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A B S T R A C T

Despite the widespread use of lesion-symptom mapping (LSM) techniques to study associations between location
of brain damage and language deficits, the prediction of language deficits from lesion location remains a sub-
stantial challenge. The present study examined several factors which may impact lesion-symptom prediction by
(1) testing the relative predictive advantage of general language deficit scores compared to composite scores that
capture specific deficit types, (2) isolating the relative contribution of lesion location compared to lesion size,
and (3) comparing standard voxel-based lesion-symptom mapping (VLSM) with a multivariate method (sparse
canonical correlation analysis, SCCAN). Analyses were conducted on data from 128 participants who completed
a detailed battery of psycholinguistic tests and underwent structural neuroimaging (MRI or CT) to determine
lesion location. For both VLSM and SCCAN, overall aphasia severity (Western Aphasia Battery Aphasia Quotient)
and object naming deficits were primarily predicted by lesion size, whereas deficits in Speech Production and
Speech Recognition were better predicted by a combination of lesion size and location. The implementation of
both VLSM and SCCAN raises important considerations regarding controlling for lesion size in lesion-symptom
mapping analyses. These findings suggest that lesion-symptom prediction is more accurate for deficits within
neurally-localized cognitive systems when both lesion size and location are considered compared to broad
functional deficits, which can be predicted by overall lesion size alone.

1. Introduction

Aphasia is an impairment of language that occurs in up to 46% of
stroke survivors and is associated with substantial negative effects on
health and quality of life, including reduced participation in activities
across all domains of daily life and increased likelihood of death within
2 years of stroke (Boehme et al., 2016; Flowers et al., 2016; Hilari,
2011). Although many patients recover some degree of language
function, recovery is highly variable (Lazar et al., 2008; Pedersen et al.,
2004). Lesion characteristics such as size and location may differen-
tially contribute to this variability in language recovery outcomes and
can be studied using lesion-symptom mapping (LSM), a key method for
examining the association between lesion site and performance on a
language task or battery of tasks (Bates et al., 2003).

Recent studies have attempted to use this LSM approach for pre-
dicting outcomes in patients with post-stroke aphasia (Price et al.,
2010), with mixed results. One study found that demographic in-
formation, lesion size, and atlas-based lesion location predictors ac-
counted for almost 60% of the variance in a composite speech

production score (Hope et al., 2013). Another group used a machine
learning (support vector machine) approach to classify patients into
aphasia subtypes using the percentage of damage within atlas-derived
regions (Yourganov et al., 2015), but achieved above-chance perfor-
mance for only 5–7 of 10 binary classifications. A more recent study
used random forests with a multimodal combination of structural lesion
data and functional and structural connectivity data (Pustina et al.,
2017b) to account for nearly 80% of the variance on the Philadelphia
Naming Task (PNT) and composite measures from the Western Aphasia
Battery (WAB). These studies are promising, though they vary in the
kind of lesion data used and the type of deficits predicted. The latter
issue may be particularly important as one group highlighted the utility
of using a composite score comprised of several measures assessing the
same domain of language (speech production) compared to individual
scores from single-item measures (Hope et al., 2013).

Several recent studies have combined principle component analysis
(PCA) and lesion-symptom mapping to identify the core systems of
language processing and relate deficits in these systems to lesion loca-
tion in patients with post-stroke aphasia (for a review see Mirman and
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Thye, in press). This approach allows for the identification of the neural
basis of dissociable functional language systems, which may provide a
stronger basis for lesion-symptom prediction. However, no lesion-
symptom prediction study to date has examined the relative predictive
advantage of single-measure scores from comprehensive language tasks
versus composite scores derived from a battery of tasks assessing do-
main-specific language systems. Thus, one goal of the current study was
to compare prediction of PCA-derived language sub-system deficit
scores and more general language deficit scores.

Lesion-symptom prediction studies also need to carefully consider
the role of overall lesion size. Individuals with larger left hemisphere
lesions tend to perform worse on all language tasks, and larger lesions
are more likely to impact a greater number of brain regions. Thus,
overall lesion size affects both sides of the lesion-symptom prediction
equation. In order to isolate these effects of lesion size, the second goal
of the current study was to investigate the relative contribution of le-
sion location compared to lesion size. If lesion size alone is the best
predictor, then the best course for evaluating prognosis is to use lesion
size as a coarse measure of severity. Conversely, if lesion location
provides additional predictive information beyond lesion size, then le-
sion location may be helpful in designing individualized treatment
plans.

