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PRECONDITIONERS AND TENSOR PRODUCT SOLVERS FOR
OPTIMAL CONTROL PROBLEMS FROM CHEMOTAXIS

SERGEY DOLGOV∗ AND JOHN W. PEARSON†

Abstract. In this paper, we consider the fast numerical solution of an optimal control formula-
tion of the Keller–Segel model for bacterial chemotaxis. Upon discretization, this problem requires
the solution of huge-scale saddle point systems to guarantee accurate solutions. We consider the
derivation of effective preconditioners for these matrix systems, which may be embedded within
suitable iterative methods to accelerate their convergence. We also construct low-rank tensor-train
techniques which enable us to present efficient and feasible algorithms for problems that are finely
discretized in the space and time variables. Numerical results demonstrate that the number of pre-
conditioned GMRES iterations depends mildly on the model parameters. Moreover, the low-rank
solver makes the computing time and memory costs sublinear in the original problem size.

Key words. PDE-constrained optimization; Boundary control; Preconditioning; Chemotaxis;
Mathematical biology

AMS subject classifications. 35Q93, 65F08, 65F10, 65N22, 92C17

1. Introduction. The process of chemotaxis in biology describes the movement
of cells or organisms in a directed fashion as a response to external chemical signals.
In 1971, Keller and Segel presented a mathematical model for bacterial chemotaxis
[23]. In essence, for large numbers of bacteria, it is predicted that the bacteria will
on average move up gradients of the chemoattractant concentration.

Since Keller and Segel’s work, an area of numerical mathematics that has become
a subject of significant interest is that of PDE-constrained optimization, where one
wishes to predict the circumstances in which some physical (or in this case biological)
objective occurs, subject to a system of PDEs describing the process. Using this tech-
nology, one is able to pose an optimal control problem for the chemotaxis mechanism:
given an observed bacterial cell concentration profile, what can be said about the
external chemoattractant at the boundaries of a domain of interest? The constraints
for this problem are therefore the PDEs describing bacterial chemotaxis. This is a pa-
rameter identification problem that has been considered in literature such as [28, 46],
and in particular it was shown numerically by Lebiedz and Brandt-Pollmann that “it
is possible to systematically control spatiotemporal dynamical behavior” [28].

The fast and efficient iterative solution of PDE-constrained optimization problems
has increasingly become an active area of research, and in particular it is now widely
recognized that the incorporation of effective preconditioners to accelerate iterative
schemes is highly beneficial from a computational point of view. Preconditioning
theory and numerics for a number of steady [42, 43, 44, 47, 54, 67] and time-dependent
[6, 40, 41, 56] problems have been established, with [40, 56] describing the resulting
solvers for reaction–diffusion problems from chemistry and biology. In this paper, we
derive a potent preconditioner for the chemotaxis problem based on the saddle point
structure of the matrix systems resulting from Newton-type iterations of the nonlinear
PDEs.

When solving these optimization problems, which often involve the solution of
a system of PDEs with initial conditions coupled with adjoint PDEs equipped with

∗Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY,
United Kingdom (s.dolgov@bath.ac.uk)
†School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s

Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom (j.pearson@ed.ac.uk)

1



2 S. DOLGOV AND J. W. PEARSON

final-time conditions, there are many challenges arising from the time-dependent com-
ponent of the problem in particular, due to the forward-backward solves required, and
the associated scaling of computational complexity with the fineness of the grid in the
time variable. Difficulties also arise from nonlinear problems, due to the matrices
arising from the PDE system varying in structure at every time step, unlike linear
problems for which some matrices can be re-used repeatedly within a solver. For
time-dependent nonlinear problems that arise from chemotaxis, computer storage is
therefore a significant bottleneck, unless a numerical algorithm is specifically tailored
in order to mitigate this.

To combat this issue, in addition to presenting our new preconditioner, we describe
an approach for approximating the solution of our problem in a low-rank format,
namely the Tensor Train (TT) decomposition [37]. Low-rank tensor techniques emerge
from the separation of variables and the Fourier method for solving PDEs. We can
approximate the solution in the form z(x, y) ≈

∑r
i=1 vi(x)gi(y), using a possibly small

number of terms r. In this case, the discretized univariate functions in the low-rank
decomposition are much cheaper to store than the original multivariate function. The
discretized separation of variables requires the low-rank approximation of matrices
(for two variables x, y), or tensors (for three or more variables). Direct generalization
of the separation of variables to three and more dimensions was called the Canonical
or CP decomposition [26]. However, it may suffer from the ill-posedness and the
instability of the approximation problem [5]. TT and, more generally, hierarchical
tensor decompositions, such as HT [15], consist of recurrent matrix factorizations,
and have a more complicated summation structure than CP. However, this allows us
to employ robust tools of linear algebra, such as the singular value decomposition, to
deliver an optimal low-rank approximation for a desired accuracy. Moreover, iterative
algorithms exist for efficient solution of linear equations that compute directly the
decomposition factors of the approximate solution. This gets rid of the excessive
numerical cost of solving the full problem, in contrast to the offline stage in reduced
basis methods. Further details are provided in Section 6, and general reviews on the
topic can be found in [13, 14, 25].

The efficiency of low-rank decompositions depends crucially on the value of the
rank r, which in turn reflects the structure of a function. The dimension of a subspace
needed to approximate an arbitrary function with bounded weak partial derivatives
up to order s with an error ε in the L2 norm is proportional to ε−d/s. This expo-
nential growth of the cost with d is called the curse of dimensionality, which plagues
all functions of low regularity. Discontinuous functions, in particular level set func-
tions, are thus extremely difficult for any numerical representation based on linear
subspaces. However, bounding also the mixed derivatives up to order s, and decom-
posing the coefficients in a hierarchical tensor format, reduces the complexity estimate
to O(ε−3/(2s)| log ε|d−2) for s� 1 [53, Thm. 2]. The optimal control problem implies
driving the solution to a desired state, which often has a simple structure and hence
is usually highly regular. Therefore, as long as we avoid discontinuous functions in
our formulation, the low-rank techniques can be very efficient for the optimal control
problem. This is demonstrated in our computational experiments.

This paper is structured as follows. In Section 2 we describe the problem state-
ment of which the numerical solution is considered. In Section 3 we present the
structure of the matrix systems that result from the discretization of the system of
PDEs. In Section 4 we present our preconditioning strategy for these systems, with
numerical results provided in Section 5. We describe the low-rank tensor decomposi-
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tion which is employed for the matrix systems in Section 6, with additional numerical
experiments relating to this approach carried out in Section 7. Finally, concluding
remarks are made in Section 8.

2. Problem statement. We base our investigation on optimal control mod-
elling of chemotaxis problems considered in literature such as [28] and [46, Ch. 13].
These works are inspired by the original Keller–Segel model for chemotaxis [23], and
investigations by Tyson et al. deriving ‘forward’ PDE formulations for bacterial
chemotaxis [60, 61]. Numerical methods have previously been derived for the for-
ward problem, and to a lesser extent to optimal control analogues, for instance finite
difference methods [28, 29, 50], finite element methods [30, 50, 57, 58], and finite
volume methods [62]. An incomplete LU preconditioner was implemented for a finite
element discretization in [30], applied within the BiCGSTAB method [64]. However,
to our knowledge, neither preconditioned iterative methods nor tensor product solvers
have been derived for optimal control problems from chemotaxis – in this paper we
examine each of these new challenges.

