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Figure 1: We propose Descriptor Vector Exchange (DVE), a mechanism that enables unsupervised learning of robust high-
dimensional dense embeddings with equivariance losses. The embeddings learned for the category of faces are visualised
in the figure above with the help of a query image [8], shown in the centre of the figure. (Left): We colour the locations
of pixel embeddings that form the nearest neighbours of the query reference points. (Right): The same reference points are
used to retrieve patches amongst a collection of face images. The result is an approximate face mosaic, matching parts across
different identities despite the fact that no landmark annotations of any kind were used during learning.

Abstract

Equivariance to random image transformations is an ef-
fective method to learn landmarks of object categories, such
as the eyes and the nose in faces, without manual supervi-
sion. However, this method does not explicitly guarantee
that the learned landmarks are consistent with changes be-
tween different instances of the same object, such as differ-
ent facial identities. In this paper, we develop a new per-
spective on the equivariance approach by noting that dense
landmark detectors can be interpreted as local image de-
scriptors equipped with invariance to intra-category varia-
tions. We then propose a direct method to enforce such an
invariance in the standard equivariant loss. We do so by
exchanging descriptor vectors between images of different
object instances prior to matching them geometrically. In
this manner, the same vectors must work regardless of the
specific object identity considered. We use this approach to
learn vectors that can simultaneously be interpreted as lo-
cal descriptors and dense landmarks, combining the advan-
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tages of both. Experiments on standard benchmarks show
that this approach can match, and in some cases surpass
state-of-the-art performance amongst existing methods that
learn landmarks without supervision. Code is available at
www.robots.ox.ac.uk/˜vgg/research/DVE/.

1. Introduction
Learning without manual supervision remains an open

problem in machine learning and computer vision. Even
recent advances in self-supervision [15, 17] are often lim-
ited to learning generic feature extractors and still require
some manually annotated data to solve a concrete task such
as landmark detection. In this paper, we thus consider the
problem of learning the landmarks of an object category,
such as the eyes and nose in faces, without any manual an-
notation. Namely, given as input a collection of images of a
certain object, such as images of faces, the goal is to learn
what landmarks exist and how to detect them.

In the absence of manual annotations, an alternative su-
pervisory signal is required. Recently, [46] proposed to
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build on the fact that landmark detectors are equivariant to
image transformations. For example, if one translates or ro-
tates a face, then the locations of the eyes and nose follow
suit. Equivariance can be used as a learning signal by ap-
plying random synthetic warps to images of an object and
then requiring the landmark detector to be consistent with
these transformations.

The main weakness of this approach is that equivariance
can only be imposed for transformations of specific images.
This means that a landmark detector can be perfectly consis-
tent with transformation applied to a specific face and still
match an eye in a person and the nose in another. In this ap-
proach, achieving consistency across object instances is left
to the generalisation capabilities of the underlying learning
algorithm.

In this paper, we offer a new perspective on the prob-
lem of learning landmarks, generalising prior work and ad-
dressing its shortcomings. We start by establishing a link
between two apparently distinct concepts: landmarks and
local image descriptors (fig. 2). Recall that a descriptor,
such as SIFT, is a vector describing the appearance of the
image around a given point. Descriptors can establish cor-
respondences between images because they are invariant to
viewing effects such as viewpoint changes. However, sim-
ilar to descriptors, landmarks can also establish image cor-
respondences by matching concepts such as eyes or noses
detected in different images.

Thus invariant descriptors and landmark detectors are
similar, but landmarks are invariant to intra-class varia-
tions in addition to viewing effects. We can make this
analogy precise if we consider dense descriptors and land-
marks [45, 9, 42]. A dense descriptor associates to each
image pixel a C-dimensional vector, whereas a dense land-
mark detector associates to each pixel a 2D vector, which is
the index of the landmark in a (u, v) parameterisation of the
object surface. Thus we can interpret a landmark as a tiny
2D descriptor. Due to its small dimensionality, a landmark
loses the ability to encode instance-specific details of the
appearance, but gains robustness to intra-class variations.