The third goal of the current study was to compare standard voxel-
based lesion-symptom mapping (VLSM) and multivariate LSM methods
in the context of lesion-symptom prediction. Standard VLSM is a mass-
univariate method that independently tests the association between
damage in each voxel and a behavioral symptom score. There are
several limitations inherent to this traditional VLSM approach, in-
cluding possible mis-localization of lesion-symptom associations, diffi-
culty capturing network effects of multiple brain regions, and bias to-
ward regions that are more frequently damaged within the sample of
participants (Inoue et al., 2014; Mah et al., 2014; Sperber and Karnath,
2017). Multivariate LSM methods have been developed to address these
issues by simultaneously considering the association between beha-
vioral deficits and the full lesion pattern. In this study, we used mul-
tivariate LSM based on sparse canonical correlation analysis (SCCAN)
(Avants et al., 2014; Pustina et al., 2017a). In SCCAN, the correlations
among the lesioned voxels and the symptom of interest are optimized
by modifying the weights attributed to each in order to maximize the
brain-behavior association. SCCAN directly addresses several limita-
tions of the mass-univariate VLSM approach, and therefore, provides a
multivariate alternative for making predictive inferences about lesion-
behavior associations.

The aim of Study 1 was to apply the SCCAN method to data pre-
viously used in VLSM analyses as a verification of its applicability to
this type of data and as a precursor to its use in lesion-symptom

prediction. It was expected that the results of the SCCAN analysis would
converge with previous VLSM findings using these same deficit mea-
sures. The primary aim of Study 2 was to compare the predictive utility
of lesion size and lesion location for broad measures of language
functioning (naming, aphasia severity) and for measures that reflect
dissociable functional language sub-systems (semantics, speech pro-
duction, speech recognition). Critical lesion locations were based on
both mass-univariate VLSM and multivariate SCCAN LSM. It was ex-
pected that lesion size would be particularly predictive for broad
measures of language deficits due to the multi-determined nature of
these assessments whereas lesion location would be more predictive for
symptoms that align with the core systems of spoken language.

2. Data

The data were drawn from a large-scale study of language proces-
sing following left hemisphere stroke. Analyses of other language def-
icits using earlier subsets of the participants have been reported in
several previous articles (Mirman et al., 2015b, 2015a; Mirman and
Graziano, 2013; Schwartz et al., 2012, 2011, 2009; Thothathiri et al.,
2012; Walker et al., 2011), which also provide more detailed descrip-
tions of the participants and imaging methods. The study was carried
out in accordance with protocols approved by the Institutional Review
Boards at the Einstein Healthcare Network and University of Pennsyl-
vania School of Medicine.

The participants were 128 individuals with aphasia secondary to left
hemisphere stroke (not bilateral or solely subcortical). To be included
in this study, participants had to be at least 1 month post onset of
aphasia secondary to stroke,1 living at home, medically stable without
major psychiatric or neurological co-morbidities, no previous history of
stroke, and premorbidly right handed. Participants were also required
to have English as the primary language, adequate vision and hearing
(with or without correction) and computed tomography (CT) or mag-
netic resonance imaging (MRI) confirmed left hemisphere cortical le-
sion. Participants completed a detailed battery of psycholinguistic tests
which have been described in previous studies (Mirman et al., 2010)
and are further described in the supplementary materials. Only parti-
cipants who had completed all 17 measures used in our prior PCA LSM
studies (Mirman et al., 2015b, 2015a) were included in this study.
Participant demographic information is presented in Table 1.

Lesion location was assessed based on MRI (n=75) or CT (n=53)
brain scans collected during the chronic stage (> 6months post onset)
and following the same procedures as previous studies of this data set
(or sub-sets of these data). For the MRI scans, lesions were manually
segmented on each participant's T1-weighted structural image, then the
structural scans and lesion maps were registered to the Montreal
Neurological Institute (MNI) space Colin27 template by an automated
process (Avants et al., 2006). For the CT scans, the lesion was drawn
directly onto the Colin27 template by an expert neurologist after ro-
tating it (pitch only) to match the approximate slice plane of the par-
ticipant's scan. The lesion overlap map for the full sample of partici-
pants is shown in Fig. 1. Only structural lesion information was
considered in the present study because this is the most widely avail-
able neural data for stroke survivors (because many are either unable or
unwilling to undergo more sophisticated neuroimaging protocols) and
because it most directly addresses the predictive utility of lesion size
and lesion location. Multimodal neuroimaging (structural, connectivity,
functional) would provide a more complete assessment of neural dys-
function after stroke and would almost certainly provide a more accu-
rate deficit prediction, but the core principles related to lesion-symptom

Table 1
Participant demographics.

N Mean (SD) Range

Age 128 58.20 (11.68) 26–79
Years of Education 128 14.26 (2.97) 6–21
Lesion Size (cc) 128 100.97 (82.76) 5.38–376.12
Time Since Stroke (months) 128 51.59 (65.71) 1–381
WAB Aphasia Quotient 128 73.66 (19.38) 25.20–99.30
Gender (M:F) 71:57
Aphasia subtype
Anomic Aphasia 55
Broca's Aphasia 31
Conduction Aphasia 18
Wernicke's Aphasia 10
Transcortical Motor Aphasia 3
Transcortical Sensory Aphasia 2
Global Aphasia 1
Other 8

Note. N, number of participants; SD, standard deviation of the mean; WAB,
Western Aphasia Battery; M, male; F, female.