We commence by examining the following problem describing the optimal control
of a bacterial chemotaxis system, built around the studies of [28, 46]:

min
z,c,u

1

2

∫
Ω

(z(x, T )− ẑ)2
+
γc
2

∫
Ω

(c(x, T )− ĉ)2
+
γu
2

∫
∂Ω×(0,T )

u2 (2.1)

subject to

∂z

∂t
−Dz∇2z + α∇ ·

(
∇c

(1 + c)2
z

)
= 0 on Ω× (0, T ),

∂c

∂t
−∇2c+ ρc− w z2

1 + z2
= 0 on Ω× (0, T ),

equipped with the boundary conditions and initial conditions:

Dz
∂z

∂n
− α z

(1 + c)2

∂c

∂n
= 0 on ∂Ω× (0, T ),

∂c

∂n
+ βc = βu on ∂Ω× (0, T ),

z(x, 0) = z0(x) on Ω,

c(x, 0) = c0(x) on Ω,

with the first condition posed to ensure conservation of mass on the boundary. This
problem is solved on a space-time domain Ω×(0, T ) with boundary ∂Ω×(0, T ), and for
Ω ⊂ R2. The variables z, c denote state variables, corresponding to the bacterial cell
density and chemoattractant concentration respectively, with u the control variable, ẑ,
ĉ given desired states at time T , z0, c0 given initial conditions, and γc, γu, Dz, α, ρ, w,
β given (nonnegative) parameters. Following the work of [28, 46], values Dz = 0.33,
α = 80, ρ = 0, w = 1, β = 0.1 are chosen for our experiments. We highlight that,
by construction of the problem, the control u in some sense relates to the gradient of
chemoattractant concentration on the boundary of the domain of interest. The form
of the boundary condition which enforces the control makes this a boundary control
problem. In this PDE-constrained optimization model, we wish to discover what the
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profile of this control must be in order for the biological system to behave in a way
prescribed by the desired states ẑ, ĉ.

Remark 1. Although derived similarly, the main difference between the works of
[28] and [46] is that [28] considers solely the misfit between z and ẑ, regularized by a
term involving the final time T . Both works involve control variables imposed through
a Neumann boundary condition, but whereas this variable appears directly within the
cost functional in [46], this is effectively replaced by a regularization of T in [28].
The problem statement (2.1) is motivated strongly by the work of [46]. However, as
we believe that the methods introduced in this paper could be applied to either cost
functional, we wish to highlight that other useful problem formulations are available.

Remark 2. Despite the complex structure of boundary control systems involving
chemotaxis equations, it is possible to prove existence of solutions to problems of this
form. We highlight the work of [10], where a slightly different form of the problem (2.1)
with PDE constraints is analyzed (specifically, the author considers terms in the ob-
jective functions that measure the misfit between the state variables and desired states
within the entire time interval, and with different zeroth order derivative terms within
the PDEs). In this setting, assuming a control variable belonging to Lr̄(0, T ;Lp̄(∂Ω))
in d dimensions (in this paper d = 2), with r̄ ≥ 2 and p̄ > d such that 2

r̄ + d
p̄ < 1, a

unique solution (z, c) ∈
[
Lr̄(0, T ;W p̄,1(Ω)) ∩W r̄,1(0, T ;W p̄,−1(Ω))

]2
exists. The au-

thor shows that the same result holds for the adjoint variables (p, q) provided r̄ > 2p̄.

We now consider the first and second derivatives of the Lagrangian1:

L(z, c, u, p, q) =
1

2

∫
Ω

(z(x, T )− ẑ)2
+
γc
2

∫
Ω

(c(x, T )− ĉ)2
+
γu
2

∫
∂Ω×(0,T )

u2

+

∫
Ω×(0,T )

pΩ

(
∂z

∂t
−Dz∇2z + α∇ ·

(
∇c

(1 + c)2
z

))
+

∫
Ω×(0,T )

qΩ

(
∂c

∂t
−∇2c+ ρc− w z2

1 + z2

)
+

∫
∂Ω×(0,T )

p∂Ω

(
∂z

∂n

)
+

∫
∂Ω×(0,T )

q∂Ω

(
∂c

∂n
+ βc− βu

)
,

where p and q denote the adjoint variables corresponding to z and c, with pΩ, qΩ

the components of p, q within the interior of Ω, and p∂Ω, q∂Ω the components on
the boundary. We arrive at the following system for the Newton formulations of the

1For ease of notation, we exclude initial conditions within the definition of the Lagrangian.
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first-order optimality conditions:

∂sz
∂t
−Dz∇2sz − α∇ ·

(
∇
(

1

1 + c

)
sz

)
+ α∇ ·

(
∇
(

1

(1 + c)2
sc

)
z

)
(2.2)

= −
(
∂z

∂t
−Dz∇2z + α∇ ·

(
∇c

(1 + c)2
z

))
on Ω× (0, T ),

∂sc
∂t
−∇2sc + ρsc − 2w

z

(1 + z2)2
sz (2.3)

= −
(
∂c

∂t
−∇2c+ ρc− w z2

1 + z2

)
on Ω× (0, T ),

γusu − βsq = − (γuu− βq) on ∂Ω× (0, T ), (2.4)

− 2wq
1− 3z2

(1 + z2)3
sz − α∇

(
2c

(1 + c2)2
sc

)
· ∇p (2.5)

− ∂sp
∂t
−Dz∇2sp + α∇

(
1

1 + c

)
· ∇sp − 2w

z

(1 + z2)2
sq

= −
(
−∂p
∂t
−Dz∇2p+ α∇

(
1

1 + c

)
· ∇p− 2w

zq

(1 + z2)2

)
on Ω× (0, T ),

αp∇ ·
(
∇
(

1

(1 + c)2

)
sz

)
− αp∇ ·

(
∇
(

2c

(1 + c2)2
sc

)
z

)
(2.6)

+ α∇ ·
(
∇
(

1

(1 + c)2

)
z

)
sp −

∂sq
∂t
−∇2sq + ρsq

= −
(
αp∇ ·

(
∇
(

1

(1 + c)2

)
z

)
− ∂q

∂t
−∇2q + ρq

)
on Ω× (0, T ),

where sz, sc, su, sp, sq are the Newton updates for z, c, u, p, q. The boundary
conditions for the updates of the state variables are given by

Dz
∂sz
∂n
− α sz

(1 + c)2

∂c

∂n
+ 2α

zsc
(1 + c)3

∂c

∂n
− α z

(1 + c)2

∂sc
∂n

= 0 on ∂Ω× (0, T ),

∂sc
∂n

+ βsc = βsu on ∂Ω× (0, T ).

Zero initial conditions are specified for sz, sc, as well as final-time conditions sp(x, T ) =
−sz(x, T ), sq(x, T ) = −γcsc(x, T ), assuming an initial guess is chosen that satisfies
the initial conditions for z, c, and the final-time conditions p(x, T ) = ẑ − z(x, T ),
q(x, T ) = γc(ĉ− c(x, T )).

Remark 3. We note that Newton iterates for the above first-order conditions
can be attracted to maxima or other stationary points of the Lagrangian, although
feasible descent directions exist. Whilst we do not encounter this issue within the
numerical experiments presented, in this case second-order sufficiency conditions may
be derived and verified. We refer the reader to an analysis of second-order conditions
for optimal control problems in chemotaxis presented in [10, Ch. 7], and to [3] for a
wider discussion of the role of second-order conditions in PDE control problems.

Remark 4. We highlight that there also exist chemotaxis problems which may be
written in distributed control form. For example the work in [9], on the identification
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of chemotaxis models with volume-filling, considers (amongst others) a problem which
may be interpreted in our setting in the following way:

min
z,f

1

2

∫
Ω×(0,T )

(z − ẑ)2
+
γ

2

∫
Ω×(0,T )

[
f2 + |∇f |2

]
s.t.

∂z

∂t
−∇2z + f∇2c+∇f · ∇c = 0 on Ω× (0, T ),

−∇2c+ c = z on Ω× (0, T ),

∂z

∂n
− f ∂c

∂n
= 0 on ∂Ω× (0, T ),

∂c

∂n
= 0 on ∂Ω× (0, T ),

z(x, 0) = z0(x) on Ω,

where γ is a positive constant, and f(z) denotes the chemoattractant sensitivity. The
challenge in this case is to discover the necessary profile of the function f in order
to drive the chemoattractant to a particular state. We believe that variants of the
techniques introduced in this paper could also be applied to this distributed control
problem.

