

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Transcriptional response of ovine lung to infection with jaagsiekte sheep retrovirus

Citation for published version:

Karagianni, Á, Vasoya, D, Finlayson, J, Martineau, H, Wood, AR, Cousens, C, Dalgleish, MP, Watson, M & Griffiths, DJ 2019, 'Transcriptional response of ovine lung to infection with jaagsiekte sheep retrovirus', *Journal of Virology*. https://doi.org/10.1128/JVI.00876-19

Digital Object Identifier (DOI):

10.1128/JVI.00876-19

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Publisher's PDF, also known as Version of record

Published In: Journal of Virology

Publisher Rights Statement:

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	
2	Transcriptional response of ovine lung to infection with jaagsiekte sheep retrovirus
3	
4	Anna Eleonora Karagianni ^{a,*} , Deepali Vasoya ^b , Jeanie Finlayson ^a , Henny M. Martineau ^{a,‡} ,
5	Ann R. Wood ^a , Chris Cousens ^a , Mark P. Dagleish ^a , Mick Watson ^b , David J. Griffiths ^{a#}
6	
7	^a Moredun Research Institute, Edinburgh, UK;
8	^b Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
9	
10	
11	# Address correspondence to David J. Griffiths (david.griffiths@moredun.ac.uk)
12	
13	Running title: RNA-Seq of ovine pulmonary adenocarcinoma
14	Keywords: JSRV, jaagsiekte, RNA-Seq, lung adenocarcinoma, sheep, cancer
15	
16	
17	* Present address: Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush,
18	Midlothian, UK
19	[‡] Present address: Royal Veterinary College, Hertfordshire, UK
20	
21	

22 Word counts: Abstract (225) Main text (5013) Materials and methods (1147)

 $\overline{\leq}$

 $\overline{\leq}$

23 Abstract

24	Jaagsiekte sheep retrovirus (JSRV) is the etiologic agent of ovine pulmonary adenocarcinoma
25	(OPA), a neoplastic lung disease of sheep. OPA is an important economic and welfare issue for
26	sheep farmers and a valuable naturally-occurring animal model for human lung adenocarcinoma.
27	Here, we used RNA sequencing to study the transcriptional response of ovine lung tissue to
28	infection by JSRV. We identified 1,971 ovine genes differentially-expressed in JSRV-infected
29	lung compared to non-infected lung, including many genes with roles in carcinogenesis and
30	immunomodulation. The differential expression of selected genes was confirmed using
31	immunohistochemistry and RT-qPCR. A key finding was the activation of anterior-gradient-2,
32	yes-associated protein-1 and amphiregulin in OPA tumor cells, indicating a role for this
33	oncogenic pathway in OPA. In addition, there was differential expression of genes related to
34	innate immunity including genes encoding cytokines, chemokines and complement system
35	proteins. In contrast, there was little evidence for upregulation of genes involved in T-cell
36	immunity. Many genes related to macrophage function were also differentially expressed,
37	reflecting the increased abundance of these cells in OPA-affected lung tissue. Comparison of the
38	genes differentially regulated in OPA with transcriptional changes occurring in human lung
39	cancer revealed important similarities and differences between OPA and human lung
40	adenocarcinoma. This study provides valuable new information on the pathogenesis of OPA and
41	strengthens the use of this naturally occurring animal model for human lung adenocarcinoma.

42

Accepted Manuscript Posted Online

43 Importance

44	Ovine pulmonary adenocarcinoma is a chronic respiratory disease of sheep caused by jaagsiekte
45	sheep retrovirus (JSRV). OPA is a significant economic problem for sheep farmers in many
46	countries and is a valuable animal model for some forms of human lung cancer. Here, we
47	examined changes in host gene expression that occur in the lung in response to JSRV infection.
48	We identified a large number of genes with altered expression in infected lung, including factors
49	with roles in cancer and immune system function. We also compared the data from OPA to
50	previously published data from human lung adenocarcinoma and found a large degree of overlap
51	in the genes that were dysregulated. The results of this study provide exciting new avenues for
52	future studies of OPA and may have comparative relevance for understanding human lung
53	cancer.
54	
54 55	Introduction
54 55 56	Introduction Ovine pulmonary adenocarcinoma (OPA) is an infectious lung disease of sheep that is a
54 55 56 57	Introduction Ovine pulmonary adenocarcinoma (OPA) is an infectious lung disease of sheep that is a significant economic problem and welfare concern for sheep producers in many countries (1, 2).
54 55 56 57 58	Introduction Ovine pulmonary adenocarcinoma (OPA) is an infectious lung disease of sheep that is a significant economic problem and welfare concern for sheep producers in many countries (1, 2). The main clinical features of OPA are loss of condition and respiratory distress and in many
54 55 56 57 58 59	Introduction Ovine pulmonary adenocarcinoma (OPA) is an infectious lung disease of sheep that is a significant economic problem and welfare concern for sheep producers in many countries (1, 2). The main clinical features of OPA are loss of condition and respiratory distress and in many advanced cases there is an accumulation of fluid in the lungs that drains from the sheep's nostrils
54 55 56 57 58 59 60	Introduction Ovine pulmonary adenocarcinoma (OPA) is an infectious lung disease of sheep that is a significant economic problem and welfare concern for sheep producers in many countries (1, 2). The main clinical features of OPA are loss of condition and respiratory distress and in many advanced cases there is an accumulation of fluid in the lungs that drains from the sheep's nostrils when its head is lowered (3). Lung function is often further compromised by the presence of
54 55 57 58 59 60 61	Introduction Ovine pulmonary adenocarcinoma (OPA) is an infectious lung disease of sheep that is a significant economic problem and welfare concern for sheep producers in many countries (1, 2). The main clinical features of OPA are loss of condition and respiratory distress and in many advanced cases there is an accumulation of fluid in the lungs that drains from the sheep's nostrils when its head is lowered (3). Lung function is often further compromised by the presence of bacterial or parasitic co-infection (1). By the time clinical signs become apparent, tumor growth
54 55 57 58 59 60 61 62	Introduction Ovine pulmonary adenocarcinoma (OPA) is an infectious lung disease of sheep that is a significant economic problem and welfare concern for sheep producers in many countries (1, 2). The main clinical features of OPA are loss of condition and respiratory distress and in many advanced cases there is an accumulation of fluid in the lungs that drains from the sheep's nostrils when its head is lowered (3). Lung function is often further compromised by the presence of bacterial or parasitic co-infection (1). By the time clinical signs become apparent, tumor growth is typically extensive and the disease is invariably fatal.

64 OPA is caused by jaagsiekte sheep retrovirus (JSRV), an exogenous betaretrovirus (4). Despite
65 its etiological role in OPA, infected sheep produce only a limited adaptive immune response to

66 JSRV antigens and this has precluded the development of an effective preclinical serological 67 diagnostic test or vaccine to control the spread of disease (2). The mechanism underlying the poor immune responsiveness of sheep to JSRV is not completely understood. It appears likely 68 that it is largely due to immunological tolerance elicited by the developmental expression of 69 closely related endogenous JSRV (enJSRV) proteins in the ovine fetal thymus (5, 6). However, 70 71 local immunomodulatory mechanisms are also proposed to contribute (7).

JSRV has a specific tropism for differentiated epithelial cells of the distal lung and OPA tumor 73 cells predominantly express markers of type II alveolar epithelial cells (AEC2) (8-10). An 74 75 unusual feature of JSRV is that the Env glycoprotein functions as a viral oncoprotein to drive neoplastic transformation in vitro (11, 12) and in vivo (13-16). JSRV Env expression activates a 76 number of signaling pathways that control cellular proliferation, including PI3K-Akt and MEK-77 78 ERK1/2 (17, 18). Several cellular factors that bind Env have been identified and are proposed to 79 be involved in transformation (19-21) but further work is necessary to provide a complete model 80 for Env-mediated tumorigenesis and to explain how this leads to the unique clinical presentation of OPA. 81

82

72

In addition to its veterinary importance, OPA represents a valuable animal model for some forms 83 84 of human lung cancer due to similarities in histological appearance and the activation of common oncogenic signaling pathways (22-25). In its early stages; such as in subclinical natural disease 85 86 and in experimentally-infected lambs, OPA resembles a minimally invasive adenocarcinoma with a predominantly lepidic growth pattern (22, 24). In advanced natural disease, OPA is more 87 88 closely similar to adenocarcinoma with papillary or acinar predominant growth with or without

89	mucinous features (22, 25). The similarity of OPA to human lung adenocarcinoma suggests that
90	this naturally occurring sheep tumor could be valuable for understanding lung carcinogenesis,
91	particularly at the early stages of disease, which are difficult to diagnose and study in humans.
92	
93	In order to examine the pathogenesis of OPA, we determined changes in host gene expression in
94	the lungs of lambs following experimental infection with JSRV. Many genes were identified to
95	have altered expression and we confirmed the upregulation of some of these using
96	immunohistochemistry and RT-qPCR. We also compared the differential gene expression of
97	OPA-affected animals with previously published data on the two most common types of non-
98	small-cell lung carcinoma (NSCLC) in humans; lung adenocarcinoma (LUAD) and lung
99	squamous cell carcinoma (LUSC). Collectively, this study provides new information that greatly
100	enhances our understanding of the host response to JSRV and provides a number of exciting new
101	avenues for future work on OPA.
102	
103	RESULTS
104	
105	JSRV-induced gene expression in sheep lung tissue.
106	Whole transcriptome profiling (RNA-Seq) was performed on lung samples derived from JSRV
107	infected (n=4) and mock-infected (n=4) specific pathogen-free (SPF) lambs. The samples used
108	were obtained from a previous study (9) in which 6-day old lambs were infected with JSRV by
109	intratracheal injection and euthanized when signs of respiratory distress appeared (66 - 85 days
110	post-inoculation). Mock-infected lung tissue came from age and sex-matched control lambs that

111 had been inoculated with cell culture medium (9). OPA tumor lesions were observed in

 \leq

hematoxylin and eosin-stained lung tissue sections from infected lambs and confirmed with
immunohistochemistry (IHC) for JSRV Env (SU) protein. Such lesions were not present in lung
tissue from mock-infected lambs (9). Infected tissues contained many tumor foci distributed
throughout the lung that otherwise appeared histologically normal, a pattern typical of
experimentally-induced OPA (22). Samples for RNA-Seq were generated by pooling tissue
from 7 distinct sites of each lung. In order to capture specimens that were representative of the
whole tissue the samples analyzed were not specifically enriched for tumor cells.
RNA-Seq generated over 60 million reads per sample, of which approximately 80% mapped
uniquely onto the ovine and JSRV genomes (Table 1). A total of 15,149 sheep genes were
identified and reads were quantified to identify those that were differentially expressed between
mock-infected and JSRV-infected samples. Principal component analysis of the normalized
counts of sheep genes clearly separated the mock-infected and the JSRV-infected groups (Fig.
1A). JSRV infection produced a radical change in sheep gene expression with 1,971
differentially expressed transcripts identified between the two groups (Fig. 1B) (1237
upregulated and 734 downregulated). We defined differentially expressed genes as those
showing up or down regulation following JSRV infection with a false discovery rate (FDR)
below 0.05, regardless of the observed fold-change. The complete lists of mapped genes and
differentially expressed genes are presented in Supplementary Dataset S1. Hierarchical
clustering of all differentially expressed genes is shown in Fig. 1C. Fig. 1D summarizes the 25
most significantly upregulated and downregulated genes.

