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Abstract 

Hypoxia is a ubiquitous feature of cancers, encouraging glycolytic metabolism, 

proliferation and resistance to therapy. Nonetheless, hypoxia is a poorly defined term 

with confounding features described in the literature. Redox biology provides an 

important link between the external cellular microenvironment and the cell’s response 

to changing oxygen pressures. In this paper we demonstrate a correlation between 

intracellular redox potential (measured using optical nanosensors) and the 

concentrations of miRNAs involved in the cell’s response to changes in oxygen 

pressure. The correlations were established using surprisal analysis (an approach 

derived from thermodynamics and information theory). We found that measured 

redox potential changes reflect changes in the free energy computed by surprisal 

analysis of miRNAs. Furthermore surprisal analysis identified groups of miRNAs, 

functionally related to changes in proliferation and metastatic potential that played the 

most significant role in the cell’s response to changing oxygen pressure.  
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Significance statement 

 

Cancer is associated with low-oxygen cellular environments. Yet a better 

understanding of the connection between the amount of oxygen in a cell’s 

microenvironment and its behavior is much needed. By optical measurements we 

have characterized how the redox chemistry and the intracellular redox potential of 

cells respond to changes in oxygen pressure. Through surprisal analysis (a technique 

based on thermodynamics) we were able to identify changes in cellular signaling 

molecules (miRNAs) that correlate with redox changes and found that at low oxygen 

conditions these miRNAs are associated with tumor spread and survival. The changes 

in miRNA expression were used to quantify the free energy variations with oxygen 

pressure, variations that reflect the changes in the measured intracellular redox 

potential.   

  



 4 

Introduction 

The tumor microenvironment can have a profound effect on the molecular 

landscape of cells, influencing phenotype at epigenetic, transcriptional and post-

transcriptional levels.(1) A better understanding is needed regarding the chemical 

drivers of these changes and in particular the mechanisms that link 

microenvironmental changes with changes in molecular phenotypes. Hypoxia, a lack 

of oxygen, is associated with tumor microenvironments and is thought to drive 

proliferation and resistance to therapy. Understanding the connection between 

hypoxia and tumor progression could equip us with the knowledge to improve the 

efficacy of existing therapies, such as radiotherapy, and to design and screen new 

therapies.(2, 3, 4) There is disagreement in the literature regarding hypoxia and its 

role in the redox chemistry of the cell:(5) while some studies indicate that the cellular 

environment becomes more oxidative as a consequence of hypoxia,(5, 6) others claim 

that hypoxia imposes a reductive stress on cells.(7) A possible source of this 

confusion may be the large range of oxygen pressure quoted in the literature as 

representing hypoxia, for example four recent publications quote hypoxic oxygen 

pressures ranging from 5% to 0.2%.(8–11) It may be more useful to benchmark 

hypoxia against in vivo oxygen pressures where tumors typically have oxygen 

pressures < 2%, and healthy tissues have oxygen pressures between 4% and 6%.(12) 

Furthermore, a subtle aspect to this controversy is the question of whether the 

common measures of “redox status” e.g. measurements of reactive oxygen species 

(ROS) or nitroreductase activity report on redox status as a cellular global parameter 

or on a local concentration of particular analytes. Here we demonstrate that 

intracellular redox potential (IRP) is a key parameter through which hypoxic 
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microenvironments affect the expression of signaling molecules that coordinate the 

cell’s response to hypoxia. 

IRP is a function of the concentration of all the oxidants and reductants in the 

cell and is a global measure of how oxidative an environment is.(13) Where common 

fluorescent reporters typically give information on a local concentration of e.g. 

reactive oxygen species, our novel-class of SERS nanosensors quantitatively measure 

a redox potential.(14) We have previously used these sensors to measure drug and 

nanoparticle toxicity in 2D culture,(7, 15) measure the effects of drugs and 

radiotherapy in 3D culture,(4, 16) and have multiplexed pH and redox potential 

measurements using complementary SERS sensors.(16–18) We have characterized 

the interaction of the sensors with various cell lines (7, 14-18) and with MCF7 cells in 

particular (17). In these publications we have shown that the particles localize to the 

cytoplasm and do not affect cell viability.  

