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ABSTRACT: 

The uranyl ion, [UVIO2]
2+, possesses rigorously trans, strongly covalent, and chemically robust U-

oxo groups. However, through the use of anaerobic reaction techniques, both one and two-electron 

reductive functionalization of the uranyl oxo groups have been discovered and developed. Prior to 

2010, this unusual reactivity centered around the reductive silylation of the uranyl ion which entailed 

conversion of the oxo ligands into siloxy ligands, and reductive metalation of the uranyl oxo with 

Group 1 and f-block metals. This review surveys the large number of new examples of reductive 

functionalization of the uranyl ion that have been reported since 2010, including reductive borylation 

and alumination, metalation with d- or f-block metals, and new examples of reductive silylation. Other 

examples of oxo-group functionalization of [UVIO2]
2+ that do not involve reduction, mainly with 

Group 1 cations, are also covered, along with new advances in the photochemistry of the uranyl(VI) 

ion that involve the transient formation of formally uranyl(V) [UVO2]
+ ion. 
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1. INTRODUCTION 

The uranyl(VI) ion, [UVIO2]
2+, is the dominant form of uranium in the environment. It is a 

linear cation which exhibits mutually trans and strongly covalent oxo groups, denoted here as U–Oyl. 

These U–Oyl bonds are formally triple bonds, arising from one σ- and two π-bonds between 2p orbitals 

on the oxo-groups and hybrid orbitals (5f and 6d) on uranium.1 The result is a gas-phase bond energy 

of 604 kJ mol-1 for the UVIO2
2+ ion, making it thermodynamically stable and generally inert to 

chemical functionalization in the laboratory. However, the one-electron reduction of [UVIO2]
2+ to 

[UVO2]
+ is readily achieved by minerals and microbes in the environment under anaerobic 

conditions;2,3 under these conditions [UVO2]
+ disproportionates into [UVIO2]

2+ and [UIVO2], of which 

the latter is insoluble in water.4 In recent years, anaerobic reaction conditions have been deployed and 

proven effective for the isolation of both [UVO2]
+ (uranyl(V)) and [UIVO2] (U(IV) dioxo) compounds 

through reductive functionalization processes (Scheme I). There is significant interest in studying 

uranyl(V) complexes due to the more Lewis-basic oxo groups showing an increased propensity to 

bridge to other metals. These interactions are often referred to as cation-cation interactions, CCIs, but 

the use of this specific term is not warrented as metal oxo-group basicity is common in d-block 

chemistry. This phenomenon is very rare in uranyl(VI) chemistry, but relatively common in heavier 

actinyl (i.e. neptunium and plutonium) chemistry. Through the formation of oxo-bridged complexes, 
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UV has the potential to disrupt nuclear waste separations such as in the PUREX process;5 

consequently, the study of oxo-functionalised UV complexes is spurred by understanding these 

interactions. With an estimated two million tonnes of depleted uranium waste globally,6 maximizing 

the efficiency of waste remediation processes is of paramount importance to the nuclear industry. 

While actinyl compounds require specialized containment procedures to handle, their chemistry can 

be modelled through the study of uranyl(V) compounds in a standard laboratory (and therefore more 

convenient and less costly) environment. Additionally, understanding the processes by which various 

elements reductively functionalize water-soluble uranyl ions to insoluble uranium(IV) oxides is also 

relevant to the mineral and microbial-initiated reductions that occur in the environment , for example 

in iron-containing strata such as goethite7 or with geobacter microbes.8 The chemistry of such a 

traditionally inert oxo group is also of great academic interest, since its lack of reactivity contrasts so 

strongly with the lighter Group 6 congeners such as the chromyl ion. 

The uranyl(V) ion is also a key intermediate in photochemical processes involving the 

uranyl(VI) ion. Solutions containing [UVIO2]
2+ are photochemically active when exposed to 

ultraviolet (UV) and near-UV light sources (ca. 420 nm), generating [*UO2]
2+, a long-lived (≤ µs) 

and highly oxidising (ca. +2.6 V, comparable to F2) excited state of uranyl.9,10 Subsequent ligand-to-

metal charge transfer (LMCT) that arises from U(5f)O(2p) transitions generates the [UVO2]
+ 5f1 

intermediate which contains an extremely reactive oxyl radical, O• (Scheme 1b). This intermediate 

may generally be quenched by H-atom abstraction (HAA) if the quencher is aliphatic (to give a 

functionalized [O=UV-OH]2+ motif),11-13 or by electron transfer if the quencher is unsaturated.14-19 

The highly oxidizing nature of photoactivated UVIO2
2+ has previously been exploited in the 

degradation of volatile organic compounds, VOCs, such as methanol,20 and many other applications, 

including in metal ion sensing and biochemistry, have been developed since the last reviews appeared 

in 2010 and 2013.9,10,21,22 
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Scheme 1. (a) Thermal and (b) photochemical reduction and functionalization of the uranyl ion, 

[UVIO2]
2+. 

 

While several generalized reviews of the chemistry of the uranyl ion have been published in 

recent years, the last review dedicated to oxo-group reactivity of the uranyl cation was published in 

2010.10,22-24 This current review therefore focuses on the significant advances that have occurred in 

reductive functionalization of the uranyl ion since 2010, including reductive borylation and 

alumination, metalation with d-block and f-block metals, and substitution of the oxo-functionalized 

groups coordinated to uranyl(V) complexes by Group 1 and d-block metals, stannyl, silyl and alkyl 

groups. Emphasis is placed on the synthesis and reactivity of these compounds. Discussions of the 

more complex physical properties of these compounds such as magnetism and gas-phase uranyl-oxo 

reactivity25,26 are beyond the scope of this review. There have also been numerous reports of the 

coordination chemistry of newly designed ligands with the uranyl ion, and unless those complexes 

possess activated/functionalized U–Oyl groups, they are beyond the scope of this review. We also 

note recent developments in the computational chemistry of the actinides, which possess complex 

electronic structures and are difficult to model effectively; interested readers are referred to recent 

contributions from Dolg27 and Kaltsoyannis,28 and we will not cover these issues further in this 

review. For completeness we include a section on functionalized uranyl(VI) complexes for 

comparison, excluding hydrogen-bonded and halogen-bonded uranyl complexes. We use the term 

“thermal” to represent any non-photochemical means of generating a uranyl(V) or U(IV) dioxo 

species. This review is therefore divided into sections that cover: oxo-functionalization reactions of 

uranyl(VI) complexes that occur without reduction; one-electron uranyl(VI)uranyl(V) reduction 

reactions and further reactions of these that do not involve uranium redox; two-electron reduction and 
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sequential uranyl(VI)U(IV) dioxo processes; a survey of the solid-state structures and OUO 

vibrational stretching frequencies of [UVIO2]
2+, [UVO2]

+ and [UIVO2] complexes reported since 2010; 

and photochemical reactions of uranyl(VI) complexes that involve uranyl(V) intermediates. 

