

Edinburgh Research Explorer

Performance Aware Convolutional Neural Network Channel
Pruning for Embedded GPUs
Citation for published version:
Radu, V, Kaszyk, J, Wen, Y, Turner, J, Cano, J, Crowley, E, Franke, B, Storkey, A & O'Boyle, M 2020,
Performance Aware Convolutional Neural Network Channel Pruning for Embedded GPUs. in 2019 IEEE
International Symposium on Workload Characterization (IISWC). Institute of Electrical and Electronics
Engineers (IEEE), pp. 24-34, 2019 IEEE International Symposium on Workload Characterization, Orlando,
United States, 3/11/19. https://doi.org/10.1109/IISWC47752.2019.9042000

Digital Object Identifier (DOI):
10.1109/IISWC47752.2019.9042000

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 IEEE International Symposium on Workload Characterization (IISWC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322483654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/IISWC47752.2019.9042000
https://doi.org/10.1109/IISWC47752.2019.9042000
https://www.research.ed.ac.uk/portal/en/publications/performance-aware-convolutional-neural-network-channel-pruning-for-embedded-gpus(88187848-3190-4680-bd6b-a2c7c4a1eb58).html

Performance Aware Convolutional Neural Network
Channel Pruning for Embedded GPUs

Valentin Radu∗, Kuba Kaszyk∗, Yuan Wen†, Jack Turner∗, José Cano‡, Elliot J. Crowley∗,
Björn Franke∗, Amos Storkey∗, Michael O’Boyle∗

∗University of Edinburgh, UK †Trinity College Dublin, Ireland ‡University of Glasgow, UK

Abstract—Convolutional Neural Networks (CNN) are becom-
ing a common presence in many applications and services, due
to their superior recognition accuracy. They are increasingly
being used on mobile devices, many times just by porting
large models designed for server space, although several model
compression techniques have been considered. One model com-
pression technique intended to reduce computations is channel
pruning. Mobile and embedded systems now have GPUs which
are ideal for the parallel computations of neural networks
and for their lower energy cost per operation. Specialized
libraries perform these neural network computations through
highly optimized routines. As we find in our experiments, these
libraries are optimized for the most common network shapes,
making uninstructed channel pruning inefficient. We evaluate
higher level libraries, which analyze the input characteristics
of a convolutional layer, based on which they produce optimized
OpenCL (Arm Compute Library and TVM) and CUDA (cuDNN)
code. However, in reality, these characteristics and subsequent
choices intended for optimization can have the opposite effect. We
show that a reduction in the number of convolutional channels,
pruning 12% of the initial size, is in some cases detrimental to
performance, leading to 2× slowdown. On the other hand, we also
find examples where performance-aware pruning achieves the
intended results, with performance speedups of 3× with cuDNN
and above 10× with Arm Compute Library and TVM. Our
findings expose the need for hardware-instructed neural network
pruning.

Index Terms—convolutional neural networks, channel pruning,
embedded GPU

I. INTRODUCTION

Due to their superior recognition accuracy, Convolutional
Neural Networks (CNN) are dominant in several disciplines:
computer vision (for image classification [1]–[3], image seg-
mentation [4], [5], objects in image detection [6], [7], image
style transfer [8], etc.), speech recognition [9] and natural
language processing [10], [11].

These solutions are making their way into smaller devices,
on mobile phones and home personal assistant devices. How-
ever, current CNN models are still too large for immediate de-
ployment on resource-constrained devices. Pruning is a widely
accepted practice to make these large models suitable to run
on such small devices. It is well understood in the machine
learning community that neural networks can produce good
inferences even after pruning a substantial amount of their
internal parameters (weights) [12]–[14]. In Channel Pruning,
entire channels (or filters) are assessed for their importance
to determine if these may be removed [15] to produce a
slimmer network from the original one, with minimal drop

in inference accuracy. Unlike other pruning methods, this
produces a compact dense network suitable for the already
optimized dense convolutional routines [16].

Currently, only accuracy is considered in the iterative loop
of channel pruning, removing channels and retraining to
compensate for loss. This process is agnostic to target devices,
expecting that having a smaller number of network parameters
will lead to faster inference at deployment. Contrary to this
expectation, we find that uninstructed channel pruning can hurt
performance dramatically, up to 2× slowdown in some cases
when pruning just 12% of layer channels. We develop the
case that inference time on the target device should also be
considered when producing smaller networks through channel
pruning.

The parallel nature of computations required by neural net-
works exposes GPUs as the compute unit of choice, including
on mobile and embedded systems for superior FLOPS per
watt performance. Dominant in this space are Arm Mali GPUs
and Nvidia embedded Jetson GPUs, each programmed via
different computing libraries (OpenCL and CUDA). These
are called by higher level libraries, such as Arm Compute
Library (ACL) and cuDNN. However, not much is known
about the performance of these libraries on custom deep
learning workloads.

Here we expose the characteristics of higher level libraries
used for deep neural network computations on embedded
GPUs, showing their unintuitive behavior in response to
changes to convolutional layer size. We experiment with three
deep learning libraries, Arm Compute Library and TVM for
Mali GPUs and cuDNN for Jetson embedded GPUs, on four
different devices, observing unintuitive performance patterns
caused by their internal heuristics. Intrigued by these obser-
vations, we take an in-depth perspective by highlighting these
patterns on a Mali GPU simulator where we find that bad
splits of convolutional workload into multiple kernels adds
substantial overhead, hurting performance.

Our findings are relevant in both the systems and machine
learning communities. First, it is important to understand the
impact of pruning on inference time, not just classification
accuracy, and to identify how the number of channels can be
calibrated to improve on both metrics simultaneously. Second,
designing new neural network architectures for specific de-
vices should consider the best sizes of convolutional layers for
each library and hardware, thus building specialized networks
for each runtime environment. And third, library heuristics

for workload optimization should be revisited to capture the
increasing variation of neural networks and computing devices.

In this paper we make the following contributions:
• We expose the behavior of three popular deep learning

libraries on varying convolutional layer sizes across four
different devices.

• These run-time performances are analyzed in-depth
through a GPU simulator to understand the built-in
heuristics for optimizations and how this performs un-
justified splits of workload hurting performance.

• On the observed staircase-like performance pattern, we
propose the selection of optimal convolutional size in an
iterative loop with hardware profiling and test accuracy
of the compressed model.

The remainder of this paper is organized as follows. Sec-
tion II offers background into convolutional neural networks
and channel pruning, and motives our work on these. Sec-
tion III provides the experimental setup. Section IV presents
our ample experiments, followed by a discussion on observa-
tions from these in Section V. Finally, we present related work
in Section VI and conclude in Section VII.