 

 

The central concept of our investigation is that IRP (E) is a measure of the free energy 

(ΔG) of a cell (since ΔG = -n F E where n is the number of electrons transferred and 

F is the Faraday constant) and a change in this experimentally determined free energy 

(in response to changing oxygen pressure) should correlate with a free energy change 

associated with the cell’s adaptation (e.g. change in the concentrations of signaling 

molecules such as miRNAs). Here we determine how cellular redox potential, E, 

changes in cells exposed to a range of 21% to 1% oxygen. By using surprisal analysis 

(SA),(20, 21) a thermodynamics and an information-theory-based approach, we 

identify links between changes in the redox potential and in miRNA expression levels 

as a consequence of changes in oxygen pressure.  
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SA is based on the principle that molecular systems are bound by constraints that 

prevent the system from reaching its maximal possible entropy. In cells, these 

constraints represent biological pathways that exist as a profile of analyte (metabolite, 

protein, RNA) abundances and which change in response to (for example) 

environmental or genetic perturbations. SA takes a matrix of analyte concentrations 

vs. oxygen pressures and by natural log (ln) transformation converts it to a matrix of 

chemical potentials vs. oxygen pressures. SA seeks to represent the data in the manner 

shown in Equation [1]. Using the mathematical tool of singular value decomposition 

(SVD),(21) we can analyze this matrix to identify two features, the analytes 

associated with a constraint and the overall importance of that constraint for every 

oxygen pressure p. The importance of a constraint 𝛼 is given by a Lagrange multiplier 

 (i.e. constraints with  furthest from zero are those most important in 

defining the cell’s response to a change in oxygen pressure, p). The set of analytes 

associated with a constraint i are represented as a vector with components  (i.e. 

analytes with values of  furthest from zero are those which contribute most to the 

constraint). SA was used here to identify miRNAs that play an important role in 

determining the cell’s response to changes in oxygen pressure by first determining the 

thermodynamic reference referred to as “the balanced state” which is the collection of 

analyte levels that are invariant with oxygen pressure (Equation 1).  

 

l
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  [1] 

As shown in equation [1], there will be separate contributions from the 

balanced state and from each of the deviations. The minimal work needed to drive the 

system from the balanced state to an activated state can be written 

as:   ∑ 𝑋𝑖𝑖 (𝑝) ln [𝑋𝑖(𝑝) 𝑋𝑖
0⁄ (𝑝)] .(22) Thereby SA enables the free energy of the 

system to be computed and this enables a direct comparison with the changes in free 

energy measured via IRP. Furthermore, SA allows us to identify the analytes that 

contribute most to the changes in free energy (those with the largest  in Eq. [1]). 

By comparison, established techniques for analysis of miRNA expression changes 

identify pairwise differences between (for example) 1% O2 and 21% O2, and do not 

identify collective behavioral patterns across a set of conditions. Furthermore, a 

limitation of clustering techniques is that strong signals often dominate the outcome 

by masking species present in low concentrations that are potentially important in the 

cell’s behavior.  

 

In this paper we found that redox potential becomes more reductive as the 

pressure of oxygen decreases and found an excellent correlation between the 

computed free energy (on the basis of miRNA concentrations) and the free energy 

from the directly measured redox potential. This approach defines new links between 

redox potential and miRNA signalling and identifies the miRNAs whose 

G
ia
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concentration profiles contribute most to the changes in free energy and the cell’s 

adaptation to hypoxia.  
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Results 

Measurements of the Intracellular Redox Potential from 21% to 1% O2. In order 

to measure IRP in the cytosol of MCF7 cells grown under varying O2 pressures, we 

built a homemade device that allowed cells maintained in conditioned media, at a 

defined O2 pressure, to be imaged through a MgCl2 window (with low intrinsic Raman 

background) (SI Appendix, Fig. S1). We made measurements between 1 and 4% 

oxygen because they are representative of in vivo concentrations and at 21% because 

it is the most common choice when culturing cells for biomedical research. 