1 The vast majority of participants were tested in the chronic stage (98% were
at least 3months post onset). Exclusion of participants who were not in the
chronic stage did not substantively alter any of the reported results, so the more
inclusive analyses are reported here.
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prediction explored here would remain the same.
As in our prior studies using PCA and LSM, participant scores on 17

psycholinguistic measures were entered into a principle component
analysis with varimax rotation (Fig. 2; Supplemental Table). As re-
ported in our previous studies (Mirman et al., 2015a, 2015b), the four
factor result corresponded to Semantic Recognition (e.g., Camel and
Cactus Test, Synonymy Triplets), Speech Production (e.g., Philadelphia
Repetition Test, Immediate Serial Recall Span), Speech Recognition
(e.g., Phonological Discrimination, Auditory Lexical Decision), and
Semantic Errors in picture naming and accounted for 27%, 24%, 19%,
and 7% of the variance respectively. The Semantic Errors factor was not
included in the subsequent analyses because it had an eigenvalue below
1.0 (0.915) and was characterized by a single high loading on semantic
errors in picture naming, thus not representing a functional language
sub-system in the same way as the other factors. The three factor so-
lution explained 70% of the variance in the behavioral scores across
participants. In addition to these three factor scores, overall picture
naming ability (based on the Philadelphia Naming Test; PNT) and
overall aphasia severity (Western Aphasia Battery Aphasia Quotient;

WAB AQ) were used as general measures of language impairment.

3. Study 1

3.1. Methods

Lesion-symptom mapping analyses were conducted on the full
sample of participants for each of the five deficit scores (PNT, WAB AQ,
Semantics, Speech Production, and Speech Recognition) using the
multivariate SCCAN method (Avants et al., 2014; Pustina et al., 2017a)
implemented using the LESYMAP package for R (https://github.com/
dorianps/LESYMAP). SCCAN relies on a sparseness parameter that de-
termines the extent of voxels generated in the result. By default, this
value is optimized using 4-fold cross-validation2 and the goodness of

Fig. 1. Lesion overlap for full sample of participants (N=128). Hotter colors indicate voxels where a larger proportion of participants had lesions. Only regions
where at least 10% of participants had lesions are included in the color map because only these voxels were included in the analyses.

Fig. 2. Factor loadings for the Semantics, Speech Production, and Speech Recognition factors from the principle component analysis run on 17 psycholinguistic
measures.

2 In pilot testing, we found that the optimization algorithm was robust to its
parameters, such as number of folds, converging to essentially the same spar-
seness value across a range of parameter values.
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the overall LSM solution is assessed by cross-validated accuracy (CV
correlation). Sparseness values range from 0 to 1 with larger values
indicating less sparseness (i.e., a greater proportion of voxels retained)
in the LSM solution. The sparseness value was separately optimized
using this algorithm for each of the five deficit scores, for use in this
Study and in Study 2. In addition, the lesion maps were normalized so
an individual voxel with a value of 0 indicated no lesion within the
voxel and 1/(sqrt of the total volume) indicated a lesion-damaged voxel
while controlling for overall lesion size. This direct total lesion volume
control method weights lesioned voxels from lesions with smaller

volume more than voxels from lesions with larger volume (Mirman
et al., 2015a; Zhang et al., 2014).

3.2. Results

The values obtained from the sparseness optimization algorithm
were 0.87 for PNT (CV correlation= 0.43), 0.88 for WAB AQ (CV
correlation=0.55), 0.68 for the Semantics factor (CV correla-
tion= 0.32), 0.64 for the Speech Production factor (CV correla-
tion= 0.45), and 0.02 for the Speech Recognition factor (CV

Fig. 3. SCCAN results for the Philadelphia Naming Test (PNT), the Western Aphasia Battery Aphasia Quotient (WAB AQ), and the three PCA-derived functional
language systems (Semantics, Speech Production, and Speech Recognition).
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correlation=0.39). The SCCAN LSM results for each deficit score are
shown in Fig. 3 (see also Table 2). A deficit in picture naming (lower
accuracy on the PNT) was associated with damage in widespread por-
tions of the middle cerebral artery (MCA) territory, including middle
and inferior frontal regions as well as damage extending from anterior
to posterior middle temporal regions and into the inferior parietal lobe
(supramarginal gyrus, angular gyrus). Increased aphasia severity (lower
WAB AQ) was similarly associated with damage to widespread middle
and inferior frontal regions, and middle and superior temporal gyri
extending posteriorly into parietal regions (supramarginal gyrus, an-
gular gyrus).