II. BACKGROUND AND MOTIVATION

A. Background

1) Convolutional Neural Networks: Convolutional Neural
Networks have been adopted for most computer vision tasks.
These are composed of stacked convolutional layers with
multiple filters (or channels) which are convolved over an
input image to produce a multi-channel output (each filter
producing an output channel). Besides convolutional layers,
CNNs can encompass other layer types to produce different
affine transformations on their input tensor (such as Dropout,
activation layers – ReLU, Tanh, etc.). Although important,
these affine transformations account for very little in the total
inference time of modern neural networks, with most of the
computational load being executed in the convolutional layer.
The recent ImageNet winner, SENet [17] is predominantly
formed of convolutional layers, these accounting for 99.991%
of total floating point operations. For this reason convolutional
layers have received much attention, with different optimiza-
tions being proposed in deep learning libraries to accelerate
their execution.

Several routines exist to perform the convolution operation,
although two are dominant across the majority of libraries:

• Direct convolution – this method shifts each filter (chan-
nel) one position at a time over an input image with a
deep nested loop. This requires the least amount of extra
memory, which makes it ideal for devices with limited
physical memory, although it is also very slow in terms
of computation time.

• General Matrix Multiplication (GEMM) – this method
performs the convolution by unrolling each image patch
to convolve over into a column of a larger matrix of
unrolled patches, while filters (channels) are unrolled into
rows to form a second large matrix, in a process known as

image2col [18]. The entire convolutional operation over
the input image is performed by a single operation of
matrix to matrix multiplication on the two large matrices
resulting from the unrolling process mentioned earlier.
This is a very popular approach due to the readily
available, highly optimised matrix multiplication libraries
(Blas, CUDA), which make it fast in practice.

2) Channel Pruning: Current large CNNs require some
alteration to make them suitable for deployment on smaller
devices, which often comes in the form of pruning. Weight
pruning, through which some weights based on a signal
are reduced to zero [13], is one approach that works well
with accelerators of sparse algebraic operations, although the
speedup these can offer on general purpose devices has been
questioned [16]. Another approach for network size reduction
is channel pruning, in which entire channels are eliminated if
their impact is minimal [15], resulting in better performance
than other compression techniques [16], and can be modeled
with both accuracy and inference time constraints [19].

B. Channel Pruning on Different GPUs

As a machine learning technique, CNN pruning is generally
performed away from the runtime environment, with the pri-
mary metric for the task being inference accuracy. Retraining
the model during the pruning process requires substantially
more computing resources so this is generally performed on
other machines than the final inference device.

In this work we perform channel pruning without consider-
ing the accuracy impact, but our channel pruning approach
has the same effect on inference time as when done with
accuracy conditions. Assuming the c-th convolutional layer
of a neural network has n filters (channels) ki, i ∈ [1, n]
(before pruning). To prune channel p, with 1 ≤ p ≤ n, the
new convolutional layer will have a number of n−1 channels
and each channel ki, i ∈ [p + 1, n] will be re-indexed to
i = i − 1. For example, in a convolutional layer with 128
channels, pruning the 25-th channel will produce a compact
layer with channel 26 becoming channel 25, and so on for the
following channels re-indexing to i−1, thus producing a new
convolutional layer with channels indexed continuously from
1 to 127. This process is repeated for each pruned channel.
As can be observed, by this process the same computation
time will be produced no matter which channel is picked
for pruning, so we eliminate channels sequentially for our
inference time analysis.

By observing the execution time of different pruning levels
of a ResNet-50 convolutional layer (presented in Figure 2) on
a Jetson TX2, a staircase shape pattern emerges. There are
stepped changes in inference time by varying the number of
channels, due to filling the workgroup sizes on the device.
These gaps can lead to a substantial penalty in execution
time between layer configurations with similar numbers of
channels. Ideally, one should aim to choose the number of
channels of a convolutional layer such that it falls to the
right side of a performance step (more channels for the same
execution time budget), as we explored in another work based

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=7

Prune=15

Prune=31

Prune=63

1.2x 1.0x 0.9x 0.9x 1.2x 0.9x 1.0x 1.0x 0.9x 0.9x 1.0x 1.0x 1.0x 1.0x 1.0x 0.8x 1.1x 1.2x 0.8x 0.9x 1.1x 0.8x 1.1x

1.4x 1.7x 1.0x 1.0x 1.2x 1.5x 1.3x 1.1x 1.1x 1.1x 1.3x 1.2x 1.2x 1.3x 1.1x 1.1x 1.1x 1.3x 1.0x 1.0x 1.2x 1.1x 1.1x

1.6x 1.7x 1.0x 1.1x 1.7x 1.5x 1.3x 1.2x 1.1x 1.1x 1.3x 1.2x 1.2x 1.3x 1.2x 1.1x 1.1x 1.5x 1.4x 1.1x 1.3x 1.3x 1.4x

1.6x 1.7x 1.2x 1.1x 1.9x 1.5x 1.3x 1.2x 1.1x 1.1x 1.3x 1.4x 1.2x 1.3x 1.2x 1.2x 1.1x 1.5x 1.4x 1.1x 1.3x 1.3x 1.4x

1.6x 1.7x 1.2x 1.1x 1.9x 1.5x 1.3x 1.2x 1.1x 1.1x 1.3x 1.4x 1.2x 1.3x 1.2x 1.3x 1.1x 1.5x 1.5x 1.1x 1.3x 1.3x 1.4x

1.0

1.2

1.4

1.6

1.8 M
axim

um
 slow

dow
n [x tim

es]

Fig. 1. Potential slowdown in execution time of pruned network layers compared to original large model when pruning a number of channels (Prune) from
the initial number of channels for each convolutional layer of ResNet-50. Performance observed when running on a mobile GPU (Mali G72).

0 200 400 600 800 1000
Number of channels

1

2

3

4

5

6

7

8

In
f t

im
e

(m
s)

Fig. 2. Staircase correlation between inference time and number of parameters
(channels) in a ResNet-50 layer on the Jetson TX2, showing a more intuitive
performance pattern.

20 40 60 80 100 120
Number of channels

5

10

15

20

25

30

In
f t

im
e

(m
s)

Fig. 3. Inference time of a convolutional layer of ResNet-50 run with the
Arm Compute Library with varying amount of channel pruning.

on inference accuracy [19]. A larger number of channels
holds more parameters in a neural network, usually leading
to higher accuracy in the prediction task, as also reflected by
the current trend in machine learning to design increasingly
larger networks for better accuracy.