Nanoshells (NS) were functionalized with the redox-active reporter, N-[2-({2-[(9,10-

dioxo-9,10-dihydroanthracen-2-yl)formamido]ethyl}disulfanyl)ethyl]-9,10-dioxo-

9,10-dihydroanthracene-2-carboxamide (referred to as AQ). AQ undergoes a 

reversible 2e-, 2H+ redox reaction (Figure 1A), resulting in a change in molecular 

structure and Raman fingerprint. AQ is sensitive to changes in redox potential in the 

hypoxic range between -250 and -400 mV vs. NHE,(7, 17) and redox-sensitive peaks 

report on the oxidation state through a change in peak intensity. Figure 1B shows the 

signals at 1666 cm-1 and 1606 cm-1 which correspond to the (redox sensitive) quinone 

C=O stretch and (not redox-sensitive) amide stretch/symmetric ring breathing, 

respectively. As cellular pH affects the overall redox potential, cells were also 

incubated with NS functionalised with the pH-sensitive reporter para-

mercaptobenzoic acid (MBA) which has been shown previously to be sensitive to pH 

changes between 5.5 and 8.5. (16–18, 23) ANOVA analysis revealed no significant 

difference in pH between different conditions (Table S1) and we have therefore not 

adjusted the measured redox potential measurements as a result of pH.  
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Figure 1. SERS Nanosensors measure intracellular redox potential. A Schematic 

showing the change in structure associated with oxidation/reduction. B Spectrum of 

the oxidised (red) and reduced (black) form of the nanosensor. C Intracellular Redox 

potentials measured in MCF7 versus pO2, error bars represent the standard deviation 

of 3 independent measurements. Lowercase letters as labels signify a p-value < 0.05 

for a paired t-test versus 21% (a); 4% (b); 3% (c); 2%(d). 

 

As shown in Figure 1C, the trend in measured IRP is a decrease from 21-2% O2 

followed by an increase from 2-1% O2. Pairwise t-tests indicated that both the drop in 

IRP towards 2% O2 and that the increase between 2% and 1% are statistically 

significant. The overall downward trend in IRP is in line with the expectation that a 

less oxidative extracellular environment should result in a more reductive intracellular 

environment. In order to investigate whether IRP changes reflect changes in 

metabolism, we measured the concentration of ROS and selected metabolites across 

the same set of O2 pressures (SI Appendix, Fig. S2). The trend shows that ROS, 

glucose, taurine and lactate increase significantly between 21% and 4% before either 

plateauing or decreasing gradually towards 1%. The opposite trend can be seen in the 

concentrations of amino acids such as alanine, tyrosine and phenylalanine which drop 

between 21% and 4% and then plateau. As a control, we measured metabolite 

concentrations of cells grown at 1% O2, 21% O2 and at 21% O2 treated with rotenone 

(an inhibitor of oxidative phosphorylation). When rotenone was used to inhibit 

oxidative phosphorylation at 21% oxygen, the NMR analysis showed a similar 

increase in metabolites such as lactate and decrease in amino acids such as alanine 

and glutamine. These results suggest a change in metabolism towards glycolysis since 
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less oxygen is being used to make energy, lactate is being produced and glucose 

uptake is increased to feed the less efficient energy requirements of glycolysis. An 

important point to note is that these data demonstrate not only that IRP and ROS are 

not equivalent but also that there are significant differences in the manner in which 

they change in response to changing O2. While the reasons for the differences 

between IRP and ROS remain to be fully elucidated, it is worth reiterating that the 

nature of the measurements is different – IRP is a thermodynamic parameter that is a 

function of many oxidant and antioxidant concentrations, fluorescent reporters of 

ROS only measure a single component of the system. In the context of a switch from 

oxidative phosphorylation to glycolysis at lower O2 pressures, it is not surprising that 

a decreased metabolic demand for oxygen leads to higher ROS levels, however our 

results also suggest that the switch produces a compensatory increase in antioxidants 

(e.g. NADPH) that leads to a reduced IRP. Such differences underline the need for 

caution when using ROS measurements to discuss redox mechanisms and when 

generalizing on the effects of hypoxia based on measurements made at a single 

oxygen pressure.  

 

Measurement of miRNA abundance across a range of O2 pressures. 

 

To correlate IRP measurements with cell signaling in response to hypoxia, we 

measured miRNA expression using Nextgen sequencing. As post-transcriptional gene 

regulators, miRNAs play important roles in signaling the cell’s response to 

environmental stresses and several miRNAs have well documented roles in regulating 

the response to hypoxia.(24) We identified 610 miRNAs with a measurable 

expression level in MCF7s and used SA to look for patterns of collective activity of 

the miRNAs across the range of O2 pressures used in this study. We first used SA to 



 12 

identify the balanced state which should be independent of oxygen pressure (Eq. [1]). 