Generalising this idea, we note that any invariant de-
scriptor can be turned into a landmark detector by equipping
it with robustness to intra-class variations. Here we pro-
pose a new method that can do so without reducing the di-
mensionality of the descriptor vectors. The formulation still
considers pairs of synthetically-transformed images as [45]
do, but this time landmarks are represented by arbitrary C-
dimensional vectors. Then, before geometric consistency
(equivariance) is enforced, the landmark vectors extracted
from one image are exchanged with similar vectors ex-
tracted from other random images of the object. This way
geometric consistency between an image and its transfor-
mations can only be achieved if vectors have an intra-class
validity, and thus effectively characterise landmarks.

invariant
descriptor
vectors

dense
landmark
vectors

C

Figure 2: Descriptor-landmark hierarchy. A local invari-
ant descriptor maps image pixels to distinctive vectors that
are invariant to viewing conditions such as a viewpoint. A
dense landmark detector maps pixels to unique points of the
object’s surface, such as eyes and nose in faces, to points on
the surface of a sphere. Both produce invariant and distinc-
tive vectors, but landmarks are also invariant to intra-class
variations. Taken together, they represent a hierarchy of dis-
tinctive pixel embeddings of increasing invariance.

Empirically (section 4), we show that the key advantage
of this formulation, which we term Descriptor Vector Ex-
change (DVE), is that it produces embedding vectors that si-
multaneously work well as instance-specific image descrip-
tors and landmarks, capturing in a single representation the
advantages of both, and validating our intuition.

2. Related work

General image matching. Image matching based on lo-
cal features has been an extensively studied problem in the
literature with applications to wide-baseline stereo match-
ing [38] and image retrieval [48]. The generic pipeline con-
tains the following steps: i) detecting a sparse set of in-
terest points [28] that are covariant with a class of trans-
formations, ii) extracting local descriptors (e.g. [27, 47]) at
these points that are invariant to viewpoint and illumina-
tion changes, and iii) matching the nearest neighbour de-
scriptors across images with an optional geometric verifi-
cation. While the majority of the image matching meth-
ods rely on hand-crafted detectors and descriptors, recent
work show that CNN-based models can successfully be
trained to detect covariant detectors [23] and invariant de-
scriptors [52, 36]. We build our method on similar princi-
ples, covariance and invariance, but with an important dif-
ference that it can learn intrinsic features for object cate-
gories in contrast to generic ones.
Cross-instance object matching. The SIFT Flow



method [24] extends the problem of finding dense corre-
spondences between same object instances to different in-
stances by matching their SIFT features [27] in a vari-
ational framework. This work is further improved by
using multi-scale patches [11], establishing region corre-
spondences [10] and replacing SIFT features with CNN
ones [26]. In addition, Learned-Miller [21] generalises
the dense correspondences between image pairs to an arbi-
trary number of images by continuously warping each im-
age via a parametric transformation. RSA [37], Collection
Flow [18] and Mobahi et al. [29] project a collection of im-
ages into a lower dimensional subspace and perform a joint
alignment among the projected images. AnchorNet [34]
learns semantically meaningful parts across categories, al-
though is trained with image labels.

Transitivity. The use of transitivity to regularise structured
data has been proposed by several authors [44, 51, 57, 58]
in the literature. Earlier examples [44, 51] employ this
principle to achieve forward-backward consistency in ob-
ject tracking and to identify inconsistent geometric relations
in structure from motion respectively. Zhou et al. [57, 58]
enforce a geometric consistency to jointly align image sets
or supervise deep neural networks in dense semantic align-
ment by establishing a cycle between each image pair and
a 3D CAD model. DVE also builds on the same general
principle of transitivity, however, it operates in the space of
appearance embeddings in contrast to verification of subse-
quent image warps to a composition.

