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Abstract. Knowledge graphs are graphical representations of large data-
bases of facts, which typically suffer from incompleteness. Inferring miss-
ing relations (links) between entities (nodes) is the task of link prediction.
A recent state-of-the-art approach to link prediction, ConvE, implements
a convolutional neural network to extract features from concatenated
subject and relation vectors. Whilst results are impressive, the method
is unintuitive and poorly understood. We propose a hypernetwork ar-
chitecture that generates simplified relation-specific convolutional filters
that (i) outperforms ConvE and all previous approaches across standard
datasets; and (ii) can be framed as tensor factorization and thus set
within a well established family of factorization models for link predic-
tion. We thus demonstrate that convolution simply offers a convenient
computational means of introducing sparsity and parameter tying to find
an effective trade-off between non-linear expressiveness and the number
of parameters to learn.

1 Introduction

Knowledge graphs, such as WordNet, Freebase, and Google Knowledge Graph,
are large graph-structured databases of facts, containing information in the form
of triples (e1, r, e2), with e1 and e2 representing subject and object entities and r
a relation between them. They are considered important information resources,
used for a wide variety of tasks ranging from question answering to informa-
tion retrieval and text summarization. One of the main challenges with existing
knowledge graphs is their incompleteness: many of the links between entities in
the graph are missing. This has inspired substantial work in the field of link
prediction, i.e. the task of inferring missing links in knowledge graphs.

Until recently, many approaches to link prediction have been based on dif-
ferent factorizations of a 3-moded binary tensor representation of the training
triples [12, 17, 23, 22]. Such approaches are shallow and linear, with limited ex-
pressiveness. However, attempts to increase expressiveness with additional fully
connected layers and non-linearities often lead to overfitting [12, 17]. For this rea-
son, Dettmers et al. introduce ConvE, a model that uses 2D convolutions over
reshaped and concatenated entity and relation embeddings [3]. They motivate
the use of convolutions by being parameter efficient and fast to compute on a
GPU, as well as having various robust methods from computer vision to prevent
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overfitting. Even though results achieved by ConvE are impressive, it is highly
unintuitive that convolution – particularly 2D convolution – should be effective
for extracting information from 1D entity and relation embeddings.

In this paper, we introduce HypER, a model that uses a hypernetwork [5]
to generate convolutional filter weights for each relation. A hypernetwork is an
approach by which one network generates weights for another network, that
can be used to enable weight-sharing across layers and to dynamically synthe-
size weights given an input. In our context, we generate relation-specific filter
weights to process input entities, and also achieve multi-task knowledge shar-
ing across relations in the knowledge graph. Our proposed HypER model uses
a hypernetwork to generate a set of 1D relation-specific filters to process the
subject entity embeddings. This simplifies the interaction between subject en-
tity and relation embeddings compared to ConvE, in which a global set of 2D
filters are convolved over reshaped and concatenated subject entity and relation
embeddings, which is unintuitive as it suggests the presence of 2D structure in
word embeddings. Moreover, interaction between subject and relation in ConvE
depends on an arbitrary choice about how they are reshaped and concatenated.
In contrast, HypER’s hypernetwork generates relation-specific filters, and thus
extracts relation-specific features from the subject entity embedding. This ne-
cessitates no 2D reshaping, and allows entity and relation to interact more com-
pletely, rather than only around the concatenation boundary. We show that this
simplified approach, in addition to improving link prediction performance, can
be understood in terms of tensor factorization, thus placing HypER within a
well established family of factorization models. The apparent obscurity of using
convolution within word embeddings is thereby explained as simply a convenient
computational means of introducing sparsity and parameter tying.

