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Abstract

Microglia are the resident macrophages of the brain. Over the past decade, our

understanding of the function of these cells has significantly improved. Microglia do not

only play important roles in the healthy brain but are involved in almost every brain

pathology. Gene expression profiling allowed to distinguish microglia from other macro-

phages and revealed that the full microglia signature can only be observed in vivo. Thus,

animal models are irreplaceable to understand the function of these cells. One of the pop-

ularmodels to studymicroglia is the zebrafish larva. Due to their optical transparency and

genetic accessibility, zebrafish larvae have been employed to understand a variety of

microglia functions in the living brain. Here, we performed RNA sequencing of larval

zebrafish microglia at different developmental time points: 3, 5, and 7 days post fertiliza-

tion (dpf). Our analysis reveals that larval zebrafish microglia rapidly acquire the core

microglia signature and many typical microglia genes are expressed from 3 dpf onwards.

The majority of changes in gene expression happened between 3 and 5 dpf, suggesting

that differentiation mainly takes place during these days. Furthermore, we compared the

larval microglia transcriptome to published data sets of adult zebrafish microglia, mouse

microglia, and humanmicroglia. Larval microglia shared a significant number of expressed

genes with their adult counterparts in zebrafish as well as with mouse and human

microglia. In conclusion, our results show that larval zebrafish microglia mature rapidly

and express the coremicroglia gene signature that seems to be conserved across species.

K E YWORD S
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1 | INTRODUCTION

Microglia represent the tissue-resident macrophage population of the

brain. Microglia are derived from primitive macrophages that colonize

the central nervous system (CNS) early during development where

they differentiate into mature microglia (Prinz, Erny, & Hagemeyer,

2017). This differentiation is reflected in changes in their gene expres-

sion as well as the appearance of the typical ramified morphology of

microglia. Microglia caught significant attention over the past decade

as these cells do not only have crucial functions during physiology but

are involved in almost every type of CNS pathology (Salter & Stevens,

2017; Song & Colonna, 2018). Advances in sequencing technologyJulie Mazzolini and Sigrid Le Clerc contributed equally to this study.

Received: 23 January 2019 Revised: 21 August 2019 Accepted: 22 August 2019

DOI: 10.1002/glia.23717

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2019 The Authors. Glia published by Wiley Periodicals, Inc.

Glia. 2019;1–18. wileyonlinelibrary.com/journal/glia 1

https://orcid.org/0000-0002-2175-8713
https://orcid.org/0000-0001-6881-5183
mailto:dirk.sieger@ed.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/glia


have provided an in-depth understanding of the microglia gene

expression signature. This not only allows a clear discrimination of

microglia from other brain cells, but also other populations of macro-

phages (Butovsky et al., 2013). In line with this, based on RNA

sequencing of mouse microglia in various studies, a microglia core

gene signature could be determined. Among other genes, this core

signature includes the genes Cx3cr1, Hexb, Itgb5, Olfml3, P2ry12,

P2ry13, Rnase4, Slc2a5, Tmem119, Trem2, Gpr34, Siglech, Gpr84, and

Socs3 (Beutner et al., 2013; Butovsky et al., 2013; Chiu et al., 2013;

Gautier et al., 2012; Hickman et al., 2013; Zhang et al., 2014).

The zebrafish (Danio rerio) has become a very popular model for

biomedical studies. The optical transparency of the zebrafish larva,

combined with the ease of genetic and pharmacological manipulation,

make it an ideal model for in vivo imaging studies. Based on these

advantages, several elegant studies have addressed microglial func-

tions using the zebrafish as a model (Casano, Albert, & Peri, 2016;

Herbomel, Thisse, & Thisse, 2001; Oosterhof et al., 2016; Peri &

Nüsslein-Volhard, 2008; Rossi, Casano, Henke, Richter, & Peri, 2015;

Shen, Sidik, & Talbot, 2016; Shiau, Monk, Joo, & Talbot, 2013; Sieger,

Moritz, Ziegenhals, Prykhozhij, & Peri, 2012; Svahn et al., 2013; Xu,

Wang, Wu, Jin, & Wen, 2016). In zebrafish, a subpopulation of primi-

tive macrophages from the yolk sac colonize the brain early during

development from 48 hr post fertilization (hpf) onwards. Once in

the brain, these macrophages then rapidly differentiate into early

microglia over the next 24 hr (Herbomel et al., 2001). This differentia-

tion has been described based on the down-regulation of l-plastin, the

strong up-regulation of apoE and the appearance of a ramified mor-

phology (Herbomel et al., 2001). Furthermore, typical microglia marker

genes like p2ry12 are expressed in zebrafish microglia immediately

upon brain colonization at 3 dpf (Sieger et al., 2012). Several studies

revealed that early larval zebrafish microglia, at 3 and 4 dpf, are fully

functional. These cells have been shown to clear apoptotic neurons,

to directly interact with highly active neurons and to respond to neu-

ronal injuries (Li, Du, Liu, Wen, & Du, 2012; Mazaheri et al., 2014;

Peri & Nüsslein-Volhard, 2008; Sieger et al., 2012). Importantly, the

mechanisms underlying these functions are the same as those

employed by mammalian microglia, suggesting a high degree of con-

servation across species (Sieger & Peri, 2013). Interestingly, in

zebrafish, these larval microglia seem to be replaced by a second wave

of definitive microglia that persist throughout adulthood and are

derived from cmyb-dependent hematopoietic stem cells (Ferrero

et al., 2018; Xu et al., 2015). The transcriptome of these adult

zebrafish microglia was recently analyzed and a comparison with

available data sets from mouse showed that a large fraction of the

mouse microglia specific gene expression signature is conserved in

the zebrafish (Oosterhof et al., 2016).

To date, many studies have used larval zebrafish to study microglia

because of the optical transparency, which allows high-resolution

in vivo imaging. However, the gene expression profile of larval

zebrafish microglia has not been addressed so far. Thus, to gain an

in-depth understanding of the gene expression profile of microglia

during larval development we performed RNA sequencing of microglia

at different time points during zebrafish development. Microglia were

isolated at 3, 5, and 7 dpf and their gene expression profiles were ana-

lyzed and compared to available data sets from adult zebrafish

microglia, embryonic, and adult mouse microglia, as well as human

microglia. Our results show that zebrafish microglia undergo a rapid

differentiation which is reflected in the strong upregulation of many

microglia specific genes at 3 dpf. Furthermore, our data show that lar-

val zebrafish microglia share many genes with adult zebrafish

microglia as well as with mouse and human microglia. In conclusion,

our new gene expression data combined with previous functional

studies on larval microglia, underscore the suitability of the larval

zebrafish to study microglial functions and mechanisms.

2 | METHODS

2.1 | Zebrafish maintenance

Animal experimentation was approved by the ethical review commit-

tee of the University of Edinburgh and the Home Office, in accor-

dance with the Animal (Scientific Procedures) Act 1986. Zebrafish

were housed in a purpose-built zebrafish facility, in the Queen's Medi-

cal Research Institute, maintained by the University of Edinburgh

Biological Resources. All zebrafish larvae were kept at 28�C on a

14 hr light/10 hr dark photoperiod. Embryos were obtained by natural

spawning from adult Et(Zic4:Gal4TA4,UAS:mCherry)hmz5 referred to as

zic4:mCherry (Distel, Wullimann, & Köster, 2009), Tg(XIa.Tubb:dsRED)

referred to as NBT:dsRED (Peri & Nüsslein-Volhard, 2008), Tg(mpeg1:

EGFP) (Ellett, Pase, Hayman, Andrianopoulos, & Lieschke, 2011), and

wild-type (WIK), zebrafish strains. Embryos were raised at 28.5�C in

embryo medium (E3) and treated with 200 μM 1-phenyl 2-thiourea

(PTU) (Sigma) from the end of the first day of development for the

duration of the experiment to prevent pigmentation.