Unsupervised learning of object structure. Visual object
characterisation (e.g. [3, 7, 22, 4, 5]) has a long history in
computer vision with extensive work in facial landmark de-
tection and human body pose estimation. A recent unsu-
pervised method that can learn geometric transformations
to optimise classification accuracy is the spatial transformer
network [12]. However, this method does not learn any ex-
plicit object geometry. Similarly, WarpNet [16] and geo-
metric matching networks [39] train neural networks to pre-
dict relative transformations between image pairs. These
methods are limited to perform only on image pairs and
do not learn an invariant geometric embedding for the ob-
ject. Most related to our work, [46] characterises objects by
learning landmarks that are consistent with geometric trans-
formations without any manual supervision, while [33] sim-
ilarly use such transformations for semantic matching. The
authors of [46] extended their approach to extract a dense
set of landmarks by projecting the raw pixels on a surface
of a sphere in [45]. Similar work [41] leverages frame-to-
frame correspondence using Dynamic Fusion [31] as super-
vision to learn a dense labelling for human images. We
build our method, DVE, on these approaches and further
extend them in significant ways. First, we learn more ver-
satile descriptors that can encode both generic and object-
specific landmarks and show that we can gradually learn

to move from generic to specific ones. Second, we im-
prove the cross-instance generalisation ability by better reg-
ularising the embedding space with the use of transitivity.
Finally, we show that DVE both qualitatively and quanti-
tatively outperforms [46, 45] in facial landmark detection
(section 4). Recent work [54, 13, 49, 42] proposes to dis-
entangle appearance from pose by estimating dense defor-
mation field [49, 42] and by learning landmark positions to
reconstruct one sample from another. We compare DVE to
these approaches in section 4.

3. Method
We first summarise the method of [45] and then intro-

duce DVE, our extension to their approach.

3.1. Learning dense landmarks using equivariance

Denote by x ∈ R3×H×W an image of an object, by
Ω = {0, . . . ,H − 1} × {0, . . . ,W − 1} its domain, and
by u ∈ Ω an image pixel. Consider as in [45] a spherical
parameterisation of the object surface, where each point on
the sphere indexes a different characteristic point of the ob-
ject, i.e. a landmark. Our goal is to learn a function Φ that
maps pixels u ∈ Ω to their corresponding landmark indices
Φu(x) ∈ S2.

The authors of [45] showed that Φ can be learned with-
out manual supervision by requiring it to be invariant with
transformations of the image. Namely, consider a random
warp g : Ω → Ω and denote with gx the result of apply-
ing the warp to the image.1 Then, if the map assigns label
Φu(x) to pixel u of image x, it must assign the same label
Φgu(gx) to pixel gu of the deformed image gx. This is be-
cause, by construction, pixels u and gu land on the same
object point, and thus contain the same landmark. Hence,
we obtain the equivariance constraint Φu(x) = Φgu(gx).

This version of the equivariance constraint is not quite
sufficient to learn meaningful landmarks. In fact, the con-
straint can be satisfied trivially by mapping all pixels to
some fixed point on the sphere. Instead, we must also re-
quire landmarks to be distinctive, i.e. to identify a unique
point in the object. This is captured by the equation:

∀u, v ∈ Ω : v = gu ⇔ Φu(x) = Φv(gx). (1)

Probabilistic formulation. For learning, eq. (1) is re-
laxed probabilistically (fig. 3). Given images x and x′,
define the probability of pixel u in image x matching
pixel v in image x′ by normalising the cosine similarity
〈Φu(x),Φv(x

′)〉 of the corresponding landmark vectors:

p(v|u; Φ,x,x′) =
e〈Φu(x),Φv(x′)〉∫

Ω
e〈Φu(x),Φt(x′)〉 dt

. (2)

1I.e. (gx)u = xg−1u.
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Figure 3: We learn a dense embedding Φu(x) ∈ RC of image pixels. The embedding is learned from pairs of images
(x,x′) related by a known warp v = g(u). Note that in practice, we do not have access to pairs of pairs of images with a
known correspondence—thus, throughout this work the warps are generated synthetically. Left: the approach of [45] directly
matches embedding Φu(x) from the left image to embeddings Φv(x

′) in the right image. Right: DVE replaces Φu(x) from
its reconstruction Φ̂u(x|xα) obtained from the embeddings in a third auxiliary image xα. Importantly, the correspondence
with xα does not need to be known.

