

Edinburgh Research Explorer

Formalising type-logical grammars in Agda

Citation for published version:
Kokke, W 2015, 'Formalising type-logical grammars in Agda', Paper presented at 27th European Summer
School in Logic, Language and Information, Barcelona , Spain, 3/08/15 - 14/08/15.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322483531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/formalising-typelogical-grammars-in-agda(31b7ae33-dc33-4ad7-8349-6a185170a6b3).html

ar
X

iv
:1

70
9.

00
72

8v
1

 [
cs

.L
O

]
 3

 S
ep

 2
01

7

Formalising type-logical grammars in Agda

Wen Kokke

Utrecht University

Abstract. In recent years, the interest in using
proof assistants to formalise and reason about
mathematics and programming languages has
grown. Type-logical grammars, being closely re-
lated to type theories and systems used in func-
tional programming, are a perfect candidate to
next apply this curiosity to. The advantages of us-
ing proof assistants is that they allow one to write
formally verified proofs about one’s type-logical
systems, and that any theory, once implemented,
can immediately be computed with. The downside
is that in many cases the formal proofs are written
as an afterthought, are incomplete, or use obtuse
syntax. This makes it that the verified proofs are
often much more difficult to read than the pen-and-
paper proofs, and almost never directly published.
In this paper, we will try to remedy that by exam-
ple.

Concretely, we use Agda to model the Lambek-
Grishin calculus, a grammar logic with a rich
vocabulary of type-forming operations. We then
present a verified procedure for cut elimination in
this system. Then we briefly outline a CPS trans-
lation from proofs in the Lambek-Grishin calculus
to programs in Agda. And finally, we will put our
system to use in the analysis of a simple example
sentence.

1 Introduction

Why would we want to formalise type-logical grammars us-
ing proof assistants? One good reason is that it allows us to
write formally verified proofs about the theoretical proper-
ties of our type-logical grammars. But not only that—it al-
lows us to directly run our proofs as programs. For instance,
we can directly run the procedure for cut elimination in this
paper to investigate what kind of derivations are created by
it and be confident in its correctness.

Why, then, would we want to use Agda instead of a more
established proof assistant such as, for instance, Coq? There
are several good reasons, but we believe that the syntactic
freedom offered by Agda is the most important. It is this
freedom that allows us to write machine-checkable proofs,
formatted in a way which is very close to the way one would
otherwise typeset proofs, and which are highly readable com-
pared to other machine-checked proofs. This means that we
can be confident that the proofs as they are published are
correct, and that they are necessarily complete—for though
we can hide some of the less interesting definitions from the
final paper, we cannot omit them from the source.

Additionally, because there is a one-to-one correspondence
between the published proofs and the code, it becomes very
easy for the reader to start up a proof environment and
inspect the proofs interactively in order to further their un-
derstanding.

Our test case in this paper is the Lambek-Grishin cal-
culus (LG, Moortgat, 2009). LG is an example of an ex-
tended Lambek calculus. In addition to the product (⊗) and
the residual slashes (,), LG has a dual family with ⊕
and difference operations (�, �) together with distributiv-
ity principles for the interaction between the two families.
See Moortgat (2009) for discussion of how LG overcomes
syntactic and semantic limitations of the original Lambek
calculus.

We will formalise the residuation-monotonicity axioma-
tisation for the Lambek-Grishin calculus (Moortgat, 2007)
in Agda, present a verified procedure for cut elimination in
this system, and briefly outline a CPS translation into Agda.
There are several reasons why we have chosen to formalise
this particular system.

– It allows cut as an admissible rule, i.e. a function on
proofs, instead of defining a separate cut-free system and
a cut-elimination procedure;

– it has efficiently decidable proof search, largely due to
the absence of the cut rule;

– it has some interesting symmetries, as explored in
Moortgat (2007, 2009). Because of this, most proofs of
properties of LG are not much more complicated than
their associated proofs for the non-associative Lambek
calculus;

– it has a continuation-passing style interpretation, which
has shown to be useful in both derivational and lexical
semantics (Moortgat; Barker and Shan; Asher);

– lastly, an implementation of the non-associative Lambek
calculus can easily and mechanically be extracted from
our implementation of LG.

Since this paper is by no means a complete introduction
to Agda or to dependently-typed programming, we advise
the interested reader to refer to Norell (2009) for a detailed
discussion of Agda.