3. Matrix systems for Newton and Gauss–Newton. In this section we de-
scribe the matrix systems which are obtained by discretization of the optimization
problem (2.1). Concatenating the Newton equations (2.2)–(2.6), along with bound-
ary conditions and initial/final-time conditions, gives a block matrix system of the
following form:

Lzz Lzc 0 Lzp Lzq
Lcz Lcc 0 Lcp Lcq
0 0 γu · Id 0 −βχ∂Ω( )>

Lpz Lpc 0 0 0
Lqz Lqc −βχ∂Ω( ) 0 0



sz
sc
su
sp
sq

 (3.1)

=



ẑ −
(
χΩT

(z)− ∂p
∂t −Dz∇2p+ α∇

(
1

1+c

)
· ∇p− 2w zq

(1+z2)2

)
γcĉ−

(
γcχΩT

(c) + αp∇ ·
(
∇
(

1
(1+c)2

)
z
)
− ∂q

∂t −∇
2q + ρq

)
− (γuu− βq)

−
(
∂z
∂t −Dz∇2z + α∇ ·

(
∇c

(1+c)2 z
))

−
(
∂c
∂t −∇

2c+ ρc− w z2

1+z2

)


,

where[
Lzz Lzc
Lcz Lcc

]
=

 χΩT
( )− 2wq 1−3z2

(1+z2)3 −α∇
(

2c
(1+c2)2

)
· ∇p

αp∇ ·
(
∇
(

1
(1+c)2

) )
γcχΩT

( )− αp∇ ·
(
∇
(

2c
(1+c2)2

)
z
)  ,

[
Lpz Lpc
Lqz Lqc

]
=

[
∂
∂t −Dz∇2 − α∇ ·

(
∇
(

1
1+c

) )
α∇ ·

(
∇
(

1
(1+c)2

)
z
)

−2w z
(1+z2)2

∂
∂t −∇

2 + ρ · Id

]
,

[
Lzp Lzq
Lcp Lcq

]
=

 − ∂
∂t −Dz∇2 + α∇

(
1

1+c

)
· ∇ −2w z

(1+z2)2

α∇ ·
(
∇
(

1
(1+c)2

)
z
)

− ∂
∂t −∇

2 + ρ · Id

 ,
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with Id denoting the identity operator, χ∂Ω( ) representing a function that restricts
the variable to the boundary ∂Ω, and χΩT

( ) similarly denoting a function that re-
stricts the variable to time t = T . The equations (3.1) are then discretized using a
finite element method, seeking test functions for the state variables within H1(Ω),
and those for the control variable within L2(Ω).

Although it might be possible to devise spectral methods for such control prob-
lems, there may be certain difficulties. The resulting matrix systems would be dense,
so they ought to be small. However, the accuracy may deteriorate due to a non-
continuously differentiable objective function arising from the algebraic constraints
on the control variable and due to sharp peaks within the initial states. The low
order of accuracy warrants many degrees of freedom, leading to large and dense ma-
trices. So we instead proceed with the finite element approach.

As an alternative to solving the Newton system (3.1), it is possible to instead
consider a Gauss–Newton approximation, where one neglects second derivatives within
the (1, 1)-block of the saddle point matrix as defined in Section 4. This results in the
solution of systems

χΩT
( ) 0 0 Lzp Lzq

0 γcχΩT
( ) 0 Lcp Lcq

0 0 γu · Id 0 −βχ∂Ω( )>

Lpz Lqz 0 0 0
Lpc Lqc −βχ∂Ω( ) 0 0



sz
sc
su
sp
sq

 = b, (3.2)

where b is the same right-hand side vector as in (3.1).

To be more explicit about the χΩT
( ) and χ∂Ω( ) terms, the associated matrices

contain entries of the form
∫

Ω
φi ·φj |t=T and

∫
∂Ω×(0,T )

φi ·φj |∂Ω respectively, for finite

element basis functions {φi} of the same form for each PDE variable.

3.1. Additional control constraints. It is perfectly reasonable to add the
following control constraint:

u−(x, t) ≤ u ≤ u+(x, t) a.e. on ∂Ω× (0, T ),

for given functions u−, u+, into the PDE-constrained optimization model, as in [46]
for instance. In other words, we prescribe that the chemoattractant must behave in
a “sensible” (physical) way on the boundary of the domain of interest. One way in
which we can tackle this additional term is to modify the cost functional (2.1) to add
a Moreau–Yosida regularization term (see [20]) for the bound constraints, thereby
minimizing instead

min
z,c,u

1

2

∫
Ω

(z(x, T )− ẑ)2
+
γc
2

∫
Ω

(c(x, T )− ĉ)2
+
γu
2

∫
∂Ω×(0,T )

u2

+
1

2δ

∫
Ω×(0,T )

|max{0, u− u+}|2 +
1

2δ

∫
Ω×(0,T )

|min{0, u− u−}|2,

with δ a given (small) positive constant, chosen to enforce the control constraints
efficiently.

When forming the Newton system in this setting, we will be required to solve
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systems relating to the finite element discretization of the following terms:
χΩT

( ) 0 0 Lzp Lzq
0 γcχΩT

( ) 0 Lcp Lcq
0 0 γu · Id + 1

δGΛ 0 −βχ∂Ω( )>

Lpz Lpc 0 0 0
Lqz Lqc −βχ∂Ω( ) 0 0



sz
sc
su
sp
sq

 = b̃, (3.3)

where

b̃ :=



ẑ −
(
χΩT

(z)− ∂p
∂t −Dz∇2p+ α∇

(
1

1+c

)
· ∇p− 2w zq

(1+z2)2

)
γcĉ−

(
γcχΩT

(c) + αp∇ ·
(
∇
(

1
(1+c)2

)
z
)
− ∂q

∂t −∇
2q + ρq

)
1
δ (GΛ+

y+ +GΛ−y−)− (γuu− βq)
−
(
∂z
∂t −Dz∇2z + α∇ ·

(
∇c

(1+c)2 z
))

−
(
∂c
∂t −∇

2c+ ρc− w z2

1+z2

)


.

Here, GΛ+
, GΛ− , GΛ denote projections onto the active sets Λ+ := {i : ui > (u+)i},

Λ− := {i : ui < (u−)i}, Λ := Λ+ ∪ Λ− (for the i-th node on the discrete level).

For PDE control problems involving additional constraints on the control vari-
able, as above, the stationarity conditions are no longer continuously differentiable,
and Newton’s method becomes a semi-smooth Newton method. Such methods are
well-established for problems involving control constraints [16, 17, 48, 63], including
challenging boundary control problems [4]. In particular, convergence of semi-smooth
Newton methods for operator equations in function spaces is shown in [63], and [17]
discusses mesh-independent convergence.

The application of Newton (including Gauss–Newton) and semi-smooth methods
allows us to reformulate the optimal control problems being studied as a sequence
of linearized problems. The main challenge is now to establish potent solvers for
the matrix systems arising at each Newton iteration, for which we now focus on the
development of preconditioned iterative methods.

4. Preconditioning for Gauss–Newton matrix systems. In this section we
focus on deriving effective preconditioners for the matrix systems (3.2) and (3.3),
resulting from the chemotaxis model, both without and with additional control con-
straints.