However, these well-shaped patterns are not representa-
tive for all mobile and embedded GPUs. For instance, the
execution of pruned layers of ResNet-50 on a Mali G72
GPU implemented with the Arm Compute Library (Figure 3)
shows a pattern with two parallel staircases. This can have
severe consequences depending on which performance step
the pruned layer falls on. In fact, pruning risks introducing
slowdown in execution time, with pruned networks potentially
running slower than the original unpruned larger network, if

libraries and hardware performance are not considered in the
pruning process. This situation is presented in Figure 1 for
running an implementation of pruning with the Arm Compute
Library using the GEMM method on the HiKey 970. Pruning
at a distance of only 64 channels can match a performance
step that introduces up to 2× slowdown in execution time
compared to the initial layer (unpruned). Intuitively, some
performance steps will offer speedups, but having some levels
of pruning that can lead to slowdowns is hazardous and
contrary to our expectation that using pruning (fewer network
parameters and operations) will produce an universally faster
network for any device and with any deep learning libraries.

This unintuitive behavior of deep learning computing li-
braries, each driven by their own internal optimisations is
what motivates this exploration. In the following sections
we expose the optimal number of channels for a few deep
neural networks, with a range of deep learning libraries and
on various devices, expressing the speed-ups achievable by
performance aware pruning.

III. EXPERIMENTAL SETUP

A. Neural Network Libraries

We explore the most common libraries used in programming
embedded GPUs for neural network workloads, focusing on
two libraries that generate OpenCL code (Arm Compute
Library and TVM) to run on Mali GPUs and a CUDA library
(cuDNN) for Nvidia embedded GPUs.

1) Arm Compute Library (ACL): Is a collection of func-
tions and APIs to program Arm CPUs and Arm Mali GPUs
through OpenCL, applying low-level optimizations for best
performance on Arm mobile and embedded processors. We
used version v19.02 in our experiments.

2) TVM: Also an OpenCL based framework is TVM. This
is an open source deep learning compiler stack performing sev-
eral optimisations at each level in the stack, including compute
graph optimization for operator fusion, layout transformations,
and memory management. We used version 0.6 here.

3) cuDNN: Is an Nvidia proprietary library (v7) containing
efficient implementations of CUDA primitives to run deep
learning workloads. It is used for programming both embedded
GPUs (Jetson) and desktop Nvidia GPUs.

B. Models
To generalize the observation of pruning patterns we select

three popular deep neural networks prevalent in computer
vision for image classification:

• ResNet-50 [20] has 50 layers and consists of residual
blocks. There are 23 convolutional layers with filters of
size 3 × 3 and 1 × 1 (referred to as ResNet.Li, where
i is the layer index), and interleaved with other layers,
such as batch normalization. Although they are indexed,
we do not profile their performance here due to their cost
being insignificant. Convolutional layers have a number
of filters between 64 and 2048 [20].

• VGG-16 [21], is a feed-forward network with 13 con-
volutional layers and 3 fully connected layers. Each
convolution uses 3 × 3 size filters. The convolutional
layers are indexed similarly to ResNet, with 0, 2, 5, 7,
10, 12, 17, 19, 24 unique shapes (where the convolutional
layer shape is repeated in the network, it is considered
only once). These convolutional layer have the following
number of filters: 64, 64, 128, 128, 256, 256, 512, 512,
and 512 respectively.

• AlexNet [1] is the earliest CNN to win the ImageNet
competition by a huge margin over the previous top
machine learning solution. Compared to more recent
CNNs this has only 5 convolutional layers, indexed 0, 3,
6, 8, 10 interleaved by Pooling and Dropout layers. The
unpruned convolutional layers have the following number
of filters: 64, 192, 384, 256, and 256 respectively.

C. Profilers
1) OpenCL: We developed a custom library to intercept

each OpenCL call in order to observe the time when OpenCL
kernels start their execution on the GPU and when this finishes,
for a precise assessment of their runtime. We can also inspect
the name of each kernel and memory footprint to ensure we
measure the correct kernel.

2) CUDA: We measure the time between CUDA events to
determine the execution time for each cuDNN task. These
times were compared and matching those reported by the
official Nvidia nvprof profiler.

D. Devices
We experiment on four different devices: two with Mali

GPUs (HiKey 970 with the Mali G72 architecture, and Odroid
XU4 with the Mali T628 architecture) programmed with
OpenCL through the ACL; and two with the Nvidia Jetson
embedded GPU (TX2 and Nano), all with default OS. The
median time of 10 runs is reported for each configuration.

IV. EXPERIMENTS

This section presents the profiled performance of pruned
CNN layers on embedded GPUs, and an in-depth analysis of
the ACL through a GPU simulator to explain the observed
behavior. We first profile these layers with cuDNN on the Jet-
son platforms, followed by ACL with both Direct Convolution
and GEMM method on devices and in the GPU simulator, and
finally using TVM optimized code on Mali GPUs.

20 40 60 80 100 120
Number of channels

3

4

5

6

7

8

9

10

11

In
f t

im
e

(m
s)

1.3x

Fig. 4. Staircase (execution pattern) observed for channel pruning layer 16
of ResNet-50 implemented with CuDNN on Jetson TX2.

0 100 200 300 400 500
Number of channels

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
f t

im
e

(m
s)

1.3x

Fig. 5. Staircase (execution pattern) observed for channel pruning layer 14
of ResNet-50 implemented with CuDNN on Jetson TX2.

A. Convolutional Layer Pruning Staircase

We explore the runtime performance of channel pruning
for all convolutional layers of three popular CNNs (ResNet-
50, VGG-16 and AlexNet) by gradually reducing the number
of channels of each layer, one at a time, and observing the
performance of the new layer on devices. We present the
performance of each deep learning library separately.

1) CuDNN on Mobile GPUs: We profile gradual channel
pruning for each layer of ResNet-50. Figure 4 presents the
pattern in pruning layer 16 of ResNet-50, showing a flat
performance (same inference time) for all the channels above
97, with a drop in inference time for a layer of 96 channels
(and fewer), with a speedup of 1.3×. Another such drop in
inference time is for a layer with 64 channels and below. This
layer has four optimal execution points, to the right of each
stair (most number of channels for an inference time), which
should be considered when pruning to offer the best trade-off
between accuracy and inference time.

A similar behavior is observed for channel pruning on layer
14, also from ResNet-50, this time with more stairs due to
the larger number of channels this layer starts with, but also
with a different drop in inference time between these steps
(Figure 5). This uneven gap in inference time between stairs
should also be considered when assessing the optimal level of
channel pruning.