We evaluate HypER against several previously proposed link prediction mod-
els using standard datasets (FB15k-237, WN18RR, FB15k, WN18, YAGO3-10),
across which it consistently achieves state-of-the-art performance. In summary,
our key contributions are:

– proposing a new model for link prediction (HypER) which achieves state-of-
the-art performance across all standard datasets;

– showing that the benefit of using convolutional instead of fully connected
layers is due to restricting the number of dimensions that interact (i.e. ex-
plicit regularization), rather than finding higher dimensional structure in the
embeddings (as implied by ConvE); and

– showing that HypER in fact falls within a broad class of tensor factorization
models despite the use of convolution, which serves to provide a good trade-
off between expressiveness and number of parameters to learn.

2 Related Work

Numerous matrix factorization approaches to link prediction have been pro-
posed. An early model, RESCAL [12], tackles the link prediction task by opti-
mizing a scoring function containing a bilinear product between vectors for each
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of the subject and object entities and a full rank matrix for each relation. Dist-
Mult [23] can be viewed as a special case of RESCAL with a diagonal matrix per
relation type, which limits the linear transformation performed on entity vectors
to a stretch. ComplEx [22] extends DistMult to the complex domain. TransE [1]
is an affine model that represents a relation as a translation operation between
subject and object entity vectors.

A somewhat separate line of link prediction research introduces Relational
Graph Convolutional Networks (R-GCNs) [15]. R-GCNs use a convolution oper-
ator to capture locality information in graphs. The model closest to our own and
which we draw inspiration from, is ConvE [3], where a convolution operation is
performed on the subject entity vector and the relation vector, after they are
each reshaped to a matrix and lengthwise concatenated. The obtained feature
maps are flattened, put through a fully connected layer, and the inner product
is taken with all object entity vectors to generate a score for each triple. Ad-
vantages of ConvE over previous approaches include its expressiveness, achieved
by using multiple layers of non-linear features, its scalability to large knowledge
graphs, and its robustness to overfitting. However, it is not intuitive why con-
volving across concatenated and reshaped subject entity and relation vectors
should be effective.

The proposed HypER model does no such reshaping or concatenation and
thus avoids both implying any inherent 2D structure in the embeddings and re-
stricting interaction to the concatenation boundary. Instead, HypER convolves
every dimension of the subject entity embedding with relation-specific convo-
lutional filters generated by the hypernetwork. This way, entity and relation
embeddings are combined in a non-linear (quadratic) manner, unlike the lin-
ear combination (weighted sum) in ConvE. This gives HypER more expressive
power, while also reducing parameters.

Interestingly, we find that the differences in moving from ConvE to HypER
in fact bring the factorization and convolutional approaches together, since the
1D convolution process is equivalent to multiplication by a highly sparse tensor
with tied weights (see Figure 2). The multiplication of this “convolutional tensor”
(defined by the relation embedding and hypernetwork) and other weights gives
an implicit relation matrix, corresponding to those in e.g. RESCAL, DistMult
and ComplEx. Other than the method of deriving these relation matrices, the
key difference to existing factorization approaches is the ReLU non-linearity
applied prior to interaction with the object embedding.

3 Link Prediction

In link prediction, the aim is to learn a scoring function φ that assigns a score
s = φ(e1, r, e2) ∈ R to each input triple (e1, r, e2), where e1, e2 ∈ E are sub-
ject and object entities and r ∈ R a relation. The score indicates the strength
of prediction that the given triple corresponds to a true fact, with positive
scores meaning true and negative scores, false. Link prediction models typically
map entity pair e1, e2 to their corresponding distributed embedding represen-
tations e1, e2 ∈ Rde and a score is assigned using a relation-specific function,
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Table 1. Scoring functions of state-of-the-art link prediction models, the dimension-
ality of their relation parameters, and their space complexity. de and dr are the di-
mensions of entity and relation embeddings respectively, e2 ∈ Cde denotes the complex
conjugate of e2, and e1,wr ∈ Rdw×dh denote a 2D reshaping of e1 and wr respectively.
∗ is the convolution operator, Fr = vec−1(wrH) the matrix of relation specific convo-
lutional filters, vec is a vectorization of a matrix and vec−1 its inverse, f is a non-linear
function, and ne and nr respectively denote the number of entities and relations.