2.2 | Mounting, immunohistochemistry, and image
acquisition

Whole-mount immunostaining of samples was performed as previ-

ously described (Astell & Sieger, 2017). Briefly, larvae were fixed in

4% PFA/1% DMSO in PBS at room temperature for 2 hr, then washed

in PBStx (0.2% Triton X-100 in 0.01 M PBS) and blocked in 1% goat

serum blocking buffer (1% normal goat serum, 1% DMSO, 1% BSA,

and 0.7% Triton X-100 in 0.01 M PBS) for 2 hr prior to incubation

with the mouse anti-4C4 primary antibody (1:50) overnight at 4�C.

Samples were washed in PBStx before their incubation with conju-

gated secondary antibodies (goat anti-mouse Alexa Fluor 647 [1:200])

(Life Technologies) overnight at 4�C. The samples were washed

several times with PBStx and stored in 70% glycerol at 4�C until final

mounting in 1.5% low melting point agarose (Life Technologies) in E3

for image acquisition.

Whole-brain immunofluorescent images were acquired using con-

focal laser scanning microscopy (Zeiss LSM780; 20×/0.8 objective;

2.30 mm intervals; 633 nm laser line).

Isolated cells from fluorescence-activated cell sorting (FACS) were

centrifuged on glass coverslip pretreated with 0.01% Poly-L-lysine
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(Sigma Aldrich) in ΔH2O at 400g for 5 min. Cells were fixed with 4%

PFA in PBS for 15 min at room temperature, washed twice in PBS

then mounted on microscopic slides in 10 μl of Fluoromount-G®

(SouthernBiotech). Samples were acquired using confocal laser scan-

ning microscopy (Zeiss LSM880; 63×/1.4 objective; 50 μm intervals;

633, 561, and 514 nm laser lines).

2.3 | Image analysis

Analysis of all images was performed in 3D using Imaris (Bitplane,

Zurich, Switzerland). To assess microglia morphology, we used the

surface-rendering tool in Imaris 8.0.2, which allowed segmentation of

individual cells in 3D. To visualize microglia labeling (4C4/Alx647),

NBT:DsRed, and zic4:mCherry signals from isolated cells, we used the

section view which allowed viewing of those signals along three coor-

dinate axes (X, Y, and Z). The surface-rendering tool was used to build

a 3D reconstitution based on the expression of the different signals

(Figure S2).

2.4 | Microglia and macrophage isolation

Microglia were isolated by FACS from heads of 3, 5, and 7 dpf Et(Zic4:

Gal4TA4,UAS:mCherry)hmz5 larvae as previously described (Mazzolini,

Chia, & Sieger, 2018) whereas macrophages were isolated from whole

28 hpf Tg(mpeg1:EGFP) larvae. FACS allowed cell separation from

debris in function of their size (FSC-A) and granularity (SSC-A). Single

cells were then separated from doublets or cell agglomerates (FSC

Singlet; SSC Singlet). From the single-cell population, a gate was

drawn to separate live cells (DAPI−) from dead cells (DAPI+).

Unstained and cells incubated with secondary antibody Alx647 only

were used as controls to draw gates corresponding to macrophage

and microglia populations. Finally, microglia (Alx647+; Figure S1) and

macrophages (eGFP+; Figure S4) were segregated from the live cell

population gates. FACS data were analyzed and median of fluores-

cence intensity of microglia staining measured using FlowJo Software

(Treestar, Ashland, OR).

To assess sample purity, (Alx647+; DsRed+) and (Alx647+;

mCherry+) cells were analyzed then isolated from 7 dpf Et(Zic4:

Gal4TA4,UAS:mCherry)hmz5 and Tg(XIa.Tubb:dsRED) larvae labeled for

microglia as described above. Isolated cells were then analyzed by

microscopy (Figure S2).

2.5 | RNA extraction and cDNA amplification

All experiments were performed in three replicates with a total num-

ber of 600 larvae per replicate. Total RNA extraction from microglial

cells was performed using the Qiagen RNeasy Plus Micro kit

according to the manufacturer's instructions (Qiagen). RNA sample

quality and concentration were determined using the Agilent RNA

6000 Pico kit and an Agilent 2100 Bioanalyser System (Agilent Tech-

nologies). For sequencing, all RNA samples with a RIN score >7 were

transcribed into cDNA using the Ovation RNA-Seq System V2 kit

according to the manufacturer's instructions (NuGEN). Samples were

then sent to Edinburgh Genomics for library synthesis and sequenc-

ing. For qPCR, RNA sample quality and concentration were assessed

using the LabChip GX Touch Nucleic Acid Analyzer and RNA Pico

Sensitivity Assay. All RNA samples with a RIN score >7 were tran-

scribed from the same amount of RNA into cDNA using the Super-

Script® III First-Strand Synthesis System (Invitrogen).

2.6 | Library synthesis

Sequencing libraries were prepared using the Illumina TruSeq DNA Nano

library preparation kit according to manufacturer's instructions with

amended shearing conditions (duty factor 10%, PIP 175, cycles/burst

200, duration 40 s) using a 500 ng input of amplified cDNA (Illumina,

Inc.). The size selection for the sheared cDNA was set for 350 bp prod-

ucts. Libraries were normalized and ran on 2 HiSeq 4000 lanes with

75-base paired-end reads resulting in an average read depth of around

20 million read pairs per sample.

2.7 | Bioinformatics

The quality control of the sequences was done with FastQC

(Andrews, 2010), and Trimmomatic was applied to trim low-quality

reads and adapters (Bolger, Lohse, & Usadel, 2014). We aligned the

RNA-seq reads to the zebrafish reference genome (Ensembl, GRCz11)

using STAR v2.6 (Dobin et al., 2012) and transcript were assembled

and counted with HTSeq (Anders, Pyl, & Huber, 2015) using annota-

tion from Ensembl (Danio_rerio.GRCz11.93.gtf).

Counts normalization, transformation (rlog), and differential

expression analysis were performed using DESeq2 (Love, Huber, &

Anders, 2014). Normalized data were inspected using Principal

Component Analysis (PCA) (Figure 2), and inter-sample correlation

plots (Figure S1). Two types of differential expression analyses were

performed using DESeq2: (i) microglia at 3 dpf versus 5 dpf,

microglia at 5 dpf versus 7 dpf, microglia at 3 dpf versus 7 dpf;

(ii) microglia at 3 or 5 dpf or 7 dpf versus brain cells (from

Oosterhof et al., 2016). Differentially expressed genes (DEs) were

selected using the following filter criteria: FDR ≤ 0.05 and Fold

Change ≥ |2|. Enrichment for gene ontology (GO) terms for individ-

ual comparisons was performed using Gorilla (Eden, Navon,

Steinfeld, Lipson, & Yakhini, 2009).

The zebrafish microglia expression (i) and (ii) profile were com-

pared with reported microglia expression profiles (Galatro et al., 2017;

Matcovitch-Natan et al., 2016; Oosterhof et al., 2016; Zhang et al.,

2014). The analysis was performed in two steps: (a) Pearson correla-

tion of gene expression and (b) gene overlap list enrichment between

zebrafish 3, 5, and 7 dpf samples and samples from the other studies.