In a biological context, the molecules most expressed in the balanced state can be 

considered as having a function unrelated to O2 pressure. Figure 2A shows the 

magnitude of its Lagrange multiplier 𝜆0(𝑝)  (which is a measure of its potential) 

versus oxygen pressure.  

 

Figure 2 The balanced state is independent of the pressure of oxygen. A - λ0 vs. pO2 

is essentially constant within the error bars; B – expression of the dominant miRNAs 

in the balanced state vs pO2.  

 

𝜆0(𝑝) should be invariant with pO2 (which within the bounds of the error bars it is) 

and since its magnitude is higher than for any other 𝜆𝛼 (see below) it is the major 

contributor to the free energy of the cell. These two factors are further illustrated by 

the fact that the most heavily weighted miRNA members of the balanced state are 

highly expressed and display very little variation in concentration as a function of 

oxygen pressure (Figure 2B). 

SA also identifies four other constraints (𝜆1 − 𝜆4) where the miRNA distribution is 

deviant from the stable state. The weights of the contributing different constraints are 

shown in Figure 3A and it is clear that each one of 𝜆1 to 𝜆3 changes sign as a function 

of oxygen pressure. It can be seen from Eq. [1] that if 𝜆𝛼(𝑝) changes sign between 

two pressures it signifies that a miRNA that was highly expressed has become less 

expressed and this suggests that within the pO2 range investigated, there are regimes 

in which different collections of miRNAs play important roles (rather than e.g. an 

even transition from high expressed to low expressed across the range).  (For each 
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constraint only those values where the error bars do not span zero are shown in Figure 

3A).  

We can further confirm which constraints are most important at which oxygen 

pressures by examining the quality of fit to the data. Since adding terms to the right 

hand side in Eq. [1] improves the quality of the fit to the data,(21) we can determine 

which 𝜆𝛼(𝑝)  is most important at a particular oxygen pressure by asking which 

constraint(s) we should add to get the best fit. For example, at 1% O2, addition of 𝜆3 

gives the best fit as shown in Figure 3B. At 2% the addition of 𝜆1 gives the best fit 

and at 4% and 21%, both 𝜆1 and 𝜆2  are needed to give the best fit (SI Appendix, Fig. 

S3).  

Figure 3C shows the work done by each of the dominant constraints at the relevant 

oxygen pressure to deviate the distribution of miRNAs from the balanced state and 

this mirrors the trend in the redox potential (the Pearson Correlation Coefficient 

between these datasets is 0.407). Importantly, this shows the direct link between the 

experimentally measured free energy (based on the measurement of the redox 

potential E) and the computed free energy (based on the surprisal analysis of the 

miRNA concentrations).  

 

Figure 3  Measurement of the constraints associated with change in Oxygen pressure. 

A – The values of λ1 − λ4 vs. % O2. B- addition of λ3 to the stable state improves the 

fit of the data at 1% O2. C – Left ordinate: Work done to deviate the miRNA 

distribution from its balanced state. Right ordinate: - measured  IRP, E. Error bars 

show standard deviations calculated from 3 biological replicates. D – Expression level 

of miRNA i in constraint 1, drawn in descending order for each of the miRNAs. 
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We reiterate that, as shown in figure 3A, the weights  of the contribution of 

different constraints are O2 dependent, are different for different constraints, and can 

change sign as the pO2 is changed. A change of sign between pressures means that if a 

given miRNA is over expressed in a particular constraint at one pressure it will be 

under expressed at the second pressure.  

 

To illustrate what a constraint means in biological terms, Figure 3D shows a plot of 

for each of the 610 miRNAs for the constraint . The miRNAs that 

contribute most to this constraint (with G’s furthest from zero) are those at the two 

ends of the distribution while those in the flat portion of the graph contribute least. To 

build upon this view we now discuss those miRNAs that contribute most to each 𝜆𝛼. 

The five miRNAs with the most positive value of  𝐺𝑖𝛼 and the five miRNAs with the 

most negative value of  𝐺𝑖𝛼 are shown in Figure 4 for 𝜆1 −  𝜆3. Each column in figure 

4 shows the range of oxygen pressures where 𝜆𝛼(𝑝) changes sign for . 

