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SUMMARY

Chondrolectin (Chodl) is needed for motor axon
extension in zebrafish and is dysregulated in mouse
models of spinal muscular atrophy (SMA). However,
themechanistic basis ofChodl function is not known.
Here, we use Chodl-deficient zebrafish and mouse
mutants to show that the absence of Chodl leads to
anatomical and functional defects of the neuromus-
cular synapse. In zebrafish, the growth of an identi-
fied motor axon beyond an ‘‘en passant’’ synapse
and later axon branching from synaptic points are
impaired, leading to functional deficits. Mechanisti-
cally, motor-neuron-autonomous Chodl function de-
pends on its intracellular domain and on binding
muscle-derived collagen XIXa1 by its extracellular
C-type lectin domain. Our data support evolutionarily
conserved roles ofChodl in synaptogenesis and pro-
vide evidence for a ‘‘synapse-first’’ scenario of motor
axon growth in zebrafish.
INTRODUCTION

In zebrafish, three primary motor axons grow out on a common

mid-segmental pathway to the horizontal myoseptum, where

axons pause and only the axon of the caudal primary motor

neuron (CaP) continues its ventral growth (Beattie et al., 2002;

Myers et al., 1986;Westerfield et al., 1986). Although the horizon-

tal myoseptum is a decision point for axon pathfinding, it is also a

major synaptic site, where axon growth pauses and axons form

the first synapses with so-called muscle pioneers. Contact with

the muscle pioneers is not necessary for growth of the CaP axon

ventral to the horizontal myoseptum, as shown by ablation of

muscle pioneers (Melançon et al., 1997). However, it is unknown

whether proper formation of this ‘‘en passant’’ synapse is neces-

sary for the CaP axon’s growth cone to be able to escape the
1082 Cell Reports 29, 1082–1098, October 29, 2019 ª 2019 The Auth
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contact with muscle pioneers (Beattie et al., 2002; Panzer

et al., 2005). Similarly, growth of new axon branches originates

from and depends on synaptic points, e.g., in Xenopus motor

axon arborization (Javaherian and Cline, 2005), arborization of

retinal ganglion cell axons in zebrafish (Meyer and Smith,

2006), or the thalamo-cortical projection in mammals (Matsu-

moto et al., 2016). Hence, both CaP axon extension beyond an

en passant synapse and axon branching could depend on syn-

apse stabilization in zebrafish, whereas in mammals, motor

axon growth mostly precedes terminal synaptogenesis (Sanes

and Lichtman, 1999).

Chondrolectin (Chodl) is a cell surface recognition molecule

expressed by motor neurons in zebrafish (Zhong et al., 2012)

and is selectively expressed in ‘‘fast’’ motor neurons in mice (En-

jin et al., 2010). Knock down of chodl in zebrafish leads to pro-

longed stalling of CaP axons at the horizontal myoseptum while

leaving axon pathfinding and overall axon growth speed unaf-

fected (Zhong et al., 2012). However, the exact mechanism of

Chodl action is unknown.

Chodl is also dysregulated in an spinal muscular atrophy

(SMA) mouse model at an early stage, before detectable mus-

cle weakness (Bäumer et al., 2009; Zhang et al., 2008), and is

highly expressed in the most vulnerable motor neurons in an

amyotrophic lateral sclerosis (ALS) model (Martı́nez-Silva

et al., 2018; Wootz et al., 2010). Overexpression of chodl

partially rescues motor axon patterning defects observed in a

zebrafish SMA model (Sleigh et al., 2014a), suggesting func-

tions of Chodl in motor neuron disease pathology. We hypoth-

esize that, in vertebrates, Chodl is necessary for synaptic

differentiation and, thus, drives motor axon growth and arbori-

zation in zebrafish.

Here, we show that, in both embryonic zebrafish and postnatal

mice, synaptogenesis is specifically impaired in the absence of

chodl. We demonstrate that Chodl directly interacts with

collagen XIX1a (ColXIX1a) in the extracellular matrix to exert its

function. Hence, Chodl is essential for proper neuromuscular

junction differentiation in vertebrates and necessary for CaP

axon extension and motor axon branching in zebrafish.
ors.
commons.org/licenses/by/4.0/).
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RESULTS

To determine evolutionarily conserved functions of chodl, we

analyzed phenotypes of zebrafish and mouse Chodl mutants,

followed by protein function analysis.

Generation of a Zebrafish chodl Mutant
For mutagenesis, we used CRISPR technology on the back-

ground of a transgenic reporter line in which GFP is expressed

under the regulatory sequences of the mnx1 gene (also known

as hb9) to visualize motor neurons (Flanagan-Steet et al.,

2005). Injecting three independent guide RNAs (gRNAs) induced

exaggerated stalling of the CaP axon at the horizontal myosep-

tum in a mosaic fashion (Figures S1A and S1C). Using one effi-

cient gRNA (Figure S1D), we generated a stable mutant with a

4-base pair deletion in the open reading frame near the start

codon, leading to a predicted STOP in position 10 of the 236-

amino-acid-long protein (Figure S1B), preventing translation of

C-type lectin and transmembrane domains. Predicted stop co-

donsmay lead to non-sense-mediated decay of the RNA (Ander-

son et al., 2017). Indeed, mRNA expression was reduced by a

third in qRT-PCR (Figures S1G, S1I, and S1J). However, poten-

tially truncated forms of the protein could still exist. Homozygous

mutants were adult viable and did not show alterations of body

size, eye size, or muscle development in embryos (Figures S1E

and S1F). In contrast, 73% (99 of 136 motor axons in 17 em-

bryos) of motor axons were stalled at the horizontal myoseptum

at 28 h post fertilization (hpf), whereas in wild-type embryos, all

axons (128 of 128 motor axons in 16 embryos) had grown

beyond that point (data not shown). Axons were always as-

sessed on one side of the embryo in segments 7–14. In a

different set of embryos, motor axon length was reduced by

58% in the mutant (Figures 1A and 1B). Middle primary motor

neuron (MiP) axons were also shorter in the mutant (Figures

S1K–S1M). This replicates the chodl morpholino phenotype

(Zhong et al., 2012) and confirms that we generated a chodl ze-

brafish mutant with disrupted gene function.

Correct Gene Expression Level of chodl Is Required in
Zebrafish Motor Neurons
Next, we addressed whether stalling of CaP axons at the hori-

zontal myoseptum in chodl mutants was motor neuron autono-

mous and whether the introduced mutation led to a loss of

gene function. To that aim, we generated a transgenic line on

the background of the chodl mutant (with mnx1:GFP transgene)

that selectively overexpressed FLAG-tagged chodl inmotor neu-

rons under the regulatory sequences ofmnx1. Overlap of FLAG-

tag immunoreactivity and GFP signal in mnx1:GFP transgenic

animals confirmed correct targeting (Figure 1A). In this line,

designated (chodl�/�; mnx1:chodl-FLAG), the stalled axon

phenotype was completely rescued (Figures 1A and 1B). Hence,

the short CaP axon phenotype is a loss-of-function mutation and

is cell autonomous for motor neurons.

To determine if excess chodl expression in motor neurons

altered axon growth, we injected the mnx1:chodl-FLAG

construct into wild-type zygotes. This adds additional chodl

expression to the wild-type levels. At 28 hpf, chodl-FLAG-ex-

pressing axons were reduced in length by 39% compared to
vector-injected control axons and by 39% compared to FLAG-

negative axons in the same animals, as an internal negative con-

trol. (Figures 1C and 1D). Although relatively few embryos

showed transfected CaP neurons, statistical power was 0.999,

indicating robustness of results. The same was true when

CaPs were considered individually (Figure S1H). Therefore,

both increased and reduced levels of chodl expression in motor

neurons impair axon growth in a cell-autonomous manner.

Lack of chodl Impairs Synaptogenesis during Early CaP
Axon Growth
Lack of chodl only affects CaP axon growth by prolonging

stalling at the horizontal myoseptum, a major synaptic site with

muscle pioneers (Zhong et al., 2012). Synaptic sites may be

important for the growth of exploratory filopodia and as a starting

point for axon branching (Javaherian and Cline, 2005; Panzer

et al., 2006). We tested whether filopodia dynamics were altered

for CaP axons by using video time-lapse microscopy of CaP

growth cones at the horizontal myoseptum. Filopodia, visualized

with the F-actin binding Lifeact peptide (Riedl et al., 2008), were

not changed in number and average survival time in the mutant

(Figures S2A–S2E). Hence, a lack of chodl does not detectably

affect filopodia dynamics.

Next, we tested whether synaptogenesis would be affected in

the chodl mutant. Analyzing the horizontal myoseptum synaptic

site with the Znp-1 antibody to the pre-synaptic protein Synap-

totagmin 2 (Syt2) (Wen et al., 2010) at 28–29 hpf, we found that

the total area of Syt2 immunoreactivity was enlarged by 30%

in the mutant compared to wild-type controls (Figures 2A and

2B). As an additional measure of pre-synaptic differentiation,

we determined whether immuno-reactivity clustered into appro-

priate puncta. Puncta were defined as distinct structures of high

immunoreactivity for pre-synaptic, post-synaptic, or both

markers. Instead of forming discernible pre-synaptic puncta at

the horizontal myoseptum (2.61 puncta/hemisegment in con-

trols), enlarged puncta were not clearly separated from each

other, leading to the detection of fewer of these in the mutant

(1.55 puncta/hemisegment; Figure 2E). Intensity of immuno-

reactivity was also increased by 57% in the mutant (Figure 2H).

All of these parameters were rescued to wild-type levels in the

(chodl�/�; mnx1:chodl-FLAG) line (Figures 2B, 2E, and 2H).

Using antibodies to Synaptic Vesicle glycoprotein 2 (SV2) to

label the pre-synaptic area, we found no change in total area

but saw a similar reduction in the number of discernible puncta

per hemisegment that was rescued in the (chodl�/�;

mnx1:chodl-FLAG) line (Figures S3A–S3C). Hence, differentia-

tion of pre-synaptic structures is disrupted by a lack of Chodl

in motor neurons.

The total post-synaptic area, labeled with antibodies to acetyl-

choline receptors (anti-AChR), was not significantly altered in

chodl mutants (Figure 2C). However, the number of discernible

post-synaptic AChR+ puncta was reduced from 3.98 puncta/

hemisegment in controls to 2.84 in mutants and rescued in the

(chodl�/�; mnx1:Chodl-FLAG) line (Figure 2F). The labeling in-

tensity of AChR was not affected in the mutant but was 16%

lower in the (chodl�/�; mnx1:chodl-FLAG) line than in controls

(Figure 2I), perhaps due to inadequate levels of Chodl being

achieved in the rescue line. Overall, this means that clustering
Cell Reports 29, 1082–1098, October 29, 2019 1083



Figure 1. Precise Levels of Chodl Are Needed in CaP Motor Neurons for Unimpeded Axon Growth

Lateral trunk views of zebrafish embryos at 28 hpf are shown. Dashed lines indicate the horizontal myoseptum (HM).

(A) Motor axons are stalled at the horizontal myoseptum in chodlmutants. Axon length is restored by stable transgenic expression of FLAG-tagged Chodl inmotor

neurons of mutants in the (chodl�/�; mnx1:chodl-FLAG) line.

(B) Quantification of axon lengths of F2 (chodl�/�; mnx1:chodl-FLAG) embryos without FLAG immuno-histochemistry are shown (****p < 0.0001; statistical

power = 1.00).

(C) Acute, mosaic expression of mnx1:chodl-FLAG in wild-type embryos leads to reduced growth of FLAG+ (arrowhead in C) but not FLAG� axons in the same

embryos or in embryos injected with the empty vector.

(D) Quantification of CaP axon length from mosaic expression of mnx1:chodl-FLAG in wild-type embryos (****p < 0.0001; statistical power = 0.999).

Scale bars, 50 mm; each data point represents one animal; data are represented as mean ± SEM; n.s., not significant.

See also Figures S1 and S2.
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of post-synaptic AChR+ puncta is affected by a lack of pre-syn-

aptic Chodl.

To determine the synaptic area, we measured the overlap of

pre-synaptic (anti-Syt2) and post-synaptic (anti-AChR) labeling.

The total synaptic area was increased by 42% in themutant, and

the number of discernible synaptic puncta per hemisegment was

decreased from 3.55 to 2.24. Both measurements were rescued

in the (chodl�/�; mnx1:chodl-FLAG) line (Figures 2D and 2G).

Hence, mutating chodl in motor axons disrupts synaptic differ-

entiation on muscle pioneers at the horizontal myoseptum.