 

2. [UVIO2]2+ OXO FUNCTIONALIZATION WITHOUT REDUCTION 

The poor Lewis basicity of the uranyl(VI) oxo groups means that their functionalization is 

considerably rarer than that of the UV or UIV analogues. Current examples are limited to examples of 

Lewis adduct formation with the highly electropositive cations Li+ or K+ such as UVI–Oyl–Li+ adduct 

formation in [Li(py)2][U
VIO2{N(SiMe3)2}3] (1) from 1 equiv. of [UVIO2{N(SiMe3)2}2(py)2] (2-py) 

and LiN(SiMe3)2;
29 [Li(dme)1.5]2[U

VIO2(CH2SiMe3)4] (3) from [UVIO2Cl2(THF)2] (4-THF) and 4 

equiv. of Li(CH2SiMe3) in the synthesis of a rare UVIO2
2+-alkyl “-ate” complex;30 

[Li(THF)]2[U
VIO2{N(SiMe3)2}2(tmtaa)] (5; tmtaa = dibenzotetramethyl-tetraaz[14]annulene) and 

[Li(THF)3][Li(THF)2][(U
VIO2Cl2)2(tmtaa)] (6) from Li2(tmtaa) and [UVIO2{N(SiMe3)2}2(THF)2] (2-

THF),31 and Li2(tmtaa) and 2 equiv. of 4-THF,32 respectively, to target the isolation of the as-yet 

unseen “cis-uranyl”; [Li(THF)(TMEDA)][UVIO2(NCtBu2)3] (7) and 

[Li(THF)(OEt2)]2[U
VIO2(NCtBuPh)4] (8) from 4-THF and 6 equiv. of LiNCtBu2 or 8 equiv. of 

LiNCtBuPh in THF, respectively, as the first examples of uranyl ketimide complexes (Figure 1).33 

Further, Li+-functionalization has also been seen in [Li(THF)3][U
VIO2{N(HSiMe3)(

tBu)}3] (9);34 in 

the uranyl(VI) Pacman complex, [UVIO2(S)(HLiLMe)] (S = THF (10-THF), py (10-py)), formed by 

treating [UVIO2(S)(H2L
Me)] (S = THF (11-THF), py (11-py)) with 1 equiv. of LiR (R = H, NH2, N

iPr2, 

N(SiMe3)2, CPh3, C5H5; H4L
Me = a Pacman-shaped macrocyclic Schiff-base ligand with methyl 

substituents on the meso-carbon atoms and a dimethylphenylene hinge);35
  and in 

[Li(MeIm)][UVIO2(Ar2nacnac)(κ1-C-C4H5N2)2] (12; MeIm = 1-methylimidazole, Ar2nacnac = 

ArNC(Me)CHC(Me)NAr, Ar = 2,6-iPr2C6H3), which was synthesized by treating 0.5 equiv. of 

[UVIO2Cl(Ar2nacnac)]2 (13) with 2 equiv. of 2-lithio-1-methylimidazole in toluene/THF. Compound 

12 features imidazole coordination to the UVI center through the central carbon atoms rather than the 
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flanking nitrogen atoms (Figure 1); the donor atom can be switched from the imidazole carbon to the 

nitrogen atoms by treatment of 12 with MCl2 (M = Fe, Co), affording 

[MCl(MeIm)][UVIO2(Ar2nacnac)(κ1-N-C4H5N2)2] (M = Fe (14), Co (15)).36  

 

Figure 1. Examples of Li-functionalized [UVIO2]
2+ complexes.29-36

  

Adducts between K+ and uranyl(VI), i.e. UVI-Oyl--K
+ have also been reported in an effort to 

further manipulate the bonding and reactivity of the uranyl dication. Starting from 4-THF, 6 equiv. 

of the fluorinated diarylamide KNPhFpy (PhF = C6F5) or 8 equiv. of [KNArFPh(THF)0.5] (ArF = C6H3-

3,5-(CF3)2) reacts with 4 in THF to produce [{K(THF)3}{UVIO2(NPhFpy)3}]n (16) and [K(η6-
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C6H5CH3)2][U
VIO2(NArFPh)4] (17), respectively (Figure 2). These complexes possess non-covalent 

π-K+ and F-K+ interactions in their solid-state structures, in addition to UVI-Oyl--K
+ interactions.37

 

 

Figure 2. Examples of K+-functionalized [UVIO2]
2+ complexes; ArF = C6H3-3,5-(CF3)2.

37
 

Adduct formation between K+ and uranyl(VI) has also been observed in a bis(uranyl(VI)) 

Pacman complex, [K(py)3]2[K(py)]2[(U
VIO2)2(µ-O2)(L

Me)]2 (18), which is synthesized via oxidation 

of the bis(uranyl(V)) Pacman complex, {[K(py)3][K(py)][(UVO2)2(L
Me)]}2 (19-py; see Scheme 48 in 

Section 6 for the synthesis of 19-py), using dry O2 in pyridine; both uranyl(V) ions have been oxidized 

to uranyl(VI) and a peroxide ligand bridges the two UVI centers (Scheme 2). Alternatively, 19-py 

reacts with pyridine-N-oxide to form [K(py)3]2[K(py)]2[(U
VIO2)2(µ-O)(LMe)]2 (20), in which an oxo 

ligand bridges the two UVI centers (Scheme 2).38 

Scheme 2. Oxidation of [K(py)3]2[K(py)]2[(U
VO2)2(L

Me)]2 (19-py) to [K(py)3]2[K(py)]2[(U
VIO2)2(µ-

O2)(L
Me)]2 (18) and [K(py)3]2[K(py)]2[(U

VIO2)2(µ-O)(LMe)]2 (20) using dry O2 and C5H5NO, 

respectively. The Pacman macrocycle, H4L
Me, and an abbreviated depiction of the bis(uranyl(V)) 

Pacman complex are provided at the top of the Scheme.38  
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Adduct formation between K+ and uranyl(VI) has also been observed in 

[{UVIO2(OH)K(C6H6)(H2L
Me)}2] (21), which is formed by treating [UVIO2(THF)(H2L

Me)] (11-THF) 

with KH in THF (Scheme 3). Complex 21 likely forms as a result of KOH impurities in the KH, or 

decomposition of [UVIO2(THF)(K2L
Me)] (22) by reaction with adventitious H2O. Compound 21 may 

also be formed directly by treating 11-THF with dry KOH in THF (Scheme 3). Complex 21 is a 

uranyl(VI)/uranyl(VI) dimer formed via bridging K+···[UVIO2]
2+ interactions involving the 

exogeneous oxo ligand, referred to as Oexo. Dissolving 21 into a mixture of THF and benzene followed 

by crystallization results in the formation of [UVO2(OH)K(THF)2(H2L
Me)] (23; Scheme 3). In this 

case, the K+ cation is coordinated to the endogenous oxo ligand of the uranyl(VI) ion, referred to as 

Oendo. Furthermore, coordination of K+ to THF in 23 results in cleavage of the uranyl(VI)/uranyl(VI) 

dimer, yielding a monomeric uranyl(VI) complex. The U–O bond lengths in 21 are nearly equal 

within s.u.s (1.796(2), 1.803(2) Å), whereas one of the U–O bond lengths in 23 is elongated relative 

to the other (1.788(6), 1.821(6) Å). In both cases, the elongated U–oxo bond corresponds to the oxo 

ligand coordinated to the K+ cation. Furthermore, complexes 21 and 23 give rise to asymmetric OUO 

stretching frequencies of 894 and 895 cm–1,39 respectively, which are at lower frequency relative to 

the unactivated uranyl(VI) analogue, 11-THF (908 cm–1),40 indicating a decrease of electron density 

at the uranyl ion in these complexes. 
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Scheme 3. Synthesis of [{UVIO2(OH)K(C6H6)(H2L
Me)}2] (21) either by treating 

[UVIO2(THF)(H2L
Me)] (11-THF) with KH in THF, or with dry KOH in THF. 