We base our preconditioners on the well-studied field of saddle point systems,
which take the form [2] [

A B>

B 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
=

[
b1

b2

]
, (4.1)

withA symmetric, andB having at least as many columns as rows. For instance, in the
case where A is invertible and B has full row-rank, two well-studied preconditioners
for the system (4.1), are given by [19, 27, 32]

PD =

[
A 0
0 S

]
, PT =

[
A 0
B −S

]
,
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where the (negative) Schur complement S := BA−1B>. It is known [19, 27, 32] that,
as the preconditioned system is nonsingular, its eigenvalues are given by

λ(P−1
D A) ∈

{
1,

1

2
(1±

√
5)

}
, λ(P−1

T A) ∈ {1} ,

with these results also holding for the block triangular preconditioner PT even if A
is not symmetric. Now, as P−1

D A is diagonalizable but P−1
T A is not, preconditioning

with PD (PT ) yields convergence of a suitable Krylov subspace method in 3 (2)
iterations, respectively. We note that in practice, however, PD and PT are not useful
preconditioners, as the matrices A and S are computationally expensive to invert in
general, so preconditioners of the form

P̂D =

[
Â 0

0 Ŝ

]
, P̂T =

[
Â 0

B −Ŝ

]

are sought, where Â and Ŝ denote suitably chosen approximations of the (1, 1)-block
A and Schur complement S. The objective here is that a Krylov method will not
converge in 3 or 2 iterations, but just a few more, while at the same time ensuring
that the preconditioner is much cheaper to invert.

However, as highlighted above, much classical saddle point theory relies on the
matrix A being invertible. If this is not the case, as we shall find for the application
under consideration here, a modification to this approach must be sought.

4.1. Construction of the preconditioner. We first examine the system (3.2),
and place this in the saddle point form (4.1) as follows:

A =

 χΩT
( ) 0 0

0 γcχΩT
( ) 0

0 0 γu · Id

 , B =

[
Lpz Lpc 0
Lqz Lqc −βχ∂Ω( )

]
.

Furthermore, let us decompose the blocks A and B into sub-blocks:

A =

[
As 0
0 Au

]
, B =

[
Bs Bu

]
,

where

As =

[
χΩT

( ) 0
0 γcχΩT

( )

]
, Bs =

[
Lpz Lpc
Lqz Lqc

]
, Bu =

[
0

−βχ∂Ω( )

]
.

In this paper, Au corresponds to the finite element discretization of the following
operators:

Au ←
{

γu · Id without control constraints,
γu · Id + 1

δGΛ with control constraints,

that is to say the block Au is altered if we instead consider the matrix (3.3) incor-
porating control constraints. Note that, as the saddle point system is written, the
matrix A is not invertible, as the matrix As is only positive semi-definite with the vast
majority of eigenvalues equal to zero. The Schur complement S, as defined above,
therefore does not exist. However, the matrices Au, Bs and BTs are invertible, and we
wish to make use of inexact solves for some of these blocks within our preconditioner.
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We hence consider a suitable re-ordering of the matrices (3.2) and (3.3) to enable us
to utilize a variant of the classical saddle point theory outlined above.

In particular, we observe that the matrix under consideration may be factorized
as follows: As 0 B>s

0 Au B>u
Bs Bu 0

 =

 I −AsB−1
s BuA

−1
u AsB

−1
s

0 I 0
0 0 I

 0 0 S∠

0 Au B>u
Bs Bu 0


︸ ︷︷ ︸

P

, (4.2)

where identity matrices I are of appropriate dimensions. Note that as Id corresponds
to the identity operator on the continuous level, this will become a finite element
mass matrix in the discrete setting. We then take P to be the foundation of our
preconditioner. We define S∠ as the ‘pivoted Schur complement ’ [6, Sec. 3.3]

S∠ = B>s +AsB
−1
s BuA

−1
u B>u . (4.3)

We approximate this term within our preconditioner using the ‘matching strategy ’
devised in [41, 43, 44], which aims to capture both terms of the Schur complement
within the preconditioner. The approximation reads as follows:

S∠ ≈ Ŝ∠ :=
(
B>s +

1

η
As

)
B−1
s

(
Bs + ηBuA

−1
u B>u

)
. (4.4)

Note that the matrix product B>s B
−1
s Bs captures the first term B>s of S∠, and(

1
ηAs

)
B−1
s

(
ηBuA

−1
u B>u

)
matches exactly the second term AsB

−1
s BuA

−1
u B>u . The

positive constant η is chosen to ‘balance’ the first and last matrix factors, B>s + 1
ηAs

and Bs + ηBuA
−1
u B>u , within the Schur complement approximation, so that the two

terms in the remainder S∠ − Ŝ∠ are approximately of the same norm, or contribute
in a roughly equal way to the characteristics of the matrix. Two natural choices for
this constant are

η =

√
‖As‖∥∥BuA−1
u B>u

∥∥ or η =

√
max(diag(As))

max(diag(BuA
−1
u B>u ))

.

We note that the second choice is much cheaper to compute, and it is anticipated (and
observed in practice) that the maximum diagonal entries of As and BuA

−1
u B>u offer

representative values indicating the ratio of the contributions of the two matrices.
Approximately solving for the matrix Bs + ηBuA

−1
u B>u is made tractable by the

effective approximation of a mass matrix (or a mass matrix plus a positive diagonal
matrix) of the form Au by its diagonal, see [39, Sec. 4.1] and [65].

Putting all the pieces together, we state our preconditioner

P̂ =

 0 0 Ŝ∠

0 Au B>u
Bs Bu 0

 ,
incorporating the Schur complement approximation above. Due to the re-ordering
of the saddle point system that we have undertaken, this is a suitable choice of pre-
conditioner that should capture the characteristics of the matrix under consideration.
Indeed, one may directly compute that PP̂−1 = blkdiag(S∠Ŝ

−1
∠ , I, I). Along with
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(4.2), this suggests that P̂ is a good candidate for a preconditioner, given a suitable

approximation Ŝ∠ of S∠. It should be emphasized that the convergence of a non-
symmetric solver such as GMRES [49], within which P̂ must be applied, cannot be
theoretically guaranteed through eigenvalue analysis of the preconditioned system,
however for the problem under consideration we find that this preconditioner leads to
both clustered eigenvalues and good convergence properties.

4.2. Application of the preconditioner. Applying the inverse of the precon-
ditioner, P̂−1, as is necessary within an iterative method, therefore requires three
main operations:

1. Applying B−1
s : This is equivalent to solving the linearized forward problem,

rather than the coupled optimization problem. In practice this is approached
time-step by time-step, using an algebraic or geometric multigrid method, or
another suitable scheme, to solve for the matrices arising at each point in
time.

2. Applying A−1
u : The matrix Au is a block diagonal matrix, consisting of bound-

ary mass matrices at each time-step (in the case without control constraints),
or boundary mass matrices plus positive semidefinite diagonal matrices (if
control constraints are present). In either case, these matrices may be well
approximated using Chebyshev semi-iteration [11, 12, 66], or even using a
simple diagonal approximation of a mass matrix [65].

3. Applying Ŝ−1
∠ : Applying the approximation (4.4) involves a multiplication

operation involving Bs, and (approximate) solves for each of B>s + 1
ηAs and

Bs + ηBuA
−1
u B>u which may again be approached at each time-step in turn

using multigrid or another appropriate method.

4.3. Uzawa approximation. In practice, we make a further modification to
the preconditioner P̂ in order to ensure it is easier to work with on a computer.
In more detail, the term Bs in the bottom-left of P̂, and the terms B>s + 1

ηAs and

Bs+ηBuA
−1
u B>u within Ŝ∠, contain 2×2 block systems which we would like to replace

with more convenient approximations so that we are only required to (approximately)
invert one block at a time.