It should be mentioned that (although we omit some of the
more tedious parts) this paper is written in literate Agda,
and the code has been made available on GitHub.1

1 gist.github.com/wenkokke/cc12b92a8a60696b712c

http://arxiv.org/abs/1709.00728v1
https://gist.github.com/wenkokke/cc12b92a8a60696b712c#file-main-agda

2 Formulas, Judgements, Base System

If we want to model our type-logical grammars in Agda, a
natural starting point would be our atomic formulas—such
as n, np, s, etc. These could easily be represented as an enu-
merated data type. However, in order to avoid committing
to a certain set of atomic formulas and side-step the debate
on which formulas should be atomic, we will simply assume
there is a some data type representing our atomic formulas.
This will be reflected in our module header as follows:

module logic (Univ : Set) where

Our formulas can easily be described as a data type, inject-
ing our atomic formulas by means of the constructor el, and
adding the familiar connectives from the Lambek-Grishin
calculus as binary constructors. Note that, in Agda, we can
use underscores in definitions to denote argument positions.
This means that _⊗_ below defines an infix, binary con-
nective:

data Type : Set where

el : Univ → Type
⊗ _ _ _ _ : Type → Type → Type
⊕ _�_ _�_ : Type → Type → Type

In the same manner, we can define a data type to represent
judgements:

data Judgement : Set where

⊢ : Type → Type → Judgement

Using the above definitions, we can now write judgements
such as A ⊗ A B ⊢ B as Agda values. Next we will define
a data type to represent our logical system. This is where
we can use the dependent type system to our advantage.
The constructors for our data type will represent the ax-
iomatic inference rules of the system, and their types will
be constrained by judgements. Below you can see the entire
system LG as an Agda data type2:

data LG_ : Judgement → Set where

ax : LG el A ⊢ el A

-- residuation and monotonicity for (, ⊗ ,)
r ⊗ : LG B ⊢ A C → LG A ⊗ B ⊢ C
r⊗ : LG A ⊗ B ⊢ C → LG B ⊢ A C
r ⊗ : LG A ⊢ C B → LG A ⊗ B ⊢ C
r⊗ : LG A ⊗ B ⊢ C → LG A ⊢ C B

m⊗ : LG A ⊢ B → LG C ⊢ D → LG A ⊗ C ⊢ B ⊗ D
m : LG A ⊢ B → LG C ⊢ D → LG B C ⊢ A D
m : LG A ⊢ B → LG C ⊢ D → LG A D ⊢ B C

-- residuation and monotonicity for (� , ⊕ , �)
r�⊕ : LG B � C ⊢ A → LG C ⊢ B ⊕ A
r⊕� : LG C ⊢ B ⊕ A → LG B � C ⊢ A
r⊕� : LG C ⊢ B ⊕ A → LG C � A ⊢ B
r�⊕ : LG C � A ⊢ B → LG C ⊢ B ⊕ A

m⊕ : LG A ⊢ B → LG C ⊢ D → LG A ⊕ C ⊢ B ⊕ D

2 For the typeset version of this paper we omit the quantifiers
for all implicit, universally quantified arguments.

m� : LG C ⊢ D → LG A ⊢ B → LG D � A ⊢ C � B
m� : LG A ⊢ B → LG C ⊢ D → LG A � D ⊢ B � C

-- grishin distributives
d� : LG A ⊗ B ⊢ C ⊕ D → LG C � A ⊢ D B
d� : LG A ⊗ B ⊢ C ⊕ D → LG C � B ⊢ A D
d� : LG A ⊗ B ⊢ C ⊕ D → LG B � D ⊢ A C
d� : LG A ⊗ B ⊢ C ⊕ D → LG A � D ⊢ C B

Note that Agda allows arbitrary unicode characters in iden-
tifiers, so r⊗ is a valid Agda identifier.

