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Temporal Consistency Objectives Regularize the
Learning of Disentangled Representations
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Tsaftaris2

1 IMT School for Advanced Studies Lucca, Piazza S. Francesco,
Lucca 55100 LU, Italy

2 School of Engineering, University of Edinburgh, West Mains Rd,
Edinburgh EH9 3FB, UK

Abstract. There has been an increasing focus in learning interpretable
feature representations, particularly in applications such as medical im-
age analysis that require explainability, whilst relying less on annotated
data (since annotations can be tedious and costly). Here we build on re-
cent innovations in style-content representations to learn anatomy, imag-
ing characteristics (appearance) and temporal correlations. By introduc-
ing a self-supervised objective of predicting future cardiac phases we
improve disentanglement. We propose a temporal transformer architec-
ture that given an image conditioned on phase difference, it predicts a
future frame. This forces the anatomical decomposition to be consistent
with the temporal cardiac contraction in cine MRI and to have seman-
tic meaning with less need for annotations. We demonstrate that using
this regularization, we achieve competitive results and improve semi-
supervised segmentation, especially when very few labelled data are avail-
able. Specifically, we show Dice increase of up to 19% and 7% compared
to supervised and semi-supervised approaches respectively on the ACDC
dataset. Code is available at: https://github.com/gvalvano/sdtnet.

Keywords: Disentangled Representations · Semi-supervised Learning ·
Cardiac Segmentation.

1 Introduction

Recent years have seen significant progress in the field of machine learning and, in
particular, supervised learning. However, the success and generalization of such
algorithms heavily depends learning suitable representations [2]. Unfortunately,
obtaining them usually requires large quantities of labelled data, which need
expertise and in many cases are expensive to obtain.

It has been argued [3] that good data representations are those separating
out (disentangling) the underlying explanatory factors into disjoint subsets. As
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2 G. Valvano et al.

a result, latent variables become sensitive only to changes in single generat-
ing factors, while being relatively insensitive to other changes [2]. Disentangled
representations have been reported to be less sensitive to nuisance variables
and to produce better generalization [16]. In the context of medical imaging,
such representations offer: i) better interpretability of the extracted features; ii)
better generalization on unseen data; iii) and the potential for semi-supervised
learning [5]. Moreover, disentanglement allows interpretable latent code manip-
ulation, which is desirable in a variety of applications, such as modality transfer
and multi-modal registration [5, 10,13].

Medical images typically present the spatial information about the patient’s
anatomy (shapes) modulated by modality-specific characteristics (appearance).
The SDNet framework [5] is an attempt to decouple anatomical factors from their
appearance towards more explainable representations. Building on this concept,
we introduce a new architecture that drives the model to learn anatomical factors
that are both spatially and temporally consistent. We propose a new model,
namely: Spatial Decomposition and Transformation Network (SDTNet).

The main contributions of this paper are: (1) we introduce a modality in-
variant transformer that, conditioned on the temporal information, predicts fu-
ture anatomical factors from the current ones; (2) we show that the transformer
provides a self-supervised signal useful to improve the generalization capabilities
of the model; (3) we achieve state of the art performance compared to SDNet for
semi-supervised segmentation at several proportions of labelled data available;
(4) and show for the first time preliminary results of cardiac temporal synthesis.

2 Related Works

2.1 Learning good representations with temporal conditioning

The world surrounding us is typically affected by smooth temporal variations
and is known that temporal consistency plays a key role for the development
of invariant representations in biological vision [17]. However, despite that tem-
poral correlations have been used to learn/propagate segmentations in medical
imaging [1,12], their use as a learning signal to improve representations remains
unexplored. To the best of our knowledge, this is the first work to use spatiotem-
poral dynamics to improve disentangled representations in cardiac imaging.