The ZFIN database was used to annotate the genes and to identify

zebrafish orthologs (https://zfin.org/). For the correlation analysis,

RNA-seq data were downloaded from GEO (GEO id: GSE86921,

GSE52564, GSE79812, and GSE99074). The RNA-seq were treated

according to our protocol described above. Because normalization

rescales samples relative to one another, the data were re-normalized

separately for each analysis. The mean expression was computed for
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biological replicates and we performed a Pearson correlation and the

differences of correlation coefficient were tested using Hotelling–

Williams test. The significant genes higher expressed in microglia in

the different studies were selected according to our criteria (Fold

Change ≥2, FDR < 0.05) if possible. Otherwise, the selection criteria

are available in Table S12. The gene symbol list from (ii) was inter-

sected with the gene symbol list of genes expressed in adult zebrafish

microglia (Oosterhof et al., 2016), adult mouse microglia (Zhang et al.,

2014) and adult human microglia (Galatro et al., 2017). We compared

the evolution of the developmental microglia gene expression profile

by intersecting the gene symbol list from (i) with genes expressed dur-

ing mouse microglia development (Matcovitch-Natan et al., 2016).The

overlap significance between microglia specific genes from 3, 5, and

7 dpf with other species was calculated using a hypergeometric

distribution.

2.8 | Quantitative PCR

Quantitative (qPCR) amplifications were performed in duplicates in a

20 μl reaction volume containing SsoAdvanced Universal SYBR Green

Supermix (Bio-Rad) using a LightCycler 96 Real-Time PCR System

(Roche). The PCR protocol used was initial denaturation step of 5 min

at 95�C, and 45 cycles of 10 s at 95�C, 20 s at 56�C, and 20 s at

72�C. Primers used were:

Beta-actin forward 50-CACTGAGGCTCCCCTGAATCCC-30.

Beta-actin reverse 50-CGTACAGAGAGAGCACAGCCTGG-30.

Apoeb forward 50-GGCAGTTTTAACTGGCTGCCAG-30.

Apoeb reverse 50-CCAGCCAGGAGCTGAAGATCTTTAC-30.

Hexb forward 50-CTTTGGGGAGAGTATGTGGACGC-30.

Hexb reverse 50-CAGGTATGCCTCTCCTGACCAT-30.

P2ry12 forward 50-CTTCAGGTCGTCGCTGTTTA-30.

P2ry12 reverse 50-AGTGCGTTTCCCTGTTGAT-30.

Csf1ra forward 50-CCTGATCCGCAACGTTCATCCT-30.

Csf1ra reverse 50-GCTTTGGGCAGCATTCTTGAGG-30.

Ipcat2 forward 50-CTGGAGAAGGTTTCTGCACAGAAGAG-30.

Ipcat2 reverse 50-CCTGCCAAAGATTGGTGCTTCTAG-30.

Parvg forward 50-GGAGCGTTAAACTCATTCACAGCAG-30.

Parvg reverse 50-GGGACATTCCTTGTTAGACTCTCTGTC-30.

Plnxb2a forward 50-GCACCCTGAGAGTGGTTCTCTAC-30.

Plnxb2a reverse 50-GTGACTGAGATGCGTCCGTTCATT-30.

Irf8 forward 50-GACCTCTCAATGCTGCTGTTGTTC-30.

Irf8 reverse 50-CGCTCATTCTTAATGCCGTCAATGG-30.

Mpeg1.1 forward 50-GGGTTCAAGTCCGTAACCATCTGTAC-30.

Mpeg1.1 reverse 50-CTTCTTGCACCAATGTGGCTCC-30.

Spi1b forward 50-CATCATCCCACCCAAAGAAGAGGG-30.

Spi1b reverse 50-CATGTAGTGACTGCACGCTTTGTAG-30.

Melting curve analysis was used to ensure primer specificity. For

qPCR analysis, the threshold cycle (Ct) values for each gene were nor-

malized to expression levels of ß-actin and relative quantification of

gene expression determined with the comparative Ct (ΔΔCt) method

using the LightCycler® 96 Software (Roche). qPCR analysis was per-

formed in triplicate for each gene.

2.9 | Statistical analysis

Statistical analysis for qPCR and measurements of median fluores-

cence intensity of microglia were performed as followed. All experi-

ments were performed in three replicates. All measured data were

analyzed (StatPlus, AnalystSoft Inc.). One-way ANOVA with

Bonferroni's post hoc test was performed for comparisons between

multiple experimental groups. Statistical values of p < .05 were con-

sidered to be significant. All graphs were plotted in Prism 6.1

(GraphPad Software) and values presented as population means ± SD.

3 | RESULTS

3.1 | Larval zebrafish microglia show a rapid
differentiation

To understand the changes in gene expression during development in

larval zebrafish microglia, we isolated microglia at three different time

points. We chose 3 dpf, when macrophages start colonizing the brain

and differentiate into early microglia (Figure 1a,b), 5 dpf when differ-

entiation based on morphological criteria (ramification) is apparent

(Figure 1a, b) and 7 dpf when microglia differentiation has further

proceeded (Figure 1a, b). Microglia were isolated from dissociated

brains using the microglia-specific 4C4 antibody to perform immuno-

histochemistry followed by fluorescence-activated cell sorting (FACS)

(Figure 1c, Figure S1; Mazzolini et al., 2018). As shown in Figure 1 and

in recent publications, the 4C4 antibody is highly specific for zebrafish

microglia and does not detect other cell types in the brain (Chia,

Mazzolini, Mione, & Sieger, 2018; Ohnmacht et al., 2016; Tsarouchas

et al., 2018). To confirm the purity of the sorted 4C4+ cell population,

we isolated cells from two different transgenic backgrounds with

either labeled neurons (NBT:dsRED) or labeled radial glial cell progeni-

tors (zic4:mCherry; Distel et al., 2009; Peri & Nüsslein-Volhard, 2008).

Analysis of the 4C4+ cells from these backgrounds revealed that

11.3% of the 4C4+ cells were positive for the neuronal marker and

12.6% were positive for the radial glia cell marker (Figure S2). Closer

inspection of these cells via confocal microscopy revealed that the

neuronal and radial glial cell signals were exclusively detected within

the 4C4+ cells (Figure S2). We conclude that these cells represent

microglia that had phagocytosed neurons and radial glial cell progeni-

tors. This is in line with the high phagocytic activity of microglia during

larval zebrafish development (Casano et al., 2016; Mazaheri et al.,

2014; Peri & Nüsslein-Volhard, 2008). Thus, we were confident to

specifically isolate microglia via 4C4 immunohistochemistry followed

by FACS. For each time point, microglia were pooled from 600 larval

zebrafish brains and three biological replicates (600 brains per repli-

cate) were performed per time point for RNA sequencing. Scatter

plots of the read counts showed that despite the fact that each sam-

ple consisted of microglia from 600 brains, biological replicates were

highly correlated (r > .8, Figure S3). Principal component analysis

(PCA) confirmed this correlation by showing clusters corresponding to

the three time points with 7 and 5 dpf samples appearing closer

together compared to the 3 dpf samples (Figure 2a). We detected a
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F IGURE 1 Development of the microglia population in larval zebrafish. (a) Representative confocal images are shown to illustrate zebrafish
larval head development from 1 to 7 days postfertilization (dpf) and microglial cell distribution throughout the developing brain. Upper panels
correspond to a brightfield transmission image and lower panels represent the maximum intensity projection of 4C4+ microglia (magenta) at each
developmental stage. Microglia start colonizing the brain (dotted line) at 3 dpf whereas signal can be detected in the retina from 1 dpf onwards.
Scale bar represents 50 μm. (b) Upper panels show 4C4 antibody immunohistochemistry, lower panels show segmented images of microglia
morphology at 3, 5, and 7 dpf using the Imaris surface tool. Microglia morphology changes from amoeboid (1 dpf) to ramified (7 dpf) with an