Figure 7 shows the staircase pattern of channel pruning on
the Jetson Nano, also implemented with the CuDNN library.
The same pattern exists on this device as observed in Figure 5
for the Jetson TX2, due to similar GPU architectures, making

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.0x

1.0x 1.0x

1.0x 1.0x

1.0x 1.0x

1.0x 1.0x

1.7x 1.7x 2.0x 1.0x 1.8x 1.1x 1.1x 1.0x 1.0x 1.1x 1.3x 1.0x 1.0x 1.0x 1.0x 1.0x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.7x 1.7x 2.0x 1.3x 1.8x 3.3x 3.1x 1.0x 1.0x 3.2x 3.3x 1.2x 1.2x 1.0x 1.0x 1.2x 1.6x 1.2x 1.2x 1.0x 1.0x 1.0x 1.2x

1.0

1.5

2.0

2.5

3.0

Speedup [x tim
es]

Fig. 6. Speedups observed when pruning at different distances within each layer of ResNet-50 using the CuDNN implementation running on Jetson TX2.

0 100 200 300 400 500
Number of channels

2

4

6

8

10

12

14

In
f t

im
e

(m
s)

1.3x

Fig. 7. Execution pattern observed for channel pruning layer 14 of ResNet-50
implemented with CuDNN on Jetson Nano.

performance modeling between the two easier. Other patterns
are similar across all layers of ResNet as well as for VGG and
AlexNet.

Different speedups can be achieved by different levels of
pruning on each layer of a neural network, as presented in
Figure 6 for ResNet-50. This shows that some layers start
experiencing speedups at a distance of 64 pruned channels
and further, while for other it takes more pruning (due to
layer input size and filter shape playing a role), and that
speedups and gaps between stairs being uneven across layers.
At a distance of 128 pruned channels, the maximum speedup
for layer 16 is 3.3×. A similar performance can be observed
for the other two networks VGG-16 (Figure 8) and AlexNet
(Figure 9).

2) Arm Compute Library using the Direct Convolution: In
many cases where memory is tightly limited, Direct Convo-
lution is the only option to implement a convolutional layer,
due to GEMM expanding the matrix of input patches, which
requires almost one order of magnitude more memory for a
3×3 filter, as in the ResNet-50 and in other networks. Here
we empirically explore the heuristics adopted in the ACL for
these optimizations.

Figure 12 shows that these heuristics lead to three execution
levels alternating for different channel sizes of ResNet-50 layer
15. Having a linear pattern was expected, since each channel
incrementally adds extra work in the deep nested loop of

VGG.L0

VGG.L2

VGG.L5

VGG.L7

VGG.L10

VGG.L12

VGG.L17

VGG.L19

VGG.L24

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 0.9x 1.1x 1.0x

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.1x 1.0x

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.1x 1.0x

1.1x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.1x 1.0x

1.2x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.1x 1.0x

2.0x 1.9x 1.2x 1.2x 1.0x 1.1x 1.0x 1.1x 1.0x

2.0x 1.9x 2.6x 2.8x 1.5x 1.5x 1.3x 1.3x 1.4x

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Speedup [x tim
es]

Fig. 8. Speedups observed when pruning at different distances within each
layer of VGG-16 using the CuDNN implementation.

AlexNet.L0

AlexNet.L3

AlexNet.L6

AlexNet.L8

AlexNet.L10

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.0x 1.0x 1.0x 1.0x

1.0x 1.0x 1.2x 1.0x 1.0x

1.0x 1.0x 1.2x 1.0x 1.0x

1.0x 1.0x 1.3x 1.0x 1.0x

1.0x 1.1x 1.3x 1.0x 1.0x

1.2x 1.1x 1.3x 1.0x 1.1x

1.2x 1.3x 1.4x 1.1x 1.2x

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Speedup [x tim
es]

Fig. 9. Speedups observed when pruning at different distances within each
layer of AlexNet using the CuDNN implementation.

Direct convolution, however the three execution levels with up
to 1.9× performance difference is unintuitive, and we explore
this further in this section with the GPU simulator.

Pruning by just one channel for most of ResNet-50 layers
shows a sub-unit speedup (or in actual terms a slowdown)
as presented in Figure 10, going as low as 0.2× speedup or
80% drop in performance, which is substantial. This indicates
to us that optimization heuristics in the ACL are tuned for
the standard shape of most popular neural networks, with
even a small drop in the number of channels per layer

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.1x 0.2x 0.7x 0.2x 0.3x 0.2x 0.9x 0.4x 0.5x 0.4x 0.9x 0.4x 1.1x 0.5x 0.5x 0.4x 1.1x 0.4x 0.9x 0.5x 0.4x 0.6x 1.0x

1.1x 1.2x 1.1x 1.4x 1.1x 0.9x 1.1x 0.6x 0.7x 0.6x 1.1x 0.6x 1.2x 0.7x 0.9x 0.7x 1.3x 0.7x 1.0x 0.9x 0.6x 1.1x 1.1x

1.1x 1.3x 1.2x 1.5x 1.2x 1.0x 1.1x 1.0x 1.0x 1.0x 1.1x 1.0x 1.2x 1.0x 1.0x 1.0x 1.3x 1.0x 1.1x 1.0x 1.0x 1.1x 1.1x

1.2x 1.6x 1.4x 1.5x 1.7x 1.2x 1.2x 1.0x 1.0x 1.2x 1.2x 1.1x 1.2x 1.0x 1.0x 1.1x 1.4x 1.1x 1.1x 1.0x 1.0x 1.1x 1.3x

1.7x 2.7x 2.2x 1.7x 4.0x 1.5x 1.4x 1.1x 1.1x 1.4x 1.4x 1.2x 1.3x 1.0x 1.0x 1.2x 1.5x 1.2x 1.2x 1.0x 1.0x 1.1x 1.3x

1.7x 5.9x 7.1x 2.0x 9.2x 3.5x 2.5x 1.2x 1.2x 3.0x 2.1x 1.5x 1.5x 1.1x 1.1x 1.4x 1.7x 1.4x 1.3x 1.0x 1.1x 1.2x 1.4x

1.7x 5.9x 7.1x 3.0x 9.2x 16.9x 12.5x 1.5x 1.5x 16.4x 15.4x 2.9x 2.2x 1.2x 1.2x 2.8x 2.5x 2.8x 1.6x 1.1x 1.1x 1.4x 1.7x

2

4

6

8

10

12

14

16

M
axim

um
 speedup [x tim

es]

Fig. 10. Speedups observed when pruning at different distances within each layer of ResNet-50 using the Arm Compute Library Direct convolution
implementation running on HiKey 970.