To facilitate this, we replace 2 × 2 block matrices by an inexact Uzawa approx-
imation, with block triangular splitting matrices, where appropriate. This leads to
our final choice of preconditioner:

P̃ =

 0 0
(
B>s + 1

ηAs

)
Uzawa

(Bs)
−1
Uzawa

(
Bs + ηBuA

−1
u B>u

)
Uzawa

0 Au B>u
(Bs)Uzawa Bu 0

 ,
where (·)Uzawa denotes the Uzawa approximation of the corresponding matrix. For
ease of reproducibility for the reader, we state the splitting matrices below:

(Bs)Uzawa →
[
Lpz Lpc
0 Lqc

]
,(

B>s +
1

η
As

)
Uzawa

→
[ Lzp + 1

ηχΩT
( ) 0

Lcp Lcq + γc
η χΩT

( )

]
,(

Bs + ηBuA
−1
u B>u

)
Uzawa

→
[
Lpz Lpc
0 Lqc + ηβ2χ∂Ω( )A−1

u χ∂Ω( )>

]
.
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Now the linear systems with diagonal blocks (Lzp, Lqc, and so on) can be solved
directly. Note that it is also possible to annihilate another off-diagonal block instead
within the Uzawa approximation. However, we have found that the approximations
listed above yield fast convergence in our numerical experiments. Ideally, one can
carry out a number of Uzawa iterations to approximate the inversion of Ŝ∠ with a
target accuracy. In practice, however, we have found that just a single application of
P̃ (thus called “approximation”) is sufficient for rapid convergence of GMRES when
applied to the systems (3.2) or (3.3).

5. Numerical experiments with control constraints. In this section we
benchmark the preconditioned Newton method. For our test problem, the initial
distribution of bacterial cells is chosen as a sum of m0 independent Gaussian peaks,

z0(x, y) =

m0∑
i=1

exp
(
−2560 ·

[
(x− xi)2 + (y − yi)2

])
, (5.1)

where the centers {xi, yi} are chosen randomly on [0, 1]2. This square domain is
partitioned into uniform squares of size h × h each, where h = 1/(n − 1), and the
solution components z, c, u, p, q are approximated in a product basis of n piecewise
linear finite elements in each variable, see (6.1)–(6.2) in the next section with n1 =
n2 = n. Moreover, we discretize the time derivative with an implicit Euler scheme
with n3 = n time steps. This yields n3 unknowns in the vectors of coefficients of each
solution component, totalling 5n3 degrees of freedom for the entire discrete solution.
In principle, we could use any grid and finite element basis. However, in order to
compare CPU times with those of the low-rank decomposition approach introduced
in the next section, we continue with the Cartesian ansatz.

The desired distribution at the final time T = 1 is linear,

ẑ(x, y) = 〈z0〉 · (x+ y), (5.2)

normalized by the initial mass,

〈z0〉 =

∫
[0,1]2

z0(x, y) dxdy,

since the model conserves the normalization of z. Both initial and target concen-
trations c are zero. The experiments were run in matlab R2017b on one core of a
2.4GHz Intel Xeon E5-2640 CPU.

In this section, we set m0 = 50 and the control constraints u− = 0 and u+ = 0.2,
in accordance with [46]. The default regularization parameters are set to γu = 10−3

and γc = 0.5. The stopping tolerance for the Newton iteration is set to ε = 10−4.
The Newton method is stopped at the jth iteration when the relative 2-norm of the
increment of all coefficient vectors becomes smaller than the tolerance,

max

(
‖zj − zj−1‖2
‖zj‖2

,
‖cj − cj−1‖2
‖cj‖2

,
‖uj − uj−1‖2
‖uj‖2

,
‖pj − pj−1‖2
‖pj‖2

,
‖qj − qj−1‖2
‖qj‖2

)
< ε.

Moreover, we decrease the Moreau–Yosida regularization parameter δ geometrically
from 10−1 to 10−4 as the iteration converges. This gives more robust behavior of the
Newton method.

The computational time is shown in Fig. 5.1 (left). We solve the linear systems
arising in the Uzawa preconditioner described in Section 4.3 using direct elimination,
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Fig. 5.1. Left: CPU time of the Newton solver for the constrained control. Right: u(x, T/2).
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Fig. 5.2. Left: cell density at the final time z(x, T ). Right: misfit of the density, z(x, T )− ẑ(x).
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as well as the AGMG (AGgregation-based algebraic MultiGrid) V-cycle iteration [33,
34, 35, 36] version 3.1.2 (recent version available from http://agmg.eu/) with a tight
stopping threshold of 10−12. We see that the CPU times grow slightly faster than
cubically with respect to the uniform grid refinement, which is expected for a three-
dimensional (2D space + time) problem. It should be noted that the full solution
procedure consumes a considerable amount of memory. For example, for n = 256
each solution component is discretized on nearly 17 millions degrees of freedom, but
10 finite element matrices, each containing up to 9 nonzero entries per row, occupy
about 25Gb of memory in total. The linear solvers increase this amount further, to
33Gb with AGMG and to over 64Gb with the direct solver, with the latter quantity
exceeding the capacity of the machine used.

On the other hand, the number of Newton iterations is quite stable with respect
to the grid size, ranging from 11 to 14 depending on a particular distribution of the
random initial guess.

The transient control signal is shown in Fig. 5.1 (right). We notice that it is
accurately confined within the prescribed constraints. However, this leads to a rather
large misfit in the target cell density (Fig. 5.2). While the density follows the linear
distribution ẑ correctly in the top right corner of the domain, in the left bottom
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corner we see an excessive density of bacteria. This shows that controlling only the
chemoattractant might be insufficient for forcing the bacteria to leave a particular
area.

Lastly in this section, we investigate the performance of the preconditioner pro-
posed in Section 4 against variation of parameters. In Table 5.1, we show the average
numbers of GMRES iterations per Newton step for different grid sizes n and regu-
larization parameters γu, γc, using direct solves for the Uzawa preconditioner. We
vary only one parameter at a time, while the other two are kept fixed to their default
values, n = 64, γu = 10−3, and γc = 0.5. The number of iterations grows slightly as
the control regularization parameter γu is decreased, which is expected for a bound-
ary control problem. On the other hand, the preconditioner is reasonably robust with
respect to the other parameters, in particular the grid size.

Table 5.1
Average number of GMRES iterations per Newton step.

n its
32 21.37
64 27.46
128 27.86

γu its
100 6.00

10−1 9.00
10−2 15.28
10−3 27.46
10−4 46.84
10−5 69.21

γc its
0.5 27.46

10−1 30.55
10−2 32.11
10−3 31.77
10−4 32.67
10−5 31.57

6. Low-rank tensor decompositions and algorithms. The optimality sys-
tem (3.2) can result in a huge-scale matrix system, for many spatial degrees of freedom
and time steps. One way to reduce the associated computational burden is to seek
an approximate solution in a low-parametric representation. In this paper we apply
separation of variables, and in particular the Tensor Train (TT) decomposition [37].
In this section, we introduce the TT decomposition and the algorithm for an efficient
TT-structured solution of the optimality equations. Although the TT approximation
can have difficulties with the indicator function of the active set of control constraints
(see Remark 5 below), for the problem without box constraints it yields a very efficient
solver. So in this section we assume an unconstrained control setting.

6.1. Tensor product discretization and indexing. We assume that the so-
lution functions can be discretized on a structured grid, e.g., the cell concentration
z(x, t) with a d-dimensional spatial variable x = (x1, . . . , xd) can be approximated by

z(x, t) ≈
n1,...,nd,nd+1∑
j1,...,jd,jd+1=1

z(j1, . . . , jd, jd+1)φj1,...,jd(x)ψjd+1
(t), (6.1)

where {φj1,...,jd(x)} is a set of spatial basis functions as introduced in Section 3, which
we now assume to be indexed by d independent variables. In particular, we consider
a square domain x ∈ [0, 1]d and the piecewise polylinear basis functions

φj1,...,jd(x) = ϕj1(x1) · · ·ϕjd(xd). (6.2)

In turn, {ψjd+1
(t)} is a set of nodal interpolation functions in time, associated with the

uniform time grid {tjd+1
}, with tjd+1

= τ · jd+1, jd+1 = 1, . . . , nd+1, and τ = T/nd+1.
We can see that the discrete coefficients of z can be collected into a (d+1)-dimensional
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tensor. If we restrict ourselves to the isotropic discretization with n1 = · · · = nd+1 =
n > 1, we arrive at nd+1 entries in the tensor z. The computational complexity
of solving (3.2) is usually much higher. This explains the sometimes relatively high
computing times in the previous section.