Next, we askedwhether synapsematuration was only delayed

in chodl mutants or whether defects persisted even when the

axons had grown beyond the horizontal myoseptum. In older

embryos (31 hpf), we analyzed the synaptic phenotype only in

hemisegments with axons that had grown beyond the horizontal

myoseptum in the mutant. Pre-synaptic labeling area (anti-Syt2)

was not increased, but the number of discernible puncta per

hemisegment was reduced from 2.91 to 2.14 (Figures S3G,

S3H, and S3L), and the labeling intensity was increased (by

58%; Figure S3K) compared to wild-type controls. Anti-SV2 la-

beling showed an increased total pre-synaptic area and reduced

number of discernible puncta per axon (Figures S3D–S3F).

Post-synaptic labeling of AChR showed no changes in total

area and discernible cluster number per hemisegment but

showed a slightly increased labeling intensity by 22% (Figures

S3I, S3M, and S3O). The synaptic area was increased by 51%,

and the number of discernible synaptic puncta per hemisegment

was reduced from 3.60 to 2.66 (Figures S3J and S3N). Hence,

similar pre-and post-synaptic aberrations and an increase of

synaptic area were present at the horizontal myoseptum for

axons stalled at the horizontal myoseptum and those that had

grown beyond this point. This suggests that eventual ‘‘escape’’

of CaP axons from the horizontal myoseptum is not associated

with full normalization of synapse morphology.

Lack of chodl Impairs Axon Branching in Zebrafish
After 48 hpf, motor axons branch onto the muscle, and it has

been shown in Xenopus that this depends on synapse formation

(Javaherian and Cline, 2005). Axons only form new branches at

synaptic sites in Xenopus. Analyzing axon branching onto myo-

tomes at 3 dpf in zebrafish, we find that 97% of axonal branch
Figure 2. CaP Axons of chodl Mutants Show Pre- and Post-Synaptic D

(A) Motor neurons of mnx1:GFP transgenic animals are green. Znp-1 antibody lab

measurement areas. Scale bar, 10 mm.

(B and E) Pre-synaptic puncta at the horizontal myoseptum (HM) are enlarged (B

(E; discernible puncta). These parameters are rescued in the (chodl�/�; mnx1:c

statistical power = 0.9977).

(C and F) Post-synaptic puncta area at the horizontal myoseptum is unchanged

compared to wild-type animals (F; discernible puncta). This parameter is rescue

tistical power = 0.9996).

(D) Synaptic area is increased in the mutant and rescued in in the (chodl�/�; mn

(G) The number of discernible synaptic puncta is reduced in the mutant and rescu

0.999).

(H) Intensity of Znp-1 labeling is increased in chodl mutants compared to wild-typ

power = 0.9918).

(I) The mean intensity of AChR labeling is decreased the (chodl�/�; mnx1:chod

statistical power = 0.9097).

Each data point represents one animal; data are represented as mean ± SEM; n

See also Figure S3.
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points coincide with synaptic puncta (429 of 443 branch points

in 10 larvae; Figures S4A and S4B), suggesting similar mecha-

nisms in zebrafish. Therefore, we hypothesized that in chodlmu-

tants, axon branching and synaptogenesis onto the myotomes

should be impaired.

We analyzed axon branching and synapse formation in chodl

mutants at 3 dpf, whenmotor axons are highly branched over the

myotomal surface in wild-type animals. Mid-segmental nerve

trunks were present in chodl mutants but showed strongly

reduced branching on the muscle tissue (Figure 3A). To quantify

myotomal innervation, we labeled synaptic puncta, defined as

puncta of AChR immuno-reactivity with an overlying SV2+

puncta (Figures 3B–3J). The number of synaptic puncta on the

muscle surface in the mutant was reduced by 72.5%. This was

partially rescued in the (chodl�/�; mnx1:chodl-FLAG) line, with

a reduction by 26.1%, compared to synapse numbers observed

in wild-type control animals (Figure 3K). Overall, chodl mutants

show an axon-autonomous impairment of axon branching and

synaptogenesis on the muscle tissue. Muscle pioneers, the first

muscle cells the CaP axon forms synapses with, develop into

slow muscle fibers. That process is complete at 2 to 3 weeks

of development (Devoto et al., 1996). Hence, we cannot assess

the specific roles of chodl for fast versus slow muscle fibers in

zebrafish from the above data on the immature system.

The Touch-Evoked Escape Response Is Impaired in
Zebrafish Larvae
The earliest motor axon/muscle interactions take place at 18–19

hpf, before CaP axons reach the horizontal myoseptum. At this

time point, coiling behavior occurred at a frequency that was un-

altered in chodl mutants compared to wild-type embryos (Fig-

ure S4C). This indicates the absence of an early movement

phenotype in chodl mutants.

To determine whether the observed axonal branching pheno-

types are correlated with behavioral deficits, we used a touch

assay to quantify escape reactions of larvae at 3 dpf. Despite

hypo-innervation of trunk musculature, larvae swam the same

distance after touching their tail (Figures S4D and S4E). How-

ever, high-speed analysis of the C-bend turning reaction after

a head touch (Figure 3L) indicated that the initial escape angle

of chodlmutants was reduced from 144 to 105 degrees, resulting
efects at the Horizontal Myoseptum

els the pre-synapse and AChR the post-synapse. Yellow squares indicate the

, total area) and fewer individual puncta can be identified in the chodl mutant

hodl-FLAG) line (B, ****p < 0.0001, statistical power = 1.00; E, ****p < 0.0001;

(C, total area), but fewer individual puncta are detected in the chodl mutant

d in the (chodl�/�; mnx1:chodl-FLAG) line. (****p < 0.0001, **p = 0.0012; sta-

x1:chodl-FLAG) line (****p < 0.0001, ***p = 0.0005; statistical power = 0.9978).

ed in the (chodl�/�; mnx1:chodl-FLAG) line (****p < 0.0001; statistical power =

e control and the (chodl�/�; mnx1:chodl-FLAG) line (***p = 0.0002; statistical

l-FLAG) line compared to wild-type control and chodl mutants (***p = 0.0010;

.s., not significant.



Figure 3. Chodl Is Necessary for Axon

Branching onto the Myotome Surface and

Proper Escape Response

Lateral trunk views are shown.

(A)mnx1:GFP+motor nerves are present along the

mid-segmental pathway (ventral motor nerves,

black arrowheads) but lack branching onto the

myotome in chodl mutants at 3 dpf.

(B) SV2 immunohistochemistry in wild-type

zebrafish.

(C) SV2 immunohistochemistry in chodl mutant.

(D) SV2 immunohistochemistry in the (chodl�/�;

mnx1:chodl-FLAG) line is shown.

(E) AChR immunohistochemistry in wild-type ze-

brafish is shown.

(F) AChR immunohistochemistry in the chodl

mutant is shown.

(G) AChR immunohistochemistry in the (chodl�/�;

mnx1:chodl-FLAG) line is shown.

(H) Overlap of SV2 and AchR labeling in wild-type

zebrafish is shown.

(I) Overlap of SV2 and AchR labeling in chodl

mutant is shown.

(J) Overlap of SV2 and AchR labeling in (chodl�/�;

mnx1:chodl-FLAG) line is shown. The density of

synapses (overlap of SV2 and AChR labeling) on

the surface of the myotomes is reduced in chodl

mutants compared to controls and is partially

rescued in the chodl-FLAG rescue line. Regions of

analysis (red boxes) are shown in higher magnifi-

cation as insets.

(K) The number of synapses is reduced in

chodl�/� larvae compared to controls and

partially rescued in the (chodl�/�; mnx1:chodl-

FLAG) line (****p < 0.0001, *p = 0.0419; statistical

power = 0.9999). Scale bars, 50 mm. Insets scale

bar, 10 mm.

(L) Cartoon shows starting position of the larvae

and the C-bend, which can be randomly to the left

or right after tapping the head and the angle is

measured.

(M) Representative frames of high-speed

recording of the touch-evoked escape response

are shown for wild-type control, chodl mutants,

and (chodl�/�; mnx1:chodl-FLAG) animals.

Turning movements of larvae are indicated by red

arrows (arrowhead indicates head). Scale bars,

4 mm.

(N) The turning angle is reduced in mutant larvae,

compared to wild-type animals and rescued in the

chodl�/�; mnx1:chodl-FLAG line. (****p < 0.0001;

statistical power = 1.00)

n.s., not significant; each data point represents

one animal; data are represented as mean ± SEM.

See also Figure S4.
in inefficient escape from the stimulus. In (chodl�/�;

mnx1:chodl-FLAG) animals, this defect was fully rescued (Fig-

ures 3M and 3N), suggesting specificity of the phenotype for mo-

tor neurons. However, we cannot exclude a contribution from

chodl (http://zfin.org) and mnx1 (Korzh et al., 2011) co-express-

ing hindbrain neurons to the phenotype. In summary, a lack of

chodl impairs neuromuscular synaptogenesis, as well as axon

growth and branching, leading to specific aberrations in swim-

ming behavior.
Characterization of Chodl Mutant Mice
To determine conserved functions of Chodl in mammals,

we analyzed a CRISPR-generated mouse mutant (see STAR

Methods). The mutant carries a 576-nucleotide deletion. This

removes exon 2, present in all known protein-coding isoforms

(Ensembl: Chodl-201 ENSMUST00000023568.13, Chodl-202

ENSMUST00000069148.12, Chodl-203 ENSMUST0000011

4216.1, and Chodl-205 ENSMUST00000232415.1; Figure S5A).

RT-PCR confirmed that Chodl exon 2 was not expressed
Cell Reports 29, 1082–1098, October 29, 2019 1087
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(Figure S5B).Chodl homozygous and heterozygousmutant mice

were viable, with no reduction in expected progeny for each ge-

notype (Figure S5C).

The removed exon 2 codes for most of the C-type lectin

domain, which is essential for the function of the protein (see

below). Moreover, removal of exon 2 induces a frameshift and

is predicted to produce a premature stop codon in all protein-

coding isoforms and, hence, mutant mice that lack Chodl

function.

Lack of Chodl Function Impairs Neurite Growth in
Cultured Mouse Motor Neurons
We investigated the neuronal function ofChodl by characterizing

neurite outgrowth of motor neurons (MNs) cultured from embry-

onic day 13.5 (E13.5) mouse spinal cord on Laminin. There was a

reduction in overall neurite length (by 31.87%) and number of

Tuj1-labeled neurite branches (by 23.39%) of Islet-1+ neurons

(Figures S5D–S5G). Cell body size was not altered (Figure S5H).

This may be due to a reduced intrinsic growth capacity of Chodl

mutant axons or interactions of Chodl with Laminin in vitro.

Synaptogenesis Is Impaired in Chodl Mutant Mice
The number of choline acetyltransferase (ChAT)-positive neu-

rons at spinal level L1–L2 in the ventral horn of 4-month-old

wild-type and Chodl mutant mice did not differ (Figures S6A–

S6C). Terminal branching of motor nerves, which does not coin-

cide with synaptogenesis at the branch points as in zebrafish,

was not affected in the mutant (Figures S6D and S6E), support-

ing that Chodl deficiency does not affect axon growth and

branching in vivo.

To assess synaptic phenotypes, we determined neuromus-

cular junction morphology by using immunohistochemistry.

The lumbrical muscles of 4-month-old mice were analyzed

because they are thin and flat enough to be mounted intact.

These muscles are innervated by Chodl+ ‘‘fast’’ motor neurons

(Enjin et al., 2010). The neuromuscular junctions were labeled

with a mix of antibodies to neurofilament (2H3; axons) and SV2

(pre-synapse) and fluorescently tagged a-bungarotoxin

(a-BTX; post-synapse).

The pre-synaptic area was increased by 41% in Chodlmutant

mice, the post-synaptic area by 28%, and the area of synaptic
Figure 4. Chodl Mutant Mice Show Morphological and Electrophysiolo

(A and B) Representative confocal micrographs of two wild-type (A) and two Ch

4-month-oldmice are shown. Neuronal tissue is labeled in green (2H3, neurofilame

(a-BTX, a-bungarotoxin).

(C and D) Both the pre-synaptic (C) and post-synaptic (D) areas are increased in C

post-synaptic area, *p = 0.0176).

(E and F) The areas of synaptic contact (E) and endplate (F) are also increased

*p = 0.0158; endplate area, **p = 0.0062).

(G) Chodl mutant mice have more fragmented post-synaptic endplates compare

(H) No differences are detected in occupancy (overlap percentage) of post-syna

(I) There is no significant difference in the 30 Hz decrement of CMAP between w

(J) No significant difference was observed in the 50Hz decrement of CMAP betw

(K and L) mEPP frequency (K) but not amplitude (L) differs between Chodl mutan

(M and N) Quantal content (M) and EPP amplitude (N) differ between the group

statistical power = 0.8044).