VGG.L0

VGG.L2

VGG.L5

VGG.L7

VGG.L10

VGG.L12

VGG.L17

VGG.L19

VGG.L24

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 0.9x 0.8x 0.8x 1.0x 1.2x 1.2x 1.2x 1.3x

1.0x 1.1x 1.1x 1.1x 1.2x 1.4x 1.4x 1.4x 1.5x

1.1x 1.1x 1.1x 1.1x 1.2x 1.4x 1.4x 1.4x 1.5x

1.3x 1.3x 1.2x 1.2x 1.2x 1.4x 1.4x 1.5x 1.5x

2.2x 2.0x 1.4x 1.4x 1.3x 1.5x 1.5x 1.5x 1.5x

6.9x 8.1x 2.2x 2.2x 1.5x 1.8x 1.6x 1.6x 1.6x

6.9x 8.1x 13.9x 14.7x 2.2x 2.6x 1.8x 1.9x 1.9x

2

4

6

8

10

12

14

M
axim

um
 speedup [x tim

es]

Fig. 11. Speedups observed when pruning at different distances within
each layer of VGG-16 using the Arm Compute Library Direct convolution
implementation.

0 100 200 300 400 500
Number of channels

0

10

20

30

40

50

60

70

In
f t

im
e

(m
s)

1.9x

Fig. 12. Execution pattern observed for channel pruning of ResNet-50 layer
14 implemented with Arm Compute Library Direct Convolution on HiKey
970 Mali GPU.

leading to bad decisions from the built-in optimizer. A similar
situation is observed for VGG-16 evaluated under the same
conditions with the Direct Convolution of ACL (Figure 11).
Similar patterns were observed when running both on the
HiKey 970 and on the Odroid XU4. Considering that Direct
Convolution is generally slower than all the other methods, it
is understandable that not much development effort has been
invested in optimizing this, although for many small devices
with limited memory space this may be the only method that
can actually execute at all.

3) Arm Compute Library using the GEMM method: A more
popular and faster approach for performing the convolutional
workload is through GEMM which is also available in ACL.
We run the pruned layers with a GEMM implementation,
observing some unintuitive patterns.

Figure 14 presents the execution time pattern for layer 16
of ResNet-50. Although we see similiar steps to those in the
cuDNN implementation (which uses an optimised GEMM
variant), this implementation of ACL presents two parallel
staircases. Also observed from this is that each level is in
groups of 4 which matches the size of vectorization, with
channels 93 to 96 executing in 14 ms, while near channel
sizes 92 and 97 jumping to 23 ms. Another observation is
that between 76 and 78 channels (with only just 2 channels
difference) inference time is improved from 20.12 ms to
10.996 ms, a 1.83× speedup between the two sizes.

An even wider gap in inference time between close number
of channels is observed for layer 45, with 2036 channels
inference is performed in 19.69 ms, while for 2024 channels
this is performed in 7.67 ms, with a speedup of 2.57×, as
presented in Figure 15.

Similarly to previous implementations, GEMM achieves a
speedup of 5× for some layers of ResNet-50 for different
levels of pruning (Figure 13). Relevant to observe here is that
there is no slowdown in the vicinity of the initial number
of channels as observed for the Direct convolution, showing
that heuristics for this optimization are uniformly modeled for
different sizes. This is also observed for the other two networks
VGG-16 (Figure 16) and AlexNet (Figure 17).

4) TVM OpenCL Code Generator: An atypical behavior
pattern is observed with code generated by the TVM library.
This shows a hybrid behavior between the Direct Convolution
implementation of ACL and the GEMM implementation of
ACL. Figure 20 presents the execution time of pruned layer
14 from ResNet-50. While most channel counts are optimised
with the GEMM implementation, there is a significant number
of optimization calls instructed to use direct convolution which
we know is generally slower, independent of the underlying
hardware specifications. These occasional bad decisions are

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.3x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 0.9x 1.0x 1.0x 1.0x 0.9x 1.0x 0.8x 0.9x 1.0x

1.2x 1.5x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 0.9x 1.0x 1.1x

1.2x 1.5x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.3x 1.0x 1.0x 1.2x 1.3x

1.2x 1.5x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.3x 1.0x 1.0x 1.0x 1.3x 1.5x 1.0x 1.2x 1.3x

1.5x 1.5x 2.2x 1.1x 1.9x 1.8x 1.2x 1.0x 1.0x 1.3x 1.2x 1.1x 1.0x 1.0x 1.3x 1.1x 1.1x 1.2x 1.3x 1.7x 1.0x 1.2x 1.3x

2.2x 2.4x 2.5x 1.6x 1.9x 2.6x 1.9x 1.1x 1.2x 2.4x 1.9x 1.3x 1.4x 1.1x 1.3x 1.4x 1.5x 1.4x 1.4x 1.7x 1.1x 1.4x 1.6x

2.2x 2.4x 2.5x 2.2x 1.9x 5.2x 4.1x 1.3x 1.3x 3.5x 3.4x 3.2x 1.9x 1.2x 1.3x 2.7x 2.0x 2.8x 2.0x 1.8x 1.1x 1.6x 2.4x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
axim

um
 speedup [x tim

es]

Fig. 13. Speedups observed when pruning at different distances within each layer of ResNet-50 using the Arm Compute Library GEMM implementation
running on HiKey 970.

20 40 60 80 100 120
Number of channels

5

10

15

20

25

30

In
f t

im
e

(m
s) 76

78

92

93
96

97

Fig. 14. Execution pattern observed for channel pruning of ResNet-50 layer
16 implemented with Arm Compute Library GEMM on HiKey 970 Mali
GPU.

0 250 500 750 1000 1250 1500 1750 2000
Number of channels

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
f t

im
e

(m
s)

2.6x

Fig. 15. Large gap in inference time between small variations in the number
of channels using the GEMM implementation with Arm Compute Library on
layer 45 of ResNet-50.

also observed on the other Mali platforms (Odroid XU4),
leading to dramatic drops in performance, up to 13× as
observed from Figure 19 for some layers. This may also be
due to the version of the library, with dynamic developments
happening in this space.

B. Channel Pruning Observed Through GPU Simulation

Through the use of higher level libraries, like the ACL,
we lose observability that we would normally have when
working directly with OpenCL. To understand all the calls and
kernel management performed by the Arm Compute Library

VGG.L0

VGG.L2

VGG.L5

VGG.L7

VGG.L10

VGG.L12

VGG.L17

VGG.L19

VGG.L24

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.4x 2.2x 1.2x 1.2x 1.1x 1.1x 1.0x 1.0x 1.2x

1.5x 2.5x 2.0x 1.8x 1.3x 1.5x 1.1x 1.1x 1.3x

1.5x 2.5x 4.2x 3.1x 2.3x 2.8x 1.5x 1.4x 1.9x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
axim

um
 speedup [x tim

es]

Fig. 16. Speedups observed when pruning at different distances within each
layer of VGG-16 using the Arm Compute Library GEMM implementation.