Using this data type, we can already do quite a lot. For
instance, we can show that while the inference rule ax above
is restricted to atomic formulas3, the unrestricted version
is admissible, by induction on the formula. Note that the
construction {A = ...} below is used to pattern match on
the implicit variable A:

ax′ : LG A ⊢ A
ax′ {A = el } = ax
ax′ {A = ⊗ } = m⊗ ax′ ax′

ax′ {A = } = m ax′ ax′

ax′ {A = } = m ax′ ax′

ax′ {A = ⊕ } = m⊕ ax′ ax′

ax′ {A = � } = m� ax′ ax′

ax′ {A = � } = m� ax′ ax′

Alternatively, we could derive the various applications and
co-applications that hold in the Lambek-Grishin calculus:

appl- ′ : LG A ⊗ (A B) ⊢ B
appl- ′ = r ⊗ (m ax′ ax′)

appl- ′ : LG (B A) ⊗ A ⊢ B
appl- ′ = r ⊗ (m ax′ ax′)

appl-�′ : LG B ⊢ A ⊕ (A � B)
appl-�′ = r�⊕ (m� ax′ ax′)

appl-�′ : LG B ⊢ (B � A) ⊕ A
appl-�′ = r�⊕ (m� ax′ ax′)

However, the most compelling reason to use the axiomati-
sation we have chosen, using residuation and monotonicity
rules, is that cut becomes an admissible rule.

3 Admissible Cut

We would like to show that cut′ of type
LG A ⊢ B → LG B ⊢ C → LG A ⊢ C is an admissi-
ble rule. The method of Moortgat and Oehrle (1999), for
the basic non-associative Lambek calculus, can be readily
generalized to the case of LG:

(i) every connective is introduced symmetrically by a mono-
tonicity rule or as an axiom;

(ii) every connective has one side (antecedent or succedent)
where, if it occurs there at the top level, it cannot be
taken apart or changed by any inference rule;

3 Whereas the rule ax may appear to be unrestricted, it only
allows the derivation of the identity proof for any formula el A.
That is, any atomic formula A delimited by the constructor el.

2

(iii) as a consequence of (ii), every formula has one side
where, if it occurs there at the top level, it is immutable,
i.e. there is no rule which can eliminate it;

(iv) due to (i) and (iii), when we find such an immutable for-
mula, we can be sure that, stepping through the deriva-
tion, after some number of steps we will find the mono-
tonicity rule which introduced that formula;

(v) due to the type of cut′, when we match on the cut for-
mula B we will always have an immutable variant of that
formula in either the first or the second argument of cut′;

(vi) finally, for each main connective there exists a rewrite
rule which makes use of the facts in (iv) and (v) to
rewrite an application of cut′: to two applications of
cut′ on the arguments of the monotonicity rule which
introduced the connective, chained together by applica-
tions of residuation (for binary connectives) or simply to
a derivation (for atomic formulas). As an example, the
rewrite rule for _⊗_ can be found in figure 1.

We can model the view on the left-hand side of the rewrite
rule in figure 1 as a data type. In order to construct this
view for some suitable derivation f, we need two derivations,
h1 and h2 and a derivation f′, which represents the arbitrary
derivation steps taking (m⊗ h1 h2) back to f. Lastly, we in-
clude a proof pr of the fact that the reconstructed derivation
f′ (m⊗ h1 h2) is identical to f:

data Origin (f : LG A ⊢ B ⊗ C) : Set where

origin : (h1 : LG E ⊢ B)
(h2 : LG F ⊢ C)
(f′ : ∀ {G} → LG E ⊗ F ⊢ G → LG A ⊢ G)
(pr : f ≡ f′ (m⊗ h1 h2))

→ Origin f

In the above snippet, we have chosen to leave the quantifier
∀ {G} explicit to stress that f′ should work for any formula
G, not only for B ⊗ C.

All that remains now is to show that for any f of type
LG A ⊢ B ⊗ C, we can construct such a view. We will
attempt to do this by induction on the given derivation.
Note that { }0 is the Agda syntax for a proof obligation.
For clarity, I have added the types of the various subproofs
f in comments:

find : (f : LG A ⊢ B ⊗ C) → Origin f
find (m⊗ f g) = origin f g id refl
find (r ⊗ f) = { }0 -- f : LG A2 ⊢ A1 B ⊗ C
find (r ⊗ f) = { }1 -- f : LG A1 ⊢ B ⊗ C A2

find (r⊕� f) = { }2 -- f : LG A2 ⊢ A1 ⊕ B ⊗ C
find (r⊕� f) = { }3 -- f : LG A1 ⊢ B ⊗ C ⊕ A2

Alas! While in the first case, where f is of the form m⊗ f g,
we have found our monotonicity rule, the remaining cases
are less kind. It seems that we have neglected to account
for derivations where our cut formula is temporarily nested
within another formula.