Outside the medical imaging community, we find some commonalities of our
work with Hsieh et al. [7], who address the challenge of video frame prediction de-
composing a video representation in a time-invariant content vector and a time-
dependent pose vector. Assuming that the content vector is fixed for all frames,
the network aims to learn the dynamics of the low-dimensional pose vector. The
predicted pose vector can be decoded together with the fixed content features
to generate a future video frame in pixel space. Similarly, we decompose the
features space in a fixed and a time-dependent subset (modality and anatomy).
However, our objective is not merely predicting a future temporal frame, but we
use the temporal prediction as a self-supervised signal to ameliorate the quality
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of the representation: i.e. we constrain its temporal transformation to be smooth.
By doing so, we demonstrate that we can consistently improve the segmentation
capabilities of the considered baselines.

2.2 Spatial Decomposition Network (SDNet)

Here, we briefly review a recent approach for learning disentangled anatomy-
modality representations in cardiac imaging, upon which we build our model.

The SDNet [5] can be seen as an autoencoder taking as input a 2D image x ∼
X and decomposing it into its anatomical components s = fA(x) and modality
components z = fM (x). The vector z is modelled as a probability distribution
Q(z|X) that is encouraged to follow a multivariate Gaussian, as in the VAE
framework [9]. s is a multi-channel output composed of binary discrete maps. A
decoder g(·) uses both s and z to reconstruct the input image x̃ = g(s, z) ≈ x. An
additional network h(·) is supervisedly trained to extract the heart segmentation
ỹ = h(s) from s, while an adversarial signal forces ỹ to be realistic even when
few pairs of labelled data are available, enabling semi-supervised learning.

While SDNet was shown to achieve impressive results in semi-supervised
learning, it still requires human annotations to learn to decouple the cardiac
anatomy from other anatomical factors. Furthermore, it doesn’t take advantage
of any temporal information to learn better anatomical factors: as a result they
are not guaranteed to be temporally correlated.

3 Proposed Approach

Herein, we address the above limitations, by a simple hypothesis: components
s of different cardiac phases should be similar within the same cardiac cycle
and their differences, if any, should be consistent across different subjects. To
achieve this we introduce a new neural network T (·) in the SDNet framework
that, conditioned on temporal information, regularizes the anatomical factors
such that they can be consistent (e.g. have smooth transformations) across time.
Obtaining better representations will ultimately allow improved performance in
the segmentation task, too. T (·) is a modality-invariant transformer that ‘warps’
the s factors learnt by the SDNet according to the cardiac phase. Furthermore,
by combining the current z factors with the predicted s factors for future time
points, one can reconstruct the future frames in a cardiac sequence: e.g., given
time t1 < t2, we have x̃t2 = g(T (st1), zt1) ≈ xt2 . Our model is shown in Figure 1.
Below we focus our discussion on the design of the transformer and the training
costs, all other network architectures follow that of SDNet [5]. In the following,
t, dt are scalars, while remaining variables are considered as tensors.

3.1 Spatial Decomposition and Transformation Network (SDTNet)

The transformer T (·) takes as input the binary anatomical factors s (Figure
2) and their associated temporal information t. Under the assumption that the
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Fig. 1: SDTNet block diagram. The transformer (in yellow) predicts the future
anatomical factors conditioned on the temporal information. The future frame
can be generated by the decoder using s̃t+dt and the current z factor.

Fig. 2: Anatomical factors extracted by the SDTNet from the image on the left.

modality factors remain constant throughout the temporal dimension (e.g. the
heart contracting from extra-diastole to extra-systole), the transformer must de-
form the current anatomy st such that, given a temporal change dt, it estimates
st+dt, ie. the anatomy of image xt+dt when given as input. Using this prediction
s̃t+dt = T (st, t, dt) together with the fixed modality factors zt, we should be
able to correctly reconstruct the image at the future time point x̃t+dt. By cap-
turing the temporal dynamics of the anatomical factors, the transformer guides
their generation to be temporally coherent, resulting in a self-supervised training
signal, that is the prediction error of future anatomical factors.