134

135

136 overall expression pattern (Fig 1A, 1C). Of the four infected lambs, this animal had the lowest percentage of reads mapping to JSRV in the RNA-Seq data (Table 1) and therefore likely had the 137 138 smallest proportion of tumor-affected tissue and the largest contribution from 'healthy' 139 uninfected tissue. Nevertheless, hierarchical clustering grouped this animal with the other 140 infected lambs (Fig. 1C, D) and so it was included in subsequent analyses. 141 142 Functional analysis of RNA-Seq data. 143 KEGG pathway enrichment analysis of the upregulated and downregulated genes was performed 144 using the DAVID annotation software (<u>https://david.ncifcrf.gov/</u>(26)) (Supplementary Dataset 145 S2). Upregulated pathways in the OPA-affected lung included genes involved in metabolic 146 pathways, epithelial cell differentiation, cell cycle and wound healing. Pathways involved in 147 immune response and inflammation were down-regulated. Ingenuity Pathway Analysis (IPA) 148 (27) was also used to functionally analyze the list of differentially expressed genes. The main 149 'Diseases and Biofunctions' related to the differentially expressed genes are shown in Fig. 2. As 150 with DAVID analysis, cancer related functions, such as cell proliferation and tissue 151 development, were identified as highly enriched whereas those related to immune response and 152 inflammation were less strongly represented. These results revealed key signaling networks in cancer, including neovascularization, cell viability and tumor growth, to be activated in JSRV-153 154 infected tissue compared to mock-infected tissue (Fig. 3). Based on these analyses, we used IHC 155 to validate selected upregulated markers, focusing in particular on pathways of relevance to OPA 156 pathogenesis, as discussed below.

Although the RNA-Seq analysis revealed clear differences in gene expression between the

infected and control groups, one infected lamb (Infected_F_85days) showed an intermediate

2

158 Cancer-related gene expression in OPA-affected lung tissue.

- 159 Many of the most significantly upregulated genes in OPA have previously been associated with
- 160 important aspects of tumorigenesis in mice and humans. These include functions such as cell
- 161 proliferation and differentiation (CLDN2, CTSL, PROM2, AGR2, EPHA7, SOX9, KRT18),
- angiogenesis (MMP9, CCLA2, EPHB2, CXCL8), metastasis (CCLA2, EPHB2, AGR2, HS6ST2,
- 163 *MUC1*) and signal transduction, including EGF family members (*AREG*, *EREG*, *NRG2*) and Wnt
- signaling components (e.g., WNT10B, PPARG, KRT18, LEF1, AXIN2, FZD3, FZD5, ROR1,
- 165 *CTNNB1* and *CDH1*). In addition, factors previously identified as specific markers of lung
- adenocarcinoma were upregulated, including *PROM2*, *CLDN3* and *TJP3*, as were genes
- 167 proposed to have potential diagnostic or prognostic value in human cancers, including MMP9,
- 168 AGR2, SULF1, NHSL1, LGR5, MUC1 and PIK3C2G.
- 169
- 170 Although several factors related to angiogenesis were found to be upregulated using RNA-Seq, a
- 171 previous study reported that vascular endothelial growth factor (VEGF) signaling was
- downregulated in OPA (28). The RNA-Seq data is consistent with that study, finding reduced
- 173 expression of VEGFD, VEGFA and VEGFR2 (*KDR*) in JSRV-infected lambs, although only
- 174 VEGFD passed our cut-off for statistical significance. The upregulation of MMP9 in OPA-
- 175 affected lung tissue found by RNA-Seq is also in agreement with the previous study (28).
- 176
- 177 The upregulation of AGR2 (anterior gradient-2) was of particular interest as this protein has been
- shown to promote oncogenesis in adenocarcinomas of several tissues, including the lung (29).
- 179 To analyze the expression of AGR2 in OPA, IHC was performed on lung tissue sections from

 \sum

180

181	epithelial cells of mock-infected lung labeled strongly for AGR2 but there was no labeling of
182	cells in the alveolar compartment (Fig. 4A, D). In contrast, in JSRV-infected lung, there were
183	many regions of strong AGR2 labeling and these correlated closely with areas of JSRV-Env
184	labeling in serial adjacent sections (Fig. 4B, C, E, F). This was evident even on relatively small
185	tumor foci suggesting that AGR2 is activated early following JSRV infection.
186	Immunofluorescent labeling confirmed the co-expression of JSRV Env and AGR2 in infected
187	lung tissue, although not every infected cell cluster labeled positively for AGR2 (Fig. 4G-J).
188	AGR2 has been shown to stimulate the expression of the EGFR ligand amphiregulin (AREG) in
189	adenocarcinoma cells (30). AREG was also upregulated in OPA and, as for AGR2, IHC
190	demonstrated positive labeling for AREG in OPA tumor cells from both natural and
191	experimentally-induced disease (Fig. 4K-M).
192	
192 193	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear
192 193 194	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is
192 193 194 195	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is involved in OPA. YAP1 was not found to be differentially expressed by RNA-Seq but to
192 193 194 195 196	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is involved in OPA. YAP1 was not found to be differentially expressed by RNA-Seq but to examine this question further, IHC was performed on tissue sections of mock-infected and OPA-
192 193 194 195 196 197	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is involved in OPA. YAP1 was not found to be differentially expressed by RNA-Seq but to examine this question further, IHC was performed on tissue sections of mock-infected and OPA- affected lung using antibodies to the phosphorylated form of YAP1 and to total YAP1 (Fig. 5).
192 193 194 195 196 197 198	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is involved in OPA. YAP1 was not found to be differentially expressed by RNA-Seq but to examine this question further, IHC was performed on tissue sections of mock-infected and OPA- affected lung using antibodies to the phosphorylated form of YAP1 and to total YAP1 (Fig. 5). IHC detected both the phosphorylated and unphosphorylated forms of YAP1 in the bronchiolar
192 193 194 195 196 197 198 199	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is involved in OPA. YAP1 was not found to be differentially expressed by RNA-Seq but to examine this question further, IHC was performed on tissue sections of mock-infected and OPA- affected lung using antibodies to the phosphorylated form of YAP1 and to total YAP1 (Fig. 5). IHC detected both the phosphorylated and unphosphorylated forms of YAP1 in the bronchiolar epithelium and in the alveolar compartment of mock-infected lung (Fig. 5A, D). As expected,
192 193 194 195 196 197 198 199 200	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is involved in OPA. YAP1 was not found to be differentially expressed by RNA-Seq but to examine this question further, IHC was performed on tissue sections of mock-infected and OPA- affected lung using antibodies to the phosphorylated form of YAP1 and to total YAP1 (Fig. 5). IHC detected both the phosphorylated and unphosphorylated forms of YAP1 in the bronchiolar epithelium and in the alveolar compartment of mock-infected lung (Fig. 5A, D). As expected, the phosphorylated (inactive) form was predominantly detected in the cytoplasm, whereas an
192 193 194 195 196 197 198 199 200 201	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is involved in OPA. YAP1 was not found to be differentially expressed by RNA-Seq but to examine this question further, IHC was performed on tissue sections of mock-infected and OPA- affected lung using antibodies to the phosphorylated form of YAP1 and to total YAP1 (Fig. 5). IHC detected both the phosphorylated and unphosphorylated forms of YAP1 in the bronchiolar epithelium and in the alveolar compartment of mock-infected lung (Fig. 5A, D). As expected, the phosphorylated (inactive) form was predominantly detected in the cytoplasm, whereas an antibody to total YAP1 (which detects active and inactive forms) exhibited prominent nuclear
192 193 194 195 196 197 198 199 200 201 201	The activation of AREG by AGR2 is mediated by Yes-associated protein (YAP1), a nuclear effector of the Hippo signaling pathway (30), which led us to ask whether Hippo signaling is involved in OPA. YAP1 was not found to be differentially expressed by RNA-Seq but to examine this question further, IHC was performed on tissue sections of mock-infected and OPA- affected lung using antibodies to the phosphorylated form of YAP1 and to total YAP1 (Fig. 5). IHC detected both the phosphorylated and unphosphorylated forms of YAP1 in the bronchiolar epithelium and in the alveolar compartment of mock-infected lung (Fig. 5A, D). As expected, the phosphorylated (inactive) form was predominantly detected in the cytoplasm, whereas an antibody to total YAP1 (which detects active and inactive forms) exhibited prominent nuclear labeling that was more intense than labeling of the cytoplasm. Tumor cells in experimental OPA

natural and experimental OPA and mock-infected lambs. The cytoplasm of bronchiolar

 \leq

203	had strong nuclear labeling for total YAP1 (Fig. 5B) but this appeared less intense in natural
204	OPA (Fig. 5C). IHC for regulators of the Hippo pathway, MST1/2 and LATS1/2, found these
205	proteins were readily detectable in AEC2s in healthy sheep lung (Fig. 5G, J), as previously
206	reported in mouse lung (31). OPA tumor cells also labeled strongly for both markers (Fig. 5H, I,
207	K, L). Interestingly, the distribution of labeling for LATS1/2 differed between experimentally-
208	induced tumors and natural cases of OPA, being predominantly cytoplasmic in experimental
209	disease and predominantly nuclear in natural disease. While a complete analysis of the
210	activation state of the Hippo pathway is outside the scope of this study, these data indicate that
211	the AGR2-YAP1-AREG axis is active in OPA and may contribute to oncogenesis in this disease.
212	
213	Immune response to JSRV infection and oncogenesis.
214	The RNA-Seq analysis identified altered expression of many genes related to immune responses
215	including various cytokines and chemokines (e.g., CSF2, CCL2, CXCL6, CXCL8, CXCL14,
216	IL1A, IL6, TGFB3 and TNFSF18 were upregulated and CSF1, CCL4, CCL18, CCL26, CXCL12,
217	IL15 and TNF were downregulated), along with several members of the complement pathway
218	(C3, C5, C6, C7, MBL1 (ENSOARG00000010165), CFI, CD46, PTX3, C4BPA, C4BPB
219	upregulated and C1QA and C1QB downregulated), confirming a substantial host response to
220	infection and tumor growth. Selected cytokines were also evaluated by RT-qPCR in
221	experimentally-induced and natural OPA and this confirmed their differential expression (Fig.
222	6). Interestingly, the expression data does not support strong induction of type I interferon
223	responses in JSRV-infected lung. Although IFNA was not identified using RNA-Seq, RT-qPCR
224	analysis found it to be downregulated in natural OPA (Fig. 6). Expression of IFNB1 was not
225	significantly changed in JSRV-infected tissue. Furthermore, when considering a recently

described panel of 90 highly conserved mammalian type-1 interferon-stimulated genes (32), onlyone (IRF7) was significantly upregulated in our data.