Separation of the discrete variables j1, . . . , jd+1 can compress the tensor data
from the exponential O(nd+1) to a linear volume O(dn). Yet we can aim for a
higher compression ratio. Assuming that nk is factorizable into a set of divisors
nk,1 · · ·nk,Lk

= nk, nk,p > 1, p = 1, . . . , Lk (we aim for minimal divisors, e.g., we only
use nk,p = 2 and 3 in the numerical experiments), we can also factorize the index jk
into the corresponding digits,

jk = 1 +

Lk∑
`=1

(i`,k − 1)

`−1∏
p=1

nk,p, k = 1, . . . , d+ 1.

Here `, k = ` +
∑k−1
p=1 Lp =: m is the lexicographic combination of the individual

indices `, k, such that m = 1, . . . , L =
∑d+1
k=1 Lk. Now the tensor z can be enumerated

by the elementary digits im. Instead of considering z as a (d+ 1)-dimensional tensor,
we treat it as a L-dimensional tensor with elements z(i1, . . . , iL), and therefore we
will separate now the virtual indices im [59].

6.2. Tensor Train decomposition. As a particular separated approximation,
we choose the Tensor Train (TT) decomposition [37], which is also known as the
Matrix Product States [45, 55] in physics:

z(i1, . . . , iL) ≈
r1∑
s1=1

· · ·
rL−1∑
sL−1=1

z(1)
s1 (i1)z(2)

s1,s2(i2) · · · z(L)
sL−1

(iL). (6.3)

The factors z(m) on the right hand side are called TT blocks, and the ranges r1, . . . , rL−1

of the auxiliary summation indices are called TT ranks. Notice that the TT blocks
are at most 3-dimensional tensors, of sizes rm−1 × n̄m × rm (for uniformity, we can
let r0 = rL = 1).

Potentially, we can represent any finite dimensional tensor exactly through (6.3)
by choosing large enough TT ranks. For reasons of numerical efficiency, we will of
course aim for a (sub-)optimal approximation with rm being as small as possible, and
most importantly much smaller than the original tensor size n1 · · ·nd+1. The storage
needed for the right hand side of (6.3) is ofO(Ln̄mr

2
m), where n̄m := nk,` is also chosen

to be much smaller than the original grid sizes nk. For example, if we restrict the
grid sizes to be powers of two, nk = 2Lk , the range of each index im in (6.3) becomes
just {1, 2}, whereas L, and hence the storage complexity of the TT format, becomes
logarithmic in the original tensor size, L = log2(n1 · · ·nd+1). Due to the minimal
non-trivial index range in this case, the TT decomposition (6.3) with im ∈ {1, 2}
was called the Quantized TT (QTT) decomposition [24]. It was then proved that
many examples of vectors [24] and matrices [21, 22], arising from the discretization of
functions and differential operators, allow low-rank QTT decompositions.

Abstracting from the original problem dimensions, we can consider only two data
representations: a tensor with the smallest possible ranges z(i1, . . . , iL), and a vector
of the same data entries:

z(j) = z(i1, . . . , iL), where j = 1, . . . , (n̄1 · · · n̄L). (6.4)
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We need the vector notation for setting the Gauss–Newton equations (3.2) on tensors
consistently. Boldface letters (e.g., z) from now on will denote vectors. We can use
the Kronecker product (⊗) to rewrite (6.3) in an equivalent vector form,

z =

r1,...,rL−1∑
s1,...,sL−1=1

z(1)
s1 ⊗ z

(2)
s1,s2 ⊗ · · · ⊗ z

(L)
sL−1

. (6.5)

Of course, we shall never actually compute the Kronecker products in the expansion
above, but only store and manipulate individual TT blocks on the right hand side.

For example, the matrix-vector product y = Az with z given in (6.3) can be
computed efficiently if we can also represent the matrix by a TT decomposition,

A =

R1,...,RL−1∑
s1,...,sL−1=1

A(1)
s1 ⊗A

(2)
s1,s2 ⊗ · · · ⊗A

(L)
sL−1

. (6.6)

For example if the matrix is diagonal, and the vector of the diagonal values can
be represented by a TT decomposition (6.3), the matrix can be written as in (6.6),
with the same TT ranks. There are less trivial matrices, arising for example in finite
element computations, that admit TT decompositions with modest ranks Rm [21, 22].
Now the result y = Az can be also written in the TT format and computed block
by block. Moreover, a TT decomposition with excessive TT ranks can be efficiently
approximated up to a desired accuracy by a decomposition with sub-optimal ranks
using QR and singular value decomposition (SVD) factorizations [37], without ever
constructing full large tensors.

6.3. Alternating Linear Scheme iteration. Considering a linear equation
Az = y where A is assumed to be given in the TT format (6.6), y is assumed to be
given in a counterpart of (6.5), and z is assumed to be approximable by (6.5), we can
construct an algorithm for computing directly the TT blocks of an approximation of
z. The idea is to plug the decomposed form of z into the original equation and solve
the corresponding overdetermined system for the elements of only one TT block of z
at a time. A crucial ingredient for the efficient solution of this constrained system is
the linearity of the TT format. For each m = 1, . . . , L, we can construct the so-called
frame matrix, where the TT block z(m) in (6.5) is replaced by the identity matrix,

Zm =

 ∑
s1,...,sm−2

z(1)
s1 ⊗ · · · ⊗ z

(m−1)
sm−2

⊗ I ⊗
 ∑
sm+1,...,sL−1

z(m+1)
sm+1

⊗ · · · ⊗ z(L)
sL−1

 .

(6.7)
Stretching all elements of z(m) into a vector z(m) ∈ Rrm−1n̄mrm , we can observe that

z = Zmz(m), (6.8)

i.e., the frame matrix realizes a linear map from the elements of z(m) to the elements
of the whole solution vector. This motivates an iterative algorithm [18], which was
called the Alternating Linear Scheme (ALS):

1: for iter = 0, 1, . . . until convergence do
2: for m = 1, 2, . . . , d, d− 1, . . . , 1 do
3: Plug the solution in the form (6.8) into the original problem Az = y.
4: Solve the resulting overdetermined problem (AZm)z(m) = y on z(m).
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5: Put new z(m) back into (6.5) and prepare frame matrix (6.7) for m± 1.
6: end for
7: end for

Starting from a low-rank initial guess of the form (6.9), this algorithm seeks
the solution in a low-rank TT format by sweeping through the different TT blocks.
However, there might be different ways to resolve the overdetermined problem in Line
4. The simplest option, which can be justified for a symmetric positive definite A, is
to project the problem onto the same frame matrix and solve a small linear system
(Z>mAZm)z(m) = Z>my in each step. However, the matrix in (3.2) is indefinite, since
we seek a saddle point of the Lagrangian. Therefore, in the next section we develop
a different version of the ALS algorithm.