Given a warp g, and image x and its deformation x′ = gx,
constraint eq. (1) is captured by the loss:

L(Φ;x,x′, g) =
1

|Ω|2

∫
Ω

∫
Ω

‖v−gu‖ p(v|u; Φ,x,x′) du dv

(3)
where ‖v−gu‖ is a distance between pixels. In order to un-
derstand this loss, note that L(Φ;x,x′, g) = 0 if, and only
if, for each pixel u ∈ Ω, the probability p(v|u; Φ,x,x′) puts
all its mass on the corresponding pixel gu. Thus minimis-
ing this loss encourages p(v|u; Φ,x,x′) to establish correct
deterministic correspondences.

Note that the spread of probability (2) only depends on
the angle between landmark vectors. In order to allow the
model to modulate this spread directly, the range of func-
tion Φ is relaxed to be R3. In this manner, estimating longer
landmark vectors causes (2) to become more concentrated,
and this allows the model to express the confidence of de-
tecting a particular landmark at a certain image location.2

Siamese learning with random warps. We now explain
how (3) can be used to learn the landmark detector function
Φ given only an unlabelled collection X = {x1, . . . ,xn}
of images of the object. The idea is to synthesise for each
image a corresponding random warp from a distribution G.
Denote with P the empirical distribution over the training
images; then this amounts to optimising the energy

E(Φ) = Ex∼P,g∼G [L(Φ;x, gx, g)] . (4)

Implemented as a neural network, this is a Siamese learning
formulation because the network Φ is evaluated on both x
and gx.

2The landmark identity is recovered by normalising the vectors to unit
length.

3.2. From landmarks to descriptors

Equation (1) says that landmark vectors must be invari-
ant to image transformations and distinctive. Remarkably,
exactly the same criterion is often used to define and learn
local invariant feature descriptors instead [1]. In fact, if we
relax the function Φ to produce embeddings in some high-
dimensional vector space RC , then the formulation above
can be used out-of-the-box to learn descriptors instead of
landmarks.

Thus the only difference is that landmarks are con-
strained to be tiny vectors (just points on the sphere),
whereas descriptors are usually much higher-dimensional.
As argued in section 1, the low dimensionality of the land-
mark vectors forgets instance-specific details and promotes
intra-class generalisation of these descriptors.

The opposite is also true: we can start from any descrip-
tor and turn it into a landmark detector by promoting intra-
class generalisation. Using a low-dimensional embedding
space is a way to do so, but not the only one, nor the most
direct. We propose in the next section an alternative ap-
proach.

3.3. Vector exchangeability

We now propose our method, Descriptor Vector Ex-
change, to learn embedding vectors that are distinctive,
transformation invariant, and insensitive to intra-class vari-
ations, and thus identify object landmarks. The idea is to
encourage the sets of embedding vectors extracted from an
image to be exchangeable with the ones extracted from an-
other while retaining matching accuracy.

In more detail, let (x,x′, g) be a warped image pair
(hence x′ = gx). Furthermore, let xα be an auxiliary im-
age, containing an object of the same category as the pair
(x,x′), but possibly a different instance. If the embed-



ding function Φu(x) is insensitive to intra-class variations,
then the set of embedding vectors {Φu(x) : u ∈ Ω} and
{Φu(xα) : u ∈ Ω} extracted from any two images should
be approximately the same. This means that, in loss (3),
we can exchange the vectors Φu(x) extracted from image
x with corresponding vectors extracted from the auxiliary
image xα.