[UVO2(OH)K(THF)2(H2L
Me)] (23) is formed by dissolving 21 in THF/benzene. A depiction of the 

uranyl(VI) Pacman complex 11 is given on the left of the Scheme, in which Oexo and Oendo have been 

labelled (S = coordinating solvent).39  

 

 Similarly to the tris- and tetrakis-ketimide complexes [Li(THF)(TMEDA)][UVIO2(NCtBu2)3] 

(7) and [Li(THF)(OEt2)]2[U
VIO2(NCtBuPh)4] (8; see Figure 1),33 significant elongation of the U–O 

bond lengths is often observed on moving from neutral to ‘ate’ UVI complexes. For example, the UVI 

K+···[OUVIO]2+ - containing ‘ate’ complex K2[K(OEt2)2]2[U
VIO2(

dippAP)2]2 (24; dippAP = 4,6-di-tert-

butyl-2-{(2,6-diisopropylphenyl)amido}phenolate) (prepared from [UVIO2(
dippISQ)2(THF)] (25; 

dippISQ = 4,6-di-tert-butyl-2-{(2,6-diisopropylphenyl)imino}semiquinone) by reduction with 2 equiv. 

of KC8 (Scheme 4)) has U–O bond lengths of 1.824(3) and 1.834(3) Å. These are significantly longer 

than in the neutral UVI precursor 25 (1.762(4) and 1.786(3) Å), and likely arises from increased π-

donation to the uranium center, as well as the electrostatic K+···[OUVIO]2+ adduct formation.33,41
 The 

role of increased ligand donor ability in U–O bond length elongation was highlighted by removal of 

the oxo-coordinated K+ cations from 24 using 2 equiv. of 18-crown-6 to make [K(THF)2(18-c-

6)]2[U
VIO2(

dippAP)2(THF)] (26). The U–O bond lengths (1.812(2) and 1.814(2) Å) of the 

unfunctionalized uranyl(VI) unit in 26 are shorter than in the K-coordinated 24 but still longer than 
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in the neutral 25,41 comparing well with those in the tris- and tetrakis-ketimide complexes 7 and 8, 

respectively.33 

Compound 25 also reacts with either 4 equiv. of B-chlorocatecholborane (Cl-Bcat) in THF to 

afford [UIVCl4(
dippIQ)(THF)2] (27; dippIQ = 4,6-di-tert-butyl-2-{(2,6-

diisopropylphenyl)imino}quinone) and 2 equiv. of O(Bcat)2, or with 4 equiv. of pivaloyl chloride 

(ClCO(tBu)) in benzene to yield [UIVCl4(
dippIQ)2] (28) and 2 equiv. of O(CO(tBu))2.

41  

Scheme 4. Synthesis of K2[K(OEt2)2]2[U
VIO2(

dippAP)2]2 (24; dippAP = 4,6-di-tert-butyl-2-{(2,6-

diisopropylphenyl)amido}phenolate) from [UVIO2(
dippISQ)2(THF)] (25; dippISQ = 4,6-di-tert-butyl-2-

{(2,6-diisopropylphenyl)imino}semiquinone) and 2 equiv. of KC8 (dipp = 2,6-di-iso-

propylphenyl).41 

   

The contact- or separated-ion pairs, [M][UVIO2{N(SiMe3)2}3] (M = K (29), Rb (30), Cs (31)), 

[M(THF)x][U
VIO2{N(SiMe3)2}3] (M = Li, x = 2 (32) or 4 (33); M = Na, x = 2 (34) or 6 (35); M = K, 

x = 6 (36)), [M(2,2,2-crypt)][UVIO2{N(SiMe3)2}3] (M = Li (37), Na (38), K (39), Rb (40), Cs (41)) 

and [M(L)2][U
VIO2{N(SiMe3)2}3] (M = Li, L = 12-c-4 (42); M = Na, L = 15-c-5 (43); M = K, L = 

15-c-5 (44); M = Rb, L = 15-c-5 (45); M = Cs, L = 15-c-5 (46), -c- = -crown-), have also recently 

been reported, formed by the interaction of Group 1 cations with the uranyl bis(silyl)amide anion, 

[UVIO2{N(SiMe3)2}3]
–.34,42,43 It was stated that the oxophilicity of Li+ versus the heavier Group 1 

congeners is the key driver in decreasing UVI–Oyl bond lengths descending the series. However, it 

should be noted that while the UVI–Oyl bond length for the Li+ functionalized compound is 

significantly longer than the remainder in the series (1.88(1) Å), these differences are statistically 
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insignificant for the remainder of the Group 1 cations as they range from 1.810(5) Å for Na+ to 

1.804(3) Å and 1.80(3) Å for K+ and Rb+, respectively.34,42,43 

The only examples of non-group 1 functionalized [UVIO2]
2+ derive from coordination of PbII 

in the bottom N4-donor compartment of the mono(uranyl) “Pacman” complex, 11-THF or 11-py. 

This produces [UVIO(OPb)(THF)(LMe)] (47-THF), [UVIO{OPb(py)}(py)(LMe)] (47-py) or 

[UVIO{OPb(py)}(Opy)(LMe)] (48; Scheme 5) in which the UVI–O bond lengths range from 1.759(7)-

1.853(8) Å. These bond distances are similar to other UVI–Oyl functionalized complexes, with the 

exception being the longer, 1.853(8) Å bond for 48, which is consistent with its IR spectrum (ν[OUO 

asym.] = 893 cm–1). No oxo-coordination to Pb2+ was reported for the larger anthracenyl-hinged 

macrocycle, H4L
A (see Scheme 45 in Section 5 for a depiction of the H4L

A ligand).44 

Scheme 5. Synthesis of complexes 47 and 48.44
  

 

Table 1. Structural and spectroscopic data for unfunctionalized uranyl(VI) complexes reported since 

2010. With respect to the tabulated IR data, sym. refers to the symmetric OUO stretching frequency 

determined by Raman spectroscopy and asym. refers to the asymmetric OUO stretching frequency 

determined by IR spectroscopy.  soln. = solution-state. The compounds are numbered within the table 

according to how they appear in the text, and any lattice solvent molecules are not included in the 

chemical formulae. 
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Compound U–O [Å] O–X [Å] O–U–O [°] U–O–X [°] ν(OUO) 

[cm–1] 

Reference 

[UO2{N(SiMe3)2}2(py)2] (2-py) 1.779(3) – 170.5(2) – 935 (asym.) 29,45 
[UO2(THF)(H2LMe)] (11-THF) 1.787(3), 

1.770(3) 

– 177.0(2) – 908 (asym.) 39 

[FeCl(MeIm)][UO2(Ar2nacnac)(κ1-N-

C4H5N2)2] (14) 

1.777(4), 

1.780(4) 
– 177.2(2) – 911 (asym.) 36 

[CoCl(MeIm)][UO2(Ar2nacnac)(κ1-N-

C4H5N2)2] (15) 

1.767(5), 

1.771(4) 
– 178.0(2) – 911 (asym.) 36 

[UO2(dippISQ)2(THF)] (25) 1.762(4), 

1.786(3) 
– 175.4(2) – Unassigned 41 

[K(THF)2(18-c-6)]2[UO2(dippAP)2(THF)] 

(26) 

1.812(2), 

1.814(2) 
– 174.5(1) – Unassigned 41 

[Li(THF)4][UO2{N(SiMe3)2}3] (33) 1.784(4) – 179.8(2) – 969 (asym., 

soln.) 

42 

[Na(THF)6][UO2{N(SiMe3)2}3] (35) 1.791(3) – 179.8(1) – 973 (asym., 

soln.) 

42 

[K(THF)6][UO2{N(SiMe3)2}3] (36) 1.786(3) – 179.6(1) – 973 (asym., 

soln.) 

42 

[Li(2,2,2-crypt)][UO2{N(SiMe3)2}3] (37) 1.797(3) – 179.0(2) – 964 (asym.), 

809 (sym.) 