3.2 Transformer design

After testing several architecture designs for the transformer, we found that the
best results could be obtained by adapting a UNet [14] to work with binary
input/output conditioned on temporal information on the bottleneck.

Temporal information, the tuple (t, dt), is encoded via an MLP consisting of
3 fully connected layers, arranged as 128-128-4096, with the output reshaped to
16 × 16 × 16. This information is concatenated at the bottleneck of the UNet
where features maps have resolution 16×16×64, to condition the transformer and
control the required deformation. To encourage the use of the temporal features
and retain the notion of the binary inputs, the features at the bottleneck and of
the MLP are bounded in [0, 1], using a sigmoid activation function.

We hypothesised that it would be easier to model differential changes to
anatomy factors. Thus, we added a long residual connection between the UNet
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input and its output. We motivate this by observing that the anatomical struc-
ture that mostly changes in time is the heart: thus learning the spatial trans-
formation should be similar to learning to segment the cardiac structure in the
binary tensor s: a task that the UNet is known to be effective at solving. The
output of the transformer is binarized again (key for disentanglement), as in [5].

3.3 Cost Function and Training

The overall cost function is the following weighted sum:

Loss = λ0 · LS + λ1 · LUS + λ2 · LADV + λ3 · LTR , (1)

where λ0 = 10, λ1 = 1 and λ2 = 10 as in [5], and λ3 = 1 found experimentally.

LS is the cost associated to the supervised task (segmentation) and can be
written as LS = LDICE(y, ỹ)+0.1·LCE(y, ỹ), where y and ỹ are the ground truth
and predicted segmentation masks, respectively; LDICE is the differentiable Dice
loss evaluated on left ventricle, right ventricle and myocardium, while LCE is
the weighted cross-entropy on these three classes plus the background (with class
weights inversely proportional to the number of pixels for the class).

LUS is the cost associated to the unsupervised task and can be decomposed
as LUS = |x̃ − x| + λKL · DKL[Q(z|X)||N(0, I)] − MI(x̃, z). The first term
is the mean absolute error between the input and the reconstruction, while the
second term is the KL divergence between Q(z|X) and a Normal Gaussian (with
λKL=0.1). The last term is the mutual information between the reconstruction
x̃ and the latent code z and is approximated by an additional neural network, as
in the InfoGAN framework [6]. By maximizing the mutual information between
the reconstruction and z, we prevented posterior collapse and constrained the
decoder g(·) to effectively use the modality factors.

LADV is the adversarial loss of a Least-Squares GAN [11], used to discriminate
ground truth from predicted segmentations in the unsupervised setting.

LTR is the loss associated to the self-supervised signal, computed as the differ-
entiable Dice loss between s̃t+dt and st+dt. This error serves as a proxy for the
reconstruction error of future cardiac phases |xt+dt − g(T (st), zt)|. In practice,
we find it much easier to train T (·) with a loss defined in the anatomy space
rather than one on the final reconstruction: in fact, the gradients used to update
the network parameters can flow into T (·) directly from its output layer, rather
than from that of the decoder g(·).

The model was optimized using the Exponential Moving Average (EMA): we
maintained a moving average of the parameters during training, and employed
their average for testing. The learning rate was scheduled to follow a triangular
wave [15] in the range 10−4 to 10−5 with a period of 20 epochs. Both EMA and
the learning rate scheduling facilitated comparisons, allowing to detect wider and
more generalizable minima (hence, reducing loss fluctuations). We used Adam [8]
with an early stopping criterion on the segmentation loss of a validation set.
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Fig. 3: Comparison of predicted segmentations obtained from the UNet, SDNet,
SDTNet after being trained with different percentages of the labelled data.