Each data point represents one animal. A total of 50–60 neuromuscular junctions

mean ± SEM. n.s., not significant. Scale bars, 30 mm.

See also Figures S5, S6, and S7.
contact by 27%, compared to wild-type animals at 4 months

of age (Figures 4A–4E). The shape of synapses was changed,

as the area taken by individual synapses, the endplate area,

was increased by 30% (Figure 4F). Moreover, endplate labeling

in Chodl mutants was more fragmented, showing a fragmenta-

tion index (Jones et al., 2016) of 0.73, compared to 0.45 in

wild-type animals (Figure 4G).

To find indications of potential synapse degeneration, we

determined the proportion of post-synaptic sites that were not

occupied by pre-synaptic terminals. The percentage of inner-

vated post-synaptic area (‘‘overlap’’) was similar in 4-month-

old mutant and wild-type animals (Figure 4H), indicating that

there was no sign of neuromuscular junction denervation.

Hence, Chodlmutant mice show an enlargement of the synaptic

area that is similar to that seen in zebrafish embryos.

The Endplate Potential Amplitude Is Increased in the
Absence of Chodl in Mice
To test the function of neuromuscular synapses in Chodlmutant

mice, we measured the compound muscle action potential

(CMAP) in a phrenic-nerve-diaphragm-muscle preparation. The

phrenic nerve of wild-type, but not Chodl mutant animals con-

tains Chodl mRNA, as shown by RT-PCR (data not shown).

Measurements showed no failure of transmission up to 50-Hz

stimulation frequency in the mutant. The degree of CMAP decre-

ment at 10- (not shown), 30-, or 50-Hz stimulation frequency was

similar in mutants and wild-type littermate controls (Figures 4I

and 4J). In contrast, spontaneous miniature endplate potentials

(mEPPs) were increased by 40% in frequency (Figure 4K) but

were not altered in amplitude (Figure 4L) in the mutant compared

to wild-type animals. In addition, stimulated (1 Hz) EPPs were

increased in amplitude secondary to an increased quantal con-

tent (QC), defined as the calculated number of acetylcholine-

containing vesicles released per stimulation (Figures 4M and

4N). Labeling with antibodies to bassoon (Bssn), piccolo (Picc),

two very large scaffolding proteins of the cytomatrix assembled

at the active zone, and P/Q voltage-gated calcium channels

(VGCCs) (Gundelfinger et al., 2016), showed no detectable dif-

ferences in labeling intensity between Chodl mutants and wild-

type mice (Figures S6F–S6N). This suggests that the number of

available release sites is increased proportionally to the size of
gical Synaptic Defects of the Neuromuscular Junction

odl mutant (B) neuromuscular junctions on hind limb lumbrical muscles from

nt; SV2, synaptic vesicle protein 2), and post-synaptic AChRs are labeled in red

hodlmutant mice compared to wild-type mice (pre-synaptic area, *p = 0.0354;

in the Chodl mutant mice compared to wild-type mice (area of synaptic area,

d to wild-type mice at 4 months of age (**p = 0.0047).

ptic elements in Chodl mutant compared to wild-type mice.

ild-type and Chodl mutant mice.

een wild-type and Chodl mutant mice.

t and wild-type mice (*p = 0.0242; statistical power = 0.6313).

s (QC, **p = 0.0086; statistical power = 0.8138; EPP amplitude, **p = 0.0092;

are analyzed across 5 animals/genotype for (A)–(H). Data are represented as
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the enlarged synapse in Chodl mutants. However, we cannot

exclude a contribution by increased calcium sensitivity of release

sites to increased mEPP frequency and EPP amplitude/QC.

Taken together, these data indicate altered neurotransmission

at the neuromuscular junction in Chodl mutant mice.

Chodl Mutant Mice Show No Gross Alterations of Motor
Behavior
Weights of Chodl mutant mice were not systematically different

fromwild-type controls at 2, 3, and 4months of age (Figures S7A

and S7B). An assessment of general locomotor activity in an

open field environment revealed no differences in movement ac-

tivity (light beam breaks in open field) and thigmotaxis (the ten-

dency of mouse to remain close to the chamber lateral walls, a

measurement for anxiety) in mutants, compared to wild-type an-

imals (Figures S7C, S7D, and S7H). Motor coordination (acceler-

ating rotarod test) andmuscle strength (4-limb hanging wire test)

did also not reveal any changes (Figures S7E–S7G). Although

these tests did not detect changes inmotor behavior in theChodl

mutant, more subtle alterations cannot be excluded.

C-Type Lectin Domain and Intracellular Domain Are
Required to Mediate chodl Function
Because of the relative ease of phenotype analysis, we used the

zebrafish to study the mechanistic basis of chodl function. The

Chodl protein domain structure is typical of transmembrane

recognitionmolecules, with an extracellular C-type lectin domain

that may interact with extracellular binding partners, a trans-

membrane domain, and a short cytoplasmic tail with a number

of potential phosphorylation sites that may be involved in

intracellular signaling (Weng et al., 2002). To test for essential

functions of different domains, we generated FLAG-tagged con-

structsmissing either theC-type lectin domain or the intracellular

domain for transient experimental expression in motor neurons

of the chodl mutant, driven by the mnx1 regulatory sequences

(Figure 5A). Immuno-detection of the FLAG-tag indicated selec-

tive expression of constructs in motor neurons and their axons.

All constructs reached the cell surface in transfected HEK293T

cells (compare Figure 7A).

Only full-length Chodl showed rescuing activity in FLAG im-

muno-positive axons. FLAG-positive axons expressing full-

length Chodl were 31% longer than FLAG-negative axons in

the same embryos and 44.4% longer than axons in vector-in-

jected embryos. Removing either the C-type lectin domain or

intracellular domain resulted in no increase in axon length in

FLAG immuno-positive axons compared to controls (Figures

5B and 5C).
Figure 5. C-Type Lectin Domain and Intracellular Domain Are Indispen

(A) A cartoon indicating the constructs used in (B) is shown.

(B) Photomicrographs show representative images of mosaic construct express

tochemistry (lateral trunk views): full-length (FL), chodl without the C-type lectin (w

shown.

(C) Only injection of the full-length chodl construct partially rescues axon length

(D) A cartoon indicating the potential phosphorylation sites of the intracellular do

(E) Lateral trunk views of mutant chodl zebrafish expressing full-length chodl and

(F) Experimental expression of wild-type, but not mutated chodl in motor neuron

Scale bars, 50 mm. Each data point represents one animal; data are represented
To determinewhether conformation and/or phosphorylation of

the intracellular domain was essential, we mutated 10 of the 11

identified potential phosphorylation sites by replacing serine

and threonine residues with alanine, leading to likely conforma-

tional changes and preventing phosphorylation of the intracel-

lular domain (Figure 5D). This construct did not show rescuing

activity of axon length, compared to the wild-type gene (Figures

5E and 5F). Hence, the C-type lectin domain and the intracellular

domain of chodl are functionally important.

chodl and col19a1 Show Genetic Interactions
The C-type lectin domain is likely to bind extracellular matrix

(ECM) components, which are concentrated at the horizontal

myoseptum (Schweitzer et al., 2005; Zhang et al., 2004), where

axons stall in zebrafish chodl mutants. Mutants in the muscle-

expressed col19a1 (zebrafish mutant name: stumpy) show

axon stalling at the horizontal myoseptum, as well as reduced

axon branching and enlarged post-synaptic sites at the adult

stage (Panzer et al., 2005). Because this phenotype is highly

reminiscent of that of chodl mutants, we determined potential

genetic interactions between chodl and col19a1. Using estab-

lished (Hilario et al., 2010; Zhong et al., 2012) morpholinos,

we found that injection of low concentrations of either morpho-

lino alone elicited no or only weak changes of motor axon

growth (Figures 6A and 6B). However, combining these mor-

pholinos at the same concentrations led to synergistic effects

on stalling of axons at the horizontal myoseptum. Of note, total

morpholino load was kept at the same level for all experiments

by adding non-specific control morpholino where appropriate.

This indicates a genetic interaction between chodl and

col19a1 (Figures 6C and 6D).

Chodl Is a Specific Binding Partner for ColXIXa1
To determine a potential physical interaction of Chodl and

ColXIXa1 proteins, we used co-immunoprecipitation. We tagged

Chodl with a FLAG tag at its C-terminal end (Chodl-FLAG).

ColXIXa1 was labeled with a hemagglutinin (HA) tag on either

the N-terminal (HA-ColXIXa1) or the C-terminal end (ColXIXa1-

HA) to control for possible interference of the tag with multimeri-

zation of the large protein (Figure 6E). Chodl-FLAG, purified from

transfected HEK293T cells, was incubated with the supernatant

of HA-ColXIXa1 and ColXIXa1-HA secreting HEK293T cells. An

immunoprecipitation assay shows that Chodl-FLAG co-immu-

noprecipitated both HA-ColXIXa1 and ColXIXa1-HA (Figure 6F).

Conversely, purified HA-ColXIXa1 and ColXIXa1-HA both pulled

downChodl-FLAG from cell lysates, indicating binding of the two

proteins (Figure 6G).
sable for Chodl Function.

ion in motor axons of chodl mutant zebrafish, detected by FLAG immunohis-

ithout [w/o] CTLD), or intracellular domains (w/o intracellular domain [ID]), are

in FLAG+ motor axons (****p < 0.0001).

main that are mutated to alanine (with [w/] ID S/T / A) is shown.

mutated chodl are shown.

s partially rescues axonal length (****p < 0.0001; **p = 0.001).

as mean ± SEM; n.s., not significant; CTLD, C-type lectin domain.
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As a control, we usedColXIIa1a in co-immunoprecipitation ex-

periments. Both ColXIIa1a and ColXIXa1 are Fibril-Associated

Collagens with Interrupted Triple Helices (FACIT) family colla-

gens (Bader et al., 2009; Hilario et al., 2010). ColXIIa1a is ex-

pressed in connective tissue and diffusely present at the nascent

horizontal myoseptum at 24 hpf (Bader et al., 2009). Purified Col-

XIIa1a-HA did not pull down Chodl-FLAG from cell lysates of

Chodl-FLAG overexpressing cells (Figure 6H), and purified

Chodl-FLAG did not pull down ColXIIa1a from the supernatant

of ColXIIa1a-HA transfected cells (Figure 6I). This indicates se-

lective physical binding of Chodl to ColXIXa1.

To determine the Chodl domains necessary for ColXIXa1 bind-

ing, we used truncated versions of Chodl, with either the intracel-

lular domain or the C-type lectin domain missing, for co-immu-

noprecipitation of full-length ColXIXa1-HA from supernatant

(Figure 6J). Chodl without the intracellular domain, but not the

version missing the C-type lectin domain, was still able to co-

immunoprecipitate ColXIXa1-HA (Figure 6K). Conversely, using

truncated versions of ColXIXa1, containing only the collagenous

domains or only the thrombospondin domain (Figures 6L), we

showed that only the truncated protein with the collagenous do-

mains was able to co-immunoprecipitate Chodl-FLAG from

lysates of overexpressing cells (Figures 6M and 6N). This sup-

ports a scenario in which the trans-membrane protein Chodl

binds the collagenous repeats of ColXIXa1 at the cell surface

by its extracellular C-type lectin domain.

Chodl Binds ColXIXa1 at the Cell Surface
To observe interactions of native Chodl and ColXIXa1 in intact

cells, we incubated HEK293T cells that overexpress Chodl-

FLAG with culture media containing ColXIXa1-HA for 24 h.

Measuring immuno-fluorescence intensity across optical sec-

tions through fixed cells showed highest Chodl-FLAG immuno-

reactivity at the cells’ edges (Figures 7A and 7B), consistent

with trans-membrane localization. ColXIXa1-HA immunoreac-

tivity on the cells was strong and located at the cell surface (Fig-

ures 7A and 7B). Incubating Chodl-FLAG overexpressing cells
Figure 6. chodl and collagen19a1 Show Genetic Interaction and Prote

(A–C) Sub-threshold application of both chodl (A; 0.25 mM) and col19a1 (B; 0.5 m

aberrant motor axon growth. Combining the two active morpholinos at the same

(D) Quantification of stalled axons (chodlmorpholino + col19a1morpholino synerg

values, ****p < 0.0001). Each data point represents one animal; data are represe

(E) Graphic presentations of the fusion proteins used in in vitro binding assays are

domain; FLAG, FLAG tag (DYKDDDDK); TSPN, thrombospondin N-terminal-like d

fibronectin type III domain; VWFA, von Willebrand factor type A domain.