42 

[Na(2,2,2-crypt)][UO2{N(SiMe3)2}3] 

(38) 

1.772(8) – 179.8(4) – 963 (asym.), 

811 (sym.) 

42 

[K(2,2,2-crypt)][UO2{N(SiMe3)2}3] (39) 1.801(2) – 178.58(9) – 963 (asym.), 

809 (sym.) 

42 

[Rb(2,2,2-crypt)][UO2{N(SiMe3)2}3] 

(40) 

1.80(1) – 180 – 964 (asym.), 

810 (sym.) 

42 

[Cs(2,2,2-crypt)][UO2{N(SiMe3)2}3] (41) 1.80(2) – 180 – 961 (asym.), 

809 (sym.) 

42 

[Li(12-c-4)2][UO2{N(SiMe3)2}3] (42) 1.787(4) – 178.8(2) – 962 (asym.), 

808 (sym.) 

42 

[Na(15-c-5)2][UO2{N(SiMe3)2}3] (43) 1.79(2) – 178.0(8) – 960 (asym.), 

810 (sym.) 

42 

[K(15-c-5)2][UO2{N(SiMe3)2}3] (44) 1.79(1) – 180 – 964 (asym.), 

811 (sym.) 

42 

[Rb(15-c-5)2][UO2{N(SiMe3)2}3] (45) 1.788(2) – 178.7(2) – 964 (asym.), 

805 (sym.) 

42 

[Cs(15-c-5)2][UO2{N(SiMe3)2}3] (46) 1.789(3) – 178.0(2) – 964 (asym.), 

804 (sym.) 

42 

[UO2(OTf)2(AracnacH)2(OEt2)] (57) 1.750(6), 

1.746(6) 
– 176.5(3) – 940 (asym.) 46 

[UO2{N(SiMe2Ph)2}2(py)2] (69) 1.782(3) – 180.0 – Unassigned 45 

[UO2(THF)(H2LEt)] (89-THF) 1.768(3), 

1.790(3) 
– 175.1(2) – 907 (asym.) 47 

[UO2(dpaea)] (120) 1.75(3) – 176.9(7) – 913 (asym.) 48 
[UO2(SCS)(py)2] (126) 1.776(5), 

1.787(5) 
– 171.8(2) – 920 (asym.)  49 

[UO2(Mesaldien)] (150) 1.779(3), 

1.784(3), 

1.770(3), 

1.786(3) 

– 173.3(2), 

174.1(1) 

– Unassigned 50 

[UO2Cl(Lnacnac)] (152) 1.757(9), 

1.785(8) 
– 178.4(4) – Unassigned 51 

[{UO2(Lnacnac)}2(µ-O)] (153) 1.79(1), 

1.80(1), 

1.80(1), 

1.82(1), 

1.81(1), 

1.82(1), 

1.79(1), 

1.79(1) 

– 176.2(5), 

172.8(5), 

175.2(5), 

173.0(6) 

– Unassigned  51 

[UO2(salfen-tBu2)] (167) 1.778(3) – 177.1(2) – Unassigned 52  
[UO2(PhCOO)2(py)2] (176) 1.769(5) – 180.0 – Unassigned 53 
[Cp*UO2(MesPDIMe)] (181) 

 

1.799(5), 

1.790(5) 
– 168.3(2) – 876 (asym.), 

788 (sym.) 

54 

[Cp*UO2(tBu-MesPDIMe)] (182) 

 

1.77(1) – 167.4(4) – 878 (asym.), 

787 (sym.) 

54 
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[UO2Cl(L')] (205) 

 

1.766(4), 

1.763(4) 
– 175.5(2) – 920 

(asym.)a 

55 

[CoCp2][UO2Cl(L'')] (208) 

 

1.772(3), 

1.779(3) 
– 176.5(1) – Unassigned 55 

[{UO2(py)}2(LA)] (209) 1.747(4), 

1.779(4) 
–  174.0(2) – 912 (asym.) 56 

[UO2(tBuacnac)2] (220) 1.770(3) – 180.0 – 907 (asym.), 

823 (sym.) 

57 

[UO2(L')][B{3,5-(CF3)2-C6H3}4] (229) 1.753(2), 

1.762(2) 
– 173.6(1) – 952 (asym.) 58 

[UO2(OTf)(L')] (230) 1.763(3), 

1.759(3) 

 

– 176.5(1) – Unassigned 58 

[UVIO2(HOEt)(Lsalen)] (240) 1.773(8), 

1.816(9) 
– 177.6(4) – 908 (asym.), 

850 (sym.) 

59 

{[K(py)2)][UVIO2(C6H5COO)3] }n (244) 1.773(7)  179(1)  Unassigned 60 
[K(THF)5][UO2(NPhF

2)3(THF)] 

 

1.770(6), 

1.772(5) 

– 177.0(2) – Unassigned 37 

[K(THF)5]2[UO2(NPhFPh)4] 

 

1.765(3) – 180.0(2) – Unassigned 37 

[K(18-c-6)(dme)]2[UO2(NArFPh)4] 1.789(4), 

1.792(4) 

– 178.9(2) – Unassigned 37 

[UO2(DOPOq)2] 

 

1.765(4), 

1.768(5) 

– 179.9(2) – 937 (asym.), 

843 (sym.) 

61 

[UO2Cl2(HN4)] 

 

1.776(5), 

1.785(5) 

– 164.1(3) – 813 (sym.) 62 

[UO2Cl2(MeN4)] 

 

1.779(6) – 168.2(3) – 815 (sym.) 62 

[UO2(OTf)2(HN4)] 1.759(6), 

1.781(6) 

– 162.8(3) – 833 (sym.) 62 

[UO2(OTf)(THF)(MeN4)][OTf] 1.76(1), 

1.77(1) 

– 161.7(5) – 831 (sym.) 62 

 [{UO{OGe(THF)}(THF)}(LA)] 1.757(2), 

1.762(2) 
– 175.2(1) – 925 (asym.), 

928/910 

(soln.) 

44 

 [{UO{OSn(THF)}(THF)}(LA)] 1.781(3), 

1.782(3) 
– 175.6(2) – 921 (asym.), 

927/911 

(soln.) 

44 

[{UO{OPb(THF)}(THF)}(LA)] 1.761(4), 

1.764(4), 

1.767(4), 

1.780(4) 

– 174.6(2), 

175.1(2) 

– 916 (asym.), 

905 (soln.) 

44 

 [{UO{OPb(THF)}(Opy)}(LA)] 1.779(7), 

1.787(7) 
– 178.5(2) – Unassigned 44 

 [{UO{OPb(py)}(Opy)}(LA)] 1.776(4), 

1.779(4) 
– 178.8(1) – 902 (asym.) 44 

[UO2(tmtaaH){N(SiMe3)2}(THF)] 

 

1.787(5), 

1.789(4) 

– 174.0(2) – 805 (sym.) 31 

[UO2(tmtaaH)2] 1.752(7) – 180 – 805 (sym.) 31 
[UO2(LtBu)] 

 

1.778(2), 

1.790(2) 

– 175.83(9) – Unassigned 63 

[UO2(Lnap)] 

 

1.789(3), 

1.780(3) 

– 175.9(1) – Unassigned 63 

[UO2(Lm)] 

 

1.786(5), 

1.774(6) 

– 180 – Unassigned 64 

[Li(12-c-4)2][UO2{N(HSiMe2)(tBu)}3] 1.787(6) – 179.2(5) – Unassigned 34 
[UO2(tBu-bipy){N(HSiMe2)(tBu)}2] 1.748(5), 

1.803(5) 

– 175.8(2) – Unassigned 34 

[UO2(BIPMTMS)(DMAP)2] 1.794(2), 

1.785(2) 

– 167.2(1) – 860 (asym.) 65 

[UO2(Htrensal)] 1.783(3), 

1.787(3) 

– 173.5(1) –  Unassigned 66 

[{UO2(trensal)}2Fe(py)2] 1.789(2), 

1.785(2) 

– 175.52(8) – Unassigned 66 

[UO2(dpaea)(OH2)]  1.777(4), 

1.780(4) 

– 170.7(2) – Unassigned 48 

[UO2(SCHS)(OTf)(OEt2)] 1.759(8), 

1.764(8) 

– 177.8(4) – 929 (asym.) 49 

[UO2(SCHS)2] 1.767(2), 

1.769(2) 

– 178.8(1) – 916 (asym.) 49 
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Table Footnotes: a reassigned or reclassified as unassigned in the light of more recent information on this and related complexes since the original 

publication appeared. The compounds are numbered within Table 1 according to how they appear in the text, and any lattice solvent molecules are not 
included in the chemical formulae. 