 

Figure 4 The miRNAs identified as contributing most to the three constraints. Each 

column, is identified by the constraint index 𝛼: A and D  𝛼 = 1;  B and E  𝛼 = 2; C 

and F  𝛼 = 3. The top row (A – C)  are expression levels of the five miRNAs with the 

most positive value of their weight, 𝐺𝑖𝛼  in constraint 𝛼. The bottom row (D – F) are 

the expression levels of the five miRNAs with the most negative value of their 

weight, 𝐺𝑖𝛼 in constraint 𝛼.  The abscissa is the Oxygen pressure range over which 

𝜆𝛼(𝑝) changes sign. Error bars represent the standard deviation of three biological 

replicates.  

 
la (p)

  
Gi1 a =1

a =1,2,3
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The first column in figure 4 (A and D) shows expression levels of miRNAs that 

contribute most to the first constraint, 𝜆1(𝑝) . As seen in Figure 3A 𝜆1(𝑝)  has a 

negative sign above 4% which changes to positive sign at 2%. This change of sign 

and the corresponding change in the expression levels signify the importance of 

𝜆1(𝑝), in the adaptation from 4% to 2% oxygen. This range of oxygen pressures 

incorporates pressures that are physiologically relevant to tissues as well as being 

pathologically relevant to tumors.(12) Looking at the two groups separately, members 

of the first group (𝐺𝑖,𝛼=1 > 0, Figure 4A) have clear functional parallels that correlate 

an increase in expression with the proliferative phenotype of tumors. The most 

heavily weighted and well characterized of these are discussed here, in particular, 

miR-210 has been shown to promote metastasis and invasion in prostate cancer by 

targeting NF-κB signaling.(25) miR-675 has been shown to be upregulated in 

Hepatocellular Carcinomas (HCC) patient samples and cell lines and correlates with 

high levels of Alpha Fetoprotein (a superoxide dismutase) - it is thought to play a role 

in cell cycle regulation and epithelial to mesenchymal transition through targeting 

Twist1.(26) miR-483 has been found to be upregulated in gastric cancer tissues and in 

cell cultures has been shown to promote proliferation and invasion, its elevation in 

Pancreatic Ductal Adenocarcinoma has been correlated with poor prognosis.(27)  

Members of the group whose expression drops from 4% to 2% oxygen (𝐺𝑖,𝛼=1 < 0, 

Figure 4D) have documented functional characteristics that relate a decrease in 

expression with a switch towards a more malignant tumor phenotype. For example 

miR-381 suppresses growth and proliferation in HCC and Osteosarcoma and is 

thought to target WNT signaling through downregulation of LRH1 and 

Hes1.(28),(29)  miR-2278 has been reported as having tumor repressor activity 

through targeting AKT2, STAM2, and STAT5A.(30) miR-485 is downregulated in 
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cancers including HCC and metastatic breast cancer tissue and is thought to inhibit 

proliferation through targeting PGC-1α.(31, 32) Taken together the two groups of 

miRNAs point towards an increase in proliferative and metastatic phenotype as the 

oxygen pressure falls from the physiological level (4%) to more pathological level 

(2%). This very clear thermodynamic-like transition mirrors that previously seen 

using measurements of phosphorylated proteins at the single-cell level.36 

The second constraint, 𝜆2(𝑝), contributes only at the two highest pressures and it 

changes sign between pressures of 4% and 21%. It is again clear in this case that the 

miRNAs most heavily weighted in this constraint have a distinct change in 

concentration between 4% and 21% (Figure 4B and 4E). While 21% oxygen is 

commonly used to culture cells in vitro it is a much higher pressure than experienced 

by tissues in vivo and thus these miRNAs may highlight the differences between a 

physiological oxygen level (4%) and a non-physiological stress (21%). 