Next, we integrate this idea in the probabilistic learning
formulation given above (fig. 3). We start by matching pix-
els in the source image x to pixels in the auxiliary image xα
by using the probability p(w|u; Φ,x,xα) computed accord-
ing to eq. (2). Then, we reconstruct the source embedding
Φu(x) as the weighted average of the embeddings Φw(xα)
in the auxiliary image, as follows:

Φ̂u(x|xα) =

∫
Φw(xα)p(w|u; Φ,x,xα) dw. (5)

Once Φ̂u is computed, we use it to establish correspon-
dences between x and x′, using eq. (2). This results in the
matching probability:

p(v|u; Φ,x,x′,xα) =
e〈Φ̂u(x|xα),Φv(x′)〉∫

Ω
e〈Φ̂u(x|xα),Φt(x′)〉 dt

. (6)

This matching probability can be used in the same loss func-
tion (3) as before, with the only difference that now each
sample depends on x,x′ as well as the auxiliary image xα.

Discussion. While this may seem a round-about way of
learning correspondences, it has two key benefits: as eq. (3)
encourages vectors to be invariant and distinctive; in addi-
tion to eq. (3), DVE also requires vectors to be compatible
between different object instances. In fact, without such a
compatibility, the reconstruction (5) would result in a dis-
torted, unmatchable embedding vector. Note that the origi-
nal formulation of [45] lacks the ability to enforce this com-
patibility directly.

3.4. Using multiple auxiliary images

A potential issue with eq. (6) is that, while image x′ can
be obtained from x by a synthetic warp so that all pixels can
be matched, image xα is only weakly related to the two. For
example, partial occlusions or out of plane rotations may
cause some of the pixels in x to not have corresponding
pixels in xα.

In order to overcome this issue, we take inspiration from
the recent method of [59] and consider not one, but a small
set {xα : α ∈ A} of auxiliary images. Then, the summation
in eq. (5) is extended not just over spatial locations, but also
over images in this set. The intuition for this approach is
that as long as at least one image in the auxiliary image set
matches x sufficiently well, then the reconstruction will be
reliable.

4. Experiments

Using datasets of human faces (section 4.1), animal faces
(section 4.3) and a toy robotic arm (section 4.4), we demon-
strate the effectiveness of the proposed Descriptor Vector
Exchange technique in two ways. First, we show that the
learned embeddings work well as visual descriptors, match-
ing reliably different views of an object instance. Second,
we show that they also identify a dense family of object
landmarks, valid not for one, but for all object instances
in the same category. Note that, while the first property
is in common with traditional and learned descriptors in
the spirit of SIFT, the second clearly sets DVE embeddings
apart from these.

Implementation details. In order to allow for a compar-
ison with the literature, we perform experiments with the
deep neural network architecture of [45] (which we refer
to as SmallNet). Inspired by the success of the Hourglass
model in [54], we also experiment with a more powerful
hourglass design (we use the “Stacked Hourglass” design
of [32] with a single stack). The weights of both models
are learned from scratch using the Adam optimiser [19] for
100 epochs with an initial learning rate of 0.001 and with-
out weight decay. Further details of the architectures are
provided in the supplementary material.

4.1. Human faces

First, we consider two standard benchmark datasets of
human faces: CelebA [25] and MAFL [56], which is a sub-
set of the former. The CelebA [25] dataset contains over
200k faces of celebrities; we use the former for training
and evaluate embedding quality on the smaller MAFL [56]
(19,000 train images, 1,000 test images). Annotations are
provided for the eyes, nose and mouth corners. For train-
ing, we follow the same procedure used by [45] and exclude
any image in the CelebA training set that is also contained
in the MAFL test set. Note that we use MAFL annotations
only for evaluation and never for training of the embedding
function.

We use formulation (6) to learn a dense embedding func-
tion Φ mapping an image x to C-dimensional pixel em-
beddings, as explained above. Note that loss (3) requires
sampling transformations g ∈ G; in order to allow a di-
rect comparison with [45], we use the same random Thin
Plate Spline (TPS) warps as they use, obtaining warped
pairs (x,x′ = gx). We also sample at random one or more
auxiliary images xα from the training set in order to imple-
ment DVE.