We will need some new vocabulary to describe what is
going on in the above example. We would like to describe
contexts which a) can be taken apart using residuation, and

b) when fully taken apart, will leave the nested formula on
the correct side of the turnstile. A natural fit for this is using
polarity:

data Polarity : Set where + − : Polarity

Below we define well-polarised formula and judgement con-
texts with exactly one hole. We use a ⊳ or ⊲ to denote in
which argument the hole is:

data Context (p : Polarity) : Polarity → Set where

[] : Context p p

_ ⊗ ⊲_ : Type → Context p + → Context p +
_ ⊲_ : Type → Context p − → Context p −
_ ⊲_ : Type → Context p + → Context p −

_⊳ ⊗ _ : Context p + → Type → Context p +
_⊳ _ : Context p + → Type → Context p −
_⊳ _ : Context p − → Type → Context p −

_ ⊕ ⊲_ : Type → Context p − → Context p −
_ � ⊲_ : Type → Context p − → Context p +
_ � ⊲_ : Type → Context p + → Context p +

_⊳ ⊕ _ : Context p − → Type → Context p −
_⊳ � _ : Context p + → Type → Context p +
_⊳ � _ : Context p − → Type → Context p +

data ContextJ (p : Polarity) : Set where

_⊳ ⊢ _ : Context p + → Type → ContextJ p

_ ⊢ ⊲_ : Type → Context p − → ContextJ p

We also define two operators which, given a context and a
formula, will fill the hole in the given context with the given
formula. The definition for _[_] is entirely predictable and
repetitive, and has been mostly omitted4:

[] : Context p1 p2 → Type → Type
[] [A] = A
(B ⊗ ⊲ C) [A] = B ⊗ (C [A])
...

[]J : ContextJ p → Type → Judgement

(A ⊳ ⊢ B) [C]J = A [C] ⊢ B

(A ⊢ ⊲ B) [C]J = A ⊢ B [C]

The crucial point about these well-polarised judgement con-
texts is that, once the entire context is peeled away, the
formula will be at the top level on the side corresponding
to the polarity argument—with + and − corresponding to
the antecedent and the succedent, respectively. Therefore, in
order to generalise our previous definition of Origin, we want
the occurrence of B ⊗ C to be nested in a negative context:

data Origin′ (J : ContextJ −)

(f : LG J [B ⊗ C]J)
: Set where

origin : (h1 : LG E ⊢ B)

4 For the remainder of this paper, any partial omission of a func-
tion will be denoted with an ellipsis at the end of the code
block.

3

E ⊢ B F ⊢ C

E ⊗ F ⊢ B ⊗ C

...
A ⊢ B ⊗ C B ⊗C ⊢ D

A ⊢ D

=⇒
E ⊢ B

F ⊢ C

B ⊗ C ⊢ D

C ⊢ B D

F ⊢ B D

B ⊗ F ⊢ D

B ⊢ D F

E ⊢ D F

E ⊗ F ⊢ D

...
A ⊢ D

Fig. 1. Rewrite rule for cut on formula B ⊗ C.

(h2 : LG F ⊢ C)

(f′ : LG E ⊗ F ⊢ G → LG J [G]J)
(pr : f ≡ f′ (m⊗ h1 h2))

→ Origin′ J f

Using this more general definition Origin′, we can define a
more general function find′—and this time, our proof by
induction works!

Note that in Agda, the with construct is used to pattern
match on the result of an expression:

find′ : (J : ContextJ −) (f : LG J [B ⊗ C]J) → Origin′ J f
find′ (._ ⊢ ⊲ []) (m⊗ f g) = origin f g id refl
find′ (._ ⊢ ⊲ []) (r ⊗ f) with find′ (⊢ ⊲ (⊲ [])) f
... | origin h1 h2 f′ pr rewrite pr = origin h1 h2 (r ⊗ ◦ f′) refl
...