228

IFNG expression was not significantly upregulated in cases of experimental OPA suggesting 229 230 little or no activation of cellular Th1 responses in early disease. However, RT-qPCR found that 231 IFNG was increased in tissue from cases of advanced natural OPA (Fig. 6B), consistent with a 232 previous report of IFNG-positive macrophages in natural OPA (7). Markers of T-lymphocytes were either not significantly changed (CD3 (gamma, delta and epsilon chains) and CD4) or 233 234 downregulated (CD8, alpha and beta chains). Interestingly, expression of FOXP3 and CD44, both markers of regulatory T-cells (Tregs), was significantly increased in OPA. Tregs negatively 235 236 regulate T-cell immune responses through a number of mechanisms and have been shown to 237 reduce the ability of CD8 T-cells to produce TNF (33). Consistent with this, TNF expression 238 was downregulated in experimentally and naturally-infected animals (Fig. 6). 239 240 In agreement with previous studies (7, 34), macrophages were observed in many sections of the 241 experimental OPA cases studied here. In addition, approximately 10% (198 of 1971) of the 242 differentially expressed genes in our analysis have macrophage-related functions (Fig. 7; 243 Supplementary Dataset S3), confirming that macrophage-related gene expression is altered in 244 JSRV-infected tissue. Upregulated genes include some previously associated with an 245 inflammatory phenotype (e.g., HIF1A, IL1A, CXCL8, CSF2, IRAK1, IRF7) or an 246 immunoregulatory phenotype (e.g., CD163, CCL2, LGMN, MMP9, MMP14), suggesting that a complex pattern of macrophage activation exists in OPA. Selected macrophage markers were 247 248 also studied by IHC. Labeling for CD68, a commonly-used marker of monocytes and tissue

249	macrophages, identified cells located in normal alveolar lung tissue and along the margin of
250	tumor foci (Fig. 8A-C). In comparison, an antibody to CD163, a marker for macrophages with
251	an immunomodulatory phenotype (35), labeled many more cells, including cells that surrounded
252	or infiltrated the tumor foci (Fig. 8D-F). Macrophages in or around OPA foci also labeled
253	positively for legumain (LGMN), another marker associated with an immunoregulatory
254	phenotype (Fig. 8G-I) and hypoxia-inducible factor 1-alpha (HIF1A, which is associated with an
255	inflammatory macrophage phenotype (Fig. 8J-L). LGMN was also detected in alveolar
256	macrophages in mock-infected tissue, while HIF1A labeling in mock-infected lung was limited
257	to the bronchiolar epithelium. Interestingly, the antibodies to HIF1A and LGMN also labeled
258	some tumor cells whereas anti-CD163 and anti-CD68 did not. Consistent with the greater
259	abundance of macrophages in OPA-affected lung, RNA-Seq identified increased expression of
260	several myeloid cell chemoattractants (e.g., CCL2, CSF2, S100A8, S100A9, and CXCL8) in
261	JSRV-infected tissues.
262	
263	Comparison of gene expression of ovine pulmonary adenocarcinoma with human lung
264	adenocarcinoma.
265	We next compared the RNA-Seq data from OPA with previously published expression data from
266	the two most common types of NSCLC (LUAD and LUSC). Gene counts data from RNA-Seq
267	studies on tumors from patients with LUAD and LUSC were downloaded from The Cancer
268	Genome Atlas (TCGA) database (portal.gdc.cancer.gov) (36). Data were selected from patients

- for whom matched normal and tumor data were available (57 LUAD and 49 LUSC;
- 270 Supplementary Dataset S4 shows their clinical annotation). The genes differentially expressed
- $\label{eq:271} \text{between tumor and normal samples were identified in each clinical disease stage (LUAD I IV$

Σ

272	and LUSC I - III); (Supplementary Dataset S5). To compare differentially expressed genes in
273	sheep and human cancers, we considered only those sheep genes with one-to-one orthologues in
274	humans (1726 out of 1971 (87%)). We then compared the lists of differentially expressed
275	orthologous genes between OPA and the different stages of human LUAD and LUSC by
276	calculating the Pearson correlation coefficient between the log ratios of genes in common
277	between the two lists. The correlation plot of orthologous genes between OPA and the different
278	stages of human LUAD and LUSC (Fig. 9A) revealed that the gene expression profile of OPA is
279	more similar to LUAD than it is to LUSC and that OPA is more closely correlated with stage I
280	LUAD than with later stages. The main Diseases and Biofunctions associated with the
281	differentially expressed orthologous genes in OPA and stage I LUAD were identified with IPA
282	(Fig. 9B). Supplementary Dataset S6 lists the fold-change of the genes differentially expressed
283	in OPA with their human orthologues in LUAD and LUSC and identifies those genes with
284	similar or divergent changes in expression between the two species. Fig. 9C summarizes the
285	fold-change of the 50 genes most significantly deregulated in OPA with their human orthologue
286	from stage I LUAD. Of these, 37 were consistent in their direction of change and 13 were
287	discordant.

288

289 DISCUSSION

The pathogenesis of OPA is intriguing. How does JSRV infection and expression of its oncogenic Env protein elicit the striking clinical and pathological phenotype typical of this disease? As the mechanisms underlying this process remain largely undetermined, here we used a global RNA-Seq approach to gain insight into the gene pathways and networks that are altered during the early stages of OPA. We identified 1971 differentially expressed sheep genes and

 \leq

validated several of these by IHC or RT-qPCR. Some changes revealed the altered cellular 295 296 composition of infected and uninfected lung. For example, the increased number of 297 macrophages and the presence of tumor cells derived from AEC2s in infected tissue is reflected in the upregulation of markers of these cell types. However, many of the genes and pathways 298 299 that have altered expression in JSRV infection have not been previously studied in OPA but are 300 associated with important aspects of OPA pathogenesis including tumor pathways and local 301 immune responses. Collectively, this study provides important new information on the host 302 response to JSRV infection that will be valuable for studies of OPA directly and for exploitation 303 of the sheep disease as a lung cancer model.

304

In this study, we utilized tissue from experimentally-infected SPF lambs in order to avoid the 305 306 potential confounding effects of additional respiratory infections that commonly occur in natural 307 cases of OPA (1). For welfare reasons, experimentally-infected lambs must be culled when 308 respiratory signs first appear and therefore the tissues studied represent an early stage of disease 309 compared to the advanced stage of natural cases of OPA. We used sections of total lung tissue 310 because we were interested in analyzing the gene expression of the whole infected tissue. A 311 consequence of this approach is that the experimental OPA samples contained a greater 312 proportion of histologically normal lung tissue than tumor tissue. We anticipated that this excess 313 of 'healthy' tissue would reduce the sensitivity of our study to detect differentially expressed genes, in particular down-regulated genes (37, 38). This would appear to be the case as only four 314 315 genes were found to have downregulated expression by more than two-fold in OPA. 316 Nevertheless, while this approach is expected to underestimate the fold-changes of differentially-

317 expressed genes it should still provide the correct order of significance. Future work will focus

lournal of Virology

on analysis of gene expression in specific cell types such as tumor cells and myeloid cells, which
should increase the sensitivity of detection of differentially expressed genes in those cell subsets.

321 Oncogenic signaling pathways in OPA.

322 The mechanisms involved in JSRV Env-mediated tumorigenesis are not completely understood 323 and multiple cellular pathways appear to be activated (15, 17, 18). Several studies have shown 324 that Env expression leads to activation of the PI3K/Akt and MAPK/ERK1/2 signaling pathways 325 (14, 18, 39, 40), while additional pathways including EGFR and Wnt signaling may also play a 326 role (15, 19, 41, 42). The RNA-Seq data provided evidence supporting a variety of changes in 327 gene expression related to carcinogenesis, including increased expression of several ligands of 328 EGFR and other ERBB family receptors and upregulation of a variety of ligands and receptors 329 related to Wnt signaling in JSRV-infected lung tissue.