We consider several cases; in the first, we set C = 3
and sample no auxiliary images, using formulation (2),
which is the same as [45]. In the second case, we set
C = 16, 32, 64 � 3 but still do not use DVE; in the last
case, we use C = 3, 16, 32, 64 and also use DVE.



Embedding Same identity Different identity
dimension [45] + DVE [45] + DVE

3 1.33 1.36 2.89 3.03
16 1.25 1.28 5.65 2.79
32 1.26 1.29 5.81 2.79
64 1.25 1.28 5.68 2.77

Table 1: Pixel error when matching annotated landmarks
across 1000 pairs of images from CelebA (MAFL test set).

Qualitative results. In fig. 4 we compute 64D embed-
dings with SmallNet models trained with or without DVE
on AFLWM images, visualising as in fig. 1 (left). With
DVE, matches are accurate despite large intra-class varia-
tions. Without DVE, embedding quality degrades signifi-
cantly. This shows that, by having a category-wide validity,
embeddings learned with DVE identify object landmarks
rather than mere visual descriptors of local appearance.

Figure 4: Learning 64D descriptors without/with DVE

Matching results. Next, we explore the ability of the em-
beddings learned with SmallNet to match face images. We
sample pairs of different identities using MAFL test (1000
pairs total) and consider two cases: First, we match images
x,x′ of the same identity; since multiple images of the same
identity are not provided, we generate them with warps as
before, so that the ground-truth correspondence field g is
known. We extract embeddings at the annotated keypoint
positions from x and match them to their closest neighbour
embedding in image x′ (searching all pixels in the target).
Second, we match images of different identities, again us-
ing the annotations. In both cases, we report the mean pixel
matching error from the ground truth.

Examining the results in table 1 we note several facts.
When matching the same identities, higher dimensional em-
beddings work better than lower (i.e. 3D), including in par-
ticular [45]. This is expected as high dimensional embed-
dings more easily capture instance-specific details; also as
expected, DVE does not change the results much as here
there are no intra-class variations. When matching dif-
ferent identities, high-dimensional embeddings are rather
poor: these descriptors are too sensitive to instance-specific

Method Unsup. MAFL AFLWM AFLWR 300W

TCDCN [56] × 7.95 7.65 – 5.54
RAR [50] × 7.23 – 4.94
MTCNN [55, 54] × 5.39 6.90 – –
Wing Loss [6]∗ × - - - 4.04

Sparse [46] X 6.67 10.53 – 7.97
Structural Repr. [54] X 3.15 – 6.58 –
FAb-Net [49]‡ X 3.44 – – 5.71
Def. AE [42] X 5.45 – – –
Cond. ImGen. [13] X 2.54 – 6.31 –
UDIT [14]† X - - - 5.37
Dense 3D [45] X 4.02 10.99 10.14 8.23
DVE SmallNet-64D X 3.42 8.60 7.79 5.75
DVE Hourglass-64D X 2.86 7.53 6.54 4.65

Table 2: Landmark detection results on the MAFL, 300W
and AFLW (AFLWM and ALFWR splits—see section 4.1
for details). The results are reported as percentage of inter-
ocular distance. ∗ report a more conservative evaluation
metric (see [6]), † and ‡ use different training data: Vox-
Celeb [30] and VoxCeleb+ (the union of VoxCeleb and Vox-
Celeb2 [2]) respectively.

details and cannot bridge intra-class variations correctly.
This justifies the choice of a low dimensional embedding
in [45] as the latter clearly generalises better across in-
stances. However, once DVE is applied, the performance of
the high-dimensional embeddings is much improved, and is
in fact better than the low-dimensional descriptors even for
intra-class matching [45].

Overall, the embeddings learned with DVE have both
better intra-class and intra-instance matching performance
than [45], validating our hypothesis and demonstrating that
our method for regularising the embedding is preferable to
simply constraining the embedding dimensionality.