(J) Graphic presentations of the fusion proteins used in in vitro binding assays ar

(L) A cartoon of the fusion proteins used in in vitro binding assays is shown.

(F) Purified FLAG-tagged chondrolectin binds HA-tagged CollagenXIXa1. As neg

experiments, n = 2 (HA-ColXIXa1, FLAG immunoprecipitation [IP]), n = 4 (ColXIX

(G) HA-tagged CollagenXIXa1 interacts with FLAG-tagged chondrolectin. Empty

experiments, n = 5 (Chodl-FLAG, HA IP).

(H) ColXIIa1 does not interact with FLAG-tagged Chodl. Number of independent

(I) Purified chondrolectin does not pull down HA-tagged ColXIIa1. Empty HA-m

ments, n = 2.

(K) FLAG-tagged chondrolectin without the intracellular domain (chodl w/o ID),

ColXIXa1 from culture media. Number of independent experiments, n = 4.

(M) The thrombospondin domain of ColXIXa1 (HA-TSPN) does not immuno-prec

HA IP).

(N) The collagenous repeats domain (HA-NC-Col) of ColXIXa1 immuno-precipitate
with ColXIIa1a-HA as a control showed only minimal fluores-

cence that did not coincide with Chodl-FLAG at the cell surface

(Figures 7A and 7B). Likewise, cells transfected with membrane-

bound EGFP as a control did not bind ColXIXa1-HA from theme-

dium (Figures 7A and 7B). Expression of a construct missing the

intracellular domain of Chodl still bound ColXIXa1 at the plasma

membrane (Figures 7A and 7B). In contrast, the construct

missing the C-type lectin domain of Chodl, which was still

targeted to themembrane, did not localize ColXIXa1 from the su-

pernatant to the cell membrane (Figures 7A and 7B). This indi-

cates that native Chodl is a transmembrane protein that binds

extracellular ColXIXa1 with its C-type lectin domain.

In the absence of specific antibodies to Chodl and ColXIXa1, it

is not possible to determine whether the proteins co-localize

in vivo. However, in the zebrafish rescue line (chodl�/�;

mnx1:chodl-FLAG), in which axons deficient in endogenous

chodl grow beyond the horizontal myoseptum with the support

of experimentally expressed chodl, we observed the Chodl-

FLAG protein in a punctate pattern along the axon, in close

apposition with AChR+ post-synaptic clusters (Figure 7C). This

is consistent with a pre-synaptic function of Chodl.

In summary, our results indicate that Chodl on motor axons

mediates essential interactions with ColXIXa1 in the muscle

ECM. Without these interactions, synapses fail to form correctly

and synapse-dependent axon growth and branching, as well as

motor behaviors, are impaired (graphically summarized in

Figure 7D).

DISCUSSION

Chodl Acts Primarily in Synaptogenesis
The increase in synaptic area at the horizontal myoseptum in ze-

brafish and lumbrical muscle of mouse Chodl mutants indicates

an evolutionarily conserved role of the transmembrane molecule

in synaptogenesis.

All observed in vivo phenotypes are potential consequences of

defective synaptogenesis, supporting the notion of synapse-
in Binding

M) morpholinos (MOs) together with control morpholino (CoMO) do not induce

concentrations leads to axon stalling (C).

y versus hypothetical mean of chodlmorpholino added to col19a1morpholino

nted as mean ± SEM.

shown. SP, signal peptide; CTLD, C-type lectin domain; TMD, transmembrane

omain; Col, collagenous domain; HA, human influenza hemagglutinin tag; FN3,

e shown.

ative control, FLAG-empty magnetic beads are used. Number of independent

a1-HA, FLAG IP).

HA-magnetic beads are used as negative controls. Number of independent

experiments, m = 2.

agnetic beads are used as negative controls. Number of independent exprei-

but not without the C-type lectin domain (w/o CTLD), precipitates HA-tagged

ipitates Chodl-FLAG. Number of independent experiments, n = 2 (HA-TSPN,

s Chodl-FLAG. Number of independent experiments, n = 4 (HA-NC-Col, HA IP).
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dependentmotor axon growth in zebrafish. The phenotype of the

CaP axon is prolonged stalling at the horizontal myoseptum. The

horizontal myoseptum is a choice region in which the axons of

the three primary motor neurons stall to integrate their

pathway-specific cues (Beattie et al., 2002; Myers et al., 1986;

Westerfield et al., 1986). However, the horizontal myoseptum is

also a major synaptic site (Panzer et al., 2005; Panzer et al.,

2006), and we show that in chodl mutants, synaptogenesis at

this site is defective. Hence, formation of the nascent synapse

might be a prerequisite for elongation of motor axons beyond

the en passant synaptic site at the horizontal myoseptum.

Indeed, naturally occurring pausing of CaP growth cones at

the horizontal myoseptum might be due to the time required to

form en passant synapses with muscle pioneers before growth

can proceed (Eisen et al., 1986; Zhong et al., 2012), as in other

systems (Hatada et al., 1999).

The idea that impaired synapse formation is what keeps the

axon from growing in the chodl mutant is supported by our

observation that filopodial dynamics is unperturbed. Filopodia

extension has previously been identified as integral part of

growth cone advance (Flanagan-Steet et al., 2005; Panzer

et al., 2006). Moreover, in a previous time-lapse study, we

have shown that when chodl expression is prevented, the speed

of motor growth cone advance is unimpaired above and below

the horizontal myoseptum site, suggesting that chodl-deficient

axons are, in principle, capable of unimpaired growth (Zhong

et al., 2012).

In 3-day-old mutant zebrafish, axon branching onto the mus-

cle is strongly reduced. Motor axon branching has been sug-

gested to depend on proper synaptogenesis in Xenopus larvae

(Javaherian and Cline, 2005), in which new branches of motor

axons always originate at a synaptic site. Our analysis of the

branching pattern of motor axons in zebrafish larvae also shows

that almost all axon branches onto themusculature occur at syn-

apses. Synapse-dependent axon branching is also observed in

the optic projection of Xenopus (Alsina et al., 2001) and zebrafish

(Meyer and Smith, 2006), aswell as in the thalamocortical projec-

tion in mammals (Matsumoto et al., 2016).

Mouse motor axons, which do not form en passant synapses

during growth or branching at synaptic sites but mainly form ter-

minal synapses instead (Sanes and Lichtman, 1999), did not

show any obvious signs of reduced axon growth or branching

in Chodl mutants. Hence, a lack of Chodl only affects synapto-

genesis in vivo. However, in vitro, motor axons of Chodl mutant

mice show reduced neurite growth, revealing a potential contri-

bution of Chodl to axon growth that is compensated for in vivo.
Figure 7. Experimentally Expressed Chodl Binds Extracellular ColXIXa

(A and B) In transfected HEK cells, full-length constructs (Chodl-FLAG) and those

FLAG – CTLD) show high plasma membrane labeling. Chodl-FLAG and Chodl-FL

surface. Cells transfected with membrane-bound EGFP (control) did not bind Co

surement trajectories used to generate intensity profiles in (B). Number of individ

(C) A lateral view of a motor axon that has grown beyond the horizontal myoseptum

hpf is shown. Experimentally expressed Chodl-FLAG is present in the cytoplas

(AChR immunohistochemistry) at the horizontal myoseptum.

(D) Schematic summary of results is shown. Axonal Chodl is necessary to restric

spinal cord; CaP MN, caudal primary neuron; NC, notochord; HM, horizontal myo

C-type lectin domain; TMD, transmembrane domain.

Scale bar in (C): 20 mm; scale bars in (A): 10 mm.
The behavioral phenotype in zebrafish chodl mutants

(reduced turn angle in escape response) is a likely conse-

quence of hypo-innervation of the muscle tissue due to

impaired synapse-dependent motor axon branching. In mice,

we could not detect changes in CMAP or behavioral conse-

quences of Chodl deficiency. However, the presence of

anatomical and physiological phenotypes in Chodl mutant

mice suggests that more sensitive tests might reveal deficits.

Taken together, the above observations suggest an essential

function of Chodl at the neuromuscular junction. Interestingly,

Chodl- (Zeng and Sanes, 2017) and Col19a1-expressing neu-

rons also exist in the cortex, and Col19a1 mutant mice show

synaptic defects (Su et al., 2016). This opens the perspective

of more widespread roles of this ligand/receptor pair in synap-

togenesis in other CNS regions.

ColXIXa1 Is a Binding Partner for Chodl
Immuno-precipitations show that the C-type lectin domain of

Chodl binds the collagenous domains of ColXIXa1 but does

not bind ColXIIa1a. However, other collagens could also act as

a ligand, such as ColXV, which possesses collagenous domains

(Eklund et al., 2000) and for which the mutant phenotype is also

similar to that of chodlmutants in zebrafish (Guillon et al., 2016).

Cell transfection assays indicate that binding of extracellular

ColXIXa1 by the extracellular C-type lectin domains of Chodl oc-

curs at the plasma membrane. This is consistent with known

roles of the C-type lectin domain in recognition proteins of im-

mune cells (Chiffoleau, 2018).

The horizontal myoseptum in zebrafish is rich in ECM factors,

such as Tenascin-C (Schweitzer et al., 2005), Chondroitin sul-

fates (Zhang et al., 2004), and collagens (Guillon et al., 2016),

which are likely to take part in synaptogenesis. The fact that

ColXIXa1 is produced by muscle cells (Hilario et al., 2010) and

Chodl by motor neurons (Zhong et al., 2012) makes it probable

that these factors interact at the horizontal myoseptum synap-

ses. This is supported by the observation that the col19a1

mutant phenotype also entails prolonged stalling in this exact

location (Beattie et al., 2000) and that knocking down col19a1

and chodl leads to a synergistic increase in stalling specifically

at the horizontal myoseptum, as we show here. Moreover, in

functional rescue experiments, we find tagged Chodl along the

motor axons, including the horizontal myoseptum region, indi-

cating that functional Chodl is present at the horizontal myosep-

tum in motor axons. Specific antibodies to ColXIXa1 and Chodl,

which are currently unavailable, would be needed to directly

show interactions of endogenous proteins in vivo.
1 at the Cell Surface and Is Targeted to Motor Axons.

without intracellular domain (Chodl-FLAG – ID) or C-type lectin domain (Chodl-

AG – ID bind ColXIXa1, but not ColXIIa1 (control), from supernatant at the cell

lXIXa1. Single optical sections are shown in (A) and arrows indicate the mea-

ual experiments, 2.

(HM) in a (mnx1:EGFP; chodl�/�;mnx1:chodl-FLAG) zebrafish embryo at 28

m and punctate clusters along the axon (EGFP), overlaying the synapse area

t the size of the neuromuscular junction by binding extracellular ColXIXa1. SC,

septum; TSPN, thrombospondin domain; NC-Col, collagenous repeats; CTLD,
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Functional rescue experiments show that both the C-type lec-

tin domain and intracellular domain are essential for Chodl func-

tion in vivo. Overall, this suggest a scenario in which axonal

Chodl needs to bind muscle-derived ColXIXa1 to form proper

synapses with muscle pioneers. ColXIXa1 binding likely leads

to signaling events. This may involve binding of the intracellular

domain to other proteins and/or changes in phosphorylation of

the intracellular domain. The Chodl intracellular domain interacts

with the Rab geranylgeranyl transferase b subunit in vitro (Claes-

sens et al., 2008), but there are likely more interactions.

Connection of Chodl to SMA
Synapse destabilization is an early event in SMA disease pro-

gression (McGovern et al., 2008), and Chodl is dysregulated

early in a mouse model of SMA (Bäumer et al., 2009; Zhang

et al., 2008). With its role in synaptic development, dysregulation

of Chodl may contribute to synaptic phenotypes in the disease.

Indeed, overexpression of chodl partially rescues CaP axon

growth defects in an SMA model in zebrafish (Sleigh et al.,

2014a), supporting the hypothesis that dysregulation of chodl

may be one of the disease mechanisms.

Of note, the rescue was only partial, and aberrations in CaP

axon growth are more severe in SMA models than those seen

in the chodl mutant here (Hao et al., 2013; McWhorter et al.,

2003). Moreover, mouse SMA models show synaptic degenera-

tion and motor neuron loss (Groen et al., 2018; Wishart et al.,

2010), which we did not observe for the mouse Chodl mutant.