4 Experiments and Discussion

4.1 Data and Preprocessing

Data. We used ACDC data from the 2017 Automatic Cardiac Diagnosis Chal-
lenge [4]. These are 2-dimensional cine-MR images acquired using 1.5T and 3T
MR scanners from 100 patients, for which manual segmentations for the left ven-
tricular cavity (LV), the myocardium (MYO) and the right ventricle (RV) are
provided in correspondence to the end-systolic (ES) and end-diastolic (ED) car-
diac phases. ES and ED phase instants are also provided. We used a 3-fold cross
validation and randomly divided the data to obtain 70 MRI scans for training,
15 for validation and 15 for the test sets.
Preprocessing. After removing outliers outside 5th and 95th percentiles of the
pixel values, we removed the median and normalized the images on the interquar-
tile range, centering each volume approximately around zero.
Training. Since our objective was to introduce temporal consistency in the
anatomical factors rather then predicting the whole cardiac cycle, we split the
cine MRI sequences in two halves: i) temporal frames in the ED-ES interval; ii)
temporal frames from ES to the end of the cardiac cycle. The latter frames were
reversed in their temporal order, to mimic once again the cardiac contraction: as
a result, we avoided the inherent uncertainty associated to the transformations of
frames in the middle of the cardiac cycle. Finally, we applied data augmentation
at run-time, consisting of rotations, translations and scaling of each 2D slice.

4.2 Results

Semi-supervised segmentation We compared SDTNet to the fully super-
vised training of a UNet and to the semi-supervised training of SDNet in a seg-
mentation task, varying the percentage of labelled training samples. As Figure 3
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Labels UNet SDNet SDTNet Improvement

100% 80.03 ±0.38 85.11 ±0.73 85.83 ±0.40 0.72
25% 77.55 ±1.02 81.64 ±0.96 83.69 ±0.37 2.05*
12.5% 71.04 ±1.71 78.07 ±1.52 79.48 ±0.82 1.41*
6% 59.20 ±1.38 72.18 ±1.91 74.22 ±0.57 2.04*
3% 44.89 ±9.52 56.89 ±2.48 63.74 ±1.59 6.85*

Table 1: DICE scores comparing SDTNet and other baselines at various propor-
tions of available labeled data. The last column shows the average improvement
of SDTNet over SDNet. Asterisks denote statistical significance (p < 0.01).

x̃t=1 − x̃t=01.00.660.330.0Time

Fig. 4: Interpolation on the temporal axis between ED and ES phases. The im-
ages are obtained by fixing the modality-dependent factors zt=0 and using the
anatomical factors s̃t>0 predicted for future time points. In Acrobat, clicking on
the rightmost image animates frames showing the predicted cardiac contraction.

and Table 1 show, the SDTNet consistently outperforms the others, especially at
lower percentages of labelled pairs in the training set. Furthermore, SDTNet ex-
hibits lower variance in its predictions, so it’s more consistent. A paired Wilcoxon
test demonstrated most of these improvements to be statistically significant. We
find that the transformer forces the anatomical decomposition to follow more
“semantic” disentanglement even with little human annotations. This translates
to better segmentation results. While secondary to the thesis of the paper, both
the SDNet and the SDTNet outperform the UNet.
Cardiac synthesis Figure 4 shows that it is possible to predict future cardiac
phases from ED through ES by using the predicted anatomical factors s̃t>0

together with the modality factors zt=0. We note that this is the first attempt
of deep learning-based temporal synthesis in cardiac albeit preliminary. Note
that we train the transformer with both pathological and healthy subjects and
it thus predicts average temporal transformations. Conditioning also with prior
pathology information and validation of synthesis are left as future work.

5 Conclusion

We introduced a self-supervised objective for learning disentangled anatomy-
modality representations in cardiac imaging. By leveraging the temporal infor-
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mation contained in cine MRI, we introduced a spatiotemporal model in SD-
Net [5], improving its generalization capabilities in the semi-supervised setting
at several proportions of labelled data available. Also, the resulting approach
considerably outperforms the fully-supervised baseline, confirming the potential
for semi-supervised and self-supervised training in medical imaging.
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