330

331 Interestingly, the major components of the PI3K/Akt and MAPK/ERK1/2 signaling pathways 332 were not significantly upregulated. Indeed, DAVID pathway analysis reported that both of these 333 pathways were downregulated in OPA. There are several possible explanations for this apparent 334 discrepancy. For example, activation of the MAPK and PI3K/Akt pathways is mediated by 335 protein phosphorylation cascades, which may not correspond directly to changes in transcription 336 of those genes. In addition, while previous studies have shown roles for Akt and ERK signaling in tumor cells or transfected cell lines, the RNA-Seq analysis presented here reflects global 337 338 transcriptional changes within the whole tissue, which comprises multiple cell types. Most 339 importantly, the MAPK and PI3K/Akt pathways are involved in many cellular processes in 340 addition to oncogenesis, including immune responses (43, 44), and the list of genes that DAVID

 $\overline{\leq}$

341

342	of the genes identified by DAVID as involved in the PI3K/Akt and MEK/ERK1/2 pathways are
343	involved in immune responses (e.g., TLR2, CSF1, COL6A3, NFKB1 and TNF), which is
344	consistent with the other changes in immune and inflammatory responses observed in our study.
345	
346	An important novel finding in our study was the activation of AGR2 in OPA tumor cells (Fig. 4).
347	AGR2 is a protein disulfide isomerase localized in the endoplasmic reticulum in normal cells,
348	but is upregulated in a variety of human adenocarcinomas where it may also be present in
349	secreted and cell-surface-bound forms (45, 46). AGR2 is associated with poor prognosis in
350	several cancer types and appears to mediate its oncogenic effect through the regulation of other
351	genes including TP53 (47) and AREG (30) and through extracellular functions such as promoting
352	angiogenesis and extracellular matrix remodeling (46, 48). In humans, AGR2 expression is
353	significantly higher in LUAD than in LUSC (49). The activation of AREG by AGR2 has been
354	shown to be dependent on the Hippo pathway effector protein YAP1 in human adenocarcinoma
355	cell lines (30). Consistent with this, IHC analysis confirmed the presence of nuclear YAP1 in
356	OPA tumor cells (Fig. 5), suggesting a possible role for Hippo signaling in OPA pathogenesis.
357	While further work is required, the transcriptional upregulation of AGR2, EGFR ligands and
358	other oncogenic factors identified by RNA-Seq provides new opportunities for understanding
359	oncogenic signaling in OPA. In turn, OPA provides a model for studying the function of these
360	pathways in a naturally occurring tumor, particularly at the early stages of tumorigenesis.
361	
362	Local immune responses in OPA-affected lung tissue.

and similar tools uses for identifying members of a pathway is very broad. For example, several

363 The absence of a significant adaptive immune response to JSRV in sheep is commonly attributed 364 to enJSRV expression in the fetal thymus during immune development, which is proposed to 365 lead to immune tolerance through the deletion of T-lymphocytes that recognize the closely related JSRV proteins (5). The results of the RNA-Seq analysis suggest that JSRV infection 366 367 induces substantial immunological changes in lung tissue, including altered expression of 368 numerous cytokines, chemokines and complement factors together with an increase in 369 macrophages associated with tumor foci. These changes suggest that local immune-modulatory 370 mechanisms active within the OPA-affected lung might also suppress the immune response to 371 JSRV.

372

The activation of complement factors and complement regulatory factors in OPA is consistent with a previous microarray analysis of gene expression in a mouse model of JSRV Env-mediated transformation that also found evidence of complement upregulation (50). Complement has been shown previously to inhibit infection of a number of viruses including retroviruses (51), and studies on human and murine cancers have established roles for complement in modulating tumor growth (52-55). Therefore, complement might also play an immunomodulatory role in OPA tumors.

380

Macrophages exhibit significant functional plasticity (56, 57) and gene expression studies suggest the existence of numerous subpopulations of macrophages, including some with important roles in cancer (56-58). In addition, studies of mouse and human cancers have shown that macrophages and other myeloid cells in the tumor microenvironment are essential for tumor survival and metastasis (58, 59). Tumor-associated macrophages are also abundant in OPA (7)

lournal of Virology

<u>Journal</u> of Virology

386	but the phenotype of these cells and their functional significance is unclear. In experimentally-
387	induced OPA, we identified changes in the expression of 198 genes related to macrophage
388	function, including genes previously associated with an inflammatory or immunoregulatory
389	phenotype. Interestingly, the expression of macrophage markers in OPA appears to vary
390	depending on their location within the affected tissue, with cells on the periphery of tumor foci
391	being CD68-positive and cells within the tumor being CD163-positive and CD68-negative (Fig.
392	8). CD163 is regarded as a reliable marker for immunomodulatory macrophages that are
393	associated with poor prognosis in human tumors (60, 61). The positive CD163 labeling of OPA-
394	associated macrophages therefore suggests that these cells might also promote tumor growth in
395	OPA.

396

397 In contrast, the transcriptome analysis provided little evidence to support a strong adaptive 398 immune response in OPA. For example, there was no activation of T-cell markers other than a 399 modest but statistically significant increase in markers of Tregs (FOXP3 and CD44; although note that CD44 is also a marker for macrophages and AEC2s). In addition, there was no 400 401 evidence of substantial activation of type 1 interferon responses in OPA, whereas IFNG 402 expression was not significantly changed in JSRV-infected lambs but was upregulated in natural cases studied by RT-qPCR (Fig. 6). This is possibly due to the presence of concurrent bacterial 403 404 infections in the natural cases but demonstrates an important difference between early 405 experimental OPA and advanced natural cases. 406

- 407 Collectively, the gene expression data reported here suggest the presence of an
- 408 immunomodulatory environment within the OPA lung, which has the potential to suppress the

 \leq

immune response to JSRV and tumor cells and to actively promote tumor growth. A more
detailed quantitative analysis of the role of tumor-associated myeloid cells, complement and
Tregs in OPA is necessary to determine their contribution to tumor growth and development of
clinical disease. This could reveal insights into the relevance of the tumor microenvironment to
the apparent immune tolerance of sheep to JSRV and may inform the design of vaccine strategies
for controlling OPA.

415

416 Comparison of the transcriptomes of OPA and human LUAD.

417 As OPA is frequently cited as an animal model for human lung adenocarcinoma, we compared 418 the transcriptome data from OPA with published data on human lung tumors in an attempt to 419 identify the similarities and differences between the diseases in the two species. The results 420 indicate closer similarity of the transcriptome of OPA with human LUAD than with LUSC and 421 in particular with early (stages I and II) compared to more advanced disease (stages III and IV) 422 (Fig. 9A, C; Supplementary Dataset S6). This is consistent with the histological appearance of 423 OPA which resembles a minimally invasive adenocarcinoma in its early stages (2, 22, 24, 25). It would be interesting in future studies to compare gene expression in the early stage of disease 424 425 studied here with that of more advanced OPA.

426

Many genes showed a common pattern of differential expression in LUAD, LUSC and OPA but
there were also many that did not. Some of these reflect differences between LUAD and LUSC
and highlight the diversity of gene expression in the different tumor types. For example, 142
genes were upregulated in both OPA and stage I LUAD but downregulated or not significantly
altered in stage I LUSC. Notably, this includes *AGR2* and the Wnt pathway effector protein

432	beta-catenin. Similarly, 86 genes were upregulated in OPA and stage I LUSC but not
433	upregulated in stage I LUAD. In addition, there were 134 genes upregulated in OPA that were
434	downregulated in both LUAD and LUSC. These include SFTPC and LAMP3 which are known
435	markers of AEC2s in sheep and humans (62). LAMP3 has been detected in OPA previously but
436	is rarely expressed in human tumors except in bronchioloalveolar-adenocarcinoma (lepidic-
437	prominent adenocarcinoma-in-situ) (62), which were not represented in the LUAD cases in the
438	TGCA data studied. Interestingly, the upregulation of complement factors observed in OPA was
439	not evident in either LUAD or LUSC and several other key immune response related genes, such
440	as TLR10, CCL4, CCL26, CD8A, CD8B, TNF and IDO1, were specifically downregulated in
441	OPA but not in human LUAD, suggesting that innate immune responses in the sheep and human
442	diseases may differ in important ways. Collectively, this analysis provides support for the
443	similarity of experimental OPA to early stage LUAD but highlights that there remain many
444	differences between the sheep and human diseases.
445	
446	In summary, the findings from this first large-scale analysis of host gene expression in OPA
447	significantly increase our understanding of the disease pathogenesis at a transcriptional level and

Downloaded from http://jvi.asm.org/ on August 26, 2019 at UNIVERSITY OF EDINBURGH

448 will inform future research directed at improving OPA disease control. Moreover, the

449 interspecies comparative data between sheep and humans provide additional support for the use

450 of OPA as a model for early stages of LUAD, particularly non-invasive forms. Finally, a deeper

451 understanding of the pathological changes of early tumors could help to identify novel

452 biomarkers for the early detection of cancer lesions in both species.

453

454 MATERIALS AND METHODS

455

456 Animals and tissues.

457 Tissues were available from a previous study in which four specific pathogen free (SPF) lambs were inoculated through intra-tracheal injection with JSRV at six days of age (9). Four 458 459 additional lambs received cell culture supernatant (mock-infected control). Each group 460 contained one female and three male lambs. All lambs were caesarean-derived and housed in 461 SPF conditions to minimize the risk of acquiring additional respiratory infections. Once the clinical signs of respiratory disease were apparent in the JSRV-infected animals (66d, 71d and 462 463 85d (n=2) post inoculation), lambs were culled. Each time a JSRV-infected lamb was euthanized, a healthy animal from the mock-infected control group was culled to provide age and 464 sex-matched control tissues. Tissues were collected from 24 locations in each lung and stored in 465 liquid nitrogen for RNA extraction and in 10% buffered formalin for IHC. To study tissues from 466 467 animals with natural disease, lung samples were taken from four farm-raised adult sheep in the 468 advanced stages of clinical OPA and four clinically healthy adult sheep. Cases were selected 469 which had no gross appearance of bacterial or parasitic infection. All protocols involving animal 470 handling and the use of post-mortem material were approved by the Animal Welfare and Ethical 471 Review Body of Moredun Research Institute in accordance with the U.K. Animals (Scientific 472 Procedures) Act 1986.

473

474 RNA extraction and sequencing.

For RNA-Seq, RNA was extracted from frozen tissue samples from seven distinct sites of the
lungs of each animal and pooled in equal amounts. Total RNA from cryosectioned tissue was
extracted using an RNeasy mini kit (Qiagen) according to the manufacturer's instructions. RNA

 \leq

concentration and purity were measured (ND-1000 Nanodrop) and RNA integrity was confirmed
(Agilent RNA 6000 Nano kit with Agilent 2100 Bioanalyzer). All samples had an RNA integrity
number (RIN) greater than 8.0. Prior to sequencing, frozen lung sections derived from the same
lung sites were examined by histology, which confirmed the presence of OPA tumor lesions in
the JSRV-infected animals and the absence of lesions in the mock-infected negative controls.
Total RNA was processed (TruSeq RNA Library kit) to generate cDNA libraries according to the
manufacturer's instructions and subsequently sequenced with an Illumina HiSeq2000 instrument
using 100 bp paired-end sequencing (Edinburgh Genomics, University of Edinburgh, UK).
Processing of next generation sequencing data and differential expression analysis.
Raw sequencing reads were processed to remove adaptors and poor-quality sequences (Q25 and
below) using Cutadapt 1.10 (63). Non-redundant reads were then mapped to the sheep
(Oar_v3.1, Ensembl FTP release 74) and JSRV (GenBank accession AF105220.1) genomes
using HISAT2-2.0.4 (64). The quantification of gene expression was calculated using HTSeq-
counts (65). Transcripts with fewer than 100 total reads across the eight samples were excluded.
The sheep annotation (GTF) was obtained from Ensembl (Oar_v3.1.79). The virus and sheep
gene counts were imported into the edgeR package (66) and counts were normalized using a
trimmed mean of M-values (67) and fitted to a negative binomial generalized log-linear model to
calculate the dispersion factor for each gene (68). Differentially expressed genes were then
identified by applying a FDR cutoff of 0.05 (69). Principal component analysis of normalized
counts was performed using only sheep gene expression (i.e., counts from viral genes were
removed) in order to see the variation between the two groups.