AlexNet.L0

AlexNet.L3

AlexNet.L6

AlexNet.L8

AlexNet.L10

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.0x 1.0x 1.0x 1.0x

1.2x 1.0x 1.0x 1.0x 1.0x

1.2x 1.1x 1.0x 1.1x 1.1x

1.2x 1.1x 1.0x 1.1x 1.1x

1.6x 1.1x 1.1x 1.2x 1.2x

2.2x 1.5x 1.2x 1.4x 1.3x

2.2x 2.5x 1.3x 1.8x 1.8x

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
axim

um
 speedup [x tim

es]

Fig. 17. Speedups observed when pruning at different distances within each
layer of AlexNet using the Arm Compute Library GEMM implementation.

for different sizes of a convolutional layer, as well as lower-
level details about the execution in hardware, we executed the
workloads in a Full-System Mali GPU simulator [22].

As observed in previous experiments, there are unexplained
performance differences when we vary the number of chan-
nels. In this section, we present our analysis of simulation
results for GEMM and Direct Convolution implementations
using the Mali GPU Simulator, and relate these directly to
runtimes on the Hikey-970.

TABLE I
ARM COMPUTE LIBRARY EXECUTION FOR LAYER 16 OF RESNET-50

WITH 92 OUTPUT CHANNELS.

Kernel Name No Arithm. Instr. No Mem. Instr.
im2col3x3 nhwc 1,365,198 212,152
reshape to columns 44,183,104 3,615,808
gemm mm 706,713,280 36,267,840
gemm mm 106,006,992 5,440,176

TABLE II
ARM COMPUTE LIBRARY EXECUTION FOR LAYER 16 OF RESNET-50

WITH 93 OUTPUT CHANNELS.

Kernel Name No Arithm. Instr. No Mem. Instr.
im2col3x3 nhwc 1,379,034 214,458
reshape to columns 44,183,104 3,615,808
gemm mm 848,055,936 43,521,408

1) Simulating the GEMM Method: The GEMM method
is performed with the 32-bit Arm Compute Library Bifrost
implementation. In hardware (Figure 15), we observe that
inference time dramatically drops when using 93 channels vs.
92 channels, and back up between layer configurations with
96 and with 97 channels. Using our OpenCL profiling tool, we
can see that all dispatched kernels are the same between the
two versions. Upon further inspection with our GPU simulator
we can see that when using 93 channels, the number of
jobs dispatched to the GPU is the same as the number of
OpenCL calls made (OpenCL calls were observed with a
profiling tool). However, when using 92 channels, additional
jobs are dispatched to the GPU, meaning that the OpenCL
runtime makes the decision to split the work. In Figure 18
we show the differences in number of jobs executed, as well
as additional system-level results. Additional job creation and
dispatch requires further communication between the CPU and
GPU, and adds to the initialization cost on the GPU. This
overhead often outweighs the benefits of dispatching work-
loads to accelerators. The difference in executed instructions
is shown in Tables I and II for 92 and 93 channels and similarly
for configurations with 96 and 97 channels in Tables III and
IV. While the im2col and reshape to columns kernels remain
relatively steady while we vary the number of channels, the
number of instructions in the gemm mm kernel increases by
4.35%. The bulk of the computation for the gemm mm kernel
however, is done in the first kernel, while the second kernel
is responsible for only 13% of the computation, showing the
scope for improvement.

2) Simulating the Direct Convolution Method: In the direct
convolution implementation, we no longer see differences in
the number of jobs dispatched, however we still see differences
in performance. OpenCL work group size selection is critical
to performance, as it heavily impacts scheduling and caching
on the GPU. [23] shows that auto-tuning the OpenCL work
group size provides mean speedup of 3.79x over the baseline
configuration. In our experiments, the selection of the work
group size for the dispatched OpenCL programs is left to

TABLE III
ARM COMPUTE LIBRARY EXECUTION FOR LAYER 16 OF RESNET-50

WITH 96 OUTPUT CHANNELS.

Kernel Name No Arithm. Instr. No Mem. Instr.
im2col3x3 nhwc 1,420,542 221,376
reshape to columns 44,183,104 3,615,808
gemm mm 848,055,936 43,521,408

TABLE IV
ARM COMPUTE LIBRARY EXECUTION FOR LAYER 16 OF RESNET-50

WITH 97 OUTPUT CHANNELS.

Kernel Name No Arithm. Instr. No Mem. Instr.
im2col3x3 nhwc 1,434,378 223,682
reshape to columns 44,183,104 3,615,808
gemm mm 848,055,936 43,521,408
gemm mm 35,335,664 1,813,392

TABLE V
ARM COMPUTE LIBRARY DIRECT CONVOLUTION WORK GROUP SIZES

IDENTIFIED USING GPU SIMULATOR VS. RUNTIME MEASURED ON
HIKEY-970.

Number of X Y Z Relative Executed Time
Channels GPU Instructions
90 2 1 8 1.0 167.8716
91 1 1 8 1.011 198.0468
92 4 1 1 1.023 168.8311
93 1 1 8 1.034 202.7299

the Arm Compute Library, and is completely invisible to
the user. Examining channels 90-93, we see a wide range
of reported runtimes, despite the fact that the number of
executed instructions only increases by approximately one
percent with each added channel. However, we observe very
different work-splitting paradigms between successive layer
sizes. As shown in Table V, the slower instances (91,93), use
work group dimensions 1x1x8, while 90 and 92 channels use
2x1x8 and 4x1x1 respectively. Auto-tuning of the workloads
and examining the effects of scheduling and caching have been
left for future work.

Control Register Reads

Control Register Writes

Interrupts
Jobs

0

1

2

92 Channels 93 Channels 96 Channels 97 Channels

Runtime

0

5

10

15

20

Fig. 18. Relative System-Level Results for the GEMM implementation using
96 and 97 channels compared to runtimes on Hikey-970 board.

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

1.9x 0.0x 1.0x 0.0x 1.5x 0.2x 1.2x 0.0x 0.1x 0.1x 0.7x 0.0x 1.2x 0.2x 0.2x 1.1x 1.2x 1.1x 0.4x 0.0x 0.2x 3.1x 0.7x

8.6x 0.2x 1.0x 0.2x 1.5x 1.5x 4.3x 0.0x 0.2x 0.9x 1.0x 0.1x 1.2x 0.2x 0.2x 1.1x 1.2x 1.1x 1.0x 0.2x 3.0x 4.2x 0.9x

8.8x 0.3x 1.2x 0.6x 1.5x 1.5x 5.1x 0.0x 0.2x 0.9x 1.2x 0.8x 1.2x 0.2x 0.2x 1.3x 1.3x 1.3x 1.5x 0.2x 3.0x 4.2x 0.9x

9.8x 0.6x 1.4x 0.8x 1.9x 1.6x 7.8x 0.9x 0.2x 0.9x 1.2x 1.2x 1.2x 0.2x 0.3x 1.3x 1.3x 1.3x 1.5x 0.2x 3.2x 6.5x 1.0x

13.9x 3.8x 1.9x 3.3x 2.9x 2.6x 7.8x 1.1x 0.2x 1.3x 1.5x 1.2x 1.2x 0.3x 0.3x 1.4x 1.3x 1.4x 1.5x 0.2x 3.3x 6.6x 1.0x

2

4

6

8

10

12 M
axim

um
 speedup [x tim

es]

Fig. 19. Speedups observed when pruning at different distances within each layer of ResNet-50 using a TVM library implementation on HiKey 970.