It is, therefore, likely that dysregulation of other proteins in

addition to chodl causes the phenotype in SMA models and

the disease. Nevertheless, a lack of chodl replicates some syn-

aptic defects seen in SMA models in zebrafish (Boon et al.,

2009) and mice (Mentis et al., 2011), supporting that its dysregu-

lation contributes to the disease phenotype. Interestingly, aber-

rant chodl expression has also been observed in a mouse ALS

model (Wootz et al., 2010), and higher tissue levels of its binding

partner COL19A1 are associated with faster disease progression

in patients (Calvo et al., 2019).

Why is aberrant growth of motor axons in zebrafish a sensitive

indicator of SMA- (Giacomotto et al., 2015; Oprea et al., 2008)

and ALS- (Kabashi et al., 2011; Van Hoecke et al., 2012) related

manipulations in vivo? In mouse models of motor neuron dis-

eases, aberrant axon growth is rare, but aberrations of synapse

formation are observed, as well as a later loss of motor neurons

(McGovern et al., 2008; Mentis et al., 2011). One possible expla-

nation is that axon growth in zebrafish, but not mice, is synapse

dependent. Hence, aberrant motor axon growth in zebrafish

SMA and other motor neuron disease models (Thomas-Jinu

et al., 2017) might be a consequence of impaired expression of

genes involved in synaptogenesis or synapse stabilization,

such as chodl. However, other affected cellular mechanisms

(Boyd et al., 2017; Donlin-Asp et al., 2016; Groen and

Gillingwater, 2015) may also cause axonal aberrations in

zebrafish.

In conclusion, we describe a new ligand receptor interaction

between the survival motor neuron (SMN) downstream gene

Chodl andColXIXa1 that is necessary for the formation of neuro-

muscular junctions and subsequent motor axon growth and

branching in zebrafish.
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Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis. Aging Dis. 10,

278–292.

Chiffoleau, E. (2018). C-Type Lectin-Like Receptors As Emerging Orchestra-

tors of Sterile Inflammation Represent Potential Therapeutic Targets. Front.

Immunol. 9, 227.
Claessens, A., Weyn, C., andMerregaert, J. (2008). The cytoplasmic domain of

chondrolectin interacts with the beta-subunit of Rab geranylgeranyl trans-

ferase. Cell. Mol. Biol. Lett. 13, 250–259.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Tuj1 Covance N/A

Mouse anti-Islet1 DSHB Cat# 40.2D6; RRID:AB_528315

Mouse anti- 2H3, neurofilament (NF-M) DSHB 2H3; RRID:AB_531793

Mouse anti-bassoon, clone name- SAP7F407 BioScience, Nottingham Cat# GTX13249; RRID:AB_422275

Rabbit anti-piccolo Synaptic Systems, Germany Cat# 142002; RRID:AB_887759

Rabbit anti-P/Q-VGCC (Cav2.1) Synaptic Systems, Germany Cat# 152203; RRID:AB_2619841

Anti-p75 NGF Receptor antibody [MLR2] Abcam Cat# ab61425; RRID:AB_943967

Chicken anti-GFP Abcam Cat# AB13970; RRID:AB_300798

Mouse anti- SV2, Synaptic vesicle glycoprotein 2A DSHB SV2; RRID:AB_2315387

Mouse anti-Znp-1 DSHB Znp1; RRID:AB_531910

Rat anti-AChR DSHB mAb35; RRID:AB_528405

Rabbit anti-FLAG Cell Signaling Technology Cat# 14793; RRID:AB_2572291

Mouse anti-FLAG Sigma-Aldrich Cat# F1804; RRID:AB_262044

Mouse anti-HA BioLegend Cat# 901501; RRID:AB_2565006

Alexa Fluor 488 anti-phalloidin ThermoFisher Scientific Cat# A12380

Tetramethylrhodamine (TRITC) a-BTX- 568 Cambridge Bioscience Cat# BT00012

Alexa Fluor � 488 Donkey anti-mouse ThermoFisher Scientific Cat# A21202; RRID:AB_141607

Alexa Fluor � 488 Donkey anti-rabbit ThermoFisher Scientific Cat# A21206; RRID:AB_2535792

Alexa Fluor � 488 Goat-anti rabbit ThermoFisher Scientific Cat# A27034; RRID:AB_2536097

Alexa Fluor � 568 Goat-anti rabbit ThermoFisher Scientific Cat# A11011; RRID:AB_143157

Alexa Fluor � 488 Goat anti-mouse ThermoFisher Scientific Cat# A28175; RRID:AB_2536161

Alexa Fluor � 488 AffiniPure Donkey

Anti-Chicken IgY (IgG) (H+L)

Jackson ImmunoResearch Cat# 703-545-155; RRID:AB_2340375

Alexa Fluor� 594 AffiniPure Donkey

Anti-Mouse IgG (H+L)

Jackson ImmunoResearch Cat# 715-585-150; RRID:AB_2340854

Alexa Fluor� 594 AffiniPure Donkey

Anti-Mouse IgG (H+L) (Minimally cross-

reactive to Rat, pre-adsorbed)

Jackson ImmunoResearch Cat# 715-585-151; RRID:AB_2340855

Alexa Fluor� 488 AffiniPure Donkey Anti-Rat

IgG (H+L) (minimally cross-reactive to

Mouse, pre-adsorbed)

Jackson ImmunoResearch Cat# 712-545-153; RRID:AB_2340684

Alexa Fluor� 647 AffiniPure Donkey Anti-Rat

IgG (H+L) (Minimally cross-reactive to

Mouse, pre-adsorbed)

Jackson ImmunoResearch Cat# 712-605-153; RRID:AB_2340694

Alexa Fluor� 647 AffiniPure Donkey

Anti-Rabbit IgG (H+L)

Jackson ImmunoResearch Cat# 711-605-152; RRID:AB_2492288

Alexa Fluor� 488 AffiniPure Donkey

Anti-Mouse IgG (H+L)

Jackson ImmunoResearch Cat# 715-545-150; RRID:AB_2340846

Alexa Fluor� 647 AffiniPure Donkey

Anti-Mouse IgG (H+L)

Jackson ImmunoResearch Cat# 715-605-150; RRID:AB_2340862

IRDye 800CW Goat anti-Mouse IgG (H + L)

Highly Cross-Adsorbed

Li-Cor Cat# 925-32210; RRID:AB_2687825

IRDye 680LT Goat anti-Rabbit IgG (H + L)

Highly Cross-Adsorbed

Li-Cor Cat# 925-68021; RRID:AB_2713919

FLAG M2 magnetic beads Sigma-Aldrich Cat# M8823; RRID:AB_2637089

HA magnetic beads ThermoFisher Scientific Cat# 88836; RRID:AB_2749815
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Poly-DL-ornithine hydrobromide Sigma Cat# P8638

Recombinant Human CNTF Peprotech Cat# 450-13

Recombinant Human/Murine/Rat BDNF Peprotech Cat# 450-02

Recombinant Human GDNF Peprotech Cat# 450-10

Recombinant Human NT-3 Peprotech Cat# 450-03

u-Conotoxin GIIIB Peptide Institute Cat# 4217v

Poly-D-Lysine solution, 1.0 mg/ml Merck Millipore Corporation Cat# A-003-E

Critical Commercial Assays

PureLink Genomic DNA Kit Thermo Fisher Scientific Cat# K182001

Lipofectamine 2000 Transfection Reagent ThermoFisher Scientific Cat# 11668030

mMessage mMachine T7 Transcription kit ThermoFisher Scientific Cat# AM1344

mirVana miRNA kit ThermoFisher Scientific Cat# AM1560

mMessage mMachine T3 Transcription kit ThermoFisher Scientific Cat# AM1348

RNeasy Mini Kit QIAGEN Cat# 74106

iScript cDNA Synthesis Kit Bio-Rad Cat# 170-8891

SsoAdvanced Universal SYBR Green Supermix Bio-Rad Cat# 1725271

Deposited Data

File containing the original western blotting images Mendeley Data https://doi.org/10.17632/g23ts8jjpp.1

File containing the Coomassie gels Mendeley Data https://doi.org/10.17632/g23ts8jjpp.1

Experimental Models: Cell Lines

HEK293T cells Culture Collections Public Health

England Porton Down, Salisbury, UK

N/A

Experimental Models: Organisms/Strains

Chodl em1(IMPC)H - C57BL/6NTac background https://www.mousephenotype.org/ https://www.infrafrontier.eu/

WIK wild type strain of zebrafish European Zebrafish Resource

Center (EZRC)

https://zfin.org/action/genotype/view/

ZDB-GENO-010531-2

Tg (mnx1:GFP) Flanagan-Steet et al., 2005 N/A

chodl �/�; mnx1:GFP This paper N/A

chodl�/�; mnx1:chodl-FLAG This paper N/A

Oligonucleotides

Mouse Chodl genotyping Pair A, Forward:50- AC
GTGAGTTTAGAGGGAAAGTTTG �30

This paper N/A

Mouse Chodl genotyping Pair A, Reverse: 50- CA
GGATTGGCAGTTGGTTGGT �30

This paper N/A

Mouse Chodl genotyping Pair B, Forward: 50-GGC

TGGCTTGTGAAAGTGAAG-30
This paper N/A

Mouse Chodl genotyping Pair B, Reverse: 50 -GTT

TGGCCATCTCCGCTTCT-30
This paper N/A

Morpholino: MO-colXIXa1 GGCAAACCCTGCAAG

CCAAAGGAG

GeneTool N/A

gRNA targeting sequence zf chodl (exon 1) Forward:

50 -TAGGAGGATGCGCGCGACACTC - 30
This paper N/A

gRNA targeting sequence zf chodl (exon 1) Reverse:

50 - AAACGAGTGTCGCGCGCATCCT – 30
This paper N/A

Zf chodl genotyping Forward: 50 – GACTGGAGCAA

GTCTGTG – 30
This paper N/A

Zf chodl genotyping Reverse: 50 – CTGCACGAGAC

CAGAAAA – 30
This paper N/A

Primers for chodl mutagenesis, see Table S1 This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primers for detecting chodl and beta-actin mRNA,

see Table S2

This paper N/A

Primers for generating the plasmids used in this

paper, see Table S3

This paper N/A

Recombinant DNA

pCMV-MCS Susanne Schoch, University

of Bonn, Germany

N/A

pDISPLAY Aydin et al., 2012 N/A

pminiTol2 Balciunas et al., 2006 Addgene Plasmid #31829

pT3TS-Tol2 Balciunas et al., 2006 Addgene Plasmid #31831

gRNA scaffold vector pT7-gRNA Jao et al., 2013 Addgene Plasmid #46759

pCS2-nCas9n Wenbio Chen Addgene Plasmid #47929

pCS2P+ Marc Kirschner Addgene Plasmid #17095

pCS-ColXIXeGFP-DEST Hilario et al., 2010 N/A

hsp70l:col12a1a-p2A-cerulean Wehner et al., 2017 N/A

Software and Algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

GraphPad Prism 8.1.2 GraphPad Software Company https://www.graphpad.com/scientific-

software/prism/

WIS-NeuroMath software Rishal et al., 2013 https://biii.eu/wis-neuromath

NMJ-morph Jones et al., 2016 https://datashare.is.ed.ac.uk/handle/

10283/2113

pClamp 10 Molecular Devices https://moleculardevices.box.com/s/

l8h8odzbdikalbje1iwj85x88004f588

Noldus behavior analysis set-up, EthoVision

software (v. 7)

Noldus Company https://www.noldus.com/animal-

behavior-research/products/

ethovision-xt

ZenBlue2.3 software, Zeiss Carl Zeiss Company https://www.zeiss.com/microscopy/int/

home.html?vaURL=www.zeiss.com/

microscopy

Odyssey Fc Imaging system and Image

Studio Lite (v. 5.2)

Li-Cor Corporate Company https://www.licor.com/bio/image-

studio-lite/

GXCAM 1.3 camera with GX Capture software GT Vision Company https://www.gtvision.co.uk/epages/

es141397.sf/en_GB/?ObjectPath=/

Shops/es141397/Categories/

Cameras_for_Microscopes/

GXCAM_Camera_Drivers

G*Power 3.1 Faul et al., 2009 https://gpower.software.informer.com/3.1/

LightCycler� 96 Instrument Software Version

1.1.1 (Roche)

Roche Life Science Company https://lifescience.roche.com/en_gb/

brands/realtime-pcr-overview.

html#software

Other

Vivaspin 20-50000 MWCO GE Healthcare Cat# 28-9323-62
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and request for resources should be directed to andwill be fulfilled by the LeadContact, ThomasBecker (thomas.

becker@ed.ac.uk). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sources of zebrafish, mouse models, and cell culture used in this study are reported below and in the Key Resources Table.
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Zebrafish
All fish were kept and bred in our laboratory fish facility according to standard procedures (Westerfield, 2000), and all experiments

have been approved by the British Home Office (project license no.: 70/8805). Fish lines used were the WIK wild-type strain of

zebrafish and the Tg (mnx1:GFP) (previously HB9:GFP) (Flanagan-Steet et al., 2005) transgenic line. Further transgenic lines and

mutants were generated using CRISPR/Cas9 and Tol2 transgenesis as described below. These lines are chodl�/�, and

chodl�/�;mnx1:chodl-FLAG.