 

Table 2. Structural and spectroscopic data for functionalized uranyl(VI) complexes reported since 

2010. With respect to the tabulated IR data, sym. refers to the symmetric OUO stretching frequency 

determined by Raman spectroscopy and asym. refers to the asymmetric OUO stretching frequency 

determined by IR spectroscopy. soln. = solution-state; the compounds are numbered within the Table 

according to how they appear in the text, and any lattice solvent molecules are not included in the 

chemical formulae. 

 

[UO2Cl2(DPPFO2)] 1.764(4), 

1.760(4) 

– 176.9(2) – 916 (asym.) 67 

[UO2(dipytolyl)2(THF)] 1.765(5), 

1.768(5), 

1.758(5), 

1.755(4) 

– 170.9(2), 

177.4(2) 

–  963 (asym., 

DMAP 

adduct) 

68 

[UO2(dipyanis)2(THF)] 1.759(4), 

1.764(4), 

1.762(4), 

1.762(4) 

– 176.8(2), 

170.5(2) 

– 963 (asym., 

DMAP 

adduct) 

68 

[UO2(dipyFc)2(THF)] 1.773(3) – 177.0(2) – 963 (asym., 

DMAP 

adduct) 

68 

[UO2(dipyMes)2(DMAP)] 1.776(4), 

1.764(4) 

– 176.9(2) – 963 (asym.) 68 

[UO2(OTf)2(dippIQ)(THF)] 1.745(5) – 179.1(2) – Unassigned 41 
[UO2Cl(dippISQ)(dippIQ)] 1.757(3), 

1.758(3) 

– 175.1(1) –  Unassigned 41 
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Compound U–O [Å] O–X [Å] O–U–O [°] U–O–X [°] ν(OUO) 

[cm–1] 

Reference 

[Li(py)2][UO2{N(SiMe3)2}3] (1) 

 

1.81(1), 

1.88(1) 

1.83(3)  178.2(5) 169(2) 935 (asym.), 

969 (asym., 

soln.) 799 

(sym.) 

29,42  

[Li(dme)1.5)]2[UO2(CH2SiMe3)4] (3) 1.885(4) 1.87(1)  180 141.3(4) Unassigned 30 
[Li(THF)]2[UO2{N(SiMe3)2}(tmtaa)] (5) 1.80(2), 

1.77(2) 

1.95(5)  175.9(9) 132(2)  Unassigned 31 

[Li(THF)3][Li(THF)2][(UO2Cl2)2(tmtaa)] 

(6) 

1.764(6), 

1.792(6), 

1.776(5), 

1.786(6) 

1.88(2), 

1.93(2) 

176.8(3), 

178.0(3),  

168.9(6), 

171.8(6) 

Unassigned 32 

[Li(THF)](TMEDA)][UO2(N=CtBu2)3] 

(7)  

1.804(5), 

1.830(5) 

1.85(1) 

 

179.4(2) 172.2(5) Unassigned 33 

[Li(THF)(OEt2)]2[UO2(N=CtBuPh)4] (8) 1.838(4), 

1.822(4) 

1.97(1), 

1.94(1) 

180.0 106.2(4), 

107.7(4) 

Unassigned 33 

[Li(THF)3][UO2{N(HSiMe3)(tBu)}3] (9) 1.785(4), 

1.853(5) 

1.88(1) 179.7(2) 174.21(6) Unassigned 34 

[UO2(THF){(THF)LiHLMe}] (10-THF) 1.794(3), 

1.767(3) 

2.06(1)  176.1(2) 120.7(3) 899 (asym.) 35 

[Li(MeIm)][UO2(Ar2nacnac)(κ1-C-

C4H5N2)2] (12) 

1.778(4), 

1.788(4) 

2.19(1)  176.1(2) 108.2(4) 886 (asym.), 

806 (sym.) 

36 

{[K(THF)3][UO2(NPhFpy)3]}n (16) 

 

1.769(7), 

1.775(7), 

1.779(7), 

1.783(7) 

2.707(7), 

2.716(7), 

2.738(7), 

2.693(8) 

178.0(4), 

178.4(4) 

157.1(4), 

176.1(4) 

Unassigned 37 

[K(η6-C6H5CH3)2]2[UO2(NArFPh)4] (17) 

 

1.802(2), 

1.806(2) 

2.589(2), 

2.615(3) 

177.8(1) 139.3(1), 

149.5(1) 

Unassigned 37 

[K(py)3]2[K(py)]2[(UO2)2(µ-O2)(LMe)] 

(18) 

1.788(6), 

1.781(6), 

1.787(6), 

1.784(5) 

2.884(7), 

2.642(6), 

2.722(6), 

3.325(6)  

176.0(3), 

176.1(3) 

107.8(3), 

174.0(3), 

122.7(3), 

165.3(3) 

924 (asym.) 38 

[K(py)3]2[K(py)]2[(UO2)2(µ-O)(LMe)] (20) 1.817(7), 

1.803(6), 

1.786(6), 

1.798(7) 

3.079(8), 

3.283(8), 

2.951(7), 

2.699(6), 

2.583(6) 

177.5(3), 

176.5(3) 

101.5(3), 

99.1(3), 

176.1(3), 

124.3(3), 

162.7(3) 

Unassigned 38 

[{UO2(OH)K(C6H6)(H2LMe)}2] (21) 1.796(2), 

1.803(2) 

2.813(2), 

2.838(2)  

179.16(7) 108.19(7), 

123.01(8) 

894 (asym.) 39 

[UO2(OH)K(THF)2(H2LMe)] (23) 1.788(6), 

1.821(6) 

3.194(7) 178.5(3) 100.9(2) 895 (asym.) 39 

K2[K(OEt2)2]2[UO2(dippAP)2]2 (24) 1.824(3), 

1.834(3) 

2.701(3), 

2.741(3), 

2.688(3) 

172.2(1) 139.3(1), 

111.4(1), 

129.1(1) 

Unassigned 41 

[K(THF)3][UO2{N(SiMe3)2}3] (29) 1.776(3), 

1.804(3) 

2.669(3) 179.4(2) 174.0(2) 940 (asym.), 

799 (sym.), 

973 (soln.) 

42 

[Rb][(UO2{N(SiMe3)2}3] (30) 1.80(3) 2.74(3) 180.0 159.6(3) 940 (asym.), 

804 (sym.), 

973 (soln.) 

42 

[Cs][UO2{N(SiMe3)2}3] (31) 1.79(1) 2.93(1) 180.0 155.0(2) 941 (asym.), 

804 (sym.), 

971 (soln.) 

