).

2.2 Tandemly repeated Longin domains in the HerMon 
family

To  date,  there  is  structural  and/or  statistically  significant  sequence
similarity evidence for only a single N-terminal Longin domain within
MON1,  CCZ1,  HPS1  and  HPS4  proteins  (M1,  C1,  H11,  and  H41;
indicated in  gold in  Fig. 1) (Kinch and Grishin, 2006; Kiontke et al.,
2017). To identify putative domains in the unassigned C-terminal regions
of  these  four  proteins  and  the  INTU/FUZ  heterodimer,  we  took
advantage  of  two  distinct  types  of  evolutionary  information,  namely
protein  sequence  conservation  and  coevolution-based  contact
predictions.
Residue  pairs  in  close  contact  in  protein  3D structures  often show a
correlated mutational signature. This is due to a missense mutation in
one  residue  often  being  compensated  by  a  missense  mutation  in  its
paired residue,  so as  to  preserve  protein  stability,  folding or  function
(Rollins et al., 2019; Schmiedel and Lehner, 2019). Coevolution-based
contact  predictions  methods  are  able  to  identify  such  mutationally
coupled residues across deep multiple sequence alignments (Wang et al.,
2017).
Coevolution-based  contact  predictions  using  RaptorX  (Wang et  al.,
2017) revealed a repeated contact pattern, observed three-times in each
of  MON1, CCZ1,  INTU, and FUZ HerMon family members (Fig. 1;
Supplementary  Figs  S3,  S4,  S5,  and  S6).  This  common  pattern  then

allowed us to define the boundaries delimiting three repeated regions. In
MON1  and  CCZ1  the  first  of  these  regions  correspond  to  their
structurally  determined  Longin  domains  (Kiontke et  al.,  2017).  In
particular, their longer β-strands 1 and 5, buried within the structural core
of the Longin fold, contribute a strong feature of the triplicated contact
pattern (Fig. 1B; Supplementary Figs S3, S4). 
This  repeated  contact  pattern  was  not  evident  for  HPS1  and  HPS4
(Supplementary Figs S7 and S8),  likely owing to the limited phyletic
range,  and  thus  sequence  divergence,  within  these  families.  Even the
previously  identified  N-terminal  Longin  domains  in  HPS1 and  HPS4
(Kinch and Grishin, 2006), and confirmed by us (Supplementary Figs S1
and  S2),  are  not  apparent  from  these  contact  prediction  maps
(Supplementary Figs S7 and S8). Similarities between HPS1 or HPS4,
and  MON1  or  CCZ1,  respectively,  were  observed  from  detailed
sequence analysis (Fig. 1; Supplementary Figs S9, S10, S11, and S12). 
These findings, based on sequence conservation and coevolution-based
contact predictions, led us to a hypothesis that each of these triplicated
regions  contains  a  Longin  domain,  and  motivated  us  to  generate  18
multiple protein sequence alignments and profiles, three for each of the
six  HerMon family  proteins:  MON1, CCZ1,  INTU, FUZ, HPS1,  and
HPS4 (Supplementary Figs S1, S2, S9, S10, S11, and S12).
Subsequent pairwise comparison of sequence conservation among these
profiles  using  HHpred  (Söding et  al. 2005)  yielded  statistically
significant  sequence  similarities  among  these  repeated  regions  (E
<5.0x10-3;  Fig. 1; Supplementary Figs S1, S2, S9, S10, S11, and S12)
that are indicative of homology.
Consistent with homology, 3D models generated using RaptorX (Wang
et al., 2017) for the second and third MON1 repeats are each consistent
with a Longin fold. The highest ranked RaptorX models for the second
and third repeats were significantly similar to Longin structures (DALI
scores  of  Z  =  6.0  and  7.7,  respectively,  exceeding  the  Z-score  =  2
threshold for statistical significance) (Holm and Laakso, 2016).
The common triplicated Longin domain architecture of HerMon proteins
(Fig. 1) indicates that these 6 proteins diverged from a common ancestral
protein pair (MON1/CCZ1 heterodimer), whose evolutionary precursor
was a single homodimer containing three consecutively repeated Longin
domains.

2.3 Functional conservation in HerMon complexes
Homology among the three pairs of HerMon proteins is likely to reflect
their similar functional mechanisms. MC1 and BLOC3 complexes are
signal transducers in Rab cascades both as effectors of an active Rab
(GTP-bound state) (Rab5 for MC1 and Rab9 for BLOC3) and as GEFs
of an inactive Rab (GDP-bound state) (Rab7 for MC1 and Rab32/Rab37
for  BLOC3)  that,  consequently,  guide  the  directionality  of  vesicular
traffic  to  lysosome  and  lysosome-related  organelles  (Pfeffer,  2013;
Pfeffer, 2017; Nordmann et al., 2010; Kiontke et al., 2017; Hegedus et
al. 2016; Kinchen and Ravichandran, 2010; Gerondopoulos et al., 2012;
Kloer et  al.,  2010;  Mahanty et  al.,  2016).  This  suggests  that  the
INTU/FUZ  heterodimer  also  orchestrates  a  Rab  signaling  cascade  in
ciliogenesis, involving RAB8 and RSG1, two Rab proteins known to be
components of the CPLANE complex (Zilber et al., 2013; Agbu et al.,
2018; Toriyama et al., 2016).

3 Conclusion
In summary, we have identified the INTU/FUZ heterodimer as the third
pair  of  HerMon heterodimeric  complexes  and  discovered  that  all  six
HerMon  proteins  harbor  three  Longin  domains.  Our  identification  of
each HerMon complex as a hexa-Longin domain scaffold should aid in
the design of further experiments that investigate their contributions to
diverse transport-related processes and inter-Rab signaling pathways.
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