Model Scoring Function Relation Parameters Space Complexity

RESCAL [12] e>1 Wre2 Wr ∈ Rde
2

O(nede + nrd
2
e)

TransE [1] ‖e1 + wr − e2‖ wr ∈ Rde O(nede + nrde)

NTN [17] u>r f(e1W
[1..k]
r e2 + Vr

[
e1

e2

]
+ br) Wr ∈ Rde

2k,Vr ∈ R2dek,
ur ∈ Rk,br ∈ Rk

O(nede + nrde
2k)

DistMult [23] 〈e1,wr, e2〉 wr ∈ Rde O(nede + nrde)

ComplEx [22] Re(〈e1,wr, e2〉) wr ∈ Cde O(nede + nrde)

ConvE [3] f(vec(f([e1;wr] ∗ w))W)e2 wr ∈ Rdr O(nede + nrdr)

HypER (ours) f(vec(e1 ∗ vec−1(wrH))W)e2 wr ∈ Rdr O(nede + nrdr)

s = φr(e1, e2). The majority of link prediction models apply the logistic sigmoid
function σ(·) to the score to give a probabilistically interpretable prediction
p = σ(s) ∈ [0, 1] as to whether the queried fact is true. The scoring functions
for models from across the literature and HypER are summarized in Table 1,
together with the dimensionality of their relation parameters and the significant
terms of their space complexity.

4 Hypernetwork Knowledge Graph Embeddings

In this work, we propose a novel hypernetwork model for link prediction in
knowledge graphs. In summary, the hypernetwork projects a vector embedding
of each relation via a fully connected layer, the result of which is reshaped to
give a set of convolutional filter weight vectors for each relation. We explain
this process in more detail below. The idea of using convolutions on entity and
relation embeddings stems from computer vision, where feature maps reflect
patterns in the image such as lines or edges. Their role in the text domain is
harder to interpret, since little is known of the meaning of a single dimension in a
word embedding. We believe convolutional filters have a regularizing effect when
applied to word embeddings (compared to the corresponding full tensor), as the
filter size restricts which dimensions of embeddings can interact. This allows
nonlinear expressiveness while limiting overfitting by using few parameters. A
visualization of HypER is given in Figure 1.

4.1 Scoring Function and Model Architecture

The relation-specific scoring function for the HypER model is:

φr(e1, e2) = f(vec(e1 ∗ Fr)W)e2

= f(vec(e1 ∗ vec−1(wrH))W)e2,
(1)

where the vec−1 operator reshapes a vector to a matrix, and non-linearity f is
chosen to be a rectified linear unit (ReLU).
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Fig. 1. Visualization of the HypER model architecture. Subject entity embedding e1 is
convolved with filters Fr, created by the hypernetwork H from relation embedding wr.
The obtained feature maps Mr are mapped to de-dimensional space via W and the
non-linearity f applied before being combined with all object vectors e2 ∈ E through
an inner product to give a score for each triple. Predictions are obtained by applying
the logistic sigmoid function to each score.
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explicitly learned parameters
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Fig. 2. Interpretation of the HypER model in terms of tensor operations. Each rela-
tion embedding wr generates a set of filters Fr via the hypernetwork H. The act of
convolving Fr over e1 is equivalent to multiplication of e1 by a tensor Fr (in which
Fr is diagonally duplicated and zero elsewhere). The tensor product Fr ⊗yz W gives
a de × de matrix specific to each relation. Axes labels indicate the modes of tensor
interaction (via inner product).

In the feed-forward pass, the model obtains embeddings for the input triple
from the entity and relation embedding matrices E ∈ Rne×de and R ∈ Rnr×dr .
The hypernetwork is a fully connected layer H ∈ Rdr×lfnf (lf denotes filter
length and nf the number of filters per relation, i.e. output channels of the
convolution) that is applied to the relation embedding wr ∈ Rdr . The result
is reshaped to generate a matrix of convolutional filters Fr = vec−1(wrH) ∈
Rlf×nf . Whilst the overall dimensionality of the filter set is lfnf , the rank is
restricted to dr to encourage parameter sharing between relations.