However, there are many cases—97 in total. The reason for
this is that the possible derivation steps depend on the main
connective; therefore we first have to explore every possible
main connective, and then every possible rule which would
produce that main connective. Because of this, the defini-
tions of the various find′ functions are very long and tedious,
and have mostly been omitted.5

From the more general Origin′ and find′ we can very easily
recover our original definitions Origin and find by setting the
context to be empty. In the case of the cut formula B ⊗ C,
we set the context to (⊢ ⊲ []) to ensure that the formula
ends up at the top level in the succedent:

Origin : (f : LG A ⊢ B ⊗ C) → Set
Origin f = Origin′ (⊢ ⊲ []) f

find : (f : LG A ⊢ B ⊗ C) → Origin f
find f = find′ (⊢ ⊲ []) f

And with that, we can finally put the rewrite rules from
Moortgat and Oehrle (1999) to use. We can define cut′ by
pattern matching on the cut formula B; applying the ap-
propriate find′ function to find′ the monotonicity rule intro-
ducing the formula; and apply the appropriate rewrite rule
to create a derivation containing two cuts on structurally
smaller formulas:

5 The burden on the programmer or logician can be reduced by
clever use of the symmetries ·⊲⊳ and ·∞ as done in Moortgat
(2009). One would have to implement only three of the find′

functions (e.g. for el, ⊗ and); the remaining four can then
be derived using the symmetries.

cut′ : (f : LG A ⊢ B) (g : LG B ⊢ C) → LG A ⊢ C
cut′ {B = el } f g with el.find g
... | (el.origin g′) = g′ f
cut′ {B = ⊗ } f g with ⊗.find f
... | (⊗.origin h1 h2 f′)

= f′ (r ⊗ (cut′ h1 (r⊗ (r ⊗ (cut′ h2 (r⊗ g))))))
cut′ {B = } f g with .find g
... | (.origin h1 h2 g′)

= g′ (r⊗ (r ⊗ (cut′ h2 (r⊗ (cut′ (r ⊗ f) h1)))))
cut′ {B = } f g with .find g
... | (.origin h1 h2 g′)

= g′ (r⊗ (r ⊗ (cut′ h1 (r⊗ (cut′ (r ⊗ f) h2)))))
cut′ {B = ⊕ } f g with ⊕.find g
... | (⊕.origin h1 h2 g′)

= g′ (r�⊕ (cut′ (r⊕� (r�⊕ (cut′ (r⊕� f) h2))) h1))
cut′ {B = � } f g with �.find f
... | (�.origin h1 h2 f′)

= f′ (r⊕� (r�⊕ (cut′ (r⊕� (cut′ h1 (r�⊕ g))) h2)))
cut′ {B = � } f g with �.find f
... | (�.origin h1 h2 f′)

= f′ (r⊕� (r�⊕ (cut′ (r⊕� (cut′ h2 (r�⊕ g))) h1)))

4 CPS Translation

For this paper, we have opted to implement the call-by-
value CPS translation as described in Moortgat (2007). This
translation consists of three elements:

– a function ⌈_⌉, which translates formulas in LG to for-
mulas in the target system—while we have chosen to
translate to Agda, the original translation targeted mul-
tiplicative intuitionistic linear logic;

– a pair of mutually recursive functions ⌈_⌉L and ⌈_⌉R,
which translate terms in LG to terms in the target sys-
tem.

In order to write these functions, we will need two additional
pieces of information: a function ⌈_⌉U , which translates the
atomic formulas to Agda types; and a return type R, which
we will use to define a “negation” as ¬ A = A → R. We will
therefore implement the CPS translation in a sub-module,
which abstracts over these terms:

module translation (⌈_⌉U : Univ → Set) (R : Set) where

When using this module, we will generally identify the re-
turn type R with the type Bool for booleans. However, ab-

4

stracting over it will ensure that we do not accidentally use
this knowledge during the translation.

The type-level translation itself maps formulas in LG to
types in Agda, as follows:

⌈_⌉ : Type → Set

⌈ el A ⌉ = ⌈ A ⌉U

⌈ A ⊗ B ⌉ = (⌈ A ⌉ × ⌈ B ⌉)
⌈ A B ⌉ = ¬ (⌈ A ⌉ × ¬ ⌈ B ⌉)
⌈ B A ⌉ = ¬ (¬ ⌈ B ⌉ × ⌈ A ⌉)
⌈ B ⊕ A ⌉ = ¬ (¬ ⌈ B ⌉ × ¬ ⌈ A ⌉)
⌈ B � A ⌉ = (⌈ B ⌉ × ¬ ⌈ A ⌉)
⌈ A � B ⌉ = (¬ ⌈ A ⌉ × ⌈ B ⌉)

The translations on terms map terms in LG to the Agda
function space. Each LG term is associated with two func-
tions, depending on whether the focus is on A or B as the
active formula:

mutual

⌈_⌉L : LG A ⊢ B → ¬ ⌈ B ⌉ → ¬ ⌈ A ⌉

⌈_⌉R : LG A ⊢ B → ⌈ A ⌉ → ¬ ¬ ⌈ B ⌉
...