42 

[Li(THF)2][UO2{N(SiMe3)2}3] (32) 1.786(4), 

1.841(4)34 

1.89(1)34 179.2(1)34 166.5(4)34 943 (asym.), 

798 (sym.), 

969 (soln.)42 

34,42 

[Na(THF)2][UO2{N(SiMe3)2}3] (34) 

 

1.781(5), 

1.810(5)42 

 

2.201(6)42 179.3(2)42 161.7(2)42 938 

(asym.),42 

928 

(asym.),43 

973 ( 

soln.),42 795 

(sym.),42 

805 (sym.)43  

42,43  

[{UO(OPb)(THF)}(LMe)] (47-THF) 1.78(1), 

1.817(9) 

2.5 176.5(4) 137.8(4) 896 (asym.), 

898 (soln.) 

44 

[{UO{OPb(py)}(py)}(LMe)] (47-py) 1.77(1) 2.91(1) 175.3(6) 149.5(6) 908 (asym.), 

895 (soln) 

44 
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The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X = oxo-

functionalizing unit) determined by single crystal X-ray diffraction, and characteristic spectroscopic 

data (OUO vibrational stretching frequency) determined by FTIR or Raman spectroscopies for 

unfunctionalized and functionalized uranyl(VI) complexes reported since 2010 are provided in Tables 

1 and 2, respectively, and their trends are discussed in more detail in Section 7 (vide infra). Elongated 

U–O bond lengths in uranyl(VI) complexes (i.e. greater than 1.83 Å) may be accessible when 

employing strong equatorial σ-donors (i.e. silylamides, alkyl, ketimides, amides and other O-donor 

ligands), providing a “push” by way of the equatorial ligands, and a “pull” of UVI–Oyl through Lewis 

adduct formation, and appears primarily to be an electronic effect.63,64
 While deviations from linearity 

of the OUO unit are scarce across many of these compounds, bond lengths vary considerably and are 

dependent on equatorial ligand coordination, with steric forces and crystal packing effects appearing 

to have little structural influence. 

 

3. UVI
UV REDUCTIVE FUNCTIONALIZATION 

The combination of the strongly electron donating β-ketoiminate ligand, Aracnac 

(Aracnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-tBu2C6H3), and single oxo-group coordination by 

the Lewis acidic borane B(C6F5)3 resulted in the activation of the uranyl(VI) ion towards 

reductive silylation, providing both uranyl(V) and uranium(IV) dioxo products (see Section 

6, vide infra). To expand the scope of this borane-mediated silylation, dibenzoylmethanate 

(dbm; OC(Ph)CHC(Ph)O) was used as an equatorially coordinating ligand; 

[UVIO2(dbm)2(THF)] (49) was prepared by treating [UVIO2Cl2(THF)2] (4-THF) with 2 equiv. 

of Na[dbm]. When 49 was treated with 1 equiv. of R3SiH (R = Et, Ph) and 1 equiv. of B(C6F5)3, 

the complexes [UV{OB(C6F5)3}(OSiR3)(dbm)2(THF)] were obtained (R = Et (50), Ph (51); 

Scheme 6). Complexes 50 and 51 are products of UVI
UV reductive silylation, in which one 

[{UO{OPb(py)}(Opy)}(LMe)] (48) 1.759(7), 

1.853(8) 

2.612(8) 177.5(3) 121.3(3) 893 (asym.) 44 
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oxo ligand has been converted into a siloxy ligand and the other is coordinated to the borane. 

The U–O bond lengths are significantly elongated compared to those of uranyl(VI) complexes, 

with U–OB bond lengths of 1.960(2) and 1.952(2) Å and U–OSi bond lengths of 2.011(2) and 

2.024(2) Å for 50 and 51, respectively;the uranyl(V) units also remain linear with OB–U–OSi 

bond angles of 178.43(8) and 175.06(8)° for 50 and 51, respectively. The yields of 50 and 51 

are higher when 0.25 equiv. of THF are added to the crystallization solutions, and THF-free 

50 may be isolated in the absence of excess THF, affording [UV{κ2-O,F-

OB(C6F5)3}(OSiEt3)(dbm)2] (52). Complex 52 possesses a short U···Fortho intramolecular 

contact with one C6F5 ring, with considerably elongated U–OB and U–OSi bond lengths of 

1.915(2) and 1.981(3) Å, respectively, and retains a linear OB–U–OSi angle of 169.3(1)°.69 

Scheme 6. Borane-assisted UVI
UV reductive silylation of a dibenzoylmethanate-coordinated 

uranyl(VI) complex, [UVIO2(dbm)2(THF)] (49).69  

 

Alternatively, 49 reacts with 2 equiv. of Ph3SiOTf in the absence of a borane activator, 

forming [UV(OSiPh3)2(dbm)2(OTf)] (53; Scheme 7), which possesses two siloxy ligands trans-

coordinated to the UV center, with an O–U–O bond angle of 178.81(8)° and U–O bond lengths of 

2.005(2) and 2.018(2) Å.70  

Scheme 7. UVI
UV reductive silylation of [UVIO2(dbm)2(THF)] (49) via double silylation of the 

uranyl oxo ligands, forming [UV(OSiPh3)2(dbm)2(OTf)] (53).70  
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A similar result is achieved if the uranyl(VI) bis(β-ketoiminate) complex, [UVIO2(
Aracnac)2] 

(54), is treated with two equiv. of Ph3SiOTf in CH2Cl2, in which UVI
UV reductive silylation is 

achieved, yielding [UV(OSiPh3)2(
Aracnac)2][OTf] (55; Scheme 8).70 Compound 54 also reacts with 

excess Me3SiI to afford [UV(OSiMe3)2I2(
Aracnac)] (56) and ArNC(Ph)CHC(Ph)OSiMe3 

(AracnacSiMe3) and 0.5 equiv. of I2 as reaction by-products, or with excess Me3SiX to yield 

[UVIO2X2(OEt2)n(
AracnacH)2] (X = OTf, n = 1 (57); X = Cl, n = 0 (58); Scheme 8).46 Both oxo ligands 

in 55 and 56 have been converted into siloxy ligands, and the U–O bond lengths range from 1.986(5)-

2.044(2) Å46,70 and are indicative of UVI
UV reduction, whereas the equivalent metrics of 1.750(6) 

and 1.746(6) Å in 57 indicated that no reduction of the UVI center had occurred.46 The identity of the 

reducing agent in the formation of 53 and 55 is not immediately obvious, since 2 equiv. of Ph3SiOTf 

are required but only 1 equiv. of [OTf]– is incorporated into the final product, but is thought that 1 

equiv. of either the dbm or Aracnac ligand undergoes a one-electron oxidation, yielding a ligand-based 

radical which then reacts to abstract an H-atom from solvent.70 This hypothesis is based on the 

observation of unreacted Ph3SiOTf and Hdbm in the 1H NMR spectrum recorded during the formation 

of 53. On the other hand, the reducing agent in the formation of 56 is hypothesized to be I− which 

forms I2 as a reaction by-product. The formation of I2 in this reaction has been experimentally verified 

by adding PPh3 into the reaction mixture, forming Ph3PI2. The UVI
UV reduction is facilitated by a 

decrease in the uranyl reduction potential upon Me3Si+ coordination to the uranyl oxo groups (in a 

similar fashion to the effects of coordinating the Lewis acid B(C6F5)3 to uranyl), as well as the 

difference in Si–I and Si–O bond dissociation energies.46  

Scheme 8. UVI
UV reductive silylation of both uranyl oxo ligands in [UVIO2(

Aracnac)2] (54) using 

either 2 equiv. of Ph3SiOTf or excess Me3SiI, providing [UV(OSiPh3)2(
Aracnac)2][OTf] (55) and 
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[UV(OSiMe3)2I2(
Aracnac)] (56). Alternatively, 54 reacts with excess Me3SiX (X = OTf, Cl) to yield 