0 100 200 300 400 500
Number of channels

0

100

200

300

400

500

In
f t

im
e

(m
s)

10.5x

Fig. 20. Layer 14 of ResNet-50 implemented with TVM OpenCL. Many
sizes are untuned out of the box, showing a large variation due to uninstructed
heuristics on HiKey 970.

V. DISCUSSION

Our exploration highlights some important limitations in
deep learning libraries, showing that pre-designed heuristics
fail for some arbitrary sizes of neural networks. As seen, prun-
ing a number of channels can introduce slowdown rather than
speedup, thus hurting performance, so these levels of pruning
should be avoided. However, as expected, other pruning levels
will run faster than the initial network configuration, where the
library produces efficient GPU kernels. These optimal config-
urations can be found by profiling the kernel execution. These
observations are relevant for pruning to the right number of
channels and avoiding those levels that instruct optimizations
which hurt performance. Instead by profiling, we can reduce
the search space to the ones with superior speedup to test
for accuracy in the network size-inference accuracy trade-
off. Runtime optimal neural networks can be generated by
coupling profiled performance on device with convolutional
inference accuracy of pruned layers to instruct the best pruning
level. We have initiated work in this direction showing that
both execution time and inference accuracy can be considered
simultaneously for efficient network compression to a target
device [19], although other research directions in library
optimization and hardware design can also be considered.

From this exploration we find that no optimal library
exists to outperform across all neural network layers. Neither

Arm Compute Library, nor TVM dominates even with their
auto-tuning enabled. Future solutions integrating optimizations
from across different deep learning libraries could adapt their
computation based on network and layer configuration to
improve execution wit hardware aware performance.

VI. RELATED WORK

Embedded GPUs are increasingly being considered for
routine processing tasks. VComputeBench [24] is proposed
as a set of benchmarks to help developers understand the
differences in performance and portability of Vulkan, a new
programming model for cross-platform GPGPU computing
notably on mobile and embedded GPUs. The main conclusions
are that performance improvements imply a high programming
effort and performance portability for mobile GPU architec-
tures is not guaranteed. Lee et al. [25] propose an aging-
aware workload management technique for embedded GPUs
in the presence of process variation. The simulation results
show that the proposed technique improves the GPU aging
over 95 percent of cases whereas the state-of-the-art compiler-
based technique improves the GPU aging in 72.25 percent of
cases. In [26] the authors analyze the interference in concurrent
GPU computations for several image processing on NVIDIA
Jetson TK1 and TX1 boards. The results suggest that allowing
multiple kernels to be co-scheduled may have a positive impact
on real-time schedulability. It would be good to observe the
results on newer NVIDIA Jetson models like Tx2 and Xavier.
Dev et al. [27] analyze CPU-GPU processors and characterize
OpenCL workloads during run-time with the target of mapping
them to the appropriate device under time-varying physical
(i.e., chip power limit) and CPU load conditions. The proposed
scheduler provides average improvements of 31% and 4% in
runtime and energy, respectively with respect to the state-
of-the-art. However, the number of benchmarks analyzed in
this work is very limited. In [28] ButterFly is proposed
as a novel system to collaboratively utilize mobile GPUs
in order to process high-quality rendering details for on-
the-go mobile users. Butterfly outperforms the performance
of previous state-of-the-art systems and achieves more than
28.3% power saving. The scalability of the proposed system

is not completely clear, as only up to 3 collaborative workers
are considered. In [29] the authors outline two methods for
fast convolution on embedded GPUs, an iterative vectorized
approach and a Morton GEMM based approach, providing
3x faster inference times than some current state-of-the-art
systems. However, newer libraries like the Arm Compute
Library are not considered in the study.

In [30], the authors profile and analyze the training process
of five popular DNNs (GoogLeNet, AlexNet, Inception-v3,
ResNet and LeNet) using 1, 2, 4 and 8 Volta-based GPUs.
However, there is no discussion in the text about potential
scalability effects beyond 8 GPUs. An extensive performance
analysis and profiling of DNN training is performed in [31],
where eight state-of-the-art DNN models are implemented on
three major deep learning frameworks (TensorFlow, MXNet,
and CNTK). The objective is to evaluate the efficiency of train-
ing for different hardware configurations (single-/multi-GPU
and multi-machine). The scalability study of this work in terms
of GPUs/machines is very limited (up to 4 GPUs/machines).
The DeftNN [32] execution framework was used to profile 6
state-of-the-art DNNs running on an Nvidia Titan X (Pascal)
GPU in order to automatically and transparently improve their
execution performance. It would also be good to observe how
the proposed technique translates to embedded GPUs for the
for inference procedure. Lew et al. [33] modify GPGPU-Sim
in order to study ML workloads and analyze their behavior
(e.g. run applications that use cuDNN and PyTorch). The
simulator provides detailed information about memory usage,
power efficiency, etc. thus identifying opportunities for archi-
tectural optimization. The weak point of this work is that the
number of workloads analyzed is very limited, which makes
it difficult to extrapolate the conclusions. In [34] the authors
characterize the performance of DNN training for AlexNet and
ResNet-50 for a wide-range of CPU and GPU architectures
including the Intel Xeon Phi (Knights Landing) processors and
NVIDIA Pascal GPUs. Given the range of platforms analyzed
(CPUs and GPUs), it would be good to complement the study
analyzing some more networks (currently only 2).

NUMA-Caffe [35] is proposed as a novel NUMA-aware
framework for training CNNs on modern CPU-based multi-
and many-core-based architectures. The authors apply system-
level profiling tools to quantify the bottlenecking effects so
as to explore the potential root cause of Caffe’s scalability
issue on multi-core systems. It would be interesting to observe
how these scalability issues translate to other widely adopted
frameworks like TensorFlow or Pytorch. In [36] the authors
propose Scalpel to customize DNN pruning to the underlying
hardware by matching the pruned network structure to the
data-parallel hardware organization. Callgrind is used for
profiling and determining the parallelism level of the target
hardware platform. A weak point of this work is that most
of the analysis provided is about small network models and
datasets.