The subject entity embedding e1 is convolved with the set of relation-specific
filters Fr to give a 2D feature map Mr ∈ Rlm×nf , where lm = de − lf + 1 is
the feature map length. The feature map is vectorized to vec(Mr) ∈ Rlmnf , and
projected to de-dimensional space by the weight matrix W ∈ Rlmnf×de . After
applying a ReLU activation function, the result is combined by way of inner
product with each and every object entity embedding e2

(i), where i varies over all
entities in the dataset (of size ne), to give a vector of scores. The logistic sigmoid
is applied element-wise to the score vector to obtain the predicted probability of
each prospective triple being true pi = σ(φr(e1, e2

(i))).
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4.2 Understanding HypER as Tensor Factorization

Having described the HypER architecture, we can view it as a series of tensor
operations by considering the hypernetwork H and weight matrix W as tensors
H ∈ Rdr×lf×nf and W ∈ Rlm×nf×de respectively. The act of convolving Fr =
wr ⊗H over the subject entity embedding e1 is equivalent to the multiplication
of e1 by a sparse tensor Fr within which Fr is diagonally duplicated with zeros
elsewhere (see Figure 2). The result is multiplied by W to give a vector, which
is subject to ReLU before the final dot product with e2. Linearity allows the
product Fr ⊗W to be considered separately as generating a de × de matrix for
each relation. Further, rather than duplicating entries of Fr within Fr, we can
generalize Fr to a relation-agnostic sparse 4 moded tensor F ∈ Rdr×de×nf×lm

by replacing entries with dr-dimensional strands of H. Thus, the HypER model
can be described explicitly as tensor multiplication of e1, e2 and wr with a core
tensor F⊗W ∈ Rde×de×dr , where F is heavily constrained in terms of its number
of free variables. This insight allows HypER to be viewed in a very similar light
to the family of factorization approaches to link prediction, such as RESCAL,
DistMult and ComplEx.

4.3 Training Procedure

Following the training procedure introduced by [3], we use 1-N scoring with the
Adam optimizer [8] to minimize the binary cross-entropy loss:

L(p,y) = − 1

ne

∑
i

(yilog(pi) + (1− yi)log(1− pi)), (2)

where y ∈ Rne is the label vector containing ones for true triples and zeros oth-
erwise, subject to label smoothing. Label smoothing is a widely used technique
shown to improve generalization [20, 14]. Label smoothing changes the ground-
truth label distribution by adding a uniform prior to encourage the model to be
less confident, achieving a regularizing effect. 1-N scoring refers to simultane-
ously scoring (e1, r, E), i.e. for all entities e2 ∈ E , in contrast to 1-1 scoring, the
practice of training individual triples (e1, r, e2) one at a time. As shown by [3],
1-N scoring offers a significant speedup (3x on train and 300x on test time) and
improved accuracy compared to 1-1 scoring. A potential extension of the HypER
model described above would be to apply convolutional filters to both subject
and object entity embeddings. However, since this is not trivially implementable
with 1-N scoring and wanting to keep its benefits, we leave this to future work.

4.4 Number of Parameters

Table 2 compares the number of parameters of ConvE and HypER (for the
FB15k-237 dataset, which determines ne and nr). It can be seen that, overall,
HypER has fewer parameters (4.3M) than ConvE (5.1M) due to the way HypER
directly transforms relations to convolutional filters.
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Table 2. Comparison of number of parameters for ConvE and HypER on FB15k-237.
hm and wm are height and width of the ConvE feature maps respectively.

Model E R Filters W

ConvE
ne × de

2.9M
nr × dr

0.1M
lfnf

0.0M
hmwmnf × de

2.1M

HypER
ne × de

2.9M
nr × dr

0.1M
dr× lfnf

0.1M
lmnf × de

1.2M

5 Experiments

5.1 Datasets

We evaluate our HypER model on the standard link prediction task using the
following datasets (see Table 3):

FB15k [1] a subset of Freebase, a large database of facts about the real world.