٠.

501 Gene function annotation and pathway analysis.

Identification of enriched KEGG pathways in the upregulated and downregulated gene lists was
performed with DAVID (Database for Annotation, Visualization, and Integrated Discovery) v6.8
(26). Pathway analysis was performed using Ingenuity Pathway Analysis (IPA), version 01-04
(27) to infer the functional roles and relationships of the differentially expressed genes based on
the log2 fold-change value of each gene.

507

508 Comparative analysis with human datasets.

509 To compare significantly-expressed genes in JSRV-infected lung with data from human NSCLC, HTSeq-counts from RNA-Seq data for LUAD and LUSC were obtained from the GDC portal 510 511 (portal.gdc.cancer.gov). 57 LUAD and 49 LUSC patients were selected for which corresponding 512 normal and tumor data were available. Differentially expressed genes in human tumors were 513 identified using the edgeR pipeline as for the sheep data. The list of differentially expressed 514 genes in human data was filtered for only those that have an orthologous gene in sheep 515 (identified using Ensembl Biomart) and were differentially expressed in sheep. The comparison 516 of expression of these short-listed genes was made using the correlation between expression 517 profile (i.e., fold-change) in humans and in sheep. The gene lists obtained are presented in 518 Supplementary Data S5.

519

520 **RT-qPCR**

RT-qPCR was performed according to MIQE recommendations (70). Primers and probes for
reference and target genes are summarized in Table 2. RT-qPCR was performed using an ABI
7000 Sequence Detection System in 96-well plates (Applied Biosystems) with either TaqMan

lournal of Virology

524	one-step RT-PCR reagents (Applied Biosystems; JSRV, CCL2) or Power SYBR-Green RNA-to
525	CT 1-Step Kit (Applied Biosystems; all other target genes). Each sample (5 sites per animal)
526	was tested in duplicate using 100 ng of RNA in a 20 μ l final reaction volume. All experiments
527	with SYBR-green included a melting curve analysis to confirm the specificity of the amplicons
528	(95°C for 15 s, 60°C for 20 s and 95°C for 15 s). Standard curves constructed from 10-fold
529	serial dilutions of positive control RNA were used to determine efficiency and replicate quality
530	(R2) of each primer set. In addition, the level of gene expression in experimental samples was
531	ensured to lay within the limits of the standard curve. For comparison of RNA transcription
532	levels between samples, results from the RT-qPCR experiments were normalized to two
533	reference genes, succinate dehydrogenase (SDHA) and β -actin (ACTB) (pre-determined as
534	stable reference genes using geNORM (71)). Statistical analysis for quantitative PCR was
535	performed by group-wise comparison based on PCR efficiencies and the mean crossing point
536	deviation between the sample and control group using Relative Expression Software Tool
537	(REST) (72).

538

539 Immunohistochemistry and immunofluorescence

540 Tissue sections were processed routinely through graded alcohols, embedded in paraffin-wax and
541 IHC was performed on sections (4 µm) mounted on charged glass microscope slides as
542 previously described (9). The dilutions and sources of the primary antibodies used are described
543 in Table 3. Isotype controls were used in semi-serial tissue sections for each primary antibody.
544 Additionally, the primary antibody was omitted to check for nonspecific labeling by the
545 secondary antibody or the visualization system. Images for bright-field microscopy were
546 examined using an Olympus BX51 microscope, and photographs were captured with an

547	Olympus DP70 camera with analySIS software (Soft Imaging System GmbH, Munster,
548	Germany). Immunofluorescence was performed as previously described (9) using primary
549	antibodies to AGR2 (1:100, Abcam ab76473), and JSRV Env (1:50) (73) with appropriate
550	secondary antibodies conjugated with Alexa-488 (A11008, Molecular Probes) or Alexa-555
551	(A31622, Molecular Probes). Slides were mounted with medium containing 4',6-diamidino-2-
552	phenylindole (DAPI) (Vectashield, Vector Laboratories). Images were analyzed using a Zeiss
553	Axio Imager 2 fluorescence microscope with Apotome, and AxioVision Software.
554	
555	Data Availability
556	The raw RNA-Seq reads (fastq data) of each sample are present in the European Nucleotide
557	Archive with the accession ID PRJEB27638.
558	
559	ACKNOWLEDGEMENTS
560	We thank Edinburgh Genomics (https://genomics.ed.ac.uk/) for conducting the RNA-Seq
561	experiments and Sarah Wootton for providing the anti-JSRV SU antibody. We thank staff of the
562	Moredun Research Institute Clinical Division for exceptional animal care and the farmers who
563	support our work through the donation of OPA-affected sheep. This project was supported by
564	the Biotechnology and Biological Sciences Research Council (BB/L009129/1, BB/L008505/1),
565	including institute strategic program and national capability awards to The Roslin Institute
566	(BB/P013740/1, BB/P013759/1, BB/P013732/1, BB/J004235/1, BB/J004243/1,
567	BBS/E/D/20002173, BBS/E/D/20002174) and the Scottish Government Rural and Environment
568	Science and Analytical Services Division (RESAS).
569	

570 **REFERENCES**

571	1.	De Las Heras M, González L, Sharp JM. 2003. Pathology of ovine pulmonary					
572		adenocarcinoma. Curr Top Microbiol Immunol. 275:25-54.					
573	2.	Griffiths DJ, Martineau HM, Cousens C. 2010. Pathology and pathogenesis of ovine					
574		pulmonary adenocarcinoma. J Comp Pathol 142:260-283.					
575	3.	Cousens C, Thonur L, Imlach S, Crawford J, Sales J, Griffiths DJ. 2009. Jaagsiekte sheep					
576		retrovirus is present at high concentration in lung fluid produced by ovine pulmonary					
577		adenocarcinoma-affected sheep and can survive for several weeks at ambient					
578		temperatures. Res Vet Sci 87:154-156.					
579	4.	Palmarini M, Sharp JM, de las Heras M, Fan H. 1999. Jaagsiekte sheep retrovirus is					
580		necessary and sufficient to induce a contagious lung cancer in sheep. J Virol 73:6964-					
581		6972.					
582	5.	Palmarini M, Mura M, Spencer TE. 2004. Endogenous betaretroviruses of sheep:					
583		teaching new lessons in retroviral interference and adaptation. J Gen Virol 85:1-13.					
584	6.	Spencer TE, Mura M, Gray CA, Griebel PJ, Palmarini M. 2003. Receptor usage and fetal					
585		expression of ovine endogenous betaretroviruses: implications for coevolution of					
586		endogenous and exogenous retroviruses. J Virol 77:749-753.					
587	7.	Summers C, Norval M, De Las Heras M, Gonzalez L, Sharp JM, Woods GM. 2005. An					
588		influx of macrophages is the predominant local immune response in ovine pulmonary					
589		adenocarcinoma. Vet Immunol Immunopathol 106:285-294.					
590	8.	De las Heras M, de Martino A, Borobia M, Ortin A, Alvarez R, Borderias L, Gimenez-					
591		Mas JA. 2014. Solitary tumours associated with Jaagsiekte retrovirus in sheep are					
592		heterogeneous and contain cells expressing markers identifying progenitor cells in lung					
593		repair. J Comp Pathol 150:138-147.					
594	9.	Martineau HM, Cousens C, Imlach S, Dagleish MP, Griffiths DJ. 2011. Jaagsiekte sheep					
595		retrovirus infects multiple cell types in the ovine lung. J Virol 85:3341-3355.					
596	10.	Murgia C, Caporale M, Ceesay O, Di Francesco G, Ferri N, Varasano V, de las Heras M,					
597		Palmarini M. 2011. Lung adenocarcinoma originates from retrovirus infection of					
598		proliferating type 2 pneumocytes during pulmonary post-natal development or tissue					
599		repair. PLoS Pathog 7:e1002014.					

 $\overline{\leq}$

600	11.	Maeda N, Palmarini M, Murgia C, Fan H. 2001. Direct transformation of rodent
601		fibroblasts by jaagsiekte sheep retrovirus DNA. Proc Natl Acad Sci U S A 98:4449-4454.
602	12.	Rai SK, Duh FM, Vigdorovich V, Danilkovitch-Miagkova A, Lerman MI, Miller AD.
603		2001. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-
604		anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of
605		which mediates oncogenic transformation. Proc Natl Acad Sci U S A 98:4443-4438.
606	13.	Caporale M, Cousens C, Centorame P, Pinoni C, De las Heras M, Palmarini M. 2006.
607		Expression of the jaagsiekte sheep retrovirus envelope glycoprotein is sufficient to induce
608		lung tumors in sheep. J Virol 80:8030-8037.
609	14.	Cousens C, Maeda N, Murgia C, Dagleish MP, Palmarini M, Fan H. 2007. In vivo
610		tumorigenesis by Jaagsiekte sheep retrovirus (JSRV) requires Y590 in Env TM, but not
611		full-length orfX open reading frame. Virology 367:413-421.
612	15.	Linnerth-Petrik NM, Santry LA, Yu DL, Wootton SK. 2012. Adeno-associated virus
613		vector mediated expression of an oncogenic retroviral envelope protein induces lung
614		adenocarcinomas in immunocompetent mice. PLoS One 7:e51400.
615	16.	Wootton SK, Halbert CL, Miller AD. 2005. Sheep retrovirus structural protein induces
616		lung tumours. Nature 434:904-907.
617	17.	Hofacre A, Fan H. 2010. Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses
618		2:2618-2648.
619	18.	Liu SL, Miller AD. 2007. Oncogenic transformation by the jaagsiekte sheep retrovirus
620		envelope protein. Oncogene 26:789-801.
621	19.	Danilkovitch-Miagkova A, Duh FM, Kuzmin I, Angeloni D, Liu SL, Miller AD, Lerman
622		MI. 2003. Hyaluronidase 2 negatively regulates RON receptor tyrosine kinase and
623		mediates transformation of epithelial cells by jaagsiekte sheep retrovirus. Proc Natl Acad
624		Sci U S A 100:4580-4585.
625	20.	Hsu T, Phung A, Choe K, Kim JW, Fan H. 2015. Role for a zinc finger protein (Zfp111)
626		in transformation of 208F rat fibroblasts by jaagsiekte sheep retrovirus envelope protein.
627		J Virol 89:10453-10466.
628	21.	Monot M, Erny A, Gineys B, Desloire S, Dolmazon C, Aublin-Gex A, Lotteau V, Archer
629		F, Leroux C. 2015. Early steps of jaagsiekte sheep retrovirus-mediated cell