Mouse
The Chodl mutant mouse was generated as part of the IMPC project (https://www.mousephenotype.org/), designated

Chodlem1(IMPC)H, and maintained on a C57BL/6NTac background. All mouse experiments were carried out under UK Home Office

project license no. PDFEDC6F0. For ex vivo electrophysiology experiments, 4 control (2 males and 2 females) and 6 Chodl mutant

(3 males and 3 females) mice were used. For primary motor neuron culture, 3 control (2 males and 1 female) and 3 Chodl mutant

(2 males and 1 female) mice were used.

Cell culture
HEK293T cells were used in this study for biochemical assays. Cells were cultured in DMEM medium supplemented with 10% fetal

bovine serum (FBS), 1X Penicillin-Streptomycin (Life Technologies) at 37�C and 5% CO2 levels.

METHOD DETAILS

Plasmids for zebrafish
To generate the plasmids used in various experimental procedures the following vectors were used mammalian expression vectors

pCMV-MCS, kindly provided by Susanne Schoch-McGovern, Bonn, Germany; pDISPLAY, kindly provided by Jeffrey Lee, Toronto,

Canada (Aydin et al., 2012); pminiTol2, a gift from Stephen Ekker, Addgene plasmid # 31829 (Balciunas et al., 2006); gRNA scaffold

vector pT7-gRNA, agift fromWenbiao Chen, Addgene plasmid # 46759 ;and pCS2P, a gift fromMarc Kirschner, Addgene # 17095. All

restriction enzymes and buffers used were from New England Biolabs. A full list of primers is provided in Table S3 and S1.

The zebrafish full-length chondrolectin (chodl) was obtain by PCR using pCS2-chodl-myc as template (forward EcoRI 50- GCG

GAA TTC AAC ATG CGC GCG ACA CTC AGG - 30and reverse XhoI-FLAG 50- GCG CTC GAG TCA TTT ATC ATC ATC ATC TTT

ATA ATC TGG TCC TGG GAC CTC CAT GCC ACT GTC - 30) and subcloned into the EcoRI-XhoI-digested CMV-MCS vector

(pCMV-chodl-FLAG). Generation of truncated versions was achieved by PCR using the same forward primer as for full-length chodl

and two different reverse primers (XhoI-FLAG 50- GCGCTCGAGTCA TTT ATCATCATCATC TTT ATA ATC TGGTCCTGGCAACAT

CTG GAA ACA GCA CG-30 and XbaI –FLAG 50-GCG TCT AGA TCA TTT ATC ATC ATC ATC TTT ATA ATC TGG TCC TGG GAC CTC

CAT GCC ACT GTC-30). PCR fragments were ligated into CMV-MCS vector digested with EcoRI and XhoI (pCMV-chodl w/o intra-

cellular domain-FLAG), and EcoRI and XbaI (pCMV-chodl w/o CTLD-FLAG).

The zebrafish full-length col19a1 sequence was amplified from pCS-ColXIXeGFP-DEST (gift from Christine Beattie, Ohio, US) us-

ing the following primer sets: forward (ClaI) 50-GCG ATC GAT ACC ATG TTT TCA AGG GGC CCT TTC-30 and reverse (XbaI-HA) 50-
GCG TCT AGA CTA AGCGTA ATC TGG AAC ATC GTA TGGGTA TGG TCC GGGGCC ATC CCG TCT ACC ATA AG-30, and forward

(SfiI) 50- GCGGGCCCAGCCGGCCGAGAGAAT AGA TCA TAC ATG TCC-30 and reverse (SacII) 50-GCG CCGCGGCTAGCC ATC

CCGTCT ACCATA AG-30. ClaI-XbaI-digested and SfiI-SacII-digested colXIXa1PCR fragments were subcloned into CMV-MCS vec-

tor (pCMV-co19a1-HA) and pDISPLAY vector (pDISPLAY-HA-col19a1), respectively. The TSPN domain of col19a1 was obtained by

PCR (forward 50- GCG GGG CCC AGG AGA GAA TAG ATC ATA CAT GTC C-30 and reverse 50- GCG CCG CGG CTA TGC TGT GGG

GTT GTG GGT C-30) and subcloned into the ApaI-SacII-digested pDISPLAY vector (pDISPLAY-HA-TSPN). To generate the

pDISPLAY-HA-NC-Col plasmid, the NC-Col region was digested with BglII and NotI from pDISPLAY-HA-col19a1 and religated

into pDISPLAY vector.

For the construction of pCMV-colXIIa1-HA the MCS of pCMV-MCS vector was replaced by a new cloning site containing the SbfI

and NheI restriction enzyme sites, and the HA-tag sequence (forward EcoRI 50- AAT TCC CTG CAG GCC CTT AAG CCC GCT AGC

CCC GGA CCA TAC CCA TAC GAT GTT CCA GAT TAC GCT TAG G-30 and reverse BamHI 50- GAT CCC TAA GCG TAA TCT GGA

ACA TCGTATGGGTATGGTCCGGGGCTAGCGGGCTTAAGGGCCTGCAGGG-30). Full-length zebrafish col12a1aCDSwas cut

from the previously described hsp70l:col12a1a-p2A-cerulean construct (Wehner et al., 2017) and religated into the SbfI-NheI new

CMV-MCS digested vector.

The mnx1 promoter was amplified from genomic DNA using the forward primer (NotI) 50- GCG GCGGCC GCC CAT TTA AAT TAG

CCT GGC ATC TGG AC-30 and reverse primer (EcoRI) 50-GCG GAA TTC TCT GGC CCA CCT CAC AAA CAG-30), and the fragment

was cloned into the NotI-EcoRI pminiTol2 digested vector (pminiTol2-mnx1). The chodl-FLAG-SV40pA fragment, amplified from the

pCS2P-chodl-FLAG (forward EcoRI 50- GCGGAA TTC AAC ATGCGCGCGACACTC AGG-30 and reverse EcoRV 50- GCGGAT ATC

AAA AAA CCT CCC ACA C-30), was sub-cloned into the EcoRI-EcoRV-digested pminiTol2-Mnx1 vector. The pCS2P-chodl-FLAG

plasmid was generated by amplifying the chodl coding sequence from pCMV-chodl-myc, adding an artificial Kozak sequence

(AAC) 50 of the start site and adding a Gly-Pro-Gly linker and a synthetic FLAG tag to the 30end (forward EcoRI 50-GCG GAA TTC

AAC ATG CGC GCG ACA CTC AGG-30 and reverse XhoI 50-GCG CTC GAG TCA TTT ATC ATC ATC ATC TTT ATA ATC TGG TCC
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TGG GAC CTC CAT GCC ACT-30). The amplified chodl-FLAG fragment was digested and ligated into the EcoRI-XhoI-digeste

pCS2P+ vector.

To generate chodl w/o intracellular domain (ID), the chodl coding sequence until the transmembrane domain (TMD) was amplified

and a linker with FLAG-tag added, using the pCS2P-chodl-FLAG as template (forward EcoRI 50-ATG CGA ATT CAA ACA TGC GCG

CGACACTCAGG-30 and reverse XhoI 50-GCA TCTCGAGTTACT TGTCGTCATCGTCTT TGTAGTCAGGGCCAGGGAAACAGC

ACG TCC CTG AAG-30). This fragment was sub-cloned into the pCS2P+ vector and used as a PCR template to add the SV40

sequence for ligation into the pminiTol2-mnx1 plasmid (forward EcoRI 50-GAT TCG AAT TCA AAC ATGCGCG-30 and reverse EcoRV

50-CGA TGA TAT CAA AAA ACC TCC CAC ACC TCC C-30).
To generate an expression vector for Chodl w/o C-type lectin domain (CTLD), two intermediate chodl fragments were generated 50

and 30 of the CTLD (Cassette 1 forward EcoRI 50-ATG CGA ATT CAA ACA TGC GCG CGA CAC TCA GG-30 and reverse XhoI 50-GCA

TCT CGA GCA CTG TCT GAC CGC TCA CAA 30, and Cassette 2 forward XhoI 50-ATG CCT CGA GTA TGA ACC AGA AAG TCA TCT

GG-30and reverse XbaI 50-GCA TTC TAG ATT ACT TGT CGT CAT CGT CTT TGT AGT CAG GGC CAG GGA CCT CCA TGC CAC-30).
The PCR products were ligated together into the digested pCS2P+ vector, and then the whole chodl cassette and SV40 amplified to

ligate into pminiTol2-mnx1 vector. The primers for this amplification are the same as previously used to generate the final cassette of

the chodl w/o ID.

To generate chodl w/ ST- > A ID, the intracellular sequence 30 of the transmembrane domain wasmutagenized using PCR primers.

A sequence of 4 primers were used, which first bound to the TMD and added 30bp of mutagenized sequence, then bound to the last

20bp of each successivemutagenized sequence and added another 30bp. The final primer also contained the Gly-Pro-Gly linker and

FLAG-tag sequence. In each case, the forward primer was the same. Forward EcoRI 50-ATGCGAATTCAAACA TGCGCGCGACAC

TCAGG-30, Reverse 1 50-AGC TTT AGCCCG TGG TTT AGCCTT AGCCAACAT CTGGAA ACAGCACGT CCC TGA AG-30, Reverse
2 50-CGTCTT AGCGATCCAGAGAGCAGCTTGGTTGACAGCAGCTTT AGCCCGTGGTTT AGC-30, Reverse 3 50-GACCTCCAT

GCC AGC GTC TAT CTT AGC CGT CTT AGC GAT CCA GAG AG-30, Reverse 4 50-GCA TCT CGA GTT ACT TGT CGT CAT CGT CTT

TGT AGT CAG GGC CAG GGA CCT CCA TGC CAG CGT C-30. As described for the other truncated constructs, the cassette was

ligated into the pCS2P+ vector and re-amplified with the SV40 sequence, and ligated into the pminiTol2-mnx1 vector.

To generate the pminiTol2-mnx1-LifeactEGFP plasmid, the LifeactEGFP fragment was generated by PCR (Forward EcoRI 50- GCG

GAA TTC AAC ATG GGA GTA GCA GAC CTA ATC-30 and Reverse EcoRV 50- GCG GAT ATC TAA GAT ACA TTG ATG AGT TTG

GAC-30) and ligated into the pminiTol2-mnx1 vector. All generated plasmid were fully or partially sequenced.

Generation of a chodl mutant zebrafish
Three gRNAs targeting exon 1 of chodlwere designed using http://zlab.bio/guide-design-resources (Ran et al., 2013). The top guides

were selected for estimated cutting efficiency and fewest off-target sites, and for a restriction site to use in genotyping. Oligonucle-

otides for these gRNA sequences were generated using http://ZiFit.partners.org/ website to insert into the pT7-gRNA expression

vector. Oligos were annealed and ligated into the pT7 vector as described elsewhere (Jao et al., 2013).

gRNA was transcribed using the mMessage mMachine T7 Transcription kit (Thermo Fisher) after the plasmids were linearized with

BamHI. gRNAs were purified using the mirVana miRNA Kit (Thermo Fisher). The Cas9 mRNA was prepared from the pCS2-nCas9n

plasmid (gift fromWenbiao Chen, addgene plasmid #47929), linearized with XbaI and transcribed using the mMessage mMachineT3

Transcription Kit. Each gRNAwas co-injected with cas9mRNA into single-cellmnx1:GFP embryos, at an injection volume of 1nl. The

final injected gRNA concentration was 15 ng/ul and the Cas9 mRNA concentration was 150 ng/ul.

At 24 hpf, the embryos were checked for normal gross morphology and motor axon appearance. In each injection clutch, 5 em-

bryos were pooled for DNA extraction and genotyping to determine cutting efficiency of the gRNA target sequence. G0 injected fish

for gRNA1 were raised and outcrossed into the WIK wild-type fish line. F1 adults were fin-clipped and genotyped for heterozygous

mutation in the target sequence. Two founders had deletions of DCTCA, and one with DACACT in exon1 of chodl, leading to frame-

shift mutations and premature stops in exon 2. The two DCTCA founders were incrossed and had a heterogeneous clutch of moto-

neuron GFP+ and GFP� offspring. In the mnx1:GFP+ embryos, �25% of the clutch showed a shortened axon phenotype. These

phenotypically identified mutant embryos were selected and raised to generate homozygous mutant stocks, and some were taken

to sequence their DNA and confirm homozygosity of the indel. For the GFP� offspring, homozygous mutant adults were selected

from their non-homozygous siblings by genotyping through fin-clipping. The shortened axon phenotype in these fish was later

confirmed by SV2 staining in their offspring.