WN18 [1] a subset of WordNet, containing lexical relations between words.

FB15k-237 created by [21], noting that the validation and test sets of FB15k
and WN18 contain the inverse of many relations present in the training set,
making it easy for simple models to do well. FB15k-237 is a subset of FB15k
with the inverse relations removed.

WN18RR [3] a subset of WN18, created by removing the inverse relations.

YAGO3-10 [3] a subset of YAGO3 [10], containing entities which have a
minimum of 10 relations each.

Table 3. Summary of dataset statistics.

Dataset Entities (ne) Relations (nr)

FB15k 14,951 1,345
WN18 40,943 18
FB15k-237 14,541 237
WN18RR 40,943 11
YAGO3-10 123,182 37

5.2 Experimental Setup

We implement HypER in PyTorch [13] and make our code publicly available.1

Implementation Details We train our model with 200 dimension entity
and relation embeddings (de = dr = 200) and 1-N scoring. Whilst the relation
embedding dimension does not have to equal the entity embedding dimension,
we set dr = 200 to match ConvE for fairness of comparison.

To accelerate training and prevent overfitting, we use batch normalization [6]
and dropout [18] on the input embeddings, feature maps and the hidden layer.
We perform a hyperparameter search and select the best performing model by
mean reciprocal rank (MRR) on the validation set. Having tested the values
{0., 0.1, 0.2, 0.3}, we find that the following combination of parameters works

1 https://github.com/ibalazevic/HypER
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well across all datasets: input dropout 0.2, feature map dropout 0.2, and hidden
dropout 0.3, apart from FB15k-237, where we set input dropout to 0.3. We select
the learning rate from {0.01, 0.005, 0.003, 0.001, 0.0005, 0.0001} and exponential
learning rate decay from {1., 0.99, 0.995} for each dataset and find the best per-
forming learning rate and learning rate decay to be dataset-specific. We set the
convolution stride to 1, number of feature maps to 32 with the filter size 3 × 3
for ConvE and 1× 9 for HypER, after testing different numbers of feature maps
nf ∈ {16, 32, 64} and filter sizes lf ∈ {1 × 1, 1 × 2, 1 × 3, 1 × 6, 1 × 9, 1 × 12}
(see Table 9). We train all models using the Adam optimizer with batch size
128. One epoch on FB15k-237 takes approximately 12 seconds on a single GPU
compared to 1 minute for e.g. RESCAL, largely due to 1-N scoring.

Evaluation Results are obtained by iterating over all triples in the test set.
A particular triple is evaluated by replacing the object entity e2 with all entities
E while keeping the subject entity e1 fixed and vice versa, obtaining scores for
each combination. These scores are then ranked using the “filtered” setting only,
i.e. we remove all true cases other than the current test triple [1].

We evaluate HypER on five different metrics found throughout the link pre-
diction literature: mean rank (MR), mean reciprocal rank (MRR), hits@10,
hits@3, and hits@1. Mean rank is the average rank assigned to the true triple,
over all test triples. Mean reciprocal rank takes the average of the reciprocal rank
assigned to the true triple. Hits@k measures the percentage of cases in which
the true triple appears in the top k ranked triples. Overall, the aim is to achieve
high mean reciprocal rank and hits@k and low mean rank. For a more extensive
description of how each of these metrics is calculated, we refer to [3].

5.3 Results

Link prediction results for all models across the five datasets are shown in Tables
4, 5 and 6. Our key findings are:

– whilst having fewer parameters than the closest comparator ConvE, Hy-
pER consistently outperforms all other models across all datasets, thereby
achieving state-of-the-art results on the link prediction task; and

– our filter dimension study suggests that no benefit is gained by convolving
over reshaped 2D entity embeddings in comparison with 1D entity embed-
ding vectors and that most information can be extracted with very small
convolutional filters (Table 9).