These two groups identified by the constraint 𝛼 = 2, again have documented roles in 

regulating proliferation or survival. For those where 𝐺𝑖,𝛼=2 > 0 (Figure 4B), miR-

1185 induces apoptosis in endothelial cells by targeting UVRAG and KRIT1 and 

miR-889 and miR-758 appear to play complementary roles in the regulation of 

proliferation by targeting DAB2IP and MTOR respectively. In the group whose 

concentration drops from 21% to 4%  (𝐺𝑖,𝛼=2 < 0, Figure 4E) miR-675 is upregulated 

in carcinomas (as previously discussed), miR-1293 may promote metastatis through 

regulation of MMP activity and miR-653 promotes proliferation through targeting 

TRIM9 (a ubiquitin ligase). Mir-1274 has multiple documented roles including 

suppression of tumor growth through targeting Wnt and activation of metastasis 

through activation of tumor associated macrophages. 
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The third constraint, 𝜆3(𝑝), contributes only at 1% oxygen, suggesting that it plays a 

role in adaptation to the more extreme hypoxic conditions found in cancers such as 

prostate and pancreas. Other than those already discussed (miR-3651, miR-210, miR-

2278, miR-381), miR-1290 and miR-4435 are known to promote tumor growth and 

miR-602 has been shown to inhibit proliferation. For the remainder, their function is 

less well described in the literature but our findings may allow predictions to be made 

regarding their potential role in cancer pathogenesis. 

To investigate whether the miRNAs identified by SA also correlate with ROS we 

measured the Pearson Correlation Coefficient between individual miRNA 

concentrations and ROS concentrations (Table S2). While the highest ranking 

miRNAs have no overlap with those discussed above, some of these miRNAs do 

share characteristics: two of the top six are from the let-7 family and are thought to 

act as tumor suppressors and three of the top six (miR-769, miR-1306 and let-7g) are 

thought to target TGF-β signaling suggesting a link between ROS and specific 

pathways.   

The close correlation between the free energy derived from IRP and that calculated 

from miRNA profiles suggests a mechanistic link. For example the concentration 

profile of the miRNAs for which 𝐺𝑖,𝛼=1 < 0  across all pO2 shows a very strong 

correlation with redox potential (SI Appendix, Fig. S4 and Table S3). This correlation 

suggests that redox potential may play a role in regulating transcription of the miRNA 

loci, perhaps via modulating the oxidation state of amino acids such as cysteine in 

transcription factors. Indeed many of the known transcription factors for this group 

are known to be redox-sensitive, including numerous zinc-finger proteins, NRF2 or 

YAP (detailed in Table S4) and this idea warrants further investigation, for example 

using transcriptomic, targeted proteomic and imaging experiments.(19, 33)  
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Our finding that 3 distinct constraints contribute to the cell’s response to a decrease in 

oxygen pressure highlights that hypoxia is measurably different depending on the 

oxygen pressure at which you investigate it.  Our finding that the major change in free 

energy between 4% and 2% oxygen coincides with a change in miRNA expression 

associated with increased pathogenesis correlates well with previous findings that 

hypoxia induces a change in kinase signaling networks between these pressures,(33) 

and that hypoxia drives resistance to therapy in some cancers.(34)  

To summarize, our findings demonstrate that redox potential becomes measurably 

more reductive as oxygen pressure falls. While this correlates with changes in 

metabolism, the changes are not well correlated with the changes in ROS (a 

commonly measured surrogate of redox potential).  Through the use of surprisal 

analysis we demonstrate that the measurable free energy change (from redox potential 

measurements) directly mirrors the computed free energy change through analysis of 

miRNA levels. We also identified groups, (as identified by SA), of miRNAs whose 

free energy change contributes most to the cell’s adaptation to hypoxia. In particular 

we identified groups of miRNAs whose function relates to changes in proliferation 

and metastatic potential. These findings underline the important role that oxygen and 

tumor microenvironment play in driving pathogenesis. The correlation between redox 

potential and miRNA expression underlines the important role that redox reactions 

play in relaying microenvironmental changes to the genome. 
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Materials and Methods: 

Cell culture. Human breast adenocarcinoma (MCF7) cells were grown in Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 10 % heat-inactivated fetal 

bovine serum (FBS), 10,000 units/mL penicillin-streptomycin, and L-glutamine (200 

mM). Cells were seeded at a density of 1x105 cells/mL and were grown at 37°C under 

humidified atmosphere (5% CO2). All cell culture reagents were purchased from 

Invitrogen, UK. 