intermediate feature at 5 dpf. Scale bar represents 10 μm. (c) Schematic representation of the protocol used to isolate 4C4+ microglia from larval
zebrafish brains at 3, 5, and 7 dpf. All images represent maximum intensity projections of confocal stacks. Images were captured using a Zeiss
LSM710 confocal microscope with a 20×/NA 0.8 objective [Color figure can be viewed at wileyonlinelibrary.com]
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large number of differentially expressed (DE) genes between the three

developmental stages and focused on 3,097 of the most significant

genes throughout development (False discovery rate [FDR] < 0.05,

Fold Change > |2|, Figure 2b,c, Table S1). These genes were divided

into six groups that showed differential expression through the three

developmental stages (Figure 2c). The first group of genes showed

higher expression at 3 dpf compared to 5 and/or 7 dpf (Figure 2c,

1,209 genes in total (Figure 2b, Table S1). This group contained typical

microglia genes including apoeb, p2ry12, hexb, csf1ra, and mpeg1.1

(Figures 2c and 3a, black). This is in line with previous descriptions of

a rapid differentiation into early microglia in zebrafish at 3 dpf

(Herbomel et al., 2001). The second group of genes were higher

expressed at 3 and 5 dpf compared to 7 dpf (Figure 2c, 209 genes in

total; Figure 2b, Table S1). Within this group, we did not detect any of

the typical microglial genes. In this group, we detected for example,

plxnb2a, which is one of the zebrafish orthologs for Plexin-B2. Inter-

estingly, Plexin-B2 has been shown to negatively regulate motility in

macrophages (Roney et al., 2011). As zebrafish microglia show a

reduced motility at later developmental timepoints, the observed

lower expression levels might suggest a conserved role for plxnb2a.

Another gene detected in group 2 was hmga2, which has recently

been shown to be a driver of inflammation in murine macrophages

(Huang et al., 2017). Interestingly, Hmga2 shows high expression

levels in murine microglia compared to other brain cells as well (Zhang

et al., 2014). The third group showed higher expression levels on

5 dpf in comparison with 3 and/or 7 dpf (Figure 2c, 370 genes in total

(Figure 2b, Table S1). Interestingly, the myeloid progenitor marker

c-kit appeared in this group (Figures 2c and 3a, blue). The fourth group

showed lower expression levels on 3 dpf compared to 5 and 7 dpf

(Figure 2c), 674 genes in total (Figure 2b, Table S1). Importantly, the

gene mafb, recently identified as a marker for adult mouse microglia

(Matcovitch-Natan et al., 2016), followed the expression pattern of

this group (Figure 2c and 3a, orange). This group also included one of

the zebrafish orthologs of interferon regulatory factor 4 (irf4a), which

has been shown to be involved in microglia differentiation and polari-

zation (Nam & Lim, 2016). The fifth group contained the genes with

higher expression at 7 dpf in comparison to 3 and/or 5 dpf and

included the other zebrafish irf4 ortholog (irf4b; Figure 2c, 590 genes

in total (Figure 2b, Table S1). Finally, the sixth group showed a small

number of genes with higher expression levels at 3 and 7 dpf com-

pared to 5 dpf (Figure 2c, 45 genes in total (Figure 2b, Table S1).

Within this group, we detected genes that have been shown to be

involved in inflammasome activation in macrophages. For example,

xanthine dehydrogenase (XDH) has been shown to be converted to

xanthine oxygenase (XH) upon oxidative stress and to regulate IL1b

secretion upon inflammasome activation in macrophages (Ives et al.,

F IGURE 2 Zebrafish microglia
transcriptome at 3, 5, and 7 dpf.
(a) Principal component analysis (PCA)
score plot obtained from normalized
transformed read counts of isolated
microglia RNA from 600 zebrafish
embryos at 3 (green), 5 (yellow), and
7 (magenta) dpf, n = 3. The PCA score
plot shows that replicates from 3, 5, and
7 dpf are clustered and separated
according to their developmental stages.
(b) Venn diagram shows unique and
intersecting genes (3,097) differentially
expressed (DE) from microglia
transcriptome at 3, 5, and 7 dpf
(FDR < 0.05, Fold Change > |2|).
(c) Heatmap of DE genes from microglia
transcriptome comparisons between 3, 5,
and 7 dpf. This heatmap reveals six
groups of different expression profiles.
These groups correspond to the groups
shown in the Venn diagram in (b), which
provides the number of genes within
these groups. See also Table S1. FDR,
false discovery rate [Color figure can be

viewed at wileyonlinelibrary.com]
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F IGURE 3 Larval zebrafish microglia show expression of microglia core signature genes. (a) Dot plots of normalized transformed read counts

of a representative set of microglia genes (black; orange) and erythro-myeloid progenitor (EMP) genes (blue) that show significant differences
during development and dot plots of normalized transformed read counts of a representative set of microglia (green) and macrophage (purple)
genes that show no significant differences between 3, 5, and 7 dpf. The means ± SD of three independent experiments are plotted. (b) mRNA
expression levels for apoeb, csf1ra, mpeg1.1, hexb, p2ry12, plnxb2a, spi1b, and irf8 from isolated macrophages at 28 hpf and microglia at 3, 5, and
7 dpf determined by qPCR (n = 3 for each gene). Fold change was measured in relation to 3 dpf microglia using the comparative (ΔΔCT) method.
The means ± SD of three independent experiments are plotted [Color figure can be viewed at wileyonlinelibrary.com]
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2015). Interestingly, Xdh also shows higher expression levels in

murine microglia compared to other brain cells (Zhang et al., 2014).

Furthermore, we detected tmem206 within this group. tmem206

codes for a proton-activated chloride channel, which has recently

been shown to be involved in acid-induced cell death (Yang et al.,

2019). As for Xdh, the murine version of Tmem206 shows higher

expression levels in microglia compared to other brain cells (Zhang

et al., 2014).

In addition to the genes that showed significant differences in

their expression levels at the three developmental stages (Figure 2c),

we looked at the expression levels of other typical microglia genes

including slc7a7, sall1a, and csf1rb (Figure 3a, green). Indeed, we

detected these genes with slight differences in their expression levels

at 3, 5, and 7 dpf (not significant FDR > 0.05; Figure 3a, green).

We also observed macrophage lineage genes at the three selected

stages of zebrafish development such as irf8 and spi1b, which have

been shown to be crucial for microglia development (Kierdorf et al.,

2013; Figure 3a, purple). Also, these genes showed slightly higher

expression levels at 3 dpf (not significant FDR > 0.05) and appeared

to be relatively stable at later time points (Figure 3a, purple).