Landmark regression. Next, as in [45] and other recent
papers, we assess quantitatively how well our embeddings
correspond to manually-annotated landmarks in faces. For
this, we follow the approach of [45] and add on top of our
embedding 50 filters of dimension 1 × 1 × C, converting
them into the heatmaps of 50 intermediate virtual points;
these heatmaps are in turn converted using a softargmax
layer to 2C x-y pairs which are finally fed to a linear re-
gressor to estimate manually annotated landmarks. The pa-
rameters of the intermediate points and linear regressor are
learned using a certain number of manual annotations, but
the signal is not back-propagated further so the embeddings
remain fully unsupervised.

In detail, after pretraining both the SmallNet and Hour-
glass networks on the CelebA dataset in a unsupervised



manner, we freeze its parameters and only learn the regres-
sors for MAFL [56]. We then follow the same methodology
for the 68-landmark 300-W dataset [40], with 3148 train-
ing and 689 testing images. We also evaluate on the chal-
lenging AFLW [20] dataset, under the 5 landmark setting.
Two slightly different evaluation splits for have been used in
prior work: one is the train/test partition of AFLW used in
the works of [46], [45] which used the existing crops from
MTFL [55] and provides 2,995 faces for testing and 10,122
AFLW faces for training (we refer to this split as AFLWM ).
The second is a set of re-cropped faces released by [54],
which comprises 2991 test faces with 10,122 train faces
(we refer to this split as AFLWR). For both AFLW parti-
tions, and similarly to [45], after training for on CelebA we
continue with unsupervised pretraining on 10,122 training
images from AFLW for 50 epochs (we provide an ablation
study to assess the effect of this choice in section 4.2). We
report the errors in percentage of inter-ocular distance in ta-
ble 2 and compare our results to state-of-the-art supervised
and unsupervised methods, following the protocol and data
selection used in [45] to allow for a direct comparison.

We first see that the proposed DVE method outperforms
the prior work that either learns sparse landmarks [46] or
3D dense feature descriptors [45], which is consistent with
the results in table 1. Encouragingly, we also see that our
method is competitive with the state-of-the-art unsupervised
learning techniques across the different benchmarks, indi-
cating that our unsupervised formulation can learn useful
information for this task.

4.2. Ablations

In addition to the study evaluating DVE presented
in table 1, we conduct two additional experiments to
investigate: (i) The sensitivity of the landmark regressor
to a reduction in training annotations; (ii) the influence of
additional unsupervised pretraining on a target dataset.

Limited annotation: We evaluate how many image anno-
tations our method requires to learn landmark localisation
in the AFLW dataset, comparing to Dense3D [45] (which
shares the SmallNet backbone architecture). To do so, we
vary the number of training images across the following
range: 1, 5, 10, 20 and up to the whole training set (10,122
in total) and report the errors for each setting in fig. 5. For
reference, we also include the supervised CNN baseline
from [46] (suppl. material), which consists of a slightly
modified SmallNet (denoted SmallNet+ in fig. 5) to make
it better suited for landmark regression. Where available,
we report the mean and std. deviation over three randomly
seeded runs. Further details of this experiment and the
SmallNet+ architecture are provided in the suppl. material.
While there is considerable variance for very small numbers
of annotations, the results indicate that DVE can produce
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Figure 5: The effect of varying the number of annotated im-
ages used for different methods on AFLWM , incorporating
the Supervised CNN baseline from [46] (suppl. material).

Backbone Embed. dim AFLWM 300W

SmallNet 3 11.82 / 11.12 7.66 / 7.20
SmallNet 16 10.22 / 9.15 6.29 / 5.90
SmallNet 32 9.80 / 9.17 6.13 / 5.75
SmallNet 64 9.28 / 8.60 5.75 / 5.58
Hourglass 64 8.15 /7.53 4.65 / 4.65

Table 3: The effect of unsupervised finetuning on landmark
regression performance (errors reported as percentage of
inter-ocular distance). Each table entry describes perfor-
mance without/with finetuning. All methods use DVE.

effective landmark detectors with few manual annotations.