Semantic deficits were associated with more focal damage to por-
tions of the inferior and middle frontal gyrus, precentral gyrus, post-
central, angular, supramarginal, and superior parietal gyri, and por-
tions of the insula, but not substantively including the temporal lobe.
Damage to the underlying white matter, particularly the uncinate fas-
ciculus, inferior fronto-occipital fasciculus, and arcuate fasciculus, was
also associated with semantic deficits. Speech Production deficits were
associated with damage to the supramarginal, angular, and postcentral
gyri extending into the superior temporal lobe (superior temporal gyrus
and Heschl's gyrus). Deficits in Speech Recognition were associated
with highly localized damage to Heschl's gyrus. Because these analyses
use composite behavioral deficit scores (factor scores), they reflect
functional language systems and do not capture finer-grained divisions
within these systems, which would be better captured by targeted
deficit measures and are the subject of other studies (e.g., Schwartz
et al., 2011, 2012; Thothathiri et al., 2012).

3.3. Discussion

The results of the SCCAN LSM analyses converged with previous
findings using a mass-univariate VLSM approach, but also diverged in
some intriguing ways. For the Speech Recognition deficit scores, SCCAN
identified a very small region primarily in Heschl's gyrus. This is en-
tirely consistent with prior LSM studies that have identified the left
posterior superior temporal lobe as critical for speech recognition, but
the identified region was far smaller than those reported in prior stu-
dies. For Speech Production deficit scores, the SCCAN results converged

with prior LSM studies of speech production in identifying the “dorsal
stream” (Hickok and Poeppel, 2007), primarily consisting of supra-
marginal, angular, and postcentral gyri, but the SCCAN results also
included superior temporal regions. The SCCAN results for the Se-
mantics factor included portions of inferior frontal and middle frontal
gyri and insula, extending medially into the underlying white matter
tracts. The convergence of the uncinate fasciculus and inferior fronto-
occipital fasciculus has been previously characterized as a white matter
bottleneck (Mirman et al., 2015b, 2015a) where minimal damage in-
curred at the intersection of these critical tracts can result in significant
semantic impairments. These brain-behavior associations reflect the
primary functional systems involved in spoken language, which may
have further sub-systems. For naming (PNT) and aphasia severity (WAB
AQ), the breadth of the SCCAN results was even more striking, en-
compassing much of the MCA territory and showing little localization of
lesion-symptom associations. In sum, SCCAN and mass-univariate
VLSM tend to identify the same brain regions, but the extent of the
identified regions can differ drastically.

The mass-univariate VLSM and SCCAN LSM approaches critically
differ in how each method localizes the lesion-symptom associations. In
mass-univariate VLSM, the lesion-symptom association is tested in-
dependently for each voxel, then a correction for multiple comparisons
is applied. That correction can be computed in different ways (see
Mirman et al., 2018), but all corrections share the property that voxels
with stronger lesion-symptom associations will tend to survive the
correction whereas voxels with weaker associations will not. How many
voxels survive correction is strongly dependent on the conservativeness
of the correction. For any given raw VLSM result, a conservative cor-
rection will leave a small “critical” region whereas a less conservative
correction will leave a larger “critical” region.

In contrast, SCCAN LSM attempts to find the sparsest solution that
optimizes the multivariate association between the lesion pattern and
symptom severity. As a result, if damage in a small region is strongly
associated with the symptom, then SCCAN will select a small optimal
sparseness value and identify that small region. This is what we ob-
served for the Speech Recognition deficit scores. However, if the lesion-
symptom association is diffuse (and strong enough to be detectable),
then SCCAN will select a large optimal sparseness value and identify a

Table 2
Percentage of each region obtained in the SCCAN results. All regions refer to left hemisphere.

Region PNT WAB AQ Semantics Speech Production Speech Recognition

Total volume (number of voxels) 142,762 160,628 102,443 99,813 1500
Precentral gyrus 23.07 33.99 15.89 9.96
Middle frontal gyrus 29.78 37.13 29.20 3.16
Middle frontal gyrus (orbital part) 4.42 3.06 4.58
Inferior frontal gyrus (pars opercularis) 35.27 61.61 9.60
Inferior frontal gyrus (pars triangularis) 45.95 60.78 36.68
Inferior frontal gyrus (pars orbitalis) 27.52 22.29 21.66 5.18
Rolandic operculum 33.77 44.51 61.82
Insula 17.07 22.45 24.19 31.35
Superior occipital gyrus 3.62
Middle occipital gyrus 9.72 5.71 36.91
Postcentral gyrus 52.86 53.04 25.68 45.50
Superior parietal gyrus 20.57
Inferior parietal gyrus 32.81 39.78 53.40 28.17
Supramarginal gyrus 80.75 89.68 16.76 91.02
Angular gyrus 69.91 71.45 58.01 53.45
Caudate 6.44 3.09 8.23 1.62
Putamen 48.40 13.92 59.78 1.92
Pallidum 1.73 21.38
Heschl's gyrus 50.52 68.32 68.17 20.93
Superior temporal gyrus 77.12 86.83 87.55 3.35
Superior temporal pole 31.65 37.85 19.83
Middle temporal gyrus 44.46 45.22 30.43
Middle temporal pole 14.28 13.79
Arcuate fasciculus 37.81 40.88 6.24 32.32
Inferior fronto-occipital fasciculus 10.33 8.79 15.00 2.67
Uncinate fasciculus 15.41 15.02 12.39 5.17
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large region (the result for WAB AQ is the clearest example of this). In
other words, the number of voxels included in the result is dependent
on the sparseness/diffuseness of the lesion-symptom association, not on
the conservativeness of the multiple comparisons correction. This dif-
ference has substantial implications for understanding the roles of
overall lesion size and lesion location in lesion-symptom associations.
Study 2 shed further light on this issue, and we will return to it after
presenting those results.