Generation of trasngenic zebrafish line
chodl mutant embryos were injected at the single-cell stage with 1nl of a mixture of transposase mRNA (50ng/ml, pT3TS-Tol2, gift

from Stephen Ekker, Addgene plasmid # 31831) and pminoTol2-mnx1:chodl-FLAG (25ng/ml) dissolved in RNase-free water. At 24

hpf, embryos were selected that showed a mosaic rescue of axon lengths. These fish were raised and backcrossed into the

chodl mutant line, with F1 embryos selected that showed rescue of virtually all motor axons at 24 hpf. Transmission of the

mnx1:chodl-FLAG transgene was also confirmed using FLAG immunohistochemistry on the embryos at 24 hpf.
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Zebrafish DNA extraction and genotyping
Embryos were digested whole using a solution containing 2.5ul Proteinase K (Invitrogen), 10 ml Taq polymerase buffer (New England

Biolabs), and 90 ml water. Embryos were heated to 65�C for 20 min, homogenized, and then heated to 95�C for 15 mins. The solution

was then homogenized again, spun down and 40ul of supernatant were removed for use as a PCR template.

Adult zebrafish fins were cut by first anaesthetising the fish in 1:1000 MS-222 (Sigma) and cutting off a small portion of fin using a

clean scalpel blade. The fin was digested in the same buffer as the embryos above and heated in the same sequence as for embryo

DNA extraction.

The DNA was amplified using genotyping primers which span a�300bp region around the gRNA target sequence. The amplicons

were digested with the restriction enzyme for each target and run on a 2% agarose gel with the undigested amplicon. An undigested

band demonstrates destruction of the restriction site via indel mutations by the Cas9. For gRNA1, which was used to generate the

chodlmutant line, the genotyping primers are: forward 50-GAC TGG AGC AAG TCT GTG-30 and reverse 50-CTG CACGAG ACC AGA

AAA-30, with BspCNI as the restriction site.

Zebrafish qRT-PCR
mRNA was extracted from 28 hpf zebrafish embryos (100 embryos/group/experiment) according to the manufacturer’s instructions

(RNeasy Mini Kit, QIAGEN). cDNA was synthesized using the iScript cDNA Synthesis Kit (Bio-Rad). Reverse transcription-PCR was

performed using the following pair of primers (Table S2) flanking a 232bp region between exon 5 and 7: 50-ACCACCCACTGATGAG

GATG-30 and reverse 50- GACCTCCATGCCACTGTCTA-30. Beta-actin was used as loading control (forward 50- CACTGAGGC

TCCCCTGAATCCC-30, reverse 50- CGTACAGAGAGAGCACAGCCTGG-30). All the amplicons were run a 1.5% agarose gel.

qRT-PCR was performed using the SsoAdvanced Universal SYBR Green Supermix kit according to the manufacturer’s instructions

(BioRad). Samples were run in triplicates on a LightCycler 96 instrument (Roche). The data wwereas analyzed using the LightCycler

96 application software v1.1 (Roche). Expression level of chodl was normalized to beta-actin control.

Double-morpholino injections in zebrafish
Approximately 1 nL of morpholino solution was injected into the yolk of mnx1:GFP transgenic animals and motor axon morphology

was evaluated as shortened or not at 24 hpf, as described (Zhong et al., 2012). Morpholino doses were titrated to be subthreshold for

phenotype generation (shortened axons). Total morpholino load per egg was kept constant by filling up with standard control mor-

pholino (GeneTools, Philomath, OR, USA).

Acute rescue assays of motor axon length in zebrafish
25ng/ml of plasmid coding for Chodl without ID (pminiTol2-mnx1:chodl-FLAG w/o ID), Chodl without CTLD (pminiTol2-mnx1:chodl-

FLAGw/o CTLD) or Chodl with mutated residues in the ID (pminiTol2-mnx1:chodl-FLAG ST- > A) was co-injected with 50ng/ml mRNA

transposase (pT3TS-Tol2) into chodl mutant embryos at the single-cell stage (final volume: 1 nl). As negative control for microinjec-

tion, empty pminiTol2-mnx1 was used, while pMiniTol2-mnx1:chodl-FLAG was used as positive control for rescue. At 28hpf, the

embryoswere dechorionated, fixed, and immunohistochemistry for GFP and FLAGwas performed. Axon length wasmeasured using

ImageJ, presence of FLAG expression was determined by fluorescence microscopy. Axons were only considered FLAG positive if

the FLAG staining was visible along the full length of the axon, if the neuronal morphology matched that of the CaP neuron, with its

soma situated directly above the peripheral axon, as described (Myers et al., 1986). This avoided mistakenly measuring motor axons

from RoP or MiP primary motor neurons. Images were analyzed in a blinded fashion.

Zebrafish whole-mount immunohistochemistry
Between 24 and 30 hpf, the zebrafish embryos were dechorionated and fixed for 45min at room temperature in 4%PFA / 1%DMSO.

This under-fixation is necessary to detect the low signal in the synapse preparations and the injected FLAG constructs. The embryos

were then rinsed 3x5mins with PBS + 0.1% Triton X-100 and blocked using blocking buffer containing 1% normal donkey serum (1%

DMSO, 1% BSA, 0.7% Triton X-100 in PBS pH 7.4) for 60 – 90 min at room temperature with gentle shaking. The embryos were then

incubated overnight at 4�C with the primary antibodies in blocking buffer with 1% normal donkey serum. Primary antibodies were:

anti-GFP (1:400, AbCam, AB13970), anti-FLAG (1:100, Sigma, F1804), anti-SV2 (1:200, DSHB), anti-Znp-1 (1:100, DSHB) and anti-

AChR (1:200, DSHB, mAb35). The primary antibodies were washed off using PBS-Tx for 6 3 10 min and the secondary antibody

incubated for 4 h at room temperature. Secondary antibodies used were: AlexaFluor488 donkey anti-chicken (1:400, Jackson

ImmunoResearch), AlexaFluor 594 donkey anti-mouse (1:400 Jackson ImmunoResearch), AlexaFluor 594 donkey anti-mouse

with pre-adsorption against rat protein (1:400, Jackson ImmunoResearch), AlexaFluor 488 donkey anti-rat with pre-adsorption

against mouse protein (1:400, Jackson ImmunoResearch) and AlexaFluor 647 donkey anti-rat with pre-adsorption against mouse

protein (1:400, Jackson ImmunoResearch). After fully rinsing off the secondary antibody, the embryos were settled in 70% glycerol /

30% PBS and stored wrapped in foil at 4�C until imaging.

At 3dpf, the larvae were fixed in 4% PFA / 1%DMSO for 4 h at 4�C. After 33 10 min rinsing in PBS + 0.1% Triton X-100, the larvae

were skinned to make the muscle more accessible to antibody labeling. The larvae were fixed to a silicone-coated Petri dish with

insect pins and most of the liquid sucked away from the larvae. Sharpened tungsten wire was used to gently pull the skin away

from the head area, and fine forcepswere then used to fully pull the skin off the trunk and tail. After skinning, the larvaewere incubated
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for 60 - 90 min in blocking buffer as described above at room temperature. Primary and secondary antibodies were used at the same

concentrations and incubation time as described for the embryos.

Zebrafish phalloidin staining and analysis
At 30 hpf, zebrafish embryos were dechorionated and fixed overnight at 4�C. After washes with PBS+Tween (0.1%), the embryos

were permeabilised by incubation in PBS+Triton X-100 (2%) for 2 h at room temperature. After further brief washes in PBS +

0.1% Tween-20, the embryos were incubated in PBS + 0.1% Tween + 5% AF568 Phalloidin (Thermofisher). After washing using

PBS+0.1% Tween-20, the embryos were settled in 70% glycerol / 30% PBS before imaging.

A single optical plane was analyzed which showed the full somite, and the number of distinct muscle cells per somite counted. The

average width of each muscle cell was also measured. For each embryo, images of three somites were analyzed with the observer

blinded to the genotype.

Zebrafish whole-mount confocal imaging
All zebrafish were mounted onto glass slides using 70% glycerol, deyolked with insect pins, and covered with coverslips anchored

with silicone gel. Images were acquired using a Zeiss LSM880 Indimo, Axio examiner confocal microscope with Plan-Apochromat

20x/0.8 objective.

Synaptic puncta quantification in zebrafish
All measurement of the synaptic puncta, labeled by SV2, Syt2 and AChR antibodies, was performed in ImageJ (Schneider et al.,

2012). For analysis, an approximate 400 mm2 square (20x20) was drawn around the horizontal myoseptum in 28 hpf embryos,

with 4 - 5 axons measured and the values averaged for each embryo. To determine synaptic measurements in the axonal branches

at 3 dpf, a 1600 mm2 square (40x40) was drawn in the ventral region of the myotome, with the top edge of the ROI 40 mm ventral to the

horizontal myoseptum, with 3 myotomes averaged per larva.

In each square, the synaptic compartment was analyzed by performing background subtraction of the images, with a rolling ball

radius of 33% of the square’s length in pixels. A 30% threshold was applied to all channels. Threshold values were calculated from

the maximum gray value measured from a smoothed duplicated image. After application of the threshold, the Analyze Puncta func-

tion was used to count puncta number and area (outline mask was generated). The minimum area defined as a punctum for the

Analyze Particle function was set as 0.6 mm2. This was qualitatively determined as the minimum size to remove background noise

without loss of true puncta.

The outlinemask was used to create a ROImask. The ROImask was applied on the raw images (after background subtraction) and

the mean gray value was measured. The observer was blinded to the experimental condition before measuring.

Time-lapse imaging of axon filopodia in zebrafish
Embryos containing mnx1-LifeactEGFP expressing CaP axons were mounted in 1 - 1.2% low melting agarose with 0.01% tricaine

(MS-222). Images were acquired using a Zeiss LSM 880 confocal laser scanning microscopy with Airyscan and a Plan-Apochromat

20x/0.8 objective. Z stack (space 0.500 mm) were collected every 30 s over a period of 60 min. Fiji software was used to quantify the

number and the lifetime of filopodia in each frame of each time-lapse sequence. The lifetime of filopodia was defined as the length of

time for which its presence was detected during imaging. Three wild-type and three chodl mutants were analyzed (one axon/fish).

The observer was blinded to the genotype while performing measurements.

Analysis of MiP motor axons in zebrafish
33hpf zebrafish embryos were fixed and stained for endogenous EGFP (anti-GFP, 1:400, AbCam, AB13970) and znp-1 (anti-Znp-1,

1:100, DSHB). Secondary antibodies used were: AlexaFluor488 donkey anti-chicken (1:400, Jackson ImmunoResearch) and

AlexaFluor 594 donkey anti-mousewith pre-adsorption against rat protein (1:400, Jackson ImmunoResearch). Imageswere acquired

using a Zeiss LSM880 Indimo, Axio examiner confocal microscope with Plan-Apochromat 20x/0.8 objective. Five to six MiP motor

axons per embryo were scored for extending beyond the dorsal border of the spinal cord, as described (Zhong et al., 2012) . During

measurements the observer was blinded to the genotype.

Zebrafish larval behavior analysis
To analyze swimming distance, 3 dpf larvae were touched on the median fin fold with a fire-pulled pipette. The swim path of their

escape response was recorded and analyzed using a Noldus behavior analysis set-up and EthoVision software (v. 7). Behavioral

data are shown as distance traveled within 15 s after touch, averaged for triplicate measures per larvae.

To measure turning angles, we recorded larvae using a Casio EX-ZR1300 camera with high-speed recording set to 1000 frames /

second. Larvae were recorded before, during, and after an escape response from a head tap with a fire-pulled glass pipette. The

larvae were touched on the tip of their nose and they subsequently turned randomly to the left or right to escape the stimulus.

The angle of the initial escape after the C-bend was binned into 45� segments from the starting position without considering the

direction of the bending. The escape response was recorded in triplicate per larva.
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To analyze the number of spontaneous contractions, 18-19hpf embryos were recorded continuously for 5 min under a stereomi-

croscope equipped with a GXCAM 1.3 camera and the number of coiling movements counted. The videos were recorded using the

GX Capture software at a speed of 6.2-5.3 frames/second (resolution 1272x952).

All behavioral experiments and analyses of videos were done in a blinded fashion.