Several of the typical macrophage and microglia marker genes

showed higher expression levels at 3 dpf compared to 5 and/or 7 dpf,

which implies an upregulation of these genes during early microglial

differentiation. Thus, we decided to compare expression levels of

these genes to primitive macrophages, the microglia progenitors in lar-

val zebrafish. To do so, we isolated primitive macrophages at 28 hpf

from transgenic mpeg1:EGFP larvae in which all macrophages are

labeled with eGFP (Ellett et al., 2011). Macrophages were isolated

from entire larvae and purified based on their eGFP expression via

FACS (Figure S4). Additionally, we isolated microglia at 3, 5, and 7 dpf

based on 4C4 expression as described before. qPCR was performed

to compare expression levels of genes of interest. Importantly, we

F IGURE 4 Expression profile of
genes involved in microglial processes
during development. Heatmap
representing normalized transformed
read counts of 87 genes involved in
different microglia processes at 3, 5, and
7 dpf [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 5 Gene Ontology (GO) categories analysis of DE larval zebrafish microglia genes. (a-i) Pie chart representation for significant
enrichment of GO for DE genes from microglia transcriptome comparison between 5 and 3 dpf (FDR < 0.05, fold change > |2|). Only categories
containing at least 10 genes are represented. (a-ii) Heatmap of DE genes belonging to the GO category “immune system process” containing the
highest number of genes (155) from microglia transcriptome comparison between 5 and 3 dpf. (b-i) Pie chart representation for significant
enrichments GO for DE genes from microglia transcriptome comparison between 7 and 3 dpf (FDR < 0.05, fold change > |2|). Only categories
containing at least 10 genes are represented. (b-ii) Heatmap of genes belonging to the GO category “Response to stimulus” containing the highest
number of genes (317) from microglia transcriptome comparisons between 7 and 3 dpf [Color figure can be viewed at wileyonlinelibrary.com]
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detected significantly higher expression levels for microglial genes

such as apoeb, p2ry12, hexb, and csf1ra in microglia at 3 dpf compared

to macrophages at 28 hpf (Figure 3b). irf8, mpeg1.1, and plxnb2a

showed a similar trend while spi1 showed higher expression levels in

macrophages at 28 hpf compared to microglia at 3 dpf (Figure 3b).

These results further support our conclusion that microglia specific

genes are strongly upregulated during the initial steps of microglial

differentiation at 3 dpf. Furthermore, the qPCR results validate the

observed expression changes between 3, 5, and 7 dpf observed in the

RNA sequencing analysis.

After the global analysis of gene expression changes, we specifically

focused on genes that are involved in processes required for invasion

of macrophages into the brain, differentiation into microglia, and micro-

glial functions (Table S2). These genes were selected according to their

classification into the different GO categories (cell proliferation, cell

migration, cell differentiation, immune response, neurogenesis, synaptic

refinement, and vessel patterning) or due to specific roles described in

macrophages/microglia (phagocytosis; Brown & Neher, 2012; Lemke,

2019). Interestingly, while genes involved in proliferation showed a

slight trend toward increased expression from Day 5, we detected the

contrary for genes involved in migration, which showed higher expres-

sion levels at 3 dpf and lower expression levels from 5 dpf (Figure 4).

Genes involved in differentiation showed opposite trends, with csf1rb,

for example, showing highest expression levels at 3 dpf and foxa show-

ing higher expression levels from 5 dpf (Figure 4). Interestingly, genes

involved in immune responses showed different profiles as well. The

family of serpin genes, for example, showed higher expression levels at

3 dpf compared to 5 and 7 dpf, while most other immune genes

showed higher expression levels toward the later developmental stages

(Figure 4). Genes involved in phagocytosis showed relative constant

expression levels throughout development (Figure 4). Furthermore,

microglial genes that have been shown to be involved in synaptic

refinement and vessel patterning showed constant expression levels,

while genes involved in neurogenesis showed higher expression at

3 dpf (Figure 4).

In order to get a full overview on the biological processes that

showed significant changes in different developmental stages, we per-

formed an enrichment analysis with the GO database using Gorilla

(for entire analysis see Tables S3 and S4). Thus, we analyzed the distri-

bution of the 3,097 identified differentially expressed genes between

the three developmental stages (Figure 2, Table S1). Among the signif-

icant categories, “immune system process” was the most represented

between 3 and 5 dpf followed by “metabolic process” and “response

to stimulus” (Figure 5a-i). In contrast, the trend was inverse for 7 dpf

versus 3 dpf and the differentially expressed genes belonging to

“response to stimulus” were largely represented followed by “immune

system process” and “metabolic process” (Figure 5b-i). Furthermore,

new categories appeared at the 7 dpf stage such as “cellular process”,

“regulation of body fluid levels” and “development” (Figure 5b-i). No

category was significantly overrepresented in the comparison of 7 dpf

versus 5 dpf (data not shown).

As the categories, “immune system process” and “response to

stimulus” were the most strongly represented, we analyzed these

categories in more detail. We obtained 173 genes for the “immune

system process” that were differentially expressed between the

three stages of development and we identified 366 genes for the

response to stimulus category (Figure 5a-ii,b-ii). Interestingly, as

described before, the strongest changes in gene expression were

observed between 3 and 5 dpf. Among the genes in the category

“immune system process,” the majority of genes were significantly

upregulated between 3 and 5 dpf (Figure 5a-ii). Among these genes,

we detected intracellular pathogen receptors such as nod2, chemo-

kine receptors such as cxcr3.1 but also irf4a, which is not only

involved in differentiation but also regulates anti-inflammatory

genes in macrophages/microglia (Nam & Lim, 2016). In contrast, we

detected another set of genes that was strongly expressed at 3 dpf

and significantly downregulated from 5 dpf (Figure 5a-ii). These

genes include for example vitronectin (vtna, vtnb), important for

microglia activation and phagocytosis of dead cells (Welser-Alves &

Milner, 2013) as well as genes involved in the complement cascade

such as complement factor B (cfb) and mannan-binding lectin serine

peptidase 2 (masp2; Figure 5a-ii).

Within the “response to stimulus” category, approximately half of

the genes showed higher expression levels at 3 dpf and significant

downregulation from 5 dpf, while the other half of genes were lower

expressed at 3 dpf and increased expression from 5 dpf (Figure 5b-ii).

Interestingly, among the genes with increased expression from 5 dpf,

we detected toll-like-receptor 9 (tlr9), which has been recently impli-

cated in sensing self-DNA from degenerating neurons and the

microglia-mediated attenuation of aberrant neurogenesis (Matsuda

et al., 2015). Levels of matrix metallopeptidase 9 (mmp9) were also

elevated from 5 dpf compared to 3 dpf, which might be in line with the

recently described role for mmp9 in the development of sensory

circuits (Reinhard, Razak, & Ethell, 2015; Figure 5b-ii). Furthermore, we

detected increased levels of basic leucine zipper ATF-like transcription

factor (batf ), which appears to be a microglia-specific transcription fac-

tor that is not expressed in other brain cells (Zhang et al., 2014;

Figure 5b-ii).

In summary, this analysis shows that although several microglia-

specific genes are already strongly expressed at 3 dpf, there is a large

number of gene expression changes between 3 and 5 dpf. This implies

that the differentiation of microglia during zebrafish development

takes place mainly between 3 and 5 dpf, which is in line with morpho-

logical observations showing that from 5 dpf zebrafish microglia start

exhibiting a reduced motility and an increase in ramification (Svahn

et al., 2013). The changes between 5 and 7 dpf seem to be minor,

which is also supported by the close clustering of the 5 and 7 dpf sam-

ples in the PCA (Figure 2a). These changes may represent the final

adaptations to the neural environment.