4. Study 2

The goal of this study was to evaluate the predictive value of lesion
size and lesion location for general language deficit scores (naming and
aphasia severity) and more specific language sub-system deficit scores
(PCA-derived scores for Semantics, Speech Production, and Speech
Recognition). Two separate sets of analyses were conducted to compare
the critical lesion locations derived from mass-univariate VLSM and
SCCAN LSM.

4.1. Methods

Lesion-symptom prediction was implemented using 8-fold cross-
validation. Participants were partitioned into 8 “folds” (n=16 each)
and, for each fold, LSM analyses were carried out for each of the deficit
scores on the “training” data (n=112). The mass-univariate VLSM’
results were corrected for multiple comparisons using permutation-
based continuous FWER (Mirman et al., 2018) with v= 100. For con-
sistency across folds, the full-sample optimal sparseness values from
Study 1 were used in the SCCAN analyses. Both the VLSM and SCCAN
analyses controlled for lesion size using the total direct lesion volume
control described in Study 1 (Mirman et al., 2015a; Zhang et al., 2014).
The LSM results were thresholded to generate a “template” of the cri-
tical brain regions associated with each deficit. For each participant in
the held-out (“testing”) fold, template lesion load was generated by 1)
calculating the overlap between the lesion and each template and 2)
dividing this overlap by the total size of the template, thus accounting
for the size of the template (which varied across behavioral scores and,
to a smaller degree, across folds). That is, an individual's template le-
sion load is the proportion of the independently-generated LSM-based
template that falls within that individual's lesion. Repeating this pro-
cedure for each of the 8 folds produced the two critical predictors –
overall lesion size and template lesion load – for each participant.
Stepwise regression was used to test the associations between each
deficit score and lesion size, template lesion load, and template lesion
load controlling for lesion size. A schematic of the analysis pipeline is
shown in Fig. 4. All analyses were implemented in R using the LE-
SYMAP package (https://github.com/dorianps/LESYMAP).

4.2. Results

The deficit scores were weakly to moderately associated with lesion
size, with higher correlations observed for WAB AQ (r=−0.55,
p < .01), PNT (r=−0.45, p < .01), and Semantics (r=−0.32,
p < .01) and weaker correlations observed for Speech Production
(r=−0.28, p < .01) and Speech Recognition (r=−0.04, p= .66).
There was a high degree of correspondence between the VLSM and
SCCAN results (Fig. 5). For both VLSM and SCCAN, lesion size alone
was a significant predictor of PNT accuracy, WAB AQ, Semantics, and
Speech Production (p < .01). The largest percentage of the variance
explained by lesion size was seen for the broad deficit measures: WAB
AQ (31%) and PNT (21%). This did not hold for the PCA-based deficit
measures: across both types of LSM, lesion size accounted for 10%, 8%,
and 0.1% of the variance in scores on Semantics, Speech Production,
and Speech Recognition, respectively, suggesting that lesion size did
not explain as much variability in performance for these functional
language systems.

Template lesion load was a significant predictor of PNT accuracy,
WAB AQ, Speech Production, and Speech Recognition for both lesion-
symptom mapping analyses (p < .01). For the SCCAN analysis, tem-
plate lesion load also significantly predicted Semantics (p < .01). After
controlling for lesion size, the association between deficit scores and the
template lesion load had stronger effects for the Speech Production
(VLSM: r=−0.20, p < .05; SCCAN: r=−0.26, p < .01) and Speech
Recognition (VLSM: r=−0.23, p < .05; SCCAN: r=−0.28, p < .01)
systems and weaker effects for Semantics (VLSM: r=0.13, p= .15;
SCCAN: r=−0.16, p= .07), WAB AQ (VLSM: r=−0.04, p= .66;
SCCAN: r=−0.16, p= .09), and PNT (VLSM: r=−0.02, p= .79;
SCCAN: r=−0.02, p= .85). In other words, after accounting for
overall lesion volume, adding template lesion load improved prediction
accuracy only for Speech Production and Speech Recognition deficit
scores.

To further explore this finding and to investigate what might be
driving the influence of lesion size relative to template lesion load,
severity scores for each deficit were plotted in relation to lesion size and
template lesion load (Fig. 6). In general, participants with more severe
deficits tended to have larger lesions and greater template lesion load.
This was especially evident in the SCCAN results where there were
moderate to strong correlations between lesion size and template lesion
load across all deficit scores.