 \sum

630		transformation involve the interaction between Env and the RALBP1 cellular protein. J
631		Virol 89:8462-8473.
632	22.	Youssef G, Wallace WA, Dagleish MP, Cousens C, Griffiths DJ. 2015. Ovine pulmonary
633		adenocarcinoma: a large animal model for human lung cancer. ILAR J 56:99-115.
634	23.	Palmarini M, Fan H. 2001. Retrovirus-induced ovine pulmonary adenocarcinoma, an
635		animal model for lung cancer. J Natl Cancer Inst 93:1603-1614.
636	24.	Mornex JF, Thivolet F, De las Heras M, Leroux C. 2003. Pathology of human
637		bronchioloalveolar carcinoma and its relationship to the ovine disease. Curr Top
638		Microbiol Immunol 275:225-248.
639	25.	Perk K, Hod I. 1982. Sheep lung carcinoma: an endemic analogue of a sporadic human
640		neoplasm. J Natl Cancer Inst 69:747-749.
641	26.	Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of
642		large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57.
643	27.	Kramer A, Green J, Pollard J, Jr., Tugendreich S. 2014. Causal analysis approaches in
644		Ingenuity Pathway Analysis. Bioinformatics 30:523-530.
645	28.	Gomes M, Archer F, Girard N, Gineys B, Dolmazon C, Bobet Erny A, Mornex JF,
646		Leroux C. 2017. Blocked expression of key genes of the angiogenic pathway in JSRV-
647		induced pulmonary adenocarcinomas. Vet Res 48:76.
648	29.	Brychtova V, Mohtar A, Vojtesek B, Hupp TR. 2015. Mechanisms of anterior gradient-2
649		regulation and function in cancer. Semin Cancer Biol 33:16-24.
650	30.	Dong A, Gupta A, Pai RK, Tun M, Lowe AW. 2011. The human adenocarcinoma-
651		associated gene, AGR2, induces expression of amphiregulin through Hippo pathway co-
652		activator YAP1 activation. J Biol Chem 286:18301-18310.
653	31.	Chung C, Kim T, Kim M, Kim M, Song H, Kim TS, Seo E, Lee SH, Kim H, Kim SK,
654		Yoo G, Lee DH, Hwang DS, Kinashi T, Kim JM, Lim DS. 2013. Hippo-Foxa2 signaling
655		pathway plays a role in peripheral lung maturation and surfactant homeostasis. Proc Natl
656		Acad Sci U S A 110:7732-7737.
657	32.	Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T, Orton RJ, Varela M,
658		Gifford RJ, Wilson SJ, Palmarini M. 2017. Fundamental properties of the mammalian
659		innate immune system revealed by multispecies comparison of type I interferon
660		responses. PLoS Biol 15:e2004086.

Σ

6	661	33.	Fulton RB, Meyerholz DK, Varga SM. 2010. Foxp3+ CD4 regulatory T cells limit
6	62		pulmonary immunopathology by modulating the CD8 T cell response during respiratory
6	63		syncytial virus infection. J Immunol 185:2382-2392.
6	64	34.	Sozmen M, Beytut E. 2012. An investigation of growth factors and lactoferrin in
6	65		naturally occurring ovine pulmonary adenomatosis. J Comp Pathol 147:441-451.
6	666	35.	Komohara Y, Hirahara J, Horikawa T, Kawamura K, Kiyota E, Sakashita N, Araki N,
6	667		Takeya M. 2006. AM-3K, an anti-macrophage antibody, recognizes CD163, a molecule
6	668		associated with an anti-inflammatory macrophage phenotype. J Histochem Cytochem
6	669		54:763-771.
6	570	36.	Chang JT, Lee YM, Huang RS. 2015. The impact of the Cancer Genome Atlas on lung
6	571		cancer. Transl Res 166:568-585.
6	572	37.	Kim HK, Kim J, Korolevich S, Choi IJ, Kim CH, Munroe DJ, Green JE. 2011.
6	573		Distinctions in gastric cancer gene expression signatures derived from laser capture
6	574		microdissection versus histologic macrodissection. BMC Med Genomics 4:48.
6	575	38.	Klee EW, Erdogan S, Tillmans L, Kosari F, Sun Z, Wigle DA, Yang P, Aubry MC,
6	676		Vasmatzis G. 2009. Impact of sample acquisition and linear amplification on gene
6	577		expression profiling of lung adenocarcinoma: laser capture micro-dissection cell-
6	578		sampling versus bulk tissue-sampling. BMC Med Genomics 2:13.
6	579	39.	De Las Heras M, Ortin A, Benito A, Summers C, Ferrer LM, Sharp JM. 2006. In-situ
6	680		demonstration of mitogen-activated protein kinase Erk 1/2 signalling pathway in
6	581		contagious respiratory tumours of sheep and goats. J Comp Pathol 135:1-10.
6	582	40.	Cousens C, Alleaume C, Bijsmans E, Martineau HM, Finlayson J, Dagleish MP, Griffiths
6	583		DJ. 2015. Jaagsiekte sheep retrovirus infection of lung slice cultures. Retrovirology
6	684		12:31.
6	585	41.	Varela M, Golder M, Archer F, de las Heras M, Leroux C, Palmarini M. 2008. A large
6	686		animal model to evaluate the effects of Hsp90 inhibitors for the treatment of lung
6	687		adenocarcinoma. Virology 371:206-215.
6	588	42.	Vaughan AE, Halbert CL, Wootton SK, Miller AD. 2012. Lung cancer in mice induced
6	589		by the jaagsiekte sheep retrovirus envelope protein is not maintained by rare cancer stem
6	590		cells, but tumorigenicity does correlate with Wnt pathway activation. Mol Cancer Res
6	591		10:86-95.

Σ

692	43.	Arthur JS, Ley SC. 2013. Mitogen-activated protein kinases in innate immunity. Nat Rev
693		Immunol 13:679-692.
694	44.	Collins DC, Chenard-Poirier M, Lopez JS. 2018. The PI3K pathway at the crossroads of
695		cancer and the immune system: strategies for next generation immunotherapy
696		combinations. Curr Cancer Drug Targets 18:355-364.
697	45.	Dumartin L, Whiteman HJ, Weeks ME, Hariharan D, Dmitrovic B, Iacobuzio-Donahue
698		CA, Brentnall TA, Bronner MP, Feakins RM, Timms JF, Brennan C, Lemoine NR,
699		Crnogorac-Jurcevic T. 2011. AGR2 is a novel surface antigen that promotes the
700		dissemination of pancreatic cancer cells through regulation of cathepsins B and D.
701		Cancer Res 71:7091-7102.
702	46.	Fessart D, Domblides C, Avril T, Eriksson LA, Begueret H, Pineau R, Malrieux C,
703		Dugot-Senant N, Lucchesi C, Chevet E, Delom F. 2016. Secretion of protein disulphide
704		isomerase AGR2 confers tumorigenic properties. Elife 5:e13887.
705	47.	Hrstka R, Bouchalova P, Michalova E, Matoulkova E, Muller P, Coates PJ, Vojtesek B.
706		2016. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-
707		mediated regulatory pathway. Mol Oncol 10:652-662.
708	48.	Guo H, Zhu Q, Yu X, Merugu SB, Mangukiya HB, Smith N, Li Z, Zhang B, Negi H,
709		Rong R, Cheng K, Wu Z, Li D. 2017. Tumor-secreted anterior gradient-2 binds to VEGF
710		and FGF2 and enhances their activities by promoting their homodimerization. Oncogene
711		36:5098-5109.
712	49.	Pizzi M, Fassan M, Balistreri M, Galligioni A, Rea F, Rugge M. 2012. Anterior gradient
713		2 overexpression in lung adenocarcinoma. Appl Immunohistochem Mol Morphol 20:31-
714		36.
715	50.	Chang HW, Lin Z-M, Wu M-J, Wang L-Y, Chow Y-H, Jiang SS, Ch'ang H-J, Chang
716		VHS. 2017. Characterization of a transgenic mouse model exhibiting spontaneous lung
717		adenocarcinomas with a metastatic phenotype. PLoS One 12:e0175586.
718	51.	Agrawal P, Nawadkar R, Ojha H, Kumar J, Sahu A. 2017. Complement evasion
719		strategies of viruses: an overview. Front Microbiol 8:1117.
720	52.	Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD. 2018. Complement in
721		cancer: untangling an intricate relationship. Nat Rev Immunol 18:5-18.

 \sum

Journal of Virology

Σ

722	53.	Okroj M, Hsu Y-F, Ajona D, Pio R, Blom AM. 2008. Non-small cell lung cancer cells
723		produce a functional set of complement factor I and its soluble cofactors. Molecular
724		Immunol 45:169-179.
725	54.	Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A,
726		Gerard C, Coukos G, Lambris JD. 2008. Modulation of the antitumor immune response
727		by complement. Nat Immunol 9:1225-1235.
728	55.	Medler TR, Murugan D, Horton W, Kumar S, Cotechini T, Forsyth AM, Leyshock P,
729		Leitenberger JJ, Kulesz-Martin M, Margolin AA, Werb Z, Coussens LM. 2018.
730		Complement C5a fosters squamous carcinogenesis and limits T cell response to
731		chemotherapy. Cancer Cell 34:561-578 e6.
732	56.	Qian B, Pollard JW. 2010. Macrophage diversity enhances tumor progression and
733		metastasis. Cell 141:39-51.
734	57.	Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D, Saatcioglu HD, Krishnan I,
735		Maroni G, Meyerovitz CV, Kerwin CM, Choi S, Richards WG, De Rienzo A, Tenen DG,
736		Bueno R, Levantini E, Pittet MJ, Klein AM. 2019. Single-cell transcriptomics of human
737		and mouse lung cancers reveals conserved myeloid populations across individuals and
738		species. Immunity 50: 1317-1334.
739	58.	Kitamura T, Qian BZ, Pollard JW. 2015. Immune cell promotion of metastasis. Nat Rev
740		Immunol 15:73-86.
741	59.	Lewis CE, Pollard JW. 2006. Distinct role of macrophages in different tumor
742		microenvironments. Cancer Res 66:605-612.
743	60.	Medrek C, Ponten F, Jirstrom K, Leandersson K. 2012. The presence of tumor associated
744		macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC
745		Cancer 12:306.
746	61.	Yang L, Wang F, Wang L, Huang L, Wang J, Zhang B, Zhang Y. 2015. CD163+ tumor-
747		associated macrophage is a prognostic biomarker and is associated with therapeutic effect
748		on malignant pleural effusion of lung cancer patients. Oncotarget 6:10592-10603.
749	62.	Salaun B, de Saint-Vis B, Pacheco N, Pacheco Y, Riesler A, Isaac S, Leroux C, Clair-
750		Moninot V, Pin JJ, Griffith J, Treilleux I, Goddard S, Davoust J, Kleijmeer M, Lebecque
751		S. 2004. CD208/dendritic cell-lysosomal associated membrane protein is a marker of
752		normal and transformed type II pneumocytes. Am J Pathol 164:861-871.