Overall, HypER outperforms all other models on all metrics apart from mean
reciprocal rank on WN18 and mean rank on WN18RR, FB15k-237, WN18, and
YAGO3-10. Given that mean rank is known to be highly sensitive to outliers
[11], this suggests that HypER correctly ranks many true triples in the top 10,
but makes larger ranking errors elsewhere.

Given that most models in the literature, with the exception of ConvE, were
trained with 100 dimension embeddings and 1-1 scoring, we reimplement previ-
ous models (DistMult, ComplEx and ConvE) with 200 dimension embeddings
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and 1-N scoring for fair comparison and report the obtained results on WN18RR
in Table 7. We perform the same hyperparameter search for every model and
present the mean and standard deviation of each result across five runs (differ-
ent random seeds). This improves most previously published results, except for
ConvE where we fail to replicate some values. Notwithstanding, HypER remains
the best performing model overall despite better tuning of the competitors.

Table 4. Link prediction results on WN18RR and FB15k-237. The RotatE [19] results
are reported without their self-adversarial negative sampling (see Appendix H in the
original paper) for fair comparison, given that it is not specific to that model only.

WN18RR FB15k-237

MR MRR H@10 H@3 H@1 MR MRR H@10 H@3 H@1

DistMult [23] 5110 .430 .490 .440 .390 254 .241 .419 .263 .155
ComplEx [22] 5261 .440 .510 .460 .410 339 .247 .428 .275 .158
Neural LP [24] − − − − − − .250 .408 − −
R-GCN [15] − − − − − − .248 .417 .264 .151
MINERVA [2] − − − − − − − .456 − −
ConvE [3] 4187 .430 .520 .440 .400 244 .325 .501 .356 .237
M-Walk [16] − .437 − .445 .414 − − − − −
RotatE [19] − − − − − 185 .297 .480 .328 .205

HypER (ours) 5798 .465 .522 .477 .436 250 .341 .520 .376 .252

Table 5. Link prediction results on WN18 and FB15k.

WN18 FB15k

MR MRR H@10 H@3 H@1 MR MRR H@10 H@3 H@1

TransE [1] 251 − .892 − − 125 − .471 − −
DistMult [23] 902 .822 .936 .914 .728 97 .654 .824 .733 .546
ComplEx [22] − .941 .947 .936 .936 − .692 .840 .759 .599
ANALOGY [9] − .942 .947 .944 .939 − .725 .854 .785 .646
Neural LP [24] − .940 .945 − − − .760 .837 − −
R-GCN [15] − .819 .964 .929 .697 − .696 .842 .760 .601
TorusE [4] − .947 .954 .950 .943 − .733 .832 .771 .674
ConvE [3] 374 .943 .956 .946 .935 51 .657 .831 .723 .558
SimplE [7] − .942 .947 .944 .939 − .727 .838 .773 .660

HypER (ours) 431 .951 .958 .955 .947 44 .790 .885 .829 .734

Table 6. Link prediction results on YAGO3-10.

YAGO3-10

MR MRR H@10 H@3 H@1

DistMult [23] 5926 .340 .540 .380 .240
ComplEx [22] 6351 .360 .550 .400 .260
ConvE [3] 1676 .440 .620 .490 .350

HypER (ours) 2529 .533 .678 .580 .455

To ensure that the difference between reported results for HypER and ConvE
is not simply due to HypER having a reduced number of parameters (implicit
regularization), we trained ConvE reducing the number of feature maps to 16
instead of 32 to have a comparable number of parameters to HypER (explicit
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Table 7. Link prediction results on WN18RR; all models trained with 200 dimension
embeddings and 1-N scoring.

WN18RR
MR MRR H@10 H@3 H@1

DistMult [23] 4911± 109 .434± .002 .508± .002 .447± .001 .399± .002
ComplEx [22] 5930± 125 .446± .001 .523± .002 .462± .001 .409± .001
ConvE [3] 4997± 99 .431± .001 .504± .002 .443± .002 .396± .001

HypER (ours) 5798± 124 .465± .002 .522± .003 .477± .002 .436± .003

regularization). This showed no improvement in ConvE results, indicating Hy-
pER’s architecture does more than merely reducing the number of parameters.