 

Metabolite extraction. Cells were incubated at 1, 2, 3, 4, or 21 % O2 for 24 hours 

before being washed twice with ice-cold PBS (10 mL). MeOH:CHCl3:H2O (1:1.5:0.7 

mL) was added before vortexing for 60 s. All samples were centrifuged at 1000 x g 

for 10 min.  The aqueous layer was pipetted into a vial and the solvent was removed 

under nitrogen. The polar extracts were reconstituted in pH 7.4 sodium phosphate 

buffer (0.1 M, 600 μL) containing 100 % D2O, to minimise variations in pH, and TSP 

(50 nM) as a reference. The process was carried out in a hypoxia incubation chamber. 

NMR analysis. Samples were run on a Bruker Advance 600 MHz spectrometer. 

Topspin 2.1 was used to acquire spectra using software implementation of digital 

filters, which produced flat baselines but resulted in the reduction of the signal-to-

noise ratio by 25 %. Relaxation and acquisition times of 2 s and 1.36 s, respectively, 

and a NOE mixing time of 10 ms were used. Pulsed field gradients were set to 50 % 

and -10 % of 50 Gauss/cm. 356 scans were accumulated into each spectrum. Each 

NMR spectrum was normalised to the spectrum with the highest total peak integral in 

order to correct for slight differences in cell numbers between samples. 

Small RNA library preparation and analysis. Triplicate samples for each O2 

pressure of MCF7 cells were cultured and extracted, once confluent, using the 
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MiRNeasy Mini Kit (Qiagen). The integrity of RNA was determined using a 

Bioanalyser 2100 Nano LabChip kit (Agilent Technologies) with all samples 

providing a RIN≥8.8. Small RNA libraries were prepared using the CleanTagTM kit 

(Trilink) and libraries pooled prior to sequencing a HiSeq4000 (Illumina). Raw fastq 

sequences required further pre-processing to remove contaminating primers etc., 

which was done using cutadapt software 

(http://cutadapt.readthedocs.io/en/stable/).  Trimmed sequences were collapsed within 

each sample to generate a non-redundant set of fasta sequences (singletons were not 

included).  The reference genome used for alignment was the latest version of the 

human genome (hg19); only full-length perfect match (FLPM) sequences were kept. 

Sequences aligning to the human genome were subsequently used as input for 

a mirDeep2 analysis (https://www.mdc-berlin.de/8551903/en/). The analysis used 

human mature (3p and 5p forms) and precursor sequences obtained 

from mirBase (release 21, http://mirbase.org/).  Raw "tag counts" (i.e. sequences 

aligning) were obtained for 1427 different mature miRNAs.  miRNAs with an average 

read count per sample fewer than 5 were discarded, leaving 610 loci.  The counts 

within each sample were normalised by conversion to abundances, which were then 

multiplied by one million to generate a reads set, one count added to all to preclude 

zero counts instances.  This dataset was used as input for surprisal analysis. 

 

Nanoshell (NS) functionalisation. For IRP measurements, NS were incubated 

overnight in 100 μM AQ(7) dissolved in 1% DMSO. Functionalised AQ-NS were 

washed 3 times with water. For pH measurements, NS were incubated overnight in 

100 μM 4-mercapto benzoic acid (MBA) dissolved in ethanol. Functionalised MBA-

NS were washed 3 times in water. NS (resonant at 782 nm) were purchased from 



 21 

Nanospectra Biosciences and have a diameter of 150 nm constituting a 25 nm gold 

shell.  

SERS measurements. Approximately 75,000 cells were seeded on a MgCl2 imaging 

window and incubated overnight at 37 °C and fixed O2 pressure. Functionalized AQ–

NS (10 fM) or MBA-NS (10 fM) were added to FCS-free DMEM incubated with 

cells overnight. Fresh PBS and media were also incubated overnight under same 

conditions. The following day, cells were then rinsed with pre-conditioned PBS to 

remove excess AQ–NS or MBA-NS in the medium. The imaging window was 

assembled into a homemade imaging device into which media, pre-conditioned at a 

predetermined O2 pressure, was injected. The device was designed to keep cells at a 

fixed O2 pressure with no air bubbles. A Renishaw inVia Raman Microscope and 

Spectrometer equipped with a 785 nm diode laser in line focus mode was used for 

obtaining SERS spectra. A large map of a cell was analysed using a 1 s acquisition, 

delivering 12.8 mW laser power. The spectra were processed using Origin8.5 and 

Matlab. Baseline subtraction was performed followed by extraction of peak areas of 

interest using published Matlab scripts.(15) AQ-NS is most sensitive to changes in 

redox potential between -250 and -400 mV vs. NHE. (18, (7) Redox potential was 

calculated from the SERS spectra using a previously published routine, which 

measures the ratio of the peaks at 1666 cm-1 and 1606 cm-1 and compares them to 

calibration data generated using spectroelectrochemistry (spectra whose intensity at 