753	63.	Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing
754		reads. EMBnetjournal 17:10-12.
755	64.	Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory
756		requirements. Nat Methods 12:357-360.
757	65.	Anders S, Pyl PT, Huber W. 2015. HTSeqa Python framework to work with high-
758		throughput sequencing data. Bioinformatics 31:166-169.
759	66.	Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for
760		differential expression analysis of digital gene expression data. Bioinformatics 26:139-
761		140.
762	67.	Robinson MD, Oshlack A. 2010. A scaling normalization method for differential
763		expression analysis of RNA-seq data. Genome Biology 11:R25-R25.
764	68.	McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor
765		RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288-
766		4297.
767	69.	Lun AT, Chen Y, Smyth GK. 2016. It's DE-licious: a recipe for differential expression
768		analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods
769		Mol Biol 1418:391-416.
770	70.	Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T
771		Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines:
772		minimum information for publication of quantitative real-time PCR experiments. Clin
773		Chem 55:611-622.
774	71.	Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.
775		2002. Accurate normalization of real-time quantitative RT-PCR data by geometric
776		averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034.
777	72.	Pfaffl MW, Horgan GW, Dempfle L. 2002. Relative expression software tool (REST) for
778		group-wise comparison and statistical analysis of relative expression results in real-time
779		PCR. Nucleic Acids Res 30:e36.
780	73.	Wootton SK, Metzger MJ, Hudkins KL, Alpers CE, York D, DeMartini JC, Miller AD.
781		2006. Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus
782		(JSRV) closely resembles lung cancer in sheep infected with JSRV. Retrovirology 3:94.

 \sum

Journal of Virology

783	74.	Garcia-Crespo D, Juste RA, Hurtado A. 2006. Differential gene expression in central
784		nervous system tissues of sheep with natural scrapie. Brain Res 1073-1074:88-92.
785	75.	Li H, Cunha CW, Davies CJ, Gailbreath KL, Knowles DP, Oaks JL, Taus NS. 2008.
786		Ovine herpesvirus 2 replicates initially in the lung of experimentally infected sheep. J
787		Gen Virol 89:1699-1708.
788	76.	Budhia S, Haring LF, McConnell I, Blacklaws BA. 2006. Quantitation of ovine cytokine
789		mRNA by real-time RT-PCR. J Immunol Methods 309:160-172.
790	77.	McNeilly TN, Baker A, Brown JK, Collie D, Maclachlan G, Rhind SM, Harkiss GD.
791		2008. Role of alveolar macrophages in respiratory transmission of visna/maedi virus. J
792		Virol 82:1526-1536.
793	78.	Leutenegger CM, Alluwaimi AM, Smith WL, Perani L, Cullor JS. 2000. Quantitation of
794		bovine cytokine mRNA in milk cells of healthy cattle by real-time TaqMan polymerase
795		chain reaction. Vet Immunol Immunopathol 77:275-287.
796	79.	Kawashima K, Meyerholz DK, Gallup JM, Grubor B, Lazic T, Lehmkuhl HD,
797		Ackermann MR. 2006. Differential expression of ovine innate immune genes by preterm
798		and neonatal lung epithelia infected with respiratory syncytial virus. Viral Immunol
799		19:316-323.
800	80.	Dunphy J, Horvath A, Barcham G, Balic A, Bischof R, Meeusen E. 2001. Isolation,
801		characterisation and expression of mRNAs encoding the ovine CC chemokines,
802		monocyte chemoattractant protein (MCP)-1alpha and -2. Vet Immunol Immunopathol
803		82:153-164.
804	81.	Clark EL, Bush SJ, McCulloch MEB, Farquhar IL, Young R, Lefevre L, Pridans C,
805		Tsang HG, Wu C, Afrasiabi C, Watson M, Whitelaw CB, Freeman TC, Summers KM,
806		Archibald AL, Hume DA. 2017. A high resolution atlas of gene expression in the
807		domestic sheep (Ovis aries). PLoS Genet 13:e1006997.
808		
000		

 \leq

810 Table 1 Read mapping statistics

811

809

	Lamb ID ^a							
	Infected 1M_66days	Infected 2F_85days	Infected 3M_71days	Infected 4M_85days	Control 5M_66days	Control 6M_85days	Control 7M_71days	Control 8F_85days
Total reads	64,879,262	72,907,048	84,205,226	68,631,006	60,417,140	69,875,636	64,020,136	72,061,316
Total quality trimmed	63,766,561	71,678,589	82,667,841	67,438,835	59,431,332	68,705,449	62,964,748	70,830,855
Quality trimmed (%)	98.28%	98.32%	98.17%	98.26%	98.37%	98.33%	98.35%	98.29%
Total uniquely mapped	51,720,272	58,431,025	67,009,475	55,039,775	48,778,008	55,995,176	51,447,365	58,063,922
Uniquely mapped (%)	79.72%	80.14%	79.58%	80.20%	80.74%	80.14%	80.36%	80.58%
Viral reads	109,952	68,763	342,032	196,608	54 ^b	62 ^b	128 ^b	49 ^b
Viral reads (%)	0.17%	0.09%	0.41%	0.29%	0.00%	0.00%	0.00%	0.00%

812

813

 a Lamb ID indicates the infection status, sex (male (M) or female (F)) and days post-inoculation

Downloaded from http://jvi.asm.org/ on August 26, 2019 at UNIVERSITY OF EDINBURGH

815 when culled.

^b Reads mapping to the JSRV genome represented 0.09 - 0.41% of total reads in the four

817 infected lambs. A small number of reads mapping to JSRV (49 – 128 per sample) were also

818 detected in the tissue from mock-infected control lambs. All of these reads mapped to regions of

819 very high similarity between JSRV and enJSRV (data not shown) and so can be attributed to the

820 transcription of endogenous viruses in the samples studied.

821

822 Table 2 Primers and probes used in this study

Target ^a	Primer sequences (5'-3')	Conc. (nM)	Size (bp)	GenBank Accession No. (Reference)
ACTB	F: CTGAGCGCAAGTACTCCGTGT R: GCATTTGCGGTGGACGAT	300 300	125	NM_001009784 (74)
SDHA	F: CATCCACTACATGACGGAGCA R: ATCTTGCCATCTTCAGTTCTGCTA	200 200	90	AY970969 (74)
IFN-α	F: GCACTGGATCAGCAGCTCACTG R: CTCAAGACTTCTGCTCTGACAACCT	200 200	188	AY 802984 (75)
IFN-γ	F: TTCTTGAACGGCAGCTCTGAG R: TGGCGACAGGTCATTCATCA	300 300	127	X52640 (76)
CSF2	F: GATGGATGAAACAGTAGAAGTCG R: CAGCAGTCAAAGGGAATGAT	500 500	261	NM_001009805 (77)
TGF-β1	F: GAACTGCTGTGTTCGTCAGC R: GGTTGTGCTGGTTGTACAGG	500 500	169	NM_001009400 (77)
TNF-α	F: GCCCTGGTACGAACCCATCTA R: CGGCAGGTTGATCTCAGCAC	200 200	82	NM_001024860 (75)
IL-1β	F: CCTAACTGGTACATCAGCACTTCTCA R:TCCATTCTGAAGTCAGTTATATCCTG	200 200	95	NM_001009465 (75)
IL-6	F: TCCAGAACGAGTTTGAGG R: CATCCGAATAGCTCTCAG	500 500	236	NM_ 001009392 (77)
IL-8	F: ACTGCGAAAATTCAGAAATCATTGTTA R: CTTCAAAAATGCCTGCACAACCTTC	500 500	53	S74436 (78)
IL-10	F: AGCAAGGCGGTGGAGCAG R: GATGAAGATGTCAAACTCACTCATGG	200 200	90	NM_001009327 (75)
IL-18	F: ACTGTTCAGATAATGCACCCCAG R: TTCTTACACTGCACAGAGATGGTTAC	200 200	100	NM_001009263 (75)
CCL2	F: GCTGTGATTTTCAAGACCATCCT R: GGCGTCCTGGACCCATT Probe: AAAGAGTTTTGTGCAGACCCCAACC	900 400 900	72	DY503036 (79, 80)

Downloaded from http://jvi.asm.org/ on August 26, 2019 at UNIVERSITY OF EDINBURGH

823

824 ^a Amplification conditions were 30 min 45°C, 10 min 95°C, 40 cycles of (15s 95°C, 1 min 60 °C), except for CSF2 (30 min 45°C, 10 min 95°C, 40 cycles of (20s 94°C, 30s 57°C, 30s 72°C)), 825 826 CXCL8 (30 min 45°C, 10 min 95°C, 40 cycles of (20s 94°C, 30s 55°C, 30s 72°C)), TGF-beta (30 min 45°C, 10 min 95°C, 40 cycles of (20s 94°C, 30s 55°C, 30s 72°C)), IL-6 (30 min 45°C, 827 10 min 95°C, 40 cycles of (20s 94°C, 30s 52°C, 30s 72°C)) and CCL2 (30 min 45°C, 10 min 828 95°C, 40 cycles of (20s 95°C, 30s 58°C, 30s 60°C)). 829