Table 8. Results with and without hypernetwork on WN18RR and FB15k-237.

WN18RR FB15k-237

MRR H@10 MRR H@10

HypER .465± .002 .522± .003 .341± .001 .520± .002
HypER (no H) .459± .002 .511± .002 .338± .001 .515± .001

Hypernetwork Influence To test the influence of the hypernetwork and,
thereby, knowledge sharing between relations, we compare HypER results on
WN18RR and FB15k-237 with the hypernetwork component removed, i.e. with-
out the first fully connected layer and with the relation embeddings directly cor-
responding to a set of convolutional filters. Results presented in Table 8 show that
the hypernetwork component improves performance, demonstrating the value of
multi-task learning across different relations.

Filter Dimension Study Table 9 shows results of our study investigating the
influence of different convolutional filter sizes on the performance of HypER. The
lower part of the table shows results for 2D filters convolved over reshaped (10×
20) 2D subject entity embeddings. It can be seen that reshaping the embeddings
is of no benefit, especially on WN18RR. These results indicate that the purpose
of convolution on word embeddings is not to find patterns in a 2D embedding (as
with images), but perhaps to limit the number of dimensions that can interact
with each other, thereby avoiding overfitting. In the upper part of the table, we
vary the length of 1D filters, showing that comparable results can be achieved
with filter sizes 1× 6 and 1× 9, with diminishing results for smaller (e.g. 1× 1)
and larger (e.g. 1× 12) filters.

Label Smoothing Contrary to the ablation study of [3], showing the influence
of hyperparameters on mean reciprocal rank for FB15k-237, from which they
deem label smoothing unimportant, we find label smoothing to give a significant
improvement in prediction scores for WN18RR. However, we find it does have
a negative influence on the FB15k scores and as such, exclude label smoothing
from our experiments on that dataset. We therefore recommend evaluating the
influence of label smoothing on a per dataset basis and leave to future work
analysis of the utility of label smoothing in the general case.
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Table 9. Influence of different filter dimension choices on prediction results.

WN18RR FB15k-237

Filter Size MRR H@1 MRR H@1

1× 1 .455 .422 .337 .248
1× 2 .458 .428 .337 .248
1× 3 .457 .427 .339 .250
1× 6 .459 .429 .340 .251
1× 9 .465 .436 .341 .252
1× 12 .457 .428 .341 .252

2× 2 .456 .429 .340 .250
3× 3 .458 .430 .339 .250
5× 5 .452 .423 .340 .252

6 Conclusion

In this work, we introduce HypER, a hypernetwork model for link prediction on
knowledge graphs. HypER generates relation-specific convolutional filters and
applies them to subject entity embeddings. The hypernetwork component allows
information to be shared between relation vectors, enabling multi-task learning
across relations. To our knowledge, HypER is the first link prediction model
that creates non-linear interaction between entity and relation embeddings by
convolving relation-specific filters over the entity embeddings.

We show that no benefit is gained from 2D convolutional filters over 1D,
dispelling the suggestion that 2D structure exists in entity embeddings implied
by ConvE. We also recast HypER in terms of tensor operations showing that,
despite the convolution operation, it is closely related to the established family of
tensor factorization models. Our results suggest that convolution provides a good
trade-off between expressiveness and parameter number compared to a dense
network. HypER is fast, robust to overfitting, has relatively few parameters,
and achieves state-of-the-art results across almost all metrics on multiple link
prediction datasets.

Future work might include expanding the current architecture by applying
convolutional filters to both subject and object entity embeddings. We may
also analyze the influence of label smoothing and explore the interpretability of
convolutional feature maps to gain insight and potentially improve the model.

Acknowledgements

We thank Ivan Titov for helpful discussions on this work. Ivana Balažević and
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