VII. CONCLUSIONS

Mobile and embedded GPUs are increasingly being used
for running neural network workloads, through popular higher
level libraries. However, these libraries exhibit behaviors that
are not well understood, springing from their built-in heuristics
for workload optimization. We show that channel pruning (a
popular neural network compression technique to make models
available on small devices) can lead to major slowdowns, up
to 2×, when performed without considering the library and
device performance. We expose the behavior of three popular
deep learning libraries for embedded GPUs, Arm Compute Li-
brary, CuDNN and TVM, showing that a supervised selection
of the number of channels (filters) can lead to speedups of
3× using CuDNN, and more than 10× using Arm Compute
Library and TVM. We believe these observations offer a
direction for library developers to optimize the performance
of their libraries for any shape of convolutional layers and for
machine learning specialists to design neural networks that
exploit the sweet-spots of library-hardware performance.

ACKNOWLEDGMENT

This project has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No. 732204 (Bonseyes). This work is supported by
the Swiss State Secretariat for Education, Research and Inno-
vation (SERI) under contract number 16.0159. The opinions
expressed and arguments employed herein do not necessarily
reflect the official views of these funding bodies.

REFERENCES

[1] Sergey Ioffe and Christian Szegedy. Imagenet classification with deep
convolutional neural networks. In International Conference on Machine
Learning, pages 448–456, 2015.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[3] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2261–2269,
July 2017.

[4] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3431–3440, June 2015.

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. In Nassir
Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi,
editors, Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2015, pages 234–241, Cham, 2015. Springer International
Publishing.

[6] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6):1137–1149, June 2017.

[7] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. Deep
residual learning for image recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[8] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using
convolutional neural networks. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2414–2423, June 2016.

[9] Ying Zhang, Mohammad Pezeshki, Philemon Brakel, Saizheng Zhang,
César Laurent, Yoshua Bengio, and Aaron C. Courville. Towards end-
to-end speech recognition with deep convolutional neural networks. In
INTERSPEECH, 2016.

[10] Yoon Kim. Convolutional neural networks for sentence classification. In
The Conference on Empirical Methods in Natural Language Processing,
2014.

[11] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolu-
tional neural network for modelling sentences. In In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics,
2014.

[12] Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases for minimal
network construction with back-propagation. In D. S. Touretzky, editor,
Advances in Neural Information Processing Systems 1, pages 177–185.
Morgan-Kaufmann, 1989.

[13] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[14] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
Neural Information Processing Systems, pages 1135–1143, 2015.

[15] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerat-
ing very deep neural networks. In International Conference on Computer
Vision (ICCV), volume 2, page 6, 2017.

[16] Jack Turner, José Cano, Valentin Radu, Elliot J Crowley, Michael
OBoyle, and Amos Storkey. Characterising across-stack optimisations
for deep convolutional neural networks. In Proc IISWC. IEEE, 2018.

[17] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7132–7141, 2018.

[18] Yangqing Jia. Learning semantic image representations at a large scale.
PhD thesis, UC Berkeley, 2014.

[19] Jack Turner, Elliot J Crowley, Valentin Radu, José Cano, Amos Storkey,
and Michael O’Boyle. Distilling with performance enhanced students.
CoRR, 2018.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In International Conference
on Learning Representations, 2015.

[22] Kuba Kaszyk, Harry Wagstaff, Tom Spink, Björn Franke, Mike O’Boyle,
Bruno Bodin, and Henrik Uhrenholt. Full-system simulation of mobile
cpu/gpu platforms. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pages 68–78. IEEE,
2019.

[23] Chris Cummins Pavlos Petoumenos, Michel Steuwer, and Hugh Leather.
Autotuning opencl workgroup size for stencil patterns.

[24] N. Mammeri and B. Juurlink. Vcomputebench: A vulkan benchmark
suite for gpgpu on mobile and embedded gpus. In 2018 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pages 25–35,
Sep. 2018.

[25] H. Lee, M. Shafique, and M. A. Al Faruque. Aging-aware workload

management on embedded gpu under process variation. IEEE Transac-
tions on Computers, 67(7):920–933, July 2018.

[26] Nathan Otterness, Vance Miller, Ming Yang, James H. Anderson,
Frank Donelson Smith, and Shige Wang. Gpu sharing for image
processing in embedded real-time systems. In 12thAnnual Workshop
onOperating Systems Platforms forEmbedded Real-Time Applications,
2016.

[27] K. Dev, X. Zhan, and S. Reda. Power-aware characterization and map-
ping of workloads on cpu-gpu processors. In 2016 IEEE International
Symposium on Workload Characterization (IISWC), pages 1–2, Sep.
2016.

[28] C. Wu, B. Yang, W. Zhu, and Y. Zhang. Toward high mobile gpu per-
formance through collaborative workload offloading. IEEE Transactions
on Parallel and Distributed Systems, 29(2):435–449, Feb 2018.

[29] Simon Rovder, José Cano, and Michael O’Boyle. Optimising Con-
volutional Neural Networks Inference on Low-Powered GPUs. In
12th International Workshop on Programmability and Architectures for
Heterogeneous Multicores (MULTIPROG), January 2019.

[30] Saiful A. Mojumder, Marcia S. Louis, Yifan Sun, Amir Kavyan Ziabari,
José L. Abellán, John Kim, David R. Kaeli, and Ajay Jayant Joshi.
Profiling dnn workloads on a volta-based dgx-1 system. 2018 IEEE
International Symposium on Workload Characterization (IISWC), pages
122–133, 2018.

[31] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee,
B. Schroeder, and G. Pekhimenko. Benchmarking and analyzing deep
neural network training. In 2018 IEEE International Symposium on
Workload Characterization (IISWC), pages 88–100, Sep. 2018.

[32] P. Hill, A. Jain, M. Hill, B. Zamirai, C. Hsu, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars. Deftnn: Addressing bottlenecks for
dnn execution on gpus via synapse vector elimination and near-compute
data fission. In 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 786–799, Oct 2017.

[33] J. Lew, D. A. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng,
N. Goli, M. D. Sinclair, T. G. Rogers, and T. M. Aamodt. Analyzing
machine learning workloads using a detailed gpu simulator. In 2019
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 151–152, March 2019.

[34] Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K. Panda.
An in-depth performance characterization of cpu- and gpu-based dnn
training on modern architectures. In Proceedings of the Machine
Learning on HPC Environments, MLHPC’17, pages 8:1–8:8, New York,
NY, USA, 2017. ACM.

[35] Probir Roy, Shuaiwen Leon Song, Sriram Krishnamoorthy, Abhinav
Vishnu, Dipanjan Sengupta, and Xu Liu. Numa-caffe: Numa-aware deep
learning neural networks. ACM Trans. Archit. Code Optim., 15(2):24:1–
24:26, June 2018.

[36] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke.
Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pages 548–560, June 2017.