3.2 | Larval zebrafish microglia show differences in
gene regulation compared to developing mouse
microglia

As we detected groups of differentially regulated genes during devel-

opment of zebrafish microglia, we decided to test if the regulation of
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these genes is evolutionarily conserved. Thus, we compared the iden-

tified DE genes to differentially regulated genes during mouse

microglia development. To this aim, we used the expression data for

mouse microglia from Matcovitch-Natan et al. (2016). The authors

identified 3,059 differently expressed genes that showed dynamic

changes in microglia throughout development by comparing four

stages: (a) Embryonic microglia in the yolk sac and (b) in the brain,

(c) the microglia post birth, and (d) finally the adult microglia. We

accessed the data from Matcovitch-Natan et al. and processed and

normalized their data together with our samples. Then we compared

the expression of larval zebrafish microglia at 3, 5, and 7 dpf to the

different stages of the Matcovitch-Natan et al. study. This comparison

revealed a strong correlation of the larval zebrafish microglia gene

expression and the microglial gene expression during mouse develop-

ment (r ~ .6, Table S5). Additionally, Matcovitch et al performed a clus-

tering analysis and identified seven gene expression clusters

corresponding to the substages of development. Matcovitch-Natan

et al identified seven gene expression clusters corresponding to the

stages of development. These clusters are YS for yolk sac (373 genes),

E for early microglia (including E1 and E2 corresponding to day E10.5

and E14 (1,289 genes), P for premicroglia (including P1 and P2

corresponding day E14 and postnatal Day 9 [P9], 589 genes) and A

for adult microglia (clusters A1 and A2, 4 weeks and onward;

808 genes). Out of the 3,059 mouse genes in total, we identified

2,086 annotated zebrafish orthologs. To test if the same genes show

dynamic regulation in zebrafish and mice during microglial develop-

ment, we compared these genes with the differentially expressed

genes in larval zebrafish microglia at 3, 5, and 7 dpf (Table S6). To do

this, we performed an enrichment analysis between the significant

genes identified in mouse and the genes differentially expressed in

developmental zebrafish microglia (3, 5, and 7 dpf; FDR < 0.05,

Fold Change > |2|). The significance of enrichment was calculated

using a hypergeometric distribution. First, we looked at genes differ-

entially expressed in zebrafish microglia at 3 dpf. We observed signifi-

cant enrichment between the genes differentially expressed in

zebrafish microglia at 3 dpf and those expressed in mouse microglia

in the yolk sac (29 genes in common, fold enrichment = 1.81,

p-value = 1.35 × 10−3, Table S6) as well as in the postnatal stage P2

and the adult stage A1 (27 and 39 genes in common, fold enrich-

ment = 1.72 and 2.08, p values = 9.71 × 10−4 and 1 × 10−5, respec-

tively, Table S6; Figure 6). The comparison to the adult stage A2 was

not significant and revealed a slightly lower number of shared genes

(25 genes, p-value = 6.85 × 10−2, Table S6; Figure 6). Next, we looked

at genes differentially expressed in zebrafish microglia at 5 dpf. The

comparison of differentially expressed genes in zebrafish microglia at

5 dpf and the dynamically regulated mouse microglia genes revealed a

different pattern. Here we observed only a low number of shared

genes with the yolk sac, the postnatal stage P2 and the adult stage A1

microglia (11, 10, and 15 genes in common, p values = .47, .57, and

.24, respectively; Figure 6). However, we observed a significant

enrichment with 27 shared genes between the genes significantly

higher expressed in zebrafish microglia at 5 dpf and those expressed

in the adult A2 microglia in the mouse (Figure 6, fold enrich-

ment = 2.27, p-value = 5.91 × 10−5, Table S6). Finally, we looked at

genes differentially expressed in zebrafish microglia at 7 dpf. The

comparison of zebrafish microglia genes significantly higher expressed

F IGURE 6 Differential gene
expression during microglia
development in the larval
zebrafish shows differences to
microglia development in the
mouse. Venn diagrams showing
unique and intersecting DE genes
from zebrafish microglia
transcriptome at 3 (green),
5 (yellow), and 7 (magenta) dpf
and DE genes from mouse
microglia (blue) in the (Y) yolk sac
(a-i), in the (P2) postnatal stage
2 (a-ii), in the (A1) adult stage
1 (a-iii) and in the (A2) adult stage
2 (a-iv, FDR < 0.05, Fold Change
> |2|). Mouse data obtained from
Matcovitch-Natan et al. (2016).
Significant gene enrichments are
shown in bold (FDR < 0.05)
[Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 7 Larval zebrafish microglia share a significant number of DE genes with adult zebrafish microglia, adult mouse microglia, and human
microglia. (a) Venn diagram showing unique and intersecting DE genes from zebrafish microglia transcriptome at 3 (green), 5 (yellow), and
7 (magenta) dpf versus other brain cells in comparison to DE genes from adult zebrafish (AZ) microglia transcriptome versus other brain cells
(Oosterhof et al., 2016; FDR < 0.05, Fold change >2). Significant gene enrichments are shown in bold (FDR < 0.05). (b) Pie chart representation of
GO categories for higher expressed genes in 7 dpf versus adult zebrafish microglia. (c) Venn diagram showing unique and intersecting DE genes
from zebrafish microglia transcriptome at 3 (green), 5 (yellow), and 7 (magenta) dpf versus other brain cells in comparison to DE genes from adult
mouse (M) microglia transcriptome versus other brain cells (Zhang et al., 2014). Significant gene enrichments are shown in bold (FDR < 0.05).
(d) Pie chart representation of GO categories in 7 dpf zebrafish versus adult mouse microglia. (e) Venn diagram showing unique and intersecting
DE genes from zebrafish microglia transcriptome at 3 (green), 5 (yellow), and 7 (magenta) dpf versus other adult brain cells in comparison to DE
genes from human (H) microglia transcriptome versus other adult brain cells (Galatro et al., 2017). Significant gene enrichments are shown in bold
(FDR < 0.05). (f) Pie chart representation of GO categories for higher expressed genes in 7 dpf zebrafish versus adult human microglia [Color
figure can be viewed at wileyonlinelibrary.com]
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at 7 dpf showed only 13 shared with the yolk sac stage, 10 shared

genes with the postnatal stage P2, but 15 shared genes with the in

adult stage A1 and 24 shared genes with the adult A2 stage in the

mouse (Figure 6, fold enrichment = 2.18, p-value = 2.96 × 10−4,

Table S6). GO term analysis of the shared and different genes

between the 3, 5, and 7dpf zebrafish microglia and the mouse

microglia in the different developmental stages revealed that most

GO terms showed an equal frequency for shared as well as different

genes (Table S7). However, we observed differences for some catego-

ries which were only represented by either the zebrafish specific

genes, the mouse-specific genes or the shared genes (Table S7). For

example, the category response to stress was only represented by

zebrafish specific genes in the comparison 3 dpf to mouse P2 and A2

(Table S7). On the contrary, the categories cellular component assem-

bly and transmembrane transport were only represented by mouse-

specific genes in the comparison 3 dpf to mouse P2 and A2

(Table S7). Interestingly, the category cell proliferation was only repre-

sented by shared genes in the comparison 5 and 7 dpf to mouse A2

microglia (Table S7). Details on the distribution across the different

categories can be found in Table S7 and the list of all shared genes is

presented in Table S6.

In summary, this analysis shows that 3 dpf larval zebrafish

microglia show an enrichment of genes that are also dynamically regu-

lated throughout microglia development in the mouse. In contrast,

5 and 7 dpf larval zebrafish microglia mainly exhibit more similarities

in regulation of gene expression with adult (A2) mouse microglia.