 \leq

831 Table 3 Summary of antibodies used for IHC

832

Tongot Antigon	IHC Dilution	Antibody	Source
Target Anugen	Dilution	type	Source
JSRV Env (SU)	1/200	Mouse mab	(73)
AGR2	1/200	Rabbit mab	Abcam, ab134167
AREG	1/200	Rabbit mab	Abcam, ab224350
MST1/2	1/5000	Rabbit pab	Abcam, ab87322
LATS1/2	1/2000	Rabbit pab	Abcam, ab70565
Total YAP1	1/100	Rabbit mab	Abcam, ab52771
Phosphorylated (s127) YAP1	1/300	Rabbit pab	Abcam, ab76252
CD68	1/150	Mouse mab	DAKO, M0718
CD163	1/200	Mouse mab	Bio-rad, MCA1853
LGMN	1/400	Mouse mab	Abcam, ab125286
HIF1A	1/50	Mouse mab	ThermoFisher MA1-16511

Downloaded from http://jvi.asm.org/ on August 26, 2019 at UNIVERSITY OF EDINBURGH

833

834 ^amab: monoclonal, pab; polyclonal

835

836 FIGURE LEGENDS

837

838 Figure 1. Host gene expression is modified in JSRV-infected lung tissue.

A. Principal component analysis was performed using read counts from JSRV-infected and 839 840 mock-infected (control) lambs for 15,149 genes mapping to the sheep genome. Each circle 841 represents a mock-infected lamb and each triangle indicates a JSRV-infected lamb. The values 842 on each axis (PC1 and PC2) represent the percentage of variance explained by each component. 843 The principal component 1 (PC1) separates the infected and mock samples into two clusters with the highest variance of 63%. Within these clusters, there is greater variance in the JSRV-844 845 infected sheep than the mock-infected sheep and this likely corresponds to the proportion of tumor-affected tissue in the samples. For example, the lamb 'Infected F 85days' is the closest 846 847 to the mock-infected cluster and had the lowest proportion of reads mapping to JSRV (see Table 848 1), while the samples furthest from the mock-infected animals had the highest proportion of viral 849 reads. B. The gene expression data visualized as a 2D scatter plot of the log₂ ratio of expression 850 values between infected and mock-infected tissue (i.e., the fold-change) versus the mean 851 expression across all samples. Each dot represents one gene and the red color indicates the 1,971 852 genes identified as differentially expressed between the infected group and mock-infected 853 controls using a false discovery rate (FDR) < 0.05. C. Hierarchical clustering based on 854 normalized gene counts of differentially expressed genes in samples derived from JSRV-treated 855 and mock-infected lambs (1237 were upregulated and 734 downregulated). D. Hierarchical 856 clustering of the 25 most significantly upregulated and downregulated genes. 857

858 Figure 2. Main Diseases and Biofunctions associated with differentially expressed genes in

859 JSRV-infected sheep lung.

860 The figure shows the Biofunction enrichment profiles identified by Ingenuity Pathway Analysis,

plotted by relative statistical significance. Significance values were calculated based on a right-861

862 tailed Fisher's exact test and the -log(p-value) is displayed on the horizontal axis of the bar chart.

863 The taller the bar, the more significant the pathway effect.

upstream node that connects to it is activated.

864

Figure 3. Mechanistic network analysis predicted by Ingenuity Pathway Analysis. 865

866 The figure shows mechanistic network analysis by IPA of genes differentially expressed in 867 experimentally-induced OPA compared to mock-infected lung. A. Neovasculization network. B. Network for cell viability and tumor growth. The regulators are colored by their predicted 868 869 activation state: activated (orange) or inhibited (blue). Darker colors indicate higher scores. The 870 edges connecting the nodes are colored orange when leading to activation of the downstream 871 node, blue when leading to its inhibition, and yellow if the findings underlying the relationship 872 are inconsistent with the state of the downstream node. Pointed arrowheads indicate that the 873 downstream node is expected to be activated if the upstream node connected to it is activated, 874 while blunt arrowheads indicate that the downstream node is expected to be inhibited if the

876

875

Figure 4. Immunohistochemical detection of AGR2 and AREG in JSRV-infected cells. 877

878 Immunohistochemical labeling of sheep lung with antibodies to JSRV SU (A, B, C) and AGR2 879 (D, E, F). A and D, serial adjacent sections of mock-infected sheep lung. B and E, serial sections 880 of OPA lesions in the lung of a lamb experimentally-infected with JSRV. C and F, serial sections 881 of lung tissue from a natural case of OPA. Brown pigment indicates positive labeling. G, H, I, J,

 \leq

882	immunofluorescence labeling of lung tissue of an experimentally-infected lamb. Panel H, AGR2
883	(green); panel I, JSRV (red). Panel G shows staining with DAPI (blue) used to visualize nuclei
884	and panel J shows the merged image. K, L and M, IHC labeling with an antibody to AREG. K,
885	mock-infected lung shows labeling of some epithelial cells (arrows) and macrophages
886	(arrowheads). L, JSRV experimentally-infected lamb and M, naturally OPA-affected sheep lung
887	show labeling of OPA lesions.
888	
889	Figure 5. Immunohistochemical detection of Hippo pathway regulators in OPA-affected
890	lung.
891	IHC was performed on sections of ovine lung tissue with antibodies to proteins involved in
892	Hippo pathway signaling. Left column, mock-infected sheep lung; middle column,
893	experimentally-infected lamb; right column, natural OPA. Brown pigment indicates positive
894	labeling. A-C, total YAP1; D-F, phosphorylated (inactive) YAP1 (P-YAP1); G-I, MST1/2; J-L,
895	LATS1/2. Note P-YAP expression is localized in the cytoplasm of tumor cells (panels E and F),
896	whereas total YAP1 expression is shown the nuclei and the cytoplasm of tumor cells (panels B
897	and C). Black arrows in panels B and C indicate examples of nuclear locating YAP1.
898	
899	Figure 6. RT-qPCR detection of cytokine expression in OPA.
900	The figure shows box-whisker plots of relative expression of selected genes in OPA-affected
901	lung tissue compared to healthy control tissue measured by RT-qPCR. A. Experimentally-
902	induced OPA relative to lung tissue from age and sex matched mock-infected lambs. B. Natural
903	OPA relative to healthy adult sheep lung. Data analysis was performed using the software tool
904	REST (72), which calculates the significance of the expression ratio based on the use of two
905	reference genes and the amplification efficiency for each gene. Significant changes in expression

 \sum

906	are indicated by asterisks (*; standard error <0.005 at P=0.05). The dotted line within each box
907	represents the median value, the boxed area encompasses the interquartile range and the whiskers
908	indicate the maximum and minimum data points. Note the difference in scales on the Y axis
909	between the two charts. The data are consistent with the results of RNA-Seq analysis for these
910	genes in experimentally-infected lambs and controls, where CSF2, CCL2, CXCL8 and IL6 were
911	upregulated, TNF was downregulated and IL1B, IL10, IL18 and IFNG were not significantly
912	changed. TGFB1 and IFNA were not detected by RNA-Seq although TGFB3 was upregulated.
913	(Note that IFNA was not examined in experimental OPA.)
914	
915	Figure 7. Expression of macrophage-related genes is altered in OPA.
916	To identify macrophage-related functions in our data, a list of macrophage-related genes was
917	compiled based on Gene Ontology (GO) terms (891 genes) and those present in macrophage
918	coexpression clusters from the recently published sheep genome atlas (450 genes) (81) (see
919	Supplementary Dataset S3). Combining these two lists gave a total of 1255 genes (86 were
920	common to both sets), of which 1076 were present in our RNA-Seq data and 198 were
921	differentially expressed in JSRV-infected lung tissue. A. Hierarchical clustering of 198 markers
922	related to macrophage function that are differentially expressed in OPA. B. Hierarchical
923	clustering of the 25 most significantly upregulated and downregulated macrophage-related genes
924	in OPA. Orange coloring indicates upregulation, blue indicates downregulation.
925	
926	Figure 8. Immunohistochemical detection of macrophage markers in OPA-affected lung
927	tissue.
928	Immunohistochemistry of sheep lung labeled with antibodies to markers of macrophages. Left
929	column, mock-infected lung; middle column, experimentally-infected lung; right hand column,

930 natural OPA-affected lung. Brown pigment indicates positive labeling. A-C, labeling with an 931 antibody to CD68. D-F, serial sections of tissues shown in panels A-C labeled with an antibody 932 to CD163. Note the difference in distribution of labeling with the two antibodies. G-I, labeling with an antibody to LGMN; J-L, labeling with an antibody to HIF1A. Note that antibodies to 933 934 LGMN and HIF1A label some tumor cells in addition to macrophages. In addition, LGMN 935 exhibits a different pattern of labeling of tumor cells in experimental and natural OPA, where 936 experimental cases have intense cytoplasmic labeling and natural cases have prominent labeling 937 of the apical region.

938

939 Figure 9. Comparison of gene expression in OPA and human lung cancer.

940 Genes differentially expressed in experimentally-induced OPA were compared with genes 941 differentially expressed in human lung cancer, including clinical stages I - IV of LUAD and I -942 III of LUSC. (LUSC stage IV was not analyzed as there were only two samples present in the 943 data.) A. Correlation plot comparing differentially expressed genes in OPA with the different 944 clinical stages of human LUAD and LUSC. The height of each bar shows the percentage of 945 differentially expressed sheep genes that have differentially expressed orthologues in the human 946 data set. The shading indicates the Pearson correlation coefficient between the log ratios of genes 947 in common between the two lists. The data confirm closer similarity of OPA to LUAD than 948 LUSC and to stage I LUAD in particular. B. The differentially expressed orthologous genes in both sheep and human stage I LUAD were analyzed with Ingenuity Pathway Analysis software 949 950 and the figure shows the enriched Diseases and Biofunctions associated with those genes. C. 951 The plot shows the changes in gene expression in experimentally-induced OPA and human stage 952 I LUAD for the 50 most significantly changed sheep genes with deregulated human orthologues. 953 Note that 37 of the 50 genes show a similar direction of change in expression, whereas 13 show

lournal of Virology

954 divergent changes, highlighting similarities and differences between the sheep and human

955 diseases.

 \sum

Z

 $\overline{\leq}$

Z

Z

 \leq

Z

Downloaded from http://jvi.asm.org/ on August 26, 2019 at UNIVERSITY OF EDINBURGH

 \leq

Journal of Virology

HIF1A

Downloaded from http://jvi.asm.org/ on August 26, 2019 at UNIVERSITY OF EDINBURGH

В

-log(p-value) ភូ ភ្

Ca

Gastroinestinal Disease

Cell Death and Survival Cellular Movement

Respiratory Disease

Cellular Development

Tissue Development

Organ Development Organ Morphology

Hematological Dise

Cell Cycle Organismal Survival 20

Downloaded from http://jvi.asm.org/ on August 26, 2019 at UNIVERSITY OF EDINBURGH

 \leq