Unsupervised finetuning: Next we assess the influence of
using unsupervised finetuning of the embeddings on a given
target dataset, immediately prior to learning to regress land-
marks. To do so, we report the performance of several mod-
els with and without finetuning on both the AFLWM and
300W benchmarks in table 3. We see that for AFLWM ,
this approach (which can be achieved “for free” i.e. without
collecting additional annotations) brings a boost in perfor-
mance. However, it is less effective for 300W, particularly
at higher dimensions, having no influence on the perfor-
mance of the stronger hourglass model.

4.3. Animal faces

To investigate the generalisation capabilities of our
method, we consider learning landmarks in an unsupervised
manner not just for humans, but for animal faces. To do this,
we simply extend the setX of example image to contain im-
ages of animals as well.

In more detail, we consider the Animal Faces
dataset [43] with images of 20 animal classes and about



Figure 6: Top: Five landmarks are manually annotated in the top-left image (human) and matched using our unsupervised
embedding to a number of animals. Bottom: same process, but using a cat image (bottom left) as query.

100 images per class. We exclude birds and elephants since
these images have a significantly different appearance on
average (birds profile, elephants include whole body). We
then add additional 8609 additional cat faces from [53],
3506 cat and dog faces from [35], and 160k human faces
from CelebA (but keep roughly the same distribution of an-
imal classes per batch as the original dataset). We train
SmallNet descriptors using DVE on this data. Here we also
found it necessary to use the grouped attention mechanism
(section 3.4) which relaxes DVE to project embeddings on
a set of auxiliary images rather than just one. In order to do
so, we include 16 pairs of images (x,x′) in each batch and
we randomly choose a set of 5 auxiliary images for each pair
from a separate pool of 16 images. Note that these images
have also undergone synthetic warps. Results matching hu-
man and cat landmarks to other animals are shown in fig. 6.
DVE achieves localisation of semantically-analogous parts
across species, with excellent results particularly for the
eyes and general facial region.

4.4. Roboarm

exchgQuery Dense3D Dense20D Dense20D DVEexchgexchgexchg

Figure 7: An example of descriptor matching on a pair from
the roboarm dataset, using blob centres in the first image to
locate them in a second image. We show 3D/20D descrip-
tors (columns 2/3) learned with the loss from [45]. The high
error of the 20D case is corrected by DVE (last column).

Lastly, we experimented on the animated robotic arm
dataset (fig. 7) introduced in [45] to demonstrate the appli-
cability of the approach to diverse data. This dataset con-
tains around 24k images of resolution 90× 90 with ground
truth optical flow between frames for training. We use the
same matching evaluation of section 4.1 using the centre of
the robot’s segments as keypoints for assessing correspon-
dences. We compare models using 3D and 20D embeddings

Dimensionality [45] + DVE - transformations

3 1.42 1.41 1.69
20 10.34 1.25 1.42

Table 4: Results on Roboarm, including an experiment ig-
noring optical flow (right).

using the formulation of [45] with and without DVE, and fi-
nally removing transformation equivariance from the latter
(by setting g = 1 in eq. (6)).

In this case there are no intra-class variations, but the
high-degree of articulation makes matching non-trivial.

Without DVE, 20D descriptors are poor (10.34 error)
whereas 3D are able to generalise (1.42). With DVE, how-
ever, the 20D descriptors (at 1.25 error) outperform the 3D
ones (1.41). Interestingly, DVE is effective enough that
even removing transformations altogether (by learning from
pairs of identical images using g = 1) still results in good
performance (1.42) – this is possible because matches must
hop through the auxiliary image set xα which contains dif-
ferent frames.

5. Conclusions
We presented a new method that can learn landmark

points in an unsupervised way. We formulated this problem
in terms of finding correspondences between objects from
the same or similar categories. Our method bridges the gap
between two seemingly independent concepts: landmarks
and local image descriptors. We showed that relatively
high dimensional embeddings can be used to simultane-
ously match and align points by capturing instance-specific
similarities as well as more abstract correspondences. We
also applied this method to predict facial landmarks in stan-
dard computer vision benchmarks as well as to find corre-
spondences across different animal species.
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