Genotyping PCR for mice
Genomic DNA (gDNA) was prepared using PureLink Genomic DNA Kit (Invitrogen) according to the manufacturer’s instruction.

Founder mice were identified by genotyping PCR using HotStarTaq DNA polymerase (QIAGEN) with 2 gene-specific primer pairs

(pair A: 50- ACGTGAGTTTAGAGGGAAAGTTTG �30 and 50- CAGGATTGGCAGTTGGTTGGT �30; pair B: 50-GGCTGGCTTGT

GAAAGTGAAG-30 and 50-GTTTGGCCATCTCCGCTTCT-30). Both the primers were used for routine genotyping.

Mouse primary motor neuron cell culture
Primary motor neurons were isolated from the lumbar spinal cords of E12.5-13 WT and Chodl�/� homozygous embryos by using a

p75NTR-panning protocol (Wiese et al., 2010). Briefly, the lumbar region (L1-L6 segment) of the spinal cord was dissected from each

embryo and enriched on laminin and Poly-dl-ornithine hydrobromide (Sigma) -coated plates in neurobasal medium (Invitrogen) con-

taining GlutaMAX I supplemented with 10% heat-inactivated horse serum (Sigma) and 5 ng/ml brain derived neurotrophic factor

(BDNF; PeproTech) and ciliary neurotrophic factor (CNTF; PeproTech). Motor neurons were plated till 5 days in vitro. The cells

were fixed with 4% paraformaldehyde in phosphate buffered saline (PBS) for 15 min at room temperature, washed three time

with PBS 1X for 5 min, and stored at 4◦C.
Immunohistochemistry

The samples were incubated with the immunofluorescence (IF) blocking buffer (0.01% Triton X-100/TBS and 10% normal serum) for

1 h at room temperature andwashed once with IF buffer (0.01%Triton X-100/TBS). After blocking, the cells were incubated overnight

at 4�C with the primary antibodies diluted in IF buffer: rabbit anti-Tuj1 (Covance, 1:2000) and mouse anti-Islet1 (DSHB, 1:50), After

washing steps the cells were incubated for 1 h at room temperature with the appropriate secondary antibodies: Alexa Fluor 488 and

Alexa Fluor 568 (Invitrogen, 1:500), washed twice and counterstainedwith DAPI for nucleus staining beforemountedwith Vectashield

Hard Set (Vector) Mounting Medium. Fluorescence was visualized using a confocal microscope Zeiss LSM.

Quantifications

All measurements of the neuronal morphologies were performed using automated WIS-NeuroMath software (Rishal et al., 2013).

Neurite lengths, branching, cell body area and other parameters were calculated and saved for each cell, while ignoring neurites

which were not attached to cell bodies or attached to excessively small or large cell bodies. The cell body size was calculated using

threshold-based segmentation using the same software.

Ex vivo electrophysiology in mice
Experimental procedures on 4 months-old mice were performed as described previously (Webster et al., 2013). Phrenic nerve/hemi-

diaphragm preparations were bathed in Krebs-Henseleit buffer: 95%O2 / 5%CO2. Experiments took place in a Faraday enclosure at

room temperature (20 – 22�C). Phrenic nerve was stimulated with a solid-state square wave pulse generator (Grass Instruments,

Quincy, MA, USA) via a suction electrode. The signal was amplified using an Axoclamp 900A amplifier (Molecular Devices, Sunny-

vale, CA, USA). Compound muscle action potential (CMAP; example traces in Figure S7I-K) was recorded with a low resistance

extracellular glass electrode, containing bath solution, placed close to central area of the muscle. Recordings of CMAPs were

made prior to blockade of muscle sodium channels. Blockade of muscle contraction was achieved with 2.5 mM m-conotoxin GIIIB

(Alomone labs, Jerusalem, Israel). A borosilicate glass electrode (10–15 MU resistance, filled with 3M KCl) was used for recording

miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) from individual muscle fibers. A micromanipulation

rig (Scientifica, Maidenhead, UK) was used to place electrodes as near to the endplate region as possible, with visualization under

a BX51WI stereomicroscope (Olympus, Southend-on-Sea, UK). Recordingswere analyzed using pCLAMP 9 software (Molecular De-

vices), and normalized to a �80 mV baseline, thus correcting for differences in resting membrane potential. For each preparation

12-15 fibers were impaled, �30 mEPPs over were acquired and averaged. EPPS were recorded at 1 Hz stimulation frequency, 20

EPPS were acquired and averaged for each fiber. Data from each preparation (up to 15 fibers) were averaged, each n represents

a single preparation. For determination of quantal content, EPP amplitude was subjected the further species-specific correction,

as follows:

AMPEPP = AMPEPP ðmeasuredÞ
��
1 -- 0:8 AMPEPP ðmeasuredÞ

�
E
�

Where AMPEPP is the EPP amplitude, 0.8 the correction factor for mouse endplates, and E the resting membrane potential (�80 mV).

Quantal content was calculated according to the following formula:

Quantal content = meanðAMPEPPÞ= meanðAMPMEPPÞ
Where AMPMEPP is the MEPP amplitude.

The experimenter was blinded to genotype of animals during acquisition and analysis of data.
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Mouse muscle preparation and immunohistochemistry
Mice were sacrificed, muscles dissected, and neuromuscular junctions immunohistochemically labeled and observed as previously

described (Sleigh et al., 2014b). Muscles were dissected in cold 1 3 phosphate-buffered saline (PBS) and fixed in 4% (w / v) para-

formaldehyde in PBS (PFA, Electron Microscopy Sciences) for 15 min. Initially the muscles were permeabilized with 2% Triton X-100

in PBS for 30 min, before blocking in 4% bovine serum albumin and 1% Triton X-100 in PBS for 30 min and then incubated overnight

at 4�C in blocking solution with appropriate primary antibodies against neurofilament (2H3, 1/50, DSHB); synaptic vesicles (SV2,

1/100, DSHB); mouse anti-bassoon, 1:500 (cat. no. GTX13249, SAP7F407, Source BioScience, Nottingham, UK); rabbit anti-piccolo,

cat. no. 142002, 1:200, and rabbit anti-P/Q-VGCC (Cav2.1), cat. no. 152203, 1:300 (Synaptic Systems, Göttingen, Germany). The

next day, muscles were washed three times with PBS before a 2-hours incubation with secondary antibodies (1:250, Invitrogen,

varieties of Alexa Fluor-488 conjugated, �568-conjugated and 1.5 mg/ml tetramethylrhodamine (TRITC) a-BTX (Cambridge Biosci-

ence) in PBS. Finally, muscles were washed three times in PBS for 30 min and mounted in hard set Vectashield (Vector labs) on glass

slides with DAPI for confocal imaging.

Images were acquired using a Zeiss LSM 710 confocal microscope. Morphometric analysis of neuromuscular junctions was car-

ried out using a standardized platform: ‘‘NMJ-morph’’ (Jones et al., 2016). In vivo axon branching was measured from processed

binary images generated in ImageJ. Pixel positions of skeletonized imageswere used in quantifying branching patterns using a binary

connectivity plugin. Experiments were done blinded with mice identified only by codes and earclip number until all testing was

completed.

Behavioral analysis in mice
Open field testing was performed using PAS Homecage (San Diego Instruments) for a period of 20 min. The means of two trials were

analyzed per time point. Accelerating rotarod (Med Associates; 4–40 rpm) was performed to amaximum trial length of 300 s. Tested 2

times each day, over 3 separate days (2 3 3), average of 6 replicates used for final analysis.

The four-limb hanging wire test was conducted using a 43 cm2 grip-grid secured above a padded surface. Each trial was per-

formed for a maximum of 120 s, or until the mice fell before the time was up. The mean of six trials per mouse was analyzed per

time point. Behavioral testing was performed at monthly intervals without knowledge of the genotype.

HEK293T transfection and binding assays
HEK293T cells were platted at a density of 1.5x105 cells / 100 mm dish and transfected with 8 - 10 mg plasmid DNA using standard

CaPO4 transfection (Kwon and Firestein, 2013).

For immunofluorescence experiments, HEK293T cells were plated on poly-D-lysine coverslips and transfectedwith 0.5 mg plasmid

DNA using Lipofectamine2000 (Invitrogene) according to themanufacturers’ instructions. At 24 h post-transfection, the mediumwas

replaced with serum-free medium containing ColXIXa1 or ColXIIa1a, and further incubated for 24 h.

Immuno-labeling of transfected HEK293T cells
For immunostaining of Chodl, col19a1 and col12a1a, transfected HEK293T cells were fixed for 10min in 4% PFA / 4% glucose, per-

meabilized (0,3% Triton X-100 in PBS) and blocked for 1 h at room temperature in blocking solution (1% BSA, 1% NGS, 0.1x Triton

X-100 in PBS). Cells were incubated overnight at 4�C in primary antibodies (anti-HA, 1:400, BioLegend, Clone 16B12, and anti-FLAG

1:200, Cell Signaling, D6W5B). Following the washing steps, cells were incubated for 40 min at room temperature in secondary an-

tibodies (1:400, Alexa Fluor 647 donkey anti-rabbit, Jackson ImmunoResearch, 1:400, Alexa Fluor 488 donkey anti-mouse, Jackson

ImmunoResearch, and 1:400, Alexa Fluor 647 donkey anti-mouse, Jackson ImmunoResearch). Coverslips were extensively washed,

mounted in Mowiol and let dry overnight before imaging. Binding at the cell surface was measured on a single plane using the profile

tool from ZenBlue 2.3 software. Data were exported in Excel and the scatterplot was generated. Analysis was done on two different

batches of HEK293T transfected cells. Two different coverslips per transfection batch were imaged and analyzed.

Protein binding assays
HEK293T cells transfected with FLAG-tagged constructs were lysed for 1h in ice cold lysis buffer (50mM HEPES pH7.5,

150mM NaCl, 1% Triton X-100) supplemented with proteinase inhibitors (Roche), followed by a short centrifugation step at

14000rpm / 10min / 4�C. The clear supernatant was either incubated for 1h with FLAG M2 magnetic beads (Sigma) to collect the

overexpressed Chodl or directly mixed with purified HA-tagged ColXIXa1. HA-tagged ColXIXa1 was produced and secreted by

HEK293T cells in the presence of 50 mg/ml ascorbic acid. The cell culture medium was concentrated using VIVASPIN concentrators

(MWCO 50000), followed by purification via HAmagnetic beads (Thermo Scientific). All the binding assays were performed at 4�C for

2 h on a rotator. After incubation, the beads were extensively washed with lysis buffer and boiled at 95�C / 5 min in Laemmli buffer

supplemented with b-ME. Proteins were resolved in SDS-PAGE gel and transferred to nitrocellulosemembrane (Bio Rad). The detec-

tion of proteins was performed using primary antibodies against HA (1:1000, BioLegend, Clone 16B12) and FLAG (1:1000, Sigma,

F1804, or Cell Signaling, D6W5B), and secondary antibodies IRDye 800CW goat anti-mouse IgG (1:1000, Li-Cor) and IRDye

680LT goat anti-rabbit IgG (1:10000, Li-Cor). Membranes were scanned using the Odyssey Fc imaging system.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All quantitative data were tested for normality and analyzed with parametric and non-parametric tests as appropriate. For multiple

comparisons, we used: One-way ANOVA with Tukey’s Multiple Comparison Test (Figures 1D, 2B, 2C, 2D, 2G, 3K, 3N, 5C, S1H,

and S3B), Kruskal-Wallis test with Dunn’s multiple comparison test (Figures 1B, 2E, 2F, 2H, 2I, 5F, S1M, and S3C) or two-way

ANOVA with Sidak’s multiple comparisons test (Figures S7A, S7B, and S7D–S7H). For single comparisons, we used: unpaired

t test (Figures 4C–4N, S1E, S2C, S2E, S3E–S3O, S4C, S5E–S5H, S6C, S6E, and S6L–S6M), Mann–Whitney U tests (Figures S1F

and S4E) or one sample t test (Figure 6D; Figure S1I).

Statistical power was calculated using G*Power (Faul et al., 2009) (aim for most experiments > 0.8; indicated in Figure legends).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n.s. indicates no significance (p > 0.05). Error bars indicate the standard error of the

mean (SEM). The Figures were prepared with Adobe Photoshop CC and Adobe Illustrator CC/ Adobe Photoshop and Adobe Illus-

trator Creative Cloud. Graphs were generated using GraphPad Prism 7/GraphPad Prism 8.01.

DATA AND CODE AVAILABILITY

Original Coomassie and western blot data used to generate any of the figure panels in the paper are available on Mendeley Data

(https://doi.org/10.17632/g23ts8jjpp.1).
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