6.4. Block TT representation and ALS for solving (3.2). Another prop-
erty of the optimality system (3.2) is that we need to approximate several solution
components in addition to the cell concentration z(x, t). Since the components z, c, p, q
are defined on the same domain, with u defined on its boundary, we can discretize
them using the same basis. The tensors of discrete values for z, c, p, q therefore have
the same sizes. The structure of the problem (3.2) suggests that we approximate
them in a shared TT decomposition, the so-called block TT format [8]. We denote
the aggregated solution

y> =
[
z> c> p> q> u>

]
,

enumerating the components via yj , j = 1, . . . , 5. Now we decompose y into a TT
format with all the same TT blocks except the m-th block for some m = 1, . . . , L,
which actually carries the enumerator of the components,

yj =

r1,...,rL−1∑
s1,...,sL−1=1

y(1)
s1 ⊗ · · · ⊗ y

(m−1)
s`−2,s`−1

⊗ ŷ(m)
s`−1,s`

(j)⊗ y(m+1)
s`,s`+1

⊗ · · · ⊗ y(L)
sL−1

. (6.9)

Moreover, we can switch between the representations (6.9) corresponding to different
m (and hence having j in different TT blocks) using the SVD [8]. For example, we
can reshape ŷ(m) into a matrix with elements

Ŷ (m)(sm−1, im; j, sm) = ŷ(m)
sm−1,sm(im, j)

and compute the truncated SVD Ŷ (m) ≈ UΣV >. Now we write the left singular
vectors U into the m-th TT block instead of ŷ(m), and multiply ΣV > with the (m+1)-
th TT block,

y
(m)
sm−1,s′m

(im) = U(sm−1, im; s′m), (6.10)

ŷ
(m+1)
s′m,sm+1

(im+1, j) =

rm∑
sm=1

ΣV >(s′m; j, sm)y(m+1)
sm,sm+1

(im+1). (6.11)

Note that we have obtained the same representation as (6.9) with m replaced by
m+ 1. This process can be continued further, or reversed, and hence the j-index can
be placed into any TT block.

The mth frame matrix for the block TT decomposition (6.9) is defined in the
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same way as (6.7):

Ym =

 ∑
s1,...,sm−2

y(1)
s1 ⊗ · · · ⊗ y

(m−1)
sm−2

⊗ I ⊗
 ∑
sm+1,...,sL−1

y(m+1)
sm+1

⊗ · · · ⊗ y(L)
sL−1

 .

(6.12)

However, notice that Ym ∈ Rnd+1×(rm−1n̄mrm) is free from the special block ŷ(m)

which accounts for different solution components. The columns of the matrix Ym can
thus be seen as a common basis for all components. The Block ALS algorithm [1, 7]
projects each individual submatrix in (3.2) onto Ym, which gives a linear system with
a smaller size but the same block structure as (3.2) on the elements of ŷ(m). However,
in our specific case we can reduce the system even further by noticing that the (3, 3)-
block of (3.2) is simply a diagonal matrix in the case where lumped mass matrices
are considered, and therefore eliminate the control component from the equations2.
Specifically, we deduce that su = A−1

u

(
bu + βχ>∂Ωsq

)
and plug this into the fifth row.

This gives us a system of 4 equations only. Moreover, instead of using the increments
sz, sc, sp, sq, we can rewrite the equations for the new solution components directly:

χΩT
0 Lzp Lzq

0 γcχΩT
Lcp Lcq

Lpz Lpc 0 0
Lqz Lqc 0 −β2χ∂ΩA

−1
u χ>∂Ω



z
c
p
q

 =


b̃z
b̃c
b̃p
b̃q

 ,
where b̃ is the correspondingly adjusted right hand side. Now we plug in the solutions
in the form yj = Ymŷ

(m)(j) using the frame matrix from (6.12), with j now running
only from 1 to 4, and project each of the previous equations onto Ym. This gives us
a reduced system 

χ̂ΩT
0 L̂zp L̂zq

0 γcχ̂ΩT
L̂cp L̂cq

L̂pz L̂pc 0 0

L̂qz L̂qc 0 −β2χ̂2
∂Ω

 ŷ(m) =


Y >m b̃z
Y >m b̃c
Y >m b̃p
Y >m b̃q

 , (6.13)

with χ̂ΩT
= Y >mχΩT

Ym, L̂∗∗ = Y >mL∗∗Ym (where “∗∗” stands for “zp”, “zq”, “cp”,
and so on), and χ̂2

∂Ω = Y >mχ∂ΩA
−1
u χ>∂ΩYm the projected square matrices. Each sub-

matrix is of size rm−1n̄mrm × rm−1n̄mrm (with n̄m being small, e.g., 2), and hence
(6.13) is easy to solve. Moreover, the singular value decomposition in (6.10)–(6.11)
maintains the orthogonality of the frame matrices Ym automatically in the course of
alternating iterations, provided that the initial guess is given with this property. This
makes the projected submatrices well conditioned if the original matrices were so,
which eventually makes the entire matrix in (6.13) invertible. We highlight that the
preconditioner developed in Section 4 can also be used for solving the system (6.13).

6.5. Construction of matrices in the TT format. In the course of the New-
ton iteration, we need to reconstruct TT representations of the matrices in (3.2) using
the new solution, in order to assemble the reduced matrices in (6.13) efficiently. As-
sume that we need to construct an abstract bilinear form of a nonlinear transformation

2Our derivation is of course valid for any invertible matrix Au, however we wish to exploit the
simplicity of the matrix structure within our solver. When consistent mass matrices are applied, we
can well approximate these by their diagonals within a preconditioner, see [65].
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f of the solution,

LB =

∫
f(z, c, p, q)∇pφi · ∇qφj dx, (6.14)

where p, q ∈ {0, 1} are the differentiation orders, and φi, φj are the basis functions.
Instead of the exact functions z, c, p, q, we work with the tensors of their values,
z, c,p,q. The corresponding values of f can be also collected into a tensor f of the
same size, and the original function can be approximated in the same basis, i.e.,

f(z(x), c(x), p(x), q(x)) ≈
∑

i1,...,id

f(i1, . . . , id)φi1,...,id(x).

Now the computation of (6.14) involves computing analytical triple products

H(i, j, k) =

∫
φk∇pφi · ∇qφjdx, i, j, k = 1, . . . , (n1 · · ·nd), (6.15)

and summing them up with the values of f ,

LB(i, j) =

n1···nd∑
k=1

H(i, j, k)f(k). (6.16)

Notice that we assume the basis functions can be enumerated by d independent indices,
i.e., i is equivalent to (i1, . . . , iL) through (6.4), and similarly for j and k. The triple
elements (6.15) therefore admit a TT decomposition (or even a single Kronecker-
product term) similar to (6.6). Now, if the f tensor can also be approximated in the
TT format (6.3), the bilinear form (6.14) can be represented in this format, with the
TT ranks proportional (or equal) to those of f . Moreover, the sum in (6.16) factorizes
into individual sums over k1, . . . , kL, which can be implemented efficiently block by
block.

It remains to compute a TT approximation of f . From the previous Newton
iteration we are given the TT representation (6.9) for z, c,p,q. Hence we can rapidly
evaluate any element of the solution components, and afterwards the corresponding
value of f . In order to construct a TT approximation to f using only a few evaluations
of f , we use the TT-Cross algorithm [38]. This is similar to the Alternating Linear
Scheme outlined above, except that at each step it draws rm−1rm fibers of the tensor
values in the m-th direction in order to populate the m-th TT block and prepare the
optimized fibers for the next step. In total it evaluates O(Lr2) elements of the tensor,
which is feasible under our assumption of small TT ranks. More robust and rank
adaptive generalizations of this algorithm have followed [31, 51, 52].