[UVIO2X2(OEt2)n(
AracnacH)2] (X = OTf, n = 1 (57); X = Cl, n = 0 (58)).46,70 

 

The exploitation of the Pacman ligand framework in uranyl chemistry has led to a wide variety 

of new reactions that enable the controlled reductive functionalization of the uranyl dication. While 

treating the uranyl(VI) Pacman complex, [UVIO2(S)(H2L
Me)] (S = THF (11-THF), py (11-py)), with 

1 equiv. of LiN(SiMe3)2 results in the formation of [UVIO2(S)(LiHLMe)] (S = THF (10-THF), py (10-

py); see Figure 1 in Section 2), the reaction of 11-THF or 11-py with 2 equiv. of a LiR base (R = 

NiPr2, C5H5, CPh3, NH2, H) results in UVI
UV reduction and formation of [UVO(OLi)(S)(LiHLMe)] 

(S = THF (59-THF), py (59-py); Scheme 9), in which one of the pyrrole groups in the bottom N4-

donor pocket and the exo-oxo ligand have been metallated. Furthermore, treating 11-THF or 11-py 

with 3 equiv. of LiN(SiMe3)2 in pyridine yields [UVO(OLi)(py)(Li2L
Me)] (60), which is the product 

of UVI
UV reduction and metallation of both pyrrole groups and the exo-oxo ligand; further treating 

11-THF or 11-py with 4 equiv. of LiN(SiMe3)2 in THF provides 

Li[UVO{OLiN(SiMe3)2}(THF)(Li2L
Me)] (61; Scheme 9), in which UVI

UV reduction has been 

achieved, both pyrrole groups in the bottom N4-donor pocket have been metallated and the exo-oxo 

ligand has been functionalized with LiN(SiMe3)2. In this structure a Li+ cation is present to balance 

the charge (Scheme 9). Performing the 3 equiv. reaction in THF results in the formation of a mixture 

of paramagnetic species. Complexes 59-py, 60 and 61 crystallize as 
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[{UVO{OLi(py)3}(py)}{(py)LiHLMe}] (62-py), [{UVO[OLi(py)3](py)}({(py)Li}2L
Me)] (63-py) and 

[(UVO{OLiN(SiMe3)2(THF)})({(THF)Li}3L
Me)] (64-THF), respectively, which possess U–O bond 

lengths of 1.834(4) and 1.879(5) Å, 1.894(2) and 1.859(2) Å, and 1.850(2) and 1.921(2) Å, 

respectively. These values are in the range expected for uranyl(V) (see Tables 3, 4 and 6 and Section 

7).35  

Scheme 9. The uranyl(VI) pacman complex, [UVIO2(S)(H2L
Me)] (S = THF (11-THF), py (11-py)), 

reacts with 1 equiv. of LiN(SiMe3)2 or 2 equiv. of LiR (R = NiPr2, C5H5, CPh3, NH2, H) to provide 

[UVIO2(S)(LiHLMe)] (S = THF (10-THF), py (10-py)) and [UVO(OLi)(S)(LiHLMe)] (S = THF (59-

THF), py (59-py)), respectively. Alternatively, 11-THF or 11-py react with 3 equiv. of LiN(SiMe3)2 

in pyridine to provide [UVO(OLi)(py)(Li2L
Me)] (60), or 4 equiv. of LiN(SiMe3)2 in THF to afford 

Li[UVO{OLiN(SiMe3)2}(THF)(Li2L
Me)] (61).35   

    

 When 11-THF or 11-py are reacted with 2 equiv. of the weakly reducing silylamide 

LiN(SiMe3)2, both diamagnetic and paramagnetic products are observed by 1H NMR spectroscopy, 

with complex 60 as the paramagnetic component. However, the addition of dihydroanthracene (DHA) 
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to the reaction mixture results in the sole formation of 59. This divergent reactivity relative to the 

other LiR bases stems from the presence of two different operative mechanisms during UVI
UV 

reduction and metallation. The LiR bases (R = NiPr2, CPh3, C5H5, NH2, H) act as simple reductants 

with release of a radical (R•), which is quenched by the Pacman ligand through H-atom abstraction 

(as determined by 2H NMR spectroscopy and incorporation of deuterium into the Pacman ligand). 

Alternatively, in the case of LiN(SiMe3)2, an H-atom abstraction mechanism by the uranyl complex 

is invoked, requiring the presence of the H-atom donor DHA for clean reactivity. However, it is 

unknown whether a U=O group or a pyrrolyl radical is responsible for C–H bond cleavage (Scheme 

10); DFT calculations were unable to distinguish between the two mechanisms. Treatment of 11-

THF or 11-py with 2 equiv. of either LiNH2 or LiH also forms a mixture of 60, 10 and unreacted 11; 

heating this mixture drives the reaction towards 59. Overall, this reactivity suggests that endogenous 

bonding of a lithium cation to the uranyl oxo group facilitates reduction chemistry.35  

Scheme 10. Two different mechanisms are operative for the synthesis of 60. The LiR reactant in Path 

A acts as a reductant, whereas the LiR reactant in Path B initially acts as a base, deprotonating the 

second pyrrole group in the bottom N4-donor pocket. At that point, C–H bond cleavage in weak C–H 

bond substrates occurs either by the U=O group or a pyrrolyl radical, generating 60.35  
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Treating 59-py with 2 equiv. of HCl provides the uranyl(V) hydroxide 

[UVO(OH)(py)(H2L
Me)] (65); 59-py can be regenerated by treating 65 with 2 equiv. of LiN(SiMe3)2 

(Scheme 11). While 65 was not crystallographically characterized, its identity was verified by NMR 

and IR spectroscopy; an asymmetric OUO stretch located at 765 cm–1 in the corresponding IR 

spectrum confirms the presence of a UV center. Complex 11-py may be regenerated from 65 by 

treatment with either Ph3CCl, forming 0.5 equiv. of Gomberg’s dimer, 11-py and HCl, or by treatment 

with TEMPO, forming 11-py by H-atom abstraction (Scheme 11).71 

Scheme 11. [UVIO2(py)(H2L
Me)] (11-py) reacts with 2 equiv. of LiNiPr2 to provide 

[UVO{OLi(py)2}(py)(HLiLMe)] (59-py). 59-py reacts with 2 equiv. of HCl to yield 

[UVO(OH)(py)(H2L
Me)] (65), which reacts with 2 equiv. of LiN(SiMe3)2, 1 equiv. of Ph3CCl/TEMPO 

or 1 equiv. of Cl-SiR3 to regenerate 59-py, regenerate 11-py or form [UVO(OSiR3)(py)(H2L
Me)] (SiR3 

= SiMe3 (66), SiMe2
tBu (67), SiPh2H (68)), respectively.71  
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 Complex 65 also reacts with chorosilanes, ClSiR3 (SiR3 = SiMe3, SiMe2
tBu, SiPh2H), to 

provide the uranyl(V) mono oxo-silylated products, [UVO(OSiR3)(py)(H2L
Me)] (SiR3 = SiMe3 (66), 