4.3. Discussion

For deficits in two of the functional language systems, Speech
Production and Speech Recognition, lesion size alone was a poor pre-
dictor of outcomes and adding lesion location (overlap with a “critical”
location template) to a lesion size only model significantly improved
prediction accuracy. For general measures of spoken language perfor-
mance, such as the Philadelphia Naming Test and the WAB Aphasia
Quotient, overall lesion size and lesion location (overlap with a “cri-
tical” location template) were significant predictors of deficit severity,
but lesion location did not significantly improve prediction accuracy
above and beyond lesion size. This general pattern held regardless of
whether the critical lesion locations were defined by mass-univariate
VLSM or by multivariate SCCAN. The association between lesion size
and PNT accuracy and WAB AQ is unsurprising given the multi-de-
termined nature of these assessments; both measures draw on several
components of spoken language, so there are multiple ways that per-
formance can break down and possibly more opportunities for re-
organization of function. Conversely, Speech Production and Speech
Recognition seem to rely on more compact neural systems and may be
less amenable to reorganization, so damage in particular critical brain
regions will more consistently produce deficits in these domains. In
other words, for these domains, knowing the size and location of the
lesion results in greater prediction accuracy.

Semantic deficits had the lowest prediction accuracy, with only
about 10% of the variance predicted from lesion information, and le-
sion location had no additional predictive utility beyond overall lesion
size. Semantic cognition is supported by a bilateral distributed neural
system with integrative hubs in the anterior temporal lobes and tem-
poro-parietal cortex (especially angular gyrus), and critical involvement
of frontal control systems and white matter tracts (e.g., Binder and
Desai, 2011; Lambon Ralph et al., 2017; Mirman et al., 2015a, 2015b).
As a result, semantic deficits can arise due to damage to various sub-
components of the distributed semantic system, and LSM may produce
diffuse “templates” and a coarse measure such as template lesion load
may not capture whether critical semantic processing components were
damaged or not. In addition, semantic deficits can present in different
ways, especially in left hemisphere stroke cases (e.g., Mirman and Britt,
2014), and may be more prone to re-organization and recovery, making
them less predictable from structural lesion information.

Previous research has suggested that both lesion size and lesion site
are important predictors of post-stroke aphasia recovery (Plowman
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et al., 2012). However, the utility of lesion location information appears
to be dependent on the language process of interest. The size of a left
middle cerebral artery (MCA) stroke lesion is expected to impact lan-
guage performance, and there is little doubt that large lesions are likely
to result in widespread language deficits. The critical theoretical claim,

therefore, is whether, beyond lesion size, lesion location can be used to
predict language performance and, beyond this, whether location is
more informative for predicting specific language deficits. For the
broad language measures, lesion location was not meaningfully dif-
ferent from lesion size given that the generated templates were large
and the two measures were highly correlated (especially in the SCCAN
version). Lesion location, therefore, was only as informative as lesion
volume in the predictive models because it served as a proxy for lesion
size. In the case of the broad deficit scores, the fact that lesion location
does not improve prediction accuracy beyond that obtained with lesion
size alone is essentially failing to reject the null hypothesis that the
language deficit is a result of lesion size. For the specific scores (e.g.,
Speech Production and Speech Recognition), predictive models that
included both lesion size and lesion location preformed significantly
better than a model containing only the lesion size variable indicating
that lesion location information does improve prediction accuracy.
Prediction accuracy for speech production and recognition may be
improved with the addition of lesion location due to the neuroanato-
mical specificity associated with each process. According to the dual-
stream model of speech processing, language is functionally organized
into two complementary processing streams: a bilateral ventral speech
recognition stream extending from posterior portions of the superior
and middle temporal gyri to anterior portions of the middle temporal
gyrus, and a left hemisphere dorsal speech production stream which
projects from the posterior superior temporal gyrus into inferior frontal
and premotor areas (Hickok and Poeppel, 2007). This organization has
been confirmed by studies using PCA and lesion-symptom mapping
(Fridriksson et al., 2016; Mirman et al., 2015b, 2015a). The consistency
of reported factors and neural basis of each functional language system
across studies suggests that these functional subdivisions are robust.
Thus, lesion location may be informative for these language sub-sys-
tems, which are supported by consistent and distinct neuroanatomy.

In contrast, aphasia severity (WAB AQ) and naming deficits (PNT)
were predictable from overall lesion size, but lesion location provided
no additional predictive utility. This is not surprising considering the
multi-determined nature of these assessments. However, in each of
these analyses, lesion locations associated with each deficit were de-
fined while controlling for overall lesion size, and yet, overall lesion
size remained the primary predictor of deficit severity. A model con-
taining both lesion size and lesion location only had additional

Fig. 4. Schematic showing the analysis pipeline. Participant lesion and behavioral data were initially partitioned into 8 groups or “folds” (blue). For a given fold, the
other folds served as the training set (green) for the subsequent LSM analyses (A). For each fold, VLSM and SCCAN were run on the training set of participants to
generate a template of regions associated with the deficit (B). For each participant in the held-out test set, the template lesion load was calculated as the proportion of
overlap between the LSM-generated templates and the participant's lesion (C). This process was repeated for all 8 folds to calculate template lesion load for each
participant, which was then tested as a predictor of deficit severity (D). The schematic illustrates the full pipeline for one deficit score, and the pipeline was repeated
for each of the five deficit scores.