Remark 5. Forming the diagonal of the indicator matrix Gλ in (3.3) seems also
to be a task for the TT-Cross algorithm. However, it is likely to perform poorly in this
setting, for two reasons. Firstly, if the discontinuity in a function, e.g., max{0, u −
u+}, is not aligned to coordinate axes, the corresponding TT approximation requires
very large TT ranks. This can be seen already in a two-dimensional case: a triangular
matrix with all ones in one of the triangles is full-rank. Secondly, the TT-Cross
algorithm is likely to overlook the part of the active set which is not covered by the
initial (e.g., random) set of samples. In order to adapt the sampling fibers, the cross
methods require a low discrepancy between adjacent tensor elements, which is not
the case for Gλ. For this reason, we apply the TT approach only to the case of the
unconstrained control.
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Fig. 7.1. CPU time (sec.) (left) and TT ranks (right) for different grid sizes n, m0 = 3 initial
peaks, accuracy threshold ε = 10−4.
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7. Numerical experiments with the low-rank approximations. In this
section, we benchmark the TT algorithm and compare it to the solver with the full
vector representation. We use the same finite element ansatz of the Cartesian product
of the piecewise linear functions. The initial distribution of bacterial cells z0 and the
desired state ẑ are chosen as in (5.1) and (5.2), with initial and target concentrations
for the chemoattractant c set to zero. In this section the model is solved with an
unconstrained control u, and final time T = 1. For the TT computations we use the
TT-Toolbox implementation (see https://github.com/oseledets/TT-Toolbox).

7.1. Benchmarking of full and low-rank solvers. First, we compare CPU
times of the original scheme that stores full vectors with those of the approximate
TT solver (see Fig. 7.1). We fix m0 = 3 randomly positioned Gaussian peaks in the
initial distribution z0. Since the particular ranks and numbers of iterations depend
on the choice of z0, we average the results over 8 realizations of z0, for each value of
n. Similarly to the constrained control case, the cost of the full-format solvers grows
slightly faster than cubically. On the other hand, the TT solver can proceed to much
finer grids with lower time and memory footprint.

7.2. Discretization and TT approximation errors. In order to justify the
use of very fine grids (up to n = 512), let us estimate the discretization errors. In Fig.
7.2 (left), we vary the numbers of grid points n in each direction and plot relative
L2-norm differences between the finite element approximations to the solution at a
grid with n points and a grid with 512 points,

errorf (n) =
‖fn(T/2)− f512(T/2)‖L2

‖f512(T/2)‖L2

,

where fn(T/2) is the snapshot at t = T/2 of the solution component f ∈ {z, c, p, q},
and the L2 norm is computed by interpolating the solution from the grid with n
points to the grid with 512 points via the bilinear finite elements, and calculating the
vector M -norm, where M is the mass matrix of the finite elements at the grid with
512 points. The number of initial peaks m0 = 3 and their positions are fixed in these
experiments.
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Fig. 7.2. Left: discretization errors for different grid sizes n and ε = 10−6. Middle: approxi-
mation errors for different thresholds ε and n = 64. Right: costs for different total errors.
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We see that the error decays nearly linearly with respect to n, as expected from
the implicit Euler scheme, for all quantities. The least squares log-linear fit gives a rate
errorf (n) ≈ n−1.25. Since this decay is rather slow, at least 256 points in each direction
are necessary to achieve an accuracy of 0.2% in the chemoattractant concentration.
The seemingly faster rate of convergence near n = 256 is due to the reference solution
computed at the grid with 512 points, which still contains a noticeable error. These
points are excluded from the estimation of the rate.

The truncated singular value decomposition in the TT algorithm tries to introduce
the same average amount of error to all solution components. However, the relative
error in each component may differ from ε, depending on the norm scale and other
factors of the algorithm, such as the local system solver. In Fig. 7.2 (middle) we
investigate the relative error in all components f ∈ {z, c, p, q},

errorf (ε) =
‖fε − f10−8‖F
‖f10−8‖F

,

where fε is the solution vector computed with the TT approximation threshold ε. We
see that, on average, the errors decay linearly with ε: errorf (ε) ≈ 3.2 · ε, as expected.

From the modelling point of view, one is usually interested in achieving a target
total error in the numerical solution, which consists of the discretization error and the
TT approximation error in our case. In this section we study how the total cost of the
TT scheme depends on this total error. We vary the number of grid points n from 48 to
256, estimate the corresponding discretization error through errorf (n) ≈ n−1.25, and
set the TT truncation threshold such that the errors are equal, errorf (ε) = errorf (n),
and hence ε = n−1.25/3.2. This should yield the total error in the order of 2·errorf (n).
In Fig. 7.1 (right) we plot the CPU times with respect to the total error. We see that
the cost grows inversely proportional to the error, which is governed by the univariate
grid size. This is a significant improvement compared to the uncompressed scheme
(cf. Fig. 5.1), where the cost depends exponentially on the dimension.

7.3. Number of peaks in the initial distribution. Since the initial distribu-
tion of cells (5.1) consists of several randomly located Gaussian peaks, the particular
positions of the peaks may influence the performance of the methods. In Fig. 7.3 we
investigate CPU times and TT ranks in the TT solver versus the number of peaks
m0 and their positions. The plots show means plus minus standard deviations of the
times and ranks with respect to the randomization of peak locations.

As expected, the complexity grows with the number of peaks, and for m0 ∼ 20
this approaches the estimated time of the full solver (should one have a sufficient
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Fig. 7.3. CPU time (sec.) (left) and TT ranks (right) for different numbers m0 of initial peaks,
accuracy threshold ε = 10−4, n = 256.
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amount of memory to run the latter). For a smaller number of peaks the TT solver is
more efficient. Moreover, a small relative dispersion shows that it is quite insensitive
to the particular realization of the initial distribution.

Fig. 7.4. Left: initial cell density z0(x) for m0 = 10. Right: control u(x, T/2).
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The initial cell density for m0 = 10 peaks and the transient control signal are
shown in Fig. 7.4 (left and right, respectively), while the final density and the misfit
are shown in Fig. 7.5. The unconstrained control takes negative values in the left
bottom corner of the domain. However, this gives a more accurate fit of the cell
density to the desired distribution than the constrained control.

Remark 6. An unconstrained control can potentially drive the model into an
unphysical regime, e.g., making the concentrations negative. For this example we
have verified that both concentrations remain positive, and hence the Keller–Segel
model remains valid.

8. Concluding remarks. We have developed a preconditioned Gauss–Newton
method for solving optimal control problems in chemotaxis, making use of an effective
saddle point type preconditioner coupled with a suitable approximation of the pivoted
Schur complement. This enables us to solve potentially huge-scale matrix systems,
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Fig. 7.5. Left: cell density at the final time z(x, T ). Right: misfit of the density, z(x, T )− ẑ(x).
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both without and with additional box constraints imposed on the control variable.
Numerical results indicate considerable robustness with respect to the matrix dimen-
sion, as well as the parameters involved in the problem set-up.

Moreover, we have shown that the problem without box constraints is amenable to
a faster solution using the low-rank tensor approximations of all vectors and matrices
arising in the discretization. The nonlinearity of the problem can easily be tackled
via cross approximation methods, provided that the functions are smooth. The low-
rank decompositions are not very suitable for discontinuous functions, such as an
indicator of an active set, arising in the problem of finding a constrained control or
state. However, in the unconstrained case the low-rank algorithms are much faster
and need much less memory than the straightforward solution of the Gauss–Newton
equations. The tensor decomposition approach requires a structured grid without local
refinements, which might produce overly many grid points at first glance. However,
these points are never treated explicitly. Instead, only the elements of the low-rank
factors are actually computed, which compensates for the fine original grid, as the
low-rank decompositions usually give a more significant cost reduction compared to
the grid refinement. Depending on the “complexity” of the transient solution (and
hence the tensor ranks), we can achieve a speedup of more than an order of magnitude.

The importance of the box constraints depends on the particular model. For
example, if we can only control the inflow of the chemoattractant, it is reasonable
to request a nonnegative control. However, if the laboratory setup allows one also
to remove the chemoattractant, or to add a repellent, the negative control becomes
physically realizable. This can provide a better control of the cell population, whereas
the low-rank numerical algorithms allow a fast simulation of the required profile of
the attractant/repellent, even on a low performance desktop.
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