The CPS translations of the terms are rather verbose, and
trivial to deduce, when guided by the translation on types.
Therefore, in the interest of space they have been omitted
from the paper.6

5 Example

In this final section, we will present the analysis of an exam-
ple sentence, using the type-logical grammar implemented
above. The example we will analyse is:

“Someone loves everyone.”

This sentence is well known to be ambiguous, owing to the
presence of the two quantifiers. There are two readings:

a. There is some person who loves every person.
b. For each person, there is some person who loves them.

We will demonstrate that the system, as implemented in this
paper, accurately captures these readings.

Before we can do that, however, there is a small amount
of boiler plate that we have to deal with: we still need to
choose a representation for our atomic types, and show how
these translate into Agda. In what follows, we will assume
we have access to a type for entities, suitable definitions for
the universal and existential quantifiers, and meanings for
‘loves’ and ‘person’:

postulate

Entity : Set
∀ : (Entity → Bool) → Bool
∃ : (Entity → Bool) → Bool

6 They are, however, present in the source and therefore avail-
able on GitHub.

loves : Entity → Entity → Bool
person : Entity → Bool

We will instantiate the type for atomic formulas to Univ, as
defined below:

data Univ : Set where N NP S : Univ

Last, we need to define a function which maps the values
of Univ to Agda types. We would like to map the atomic
formulas as follows:

⌈_⌉U : Univ → Set

⌈ N ⌉U = Entity → Bool

⌈ NP ⌉U = Entity

⌈ S ⌉U = Bool

Now that we have Univ and ⌈_⌉U , we can open up the mod-
ules defined as above, instantiating the return type R with
the type of booleans.

open logic Univ

open logic.translation Univ ⌈_⌉U Bool

With everything that we implemented in scope, we can now
define a small lexicon for our example sentence.

In what follows, we will use the aliases n, np and s for el N,
el NP and el S, respectively:

someone : ⌈ (np n) ⊗ n ⌉
someone = ((λ {(g , f) → ∃ (λ x → f x ∧ g x)}) , person)

loves : ⌈ (np s) np ⌉
loves = λ {(k , y) → k (λ {(x , k) → k (loves x y)})}

everyone : ⌈ (np n) ⊗ n ⌉
everyone = ((λ {(g , f) → ∀ (λ x → f x ⊃ g x)}) , person)

Given the types we used for our lexical entries, the judge-
ment which asserts the grammaticality of our sentence be-
comes:

((np n) ⊗ n) ⊗ (((np s) np) ⊗ ((np n) ⊗ n)) ⊢ s

There are seven proofs of this judgement. Below we have
included the first two proofs:7:

sent0 =
r ⊗ (r ⊗ (m (m (r ⊗ ax′) ax) (r ⊗ ax′)))

sent1 =
r ⊗ (r ⊗ (m (r⊗ (r ⊗ (r ⊗ (m ax′ (r ⊗ ax′))))) ax))

...

We can now apply our CPS translation to compute the de-
notations of our sentence, passing in the denotations of the
words as a tuple, and passing in the identity function as the
last argument in order to obtain the result:

7 We have chosen not to include the other five proofs as, under
the CPS translation, they have the same interpretations as
either the first or the second proof. For the interested reader,
however, the proofs are present in the source, and therefore
available on GitHub.

5

sent0 = ⌈ sent0 ⌉R (someone , loves , everyone) id
7→ ∀ (λ y → person y ⊃ ∃ (λ x → person x ∧ loves x y)))

sent1 = ⌈ sent1 ⌉R (someone , loves , everyone) id
7→ ∃ (λ x → person x ∧ ∀ (λ y → person y ⊃ loves x y))

...

Voila! Our system produces exactly the expected readings.