Fig. 5. Prediction accuracy of VLSM and SCCAN method using lesion size
(black), template lesion load (red), or both lesion size and template lesion load
(grey) on scores on the Philadelphia Naming Test (PNT), the Western Aphasia
Battery Aphasia Quotient (WAB AQ), and the three PCA-derived factors
(Semantics, Speech Production, and Speech Recognition). * Indicates statisti-
cally significant (p < .05) increase in R2 for model with both predictors
compared to model with only lesion volume.
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predictive power for two of the deficit scores: Speech Recognition and
Speech Production. Template lesion load was strongly correlated with
overall lesion size, particularly for SCCAN, where the large sparseness
values for PNT, WAB AQ, and Semantics meant that the lesion-deficit
“template” was not very different from the MCA territory. In other
words, the sparseness optimization algorithm in SCCAN settled on a
large sparseness value precisely because, for these measures, lesion size
was a strong predictor of deficit severity and lesion location was not.
For mass-univariate VLSM, the details of the data are the same (lesion
size is the primary predictor of deficit scores or PNT, WAB AQ, and
Semantics; lesion location is a stronger predictor for Speech Production
and Speech Recognition), but the analysis reveals this in a somewhat
different way. The template size is based on correction for multiple
comparisons and only the voxels with the strongest lesion-symptom

association survive that correction. However, damage to these voxels is
revealed to have no unique predictive value over lesion size for PNT,
WAB AQ, and Semantics deficits. In other words, when overall lesion
size is the primary predictor of deficit severity, this is inherent in the
SCCAN LSM result (large optimal sparseness value, large resulting re-
gion), but is obscured by multiple comparisons correction in mass-
univariate VLSM and only emerges upon cross-validation testing.

5. General discussion

This study examined the prediction of different language deficits
following left hemisphere stroke based on lesion size and lesion loca-
tion. Critical lesion locations for each deficit were determined by
creating templates using VLSM or SCCAN LSM. The critical findings

Fig. 6. Relationship between lesion size and template lesion load for VLSM and SCCAN analyses for each deficit score. Participant scores are coded such that scores
indicating a higher level of impairment within each domain are in red and scores indicating a lower level of impairment are in blue; PNT, Philadelphia Naming Test,
WAB AQ, Western Aphasia Battery Aphasia Quotient; r, correlation coefficient.
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were (1) Speech Production and Speech Recognition deficits were
better predicted by a model containing both lesion size and lesion lo-
cation, whereas general language deficits (aphasia severity and naming
deficits) were predicted by lesion size and lesion location did not im-
prove these predictions; and (2) SCCAN LSM inherently captured this
by choosing a large optimal sparseness value for WAB AQ and PNT,
which produced very large lesion location “templates”, whereas for
VLSM, the size of the lesion location templates was determined by the
multiple comparisons correction and the (lack of) predictive utility of
lesion location only emerged in a subsequent cross-validation predictive
analysis.

The SCCAN sparseness optimization algorithm iteratively alters the
weights applied to the provided multidimensional neuroimaging da-
taset and the behavioral scores until a sparseness value that optimizes
the association between these sources of data has been identified
(Avants et al., 2014; Pustina et al., 2017a). This value determines the
sparseness of the resulting statistical map (e.g., associated voxels) with
smaller sparseness values resulting in a sparser solution. The sparseness
values obtained after optimization were relatively high for the PNT,
WAB AQ, and Semantics scores suggesting that a greater number of
voxels were required in order to optimize the relationship between the
lesion site and these behavioral scores. In other words, the relationship
between the behavioral scores and the lesioned voxels was best de-
scribed by a solution that encompassed a larger area extending across
the left hemisphere regions affected by the lesion. This can be seen in
Fig. 3, where the results obtained for PNT, WAB AQ, and Semantics are
relatively distributed across language regions within the left hemi-
sphere. The PNT and WAB AQ results, in particular, may be driven by
the nature of these assessments, which draw on several language abil-
ities. Widespread recruitment of frontal and parietal regions seen for
the Semantics factor may reflect the distributed nature of semantic
processing, which relies on a hub-and-spoke neural architecture, and
the particular relevance of cognitive control deficits for semantic im-
pairments in post-stroke aphasia (Lambon Ralph et al., 2017).