1606 cm-1 were below 100 counts were discarded).(7, 17) SERS maps were generated 

and where multiple pixels within a cell contained SERS spectra (as a result of 

multiple nanosensors per cell) an average spectrum was used (in the data shown, at 

least 10 spectra were used to generate an average per cell). At least 3 separate cells 

were measured to generate an average redox potential at a given oxygen pressure. The 
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same procedure was used to measure pH, the only difference being that the reporter 

molecule was MBA. MBA-NS are most sensitive to changes in pH between 5.5 and 

8.5.(17, 18) SERS spectra were collected, processed and baselined as above.(15, 17) 

For the peak at 1580 cm-1, spectra with < 200 counts were rejected. pH was calculated 

by measuring the peaks 1400 cm-1 and 1590 cm-1 and comparing to calibration data as 

documented previously.(15, 17) At least 3 separate cells were measured to generate 

an average intracellular pH at a given oxygen pressure. 

 

ROS measurements. For each O2 pressure, five cell culture flasks were seeded to a 

total density of 3x106 cells. Cells were incubated at 1, 2, 3, 4 or 21 % O2 for 24 h. 

Once confluent, cells were washed twice with PBS (10 mL), trypsinised and 

centrifuged. Fresh media was added to all flasks. H2DFFDA (10 µM) was added to 

four of the samples. H2O2 (0.03%) was added to one sample (as a positive control) 

and one was left untreated of both reagents (as a negative control). All samples were 

covered with foil and incubated for 1 h at 37 °C and a given pressure of O2. After 

incubation, the samples were centrifuged for 4 min at 2000 x g before being washed 

twice and resuspended in PBS (5 mL). Fluorescence measurements were taken using 

a Jobin Yvon Spex Fluoromax spectrofluorometer at an excitation of 492 nm. The 

peak emission of H2DFFDA at ~525 nm was monitored.  

Surprisal analysis.  

The use of surprisal analysis in redox chemistry merits discussion of relevant key 

details. More technical aspects of SA,(36,37) in particular the computation of error 

bars,(36) are discussed together with the experimental methods that we use in the in 

the first section of the Supplementary Information, SI, file.  
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Given the logarithmic representation of the abundances as in Equation [1] one can 

compute the free energy of the system and compare it to the free energy changes as 

measured via the redox potential measurements. There will be two contributions, the 

free energy of the stable state and that of deviations from it. The second contribution 

can be written ∑ 𝑋𝑖(𝑝)ln [𝑋𝑖(𝑝) 𝑋𝑖
0(𝑝)⁄ ]𝑖 . This is the (minimal) work needed to drive 

the system from the stable state to its actual state.(22) Each term in the sum is the 

contribution of a particular analyte and the work can be written as a sum over the 

constraints, DG p( ) =
a=1,2,...

å la p( ) Ga

p
. Ga

p
  is the mean value of the 𝐺𝑖𝛼’s 

computed over the abundances 𝑋𝑖, 

  

Ga
p
=

i

å Xi( p)Gia . Technically, the 𝜆𝛼’s are 

Lagrange multipliers. If some 𝜆𝛼  la p( )  equals zero then the constraint is not 

relevant at this pressure p because it does not change the abundance level as seen in 

equation [1]. Due to the unavoidable experimental noise there is an error in 

determining the
 
𝜆𝛼’s from the experimental data. If that error bar spans zero then, to 

within experimental accuracy that 𝜆𝛼  should be taken to equal zero and then that 

constraint does not contribute to the free energy.  

The major term in the free energy is that of the stable state itself. To have a uniform 

notation we formally add a zeroth constraint and thereby write ln 𝑋𝑖
0 (𝑝) = 𝜆0(𝑝)𝐺𝑖0. 

Then the free energy of the stable state can be written as for the other constraints, 

l0 p( ) G0

p
 In much of cell biology the stable state is the major contributor to the 

free energy and this is also the case here.(37) This is a reflection of the inherent 

stability of the cell state even when it is a cancer cell. 
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