6 Conclusion

We have presented the reader with a simple formalisation
of the Lambek-Grishin calculus, using the proof assistant
Agda. We have shown how to formalise the proof of the ad-
missibility of cut from Moortgat and Oehrle (1999) in Agda,
and have extended this proof to cover all of LG. While we
have not covered any of the usual unary operators, the for-
malism presented here generalises straightforwardly to ac-
commodate connectives of any arity—and this extension, to-
gether with many other extensions, are indeed implemented
in the full version of our code.

We have then presented the reader with a call-by-value
CPS translation into the host language Agda, and used this
translation to demonstrate the analysis of an example sen-
tence.

Most importantly, we hope we presented the reader with
a clean and readable formalisation of the Lambek-Grishin
calculus.

7 Related Work

Previous work on the formalisation of Lambek calculi was
done in Coq by Anoun et al. (2004).

The work presented in this paper is part of a larger under-
taking to formalise type-logical grammars in Agda. At the
moment, we have formalised not only the algebraic Lambek-
Grishin calculus—which was presented in this paper—but
also structural and polarised varieties of this calculus. From
these implementations, we are able to extract implementa-
tions of their respective non-associative Lambek calculi.

In addition, we have implemented various other multi-
modal systems, such as NLCL (Barker and Shan, 2015).

We aim to extend this work by further formalising the
known work w.r.t. these calculi, and creating tools to ac-
commodate the writing of formal linguistics papers in liter-
ate style.

References

Anoun, H. (2007). Une bibliothèque coq pour le traitement
des langues naturelles. Technique et Science Informa-
tiques, 26(9):1111–1136.

Anoun, H., Castéran, P., and Moot, R. (2004). Proof au-
tomation for type-logical grammars. Rapport de recherche
, European Summer School in Logic, Language and Infor-
mation - 2004.

Asher, N. (2011). Lexical Meaning in Context: A Web of
Words. Cambridge University Press.

Barker, C. and Shan, C. (2015). Continuations and Natu-
ral Language (Oxford Studies in Theoretical Linguistics).
Oxford University Press.

Moortgat, M. (2007). Symmetries in natural language syn-
tax and semantics: The lambek-grishin calculus. In Logic,
Language, Information and Computation, pages 264–284.
Springer Berlin Heidelberg.

Moortgat, M. (2009). Symmetric categorial grammar. Jour-
nal of Philosophical Logic, 38(6):681–710.

Moortgat, M. and Oehrle, R. T. (1999). Proof nets for the
grammatical base logic. In Abrusci, M. and Casadio, C.,
editors, Dynamic perspectives in logic and linguistics. Pro-
ceedings of the Fourth Roma Workshop, pages 131–143,
Roma. Bulzoni.

Moot, R. and Retoré, C. (2012). The Logic of Categorial
Grammars. Springer Berlin Heidelberg.

Norell, U. (2009). Dependently typed programming in agda.
In Proceedings of the 4th International Workshop on Types
in Language Design and Implementation, TLDI ’09, pages
1–2, New York, NY, USA. ACM.

6

np ⊢ np n ⊢ n
(m)

np n ⊢ np n
(r �)

(np n) � n ⊢ np s ⊢ s
(m)

np s ⊢ (np n) � n s

np ⊢ np n ⊢ n
(m)

np n ⊢ np n
(r �)

(np n) � n ⊢ np
(m)

(np s) np ⊢ ((np n) � n s) (np n) � n
(r �)

((np s) np) � (np n) � n ⊢ (np n) � n s
(r �)

((np n) � n) � ((np s) np) � (np n) � n ⊢ s

∀ (λy → person y ⊃ ∃ (λx → personx ∧ lovesx y))

np ⊢ np s ⊢ s
(m)

np s ⊢ np s

np ⊢ np n ⊢ n
(m)

np n ⊢ np n
(r �)

(np n) � n ⊢ np
(m)

(np s) np ⊢ (np s) (np n) � n
(r �)

((np s) np) � (np n) � n ⊢ np s
(r �)

np � ((np s) np) � (np n) � n ⊢ s
(r �)

np ⊢ s ((np s) np) � (np n) � n n ⊢ n
(m)

np n ⊢ (s ((np s) np) � (np n) � n) n
(r �)

(np n) � n ⊢ s ((np s) np) � (np n) � n
(r �)

((np n) � n) � ((np s) np) � (np n) � n ⊢ s

∃ (λx → personx ∧ ∀ (λy → person y ⊃ lovesx y))

Fig. 2. “Someone loves everyone.”

7

	Formalising type-logical grammars in Agda