F IGURE 8 Conserved cellular,
immune system, development, and
metabolic process core genes
across species. Venn diagrams
showing unique and intersecting

genes from 7 dpf zebrafish
microglia transcriptome versus
adult zebrafish microglia
transcriptome (green), 7 dpf
zebrafish microglia transcriptome
versus mouse microglia
transcriptome (yellow) and 7 dpf
zebrafish microglia transcriptome
versus human microglia
transcriptome (magenta) belonging
to the GO category “Cellular
process” (a), “Immune system
process” (b), “Metabolic process”
(c), and “Development” (d). The
core genes shared between
zebrafish, mouse, and human for
the different categories are listed.
(e) mRNA expression levels for
parvg and lpcat2 from isolated
macrophages at 28 hpf and
microglia at 3, 5, and 7 dpf
determined by qPCR (n = 3 for
each gene). Fold change was
measured in relation to 3 dpf
microglia using the comparative
(ΔΔCT) method. The means ± SD
of three independent experiments
are plotted [Color figure can be
viewed at wileyonlinelibrary.com]
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3.3 | Larval zebrafish microglia share similarities with
adult zebrafish microglia

In the zebrafish, larval microglia are replaced by a second wave of

hematopoietic stem cell-derived cells, which give rise to the adult

microglia population. To test if the gene expression in larval zebrafish

microglia is comparable to the gene expression in adult zebrafish

microglia, we compared our data set to the previously published adult

zebrafish microglia transcriptome (Oosterhof et al., 2016). We

accessed the original data from Oosterhof et al. and processed their

data together with our 3, 5, and 7 dpf microglia samples. To compare

the gene expression globally, we estimated the correlation between

adult zebrafish microglia and larval 3, 5, and 7 dpf microglia. This anal-

ysis revealed a high correlation for all time points (r = .79 for 3 and

5 dpf, r = .82 for 7 dpf, Table S5). Thus, we decided to directly com-

pare the gene expression between adult microglia and the different

developmental time points. To do this, we first compared the gene

expression of microglia at 3, 5, and 7 dpf with the gene expression of

other brain cells (from Oosterhof et al., 2016) and identified genes

that are differentially expressed in larval microglia (FDR < 0.05, fold

change >2). This analysis revealed differential expression for 2,606

genes at 3 dpf, 2,645 genes at 5 dpf, and 2,778 genes at 7 dpf in larval

microglia and a clear separation of microglia-specific genes from other

brain cells as confirmed by PCA plot (Figure S5, Table S8). We then

compared these genes to the differentially expressed genes in adult

zebrafish microglia (2,589 genes) and a hypergeometric distribution

was used to compute the significance of enrichment.

Indeed, we detected significant enrichments for the three stages

of development and the adult zebrafish microglia. The strongest

enrichment was detected for the 7 dpf stage with 702 shared genes

with adult microglia, reflecting an enrichment of 2.12-fold (p-

value = 2.71 × 10−99; Figure 7a, Table S9). This was followed by the

3 dpf stage with 655 shared genes with adult microglia, representing a

2.11-fold enrichment (p-value = 1.74 × 10−90) and finally 5 dpf with

565 shared genes with adult microglia, showing a 1.8-fold enrichment

(p-value = 4.2 × 10−50; Figure 7a, Table S9).

In summary, these results show that larval microglia share a signifi-

cant number of expressed genes with adult microglia and the 7 dpf

microglia are closest to their adult counterparts.

GO category analysis of the genes shared between 7 dpf microglia

and adult microglia revealed that the most represented categories

were “cellular process,” “metabolic process,” “development,” and

“immune system process” (Figure 7b), highlighting the importance of

these processes in the acquisition of microglia identity. However, this

analysis also highlights the differences between larval microglia and

adult microglia. Based on the comparison of 7 dpf microglia and adult

microglia, we identified 1,886 DE genes that are specific for adult

zebrafish microglia and 2,076 DE genes that are only expressed in

larval 7 dpf microglia. Interestingly, GO category analysis of the genes

specific for adult and larval microglia revealed similar GO terms in the

top 10 of the most represented categories. These categories were

“cellular nitrogen compound metabolic process,” “anatomical structure

development,” “biosynthetic process,” “signal transduction,” “cellular

protein modification process,” “cell differentiation,” “transport,” and

“response to stress” (Table S7). This suggests that these processes are

in part fulfilled by genes that are specific for either larval or adult

microglia. Thus, these cellular processes might be different in larval

and adult zebrafish microglia. These putative disparities might be due

to the differences in ontogeny of larval and adult zebrafish microglia

or reflect adaptations to larval and adult brains.

3.4 | Gene expression in larval zebrafish microglia
shows similarities to adult mouse microglia

As we detected similarities between larval zebrafish microglia and

adult zebrafish microglia, we decided to test to what extent the gene

expression profile of larval zebrafish microglia was comparable to

adult mouse microglia. To address this question, we first performed a

gene expression correlation analysis between larval zebrafish 3, 5, and

7 dpf microglia and the microglia-specific genes from the mouse iden-

tified by Zhang et al. (2014). Then, we compared the genes that we

identified to be differentially expressed in zebrafish microglia at 3, 5,

and 7 dpf (compared to other brain cells; Table S8) with the genes dif-

ferentially expressed in adult mouse microglia (Zhang et al., 2014).

The correlation analysis revealed a strong correlation between the

larval zebrafish microglia gene expression and the adult mouse

microglia gene expression with the 7 dpf zebrafish microglia showing

the highest correlation (r = .57, Table S5). Out of 500 differentially

expressed genes in mouse microglia, we found 242 annotated

zebrafish orthologs. Interestingly, 85 of these orthologs were

detected among the differentially expressed genes in 3 dpf zebrafish

microglia (3.18-fold enrichment, p-value = 1.25 × 10−23), 90 were

detected in the differentially expressed genes in 5 dpf zebrafish

microglia (3.5-fold enrichment, p-value = 2.32 × 10−28) and 104 were

found in the differentially expressed genes in 7 dpf microglia

(4.08-fold enrichment, p-value = 1.38 × 10−39; Figure 7c, Table S10).

We then analyzed GO categories for the 104 genes shared between

7 dpf zebrafish microglia and mouse microglia. Interestingly, the most

represented categories were again “cellular process,” “metabolic

process,” “immune system process,” and “development” (Figure 7d),

which were previously detected when comparing 7 dpf zebrafish

microglia to adult zebrafish microglia.

In conclusion, out of the 242 annotated zebrafish orthologs of

adult mouse microglial genes we detect up to 43% in larval zebrafish

microglia (7 dpf) and a strong overall correlation (r = .57). This is

almost the same degree of conservation to mouse microglia as previ-

ously shown for adult zebrafish microglia (45% genes in common with

mouse microglia; Oosterhof et al., 2016).

3.5 | Larval zebrafish microglia share a significant
number of genes with human microglia

In order to compare the gene expression profiles of zebrafish larval

microglia and adult human microglia, we used the expression data of

human microglia from Galatro et al. (2017). First, we performed a cor-

relation analysis of the global gene expression between zebrafish 3, 5,
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and 7 dpf microglia and human microglia. This revealed a strong over-

all correlation with zebrafish 7 dpf microglia showing the highest cor-

relation to the human microglia (r = .69, Table S5). Then, we compared

the genes that we have identified to be differentially expressed in

zebrafish microglia at 3, 5, and 7 dpf (compared to other brain cells,

Table S7) to the 1,297 differentially expressed genes found in human

microglia (Galatro et al., 2017). Out of the 1,297 DE genes in human

microglia, we identified 574 annotated zebrafish orthologs. Interest-

ingly, we observed enrichments between the genes expressed at 3, 5,

and 7 dpf in zebrafish microglia and those expressed in human

microglia (Figure 7e). We observed 211 shared genes between the

genes expressed in zebrafish microglia at 3 dpf and those expressed in

human microglia (2.67-fold enrichment, p-value = 3.81 × 10−46),

209 shared genes between the genes expressed in zebrafish microglia

at 5 dpf and those expressed in human microglia (2.77-fold enrich-

ment, p-value = 3.19 × 10−48) and finally 248 shared genes for

zebrafish microglia at 7 dpf and human microglia (3.24-fold enrich-

ment, p-value = 5.96 × 10−74) (Figure 7e, Table S11). Importantly,

among shared genes between larval microglia and human microglia

we detected several of the typical microglia genes including irf8, spi1,

csf1ra, csf1rb, mpeg1.1, slc7a7, p2ry12, and p2ry13. Finally, to get a

broader understanding of the biological processes that appear to be

conserved between zebrafish larval 7 dpf microglia and human

microglia, we performed an enrichment analysis with the GO database

using Gorilla. This comparison revealed that among the significant cat-

egories the groups with the largest numbers of genes were again “cel-

lular process,” “metabolic process,” “immune system process,” and

“development” (Figure 7f).