The sparseness values obtained for the Speech Production and, in
particular, the Speech Recognition factors were much smaller compared
to the other probed domains. The critical neuroanatomy of speech
production and speech recognition appears to be relatively localized;
thus, a solution with fewer voxels can optimally capture the association
between the behavioral scores and the lesion location. The SCCAN re-
sults for the Speech Production and Speech Recognition factors largely
encompassed regions within the dorsal and ventral routes of speech
processing (Hickok and Poeppel, 2007). Interestingly, the SCCAN result
for Speech Recognition was highly localized to Heschl's gyrus which
may reflect an early auditory processing component of speech re-
cognition. Because SCCAN is designed to find the sparsest optimal so-
lution, this result may be a particularly important sub-component of the
ventral speech comprehension system that has been identified in pre-
vious studies that used PCA in combination with mass-univariate and
SVR-LSM methods (Fridriksson et al., 2016; Mirman et al., 2015a,
2015b).

Previous lesion-symptom prediction studies have achieved rela-
tively good prediction accuracy through the inclusion of lesion size,
lesion location, patient demographic information, atlas-based regional
information, and even multimodal neuroimaging information into the
model (Hope et al., 2013; Pustina et al., 2017b; Yourganov et al., 2015).
The current study isolated the impact of lesion location relative to le-
sion size by excluding other variables or sources of information. This
was done to rigorously examine the relative contributions of lesion size
compared to lesion location across a range of behavioral scores and
outcomes. In addition, assessing model performance using these more
selective sources of data represents a scenario that is likely to occur in a
clinical setting where multimodal, atlas-derived metrics may not be
available. As a result, the modest amount of variance in deficit severity
explained by the models represents a lower bound on what can be ac-
complished with simple models based on lesion size and location alone.

Multimodal neuroimaging information, when available, is likely to
improve model prediction accuracy and can provide more detailed in-
formation about the neural basis of language and its sub-systems. Other
factors, including demographic (e.g., age), social (e.g., social support),
and personality (e.g., optimism) differences, are also likely to con-
tribute to individual differences in recovery.

The present study raises important concerns about what it means to
“control for lesion size” in lesion-symptom mapping analyses. The
VLSM analyses reported here controlled for lesion size at the voxel level
and yet damage to regions identified for WAB AQ, PNT, and Semantic
deficit was no more related to those deficits than overall lesion size was.
One interpretation of this result is that the lesion size control was not
sufficiently effective and a more conservative, behavior-side control is
necessary (i.e., using residual behavioral deficit scores after controlling
for lesion size). Indeed, this would more conservatively control for le-
sion size by attributing as much of the behavioral deficit variability to
lesion size as possible. In an additional analysis, we found that using
such a behavior-side control for lesion size did effectively eliminate
effects for PNT and WAB AQ, which was expected given the role of
lesion size in predicting deficits in these domains. However, the beha-
vior-side control also eliminated large portions of the effects for the
other deficits suggesting that (1) the behavior-side control may be
overly conservative, producing false negatives, and (2) lesion location is
critical for predicting deficit scores for Speech Production and Speech
Recognition even when using an overly stringent lesion-size correction
method. A detailed evaluation of different lesion size control methods
would require additional large-scale simulation studies of both uni-
variate and multivariate LSM analyses in which the ground truth is
known. Recent studies of this sort (DeMarco and Turkeltaub, 2018;
Sperber and Karnath, 2017; Xu et al., 2018) clearly demonstrate that
lesion volume control is critical for accurate mapping of lesion-
symptom associations, though the relative advantages of different
control methods in the context of different LSM methods may not be
easy to identify. More generally, the value of simulation studies de-
pends on how well the simulations capture actual lesion and deficit
distributions, and should converge with studies using real data (Xu
et al., 2018). Predictive inference, as used in the cross-validation ana-
lyses in Study 2, appears to provide an alternative approach that ef-
fectively controls for lesion size by testing whether the LSM result has a
significant effect on prediction accuracy after using lesion size as a
control variable. SCCAN LSM implements a version of this kind of
strategy in its sparseness optimization process, which uses cross-vali-
dation prediction accuracy and a bias toward sparser solutions to
identify a sparseness value which optimally captures the relationship
between the lesion and the deficit score. As a result, in cases where
lesion size is a significant predictor and lesion location is not, SCCAN
produces a large sparseness value and broadly extended LSM result,
implicitly identifying overall lesion size as the critical predictor of
deficit severity.

The present study found that deficits in two functional language
systems, speech production and speech recognition, were better pre-
dicted by lesion location in addition to lesion size. This suggests that
lesion-symptom prediction is more accurate for deficits within neurally-
localized cognitive systems than for broad functional deficits, which
may be better predicted by overall lesion size. As researchers begin to
focus more on lesion-symptom prediction, the present results suggest
that it is important to carefully select the deficits for prediction. Some
deficit measures may be so broad that they are effectively predicted by
overall lesion size and sophisticated ways to identify “critical” brain
regions will have little additional predictive utility. In contrast, focusing
on functional cognitive systems that support language and rely on more
consistent and dissociable neural systems may produce more accurate
deficit predictions. Such predictions could be useful to clinicians and
therapists for targeting suspected or predicted deficits, individualizing
treatment planning, and ultimately improving long-term outcomes.
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