As these categories were also detected for the shared genes

between larval 7 dpf microglia and adult zebrafish microglia and adult

mouse microglia, respectively, we took a closer look at the genes

within these categories. Thus, we compared the genes identified in

the single comparisons and searched for genes that were shared

among all. This comparison revealed a number of core genes for the

different processes that are conserved across species. For the cate-

gory “cellular process,” we identified 36 conserved genes, for “immune

system” 18 genes, for the “metabolic process” 21 genes, and for

development 11 genes (Figure 8). Among these genes, we detected

some microglia specific genes such as p2ry12 but also general macro-

phage genes such as irf8 or il1b. As several of these genes have not

been described in zebrafish microglia before, we decided to test if

they were specific for microglia or expressed in macrophages as well.

We selected parvg and lpcat2 for qPCR comparison to 28 hpf primi-

tive macrophages. Interestingly, parvg showed significantly higher

expression levels in 28 hpf macrophages compared to microglia at

3 and 5 dpf, while lpcat2 showed significantly higher expression

levels in 28 hpf macrophages compared to microglia at 5 and 7 dpf

(Figure 8e). Thus, these genes appear to be macrophage lineage

genes rather than microglia specific in zebrafish.

In summary, the comparison to the human microglia transcriptome

reveals a significant degree of conservation between larval zebrafish

microglia and adult human microglia. Furthermore, a certain number

of genes involved in a variety of processes appear to be evolutionarily

conserved across species.

4 | DISCUSSION

Larval zebrafish is a popular model to address the functions of innate

immune cells in vivo. Over the past decade, a variety of transgenic

lines has been established that allow the observation of neutrophils,

macrophages, and microglia in the living larva. However, to gain an

in-depth understanding of their functions, there is a clear need to

analyze their gene expression profiles. Here, we provide the first gene

expression profiles of zebrafish microglia during larval development

(3, 5, and 7 dpf). Importantly, our analysis showed that a large number

of typical microglia genes is expressed in larval microglia. These genes

include apoeb, p2ry12, p2ry13, hexb, csf1ra, csf1rb, mpeg1.1, mafb,

slc7a7, and sall1a. Interestingly, while csf1rb, slc7a7, and sall1a

showed relatively constant expression throughout development, other

genes including apoeb, p2ry12, hexb, csf1ra, and mpeg1.1 were more

highly expressed at 3 dpf compared to 5 and 7 dpf. One explanation

for this might be the fact that in zebrafish, primitive macrophages

invade the larval CNS and undergo a rapid differentiation into

microglia within 24 hr in zebrafish (Herbomel et al., 2001). This is

supported by our qPCR analysis which shows rather low levels of

expression for apoeb, p2ry12, hexb, and csf1ra in 28 hpf macrophages

and a significant upregulation in 3 dpf microglia. Thus, expression of a

subset of genes needed for the differentiation might be strongly

upregulated during this period and normalized at later stages. The

most significant changes in gene expression occurred between 3 and

5 dpf. GO analysis showed that significantly enriched terms were

“immune system process,” “metabolic process,” “response to stimulus”

but also “localization”. These changes probably reflect the full differ-

entiation into microglia between 3 and 5 dpf. This is line with previous

morphological observations describing the transition into the fully

ramified microglial phenotype by 5 dpf in zebrafish larvae (Svahn

et al., 2013). An interesting observation was the high expression of

serpin family genes at 3 dpf of larval development. Serpin genes have

been shown to be activated in microglia to counteract the toxic

effects of thrombin upon breakdown of the blood-brain barrier

(Bedoui, Neal, & Gasque, 2018). We speculate that high levels of

serpin genes might not be needed after 3 dpf, as the blood-brain

barrier is maturing at this developmental stage in zebrafish (Jeong

et al., 2008).

Recent studies showed that larval microglia in zebrafish are rep-

laced by a second wave of definitive microglia that persist throughout

adulthood and are derived from cmyb-dependent hematopoietic stem

cells (Ferrero et al., 2018). Thus, to compare larval microglia and adult

microglia, we compared our data set to the previously published adult

zebrafish microglia transcriptome (Oosterhof et al., 2016). This compari-

son revealed a large number of shared genes expressed in larval and in

adult zebrafish microglia (3 dpf: 655 genes, 5 dpf: 556 genes, 7 dpf:

702 genes). Importantly, among these genes, we detected many of the

core microglia genes including apoeb, p2ry12, hexb, csf1ra, csf1rb,
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mpeg1.1, slc7a7, irf8, and spi1. GO analysis revealed that the common

genes were mainly represented in the “cellular process,” “metabolic

process,” “development,” and “immune system process” categories. The

comparison of larval zebrafish microglia and adult zebrafish microglia

also revealed a large number of genes that were specific for either lar-

val or adult microglia. These differences may reflect adaptations to the

larval and adult CNS or they might be inherited due to the different ori-

gins of larval and adult microglia. As Matcovitch-Natan et al. (2016)

detected significant differences in gene expression between embryonic

and adult microglia in mice as well, it is tempting to speculate that the

adaptation to the different brain environment might be the underlying

cause. Future transplantation studies of microglia into larval or adult

brains followed by gene expression analysis might be a way to address

this question in more detail.

In order to understand the degree of conservation between larval

zebrafish microglia and mammalian microglia, we compared the gene

expression profile of larval zebrafish microglia with previously publi-

shed gene expression data sets from mouse and human microglia.

Importantly, the global comparison of the gene expression in larval

zebrafish microglia to the gene expression in mouse and human

microglia showed a strong correlation. Furthermore, we find a signifi-

cant enrichment of genes that are shared between larval zebrafish

microglia and adult mouse or human microglia. This analysis revealed

that the microglia core signature is conserved between larval zebrafish

microglia and mouse and human microglia. Furthermore, GO category

analysis showed that the shared genes are mainly representing “cellu-

lar process,” “development,” “metabolic process,” and “immune system

process,” highlighting the importance of these processes in defining

the identity of microglial cells. Further analysis revealed a number of

core genes within these processes that were shared between the spe-

cies, suggesting a conserved role for these genes in microglia biology.

Recent single-cell RNA sequencing studies of rodent and human

microglia revealed specific time- and region-dependent subtypes of

microglia (Hammond et al., 2019; Jordão et al., 2019; Li et al., 2019;

Masuda et al., 2019). Future studies will have to reveal if similar sub-

types also exist during zebrafish development.

It should be noted that the comparison of microglia gene expres-

sion profiles among different species as presented here has its limita-

tions. The different data sets were produced using slightly different

methods to isolate microglia, perform RNA sequencing, and data anal-

ysis. This might impact on the number of differentially expressed

genes identified in microglia and should be taken into consideration.

In conclusion, our results show that larval zebrafish microglia

mature rapidly and express the core microglia signature, which is con-

served across species. The combination of our newly acquired gene

expression data and existing transgenic lines to specifically label

microglia further strengthens the larval zebrafish model. Similarities in

gene expression between larval zebrafish microglia and mammalian

microglia will help to explore the function of these genes in more

detail. The recent advances in CRISPR technology combined with

high-resolution live imaging facilitate mechanistic in vivo studies in

the larval zebrafish model. This will not only allow studying microglia

in physiology but also in the various disease contexts.
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