SiMe2
tBu (67), SiPh2H (68); Scheme 11). While NMR and IR spectra were sufficient to determine 

the identity of complexes 66-68, the solid-state structures of 66 and 67 were also obtained to verify 

their assignments, although due to issues with multiple twinning the structure of 67 only supports 

connectivity. The U–Oexo and U–Oendo bond lengths in 66 are 2.034(4) and 1.854(4) Å, respectively, 

and lie in the expected range for uranyl(V) complexes (see Tables 3, 4 and 6 and Section 7).71  

[UVIO2(py)(H2L
Me)] (11-py) also reacts with an additional 1.5 equiv. of 

[UVIO2{N(SiR3)2}2(py)2] (SiR3 = SiMe3 (2-py), SiMe2Ph (69)) to provide the butterfly-shaped 

complexes [{UVO(OSiR3)}2(L
Me)] (SiR3 = SiMe3 (70), SiMe2Ph (71); Scheme 12a). Alternatively, 

H4L
Me reacts with 2.5 equiv. of 2-py to generate 70, although in only 37 % yield. Complexes 70 and 

71 are the products of UVI
UV reduction of both U centers that have been installed into the [LMe]4– 

Pacman ligand and silylation of both exo-oxo ligands. Compounds 70 and 71 are butterfly-shaped 

bis(uranyl(V)) dimers and display an unusual structural motif for high-valent uranium in which one 

of the four uranyl(V) oxo ligands has migrated from a trans-coordination position to a cis-

coordination position, giving rise to a UV
2O2 core. The U–O bond lengths range from 2.034(4)-

2.099(4) Å and 2.030(5)-2.087(5) Å in 70 and 71, respectively, and the asymmetric OUO stretching 

frequency is found at 862 and 802 cm–1 for 70 and between 890-850 cm–1 for 71, which are indicative 
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of uranyl(V). Furthermore, the U···U distance is very short in complexes 70 and 71, which is 

3.3557(5) and 3.3562(4) Å, respectively.45 

Scheme 12. (a) Synthesis of [{UVO(OSiR3)}2(L
Me)] (SiR3 = SiMe3 (70), SiMe2Ph (71)) by heating 

[UVIO2(py)(H2L
Me)] (11-py) with 1.5 equiv. of [UVIO2{N(SiR3)2}2(py)2] in pyridine, alongside 30% 

of an aggregate mixture with empirical formula [(UO2)2.5(L
Me){HN(SiR3)}]. (b) When heated 

between 20 and 70 °C, H4L
Me reacts with 2.5 equiv. of [UVIO2{N(SiR3)2}2(py)2] to afford only the 

aggregate mixture, with further heating to 120 °C providing trace amounts of 70 and 71. Alternatively, 

adding Cl-SiR3 to the aggregate mixture provides 70 and 71 in high yields. (c) Treating the aggregate 

mixture with empirical formula [(UO2)2.5(L
Me){NH(SiMe2Ph)}(py)] with Cl-SiMe3 results in the 

formation of 70 (75%) and [{UVO(OSiMe3)}{UVO(OSiMe2Ph)}(LMe)] (75; 25%), and (d) exposure 

of the aggregate mixture with empirical formula [(UO2)2.5(L
Me){NH(SiMe3)}(py)] to air results in the 

formation of [{{UVO(OSiMe3)}(UVO2)(L
Me)}UVIO2(µ-OH)2(THF)2]2 (76).45  
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 During the formation of 70 and 71, an insoluble aggregate mixture of uranyl-LMe species was 

obtained in an approximate 30% yield, and was identified as 

[UVIO2(py)2{(UVO2){UVO(OH)}(LMe)}2] (72), [{UVO(OSiR3)}{UVO(OH)}(LMe)] (73-Me/73-Ph) 

and [{UVO{OUVIO2(NHSiR3)(py)}}{UVO(OH)}(LMe)] (74-Me/74-Ph; Scheme 12a; 73-Me and 74-

Me are derived from [UVIO2{N(SiMe3)2}2(py)2] and 73-Ph and 74-Ph are derived from 

[UVIO2{N(SiMe2Ph)2}2(py)2]). If H4L
Me reacts with 2.5 equiv. of [UVIO2{N(SiR3)2}2(py)2] below 70 

°C, only the paramagnetic aggregate mixture and 4 equiv. of HN(SiR3)2 are observed by NMR 

spectroscopy. If this mixture is then heated to 120 °C, only trace amounts of 70 and 71 are produced. 

However, if the aggregate mixture is treated with Cl-SiR3, complexes 70 and 71 are obtained in good 

yields (Scheme 12b). The aggregate mixture was identified as 72, 73-Me/73-Ph, and 74-Me/74-Ph 

based on the following observations: (i) 4 equiv. of HN(SiR3)2 are produced as a by-product when 

treating H4L
Me with 2.5 equiv. of [UVIO2{N(SiR3)2}2(py)2], 2.5 equiv. of [UVIO2]

2+ are consumed per 
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equivalent of [LMe]4– and an additional equivalent of HN(SiR3)2 is produced upon treating the mixture 

of species 72, 73-Me/73-Ph, and 74-Me/74-Ph with Cl-SiR3, giving rise to an empirical formula of 

[(UO2)2.5(L
Me){NH(SiR3)}(py)] (which is supported by elemental analysis; Scheme 12b), (ii) treating 

the mixture of species 72, 73-Ph and 74-Ph with Cl-SiMe3 produced 70 (75%) and the mixed silylated 

[{UVO(OSiMe3)}{UVO(OSiMe2Ph)}(LMe)] (75; 25%), indicating that not all of the oxo groups in the 

mixture are silylated given that the silyl groups in complexes 70 and 71 are known to not rearrange 

(Scheme 12c), (iii) laser desorption ionization (LDI) mass spectrometry supported this assignment, 

and (iv) an X-ray crystal structure of the mixed-valence complex, 

[{{UVO(OSiMe3)}(UVO2)(L
Me)}UVIO2(µ-OH)2(THF)2]2 (76) was obtained following adventitious 

oxidation of the mixture of 72, 73-Me and 74-Me (Scheme 12d); mixed-valence 76 contains the 

UV
2O2 butterfly core with one exo-oxo ligand silylated and the other dimerized through the oxo 

groups as a uranyl(VI) hydroxide. The source of the silyl group in 70 and 71 can be traced back to 

the uranyl(VI) silylamide starting material and not the HN(SiMe3)2 by-product, as there is no evidence 

for the formation of 70 or the mixed-silyl complex 75 upon treating 11-py with 1.5 equiv. of 

[UVIO2{N(SiMe2Ph)2}2(py)2] in the presence of N(SiMe3)3. It is envisioned that initial one-electron 

UVI
UV reduction in 11-py occurs via U–N bond homolysis upon the addition of 1.5 equiv. of the 

uranyl silylamide starting material to 11-py, and that additional uranyl silylamide is required for 

reduction of the second U center and silylation by N–Si bond homolysis. Remarkably, complexes 70 

and 71 neither decompose upon exposure as solids to air for 48 hours nor in wet benzene solutions, 

which contrasts greatly to the known instability of uranyl(V) species towards disproportionation to 

uranyl(VI) and uranium(IV) dioxo species. Furthermore, the solution cyclic voltammagram (CV) of 

70 and 71 did not show any electrochemical oxidation processes, which was further supported by a 

lack of reactivity between 70 and 71 with I2 or [Ce(OTf)4]. The electronic structure and magnetic 

behavior of 70 and 71 have also been investigated but these results are beyond the scope of this 

review.45  
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The first example of covalent bond formation to a uranyl oxo group in the form of reductive 

silylation was reported in 2008 with the synthesis of [UVO(OSiMe2R)(THF)(M2X2L
Me)] (M = Fe, X 

= I, R = Me (77); M = Fe, X = I, R = Ph (78); M = Zn, X = I, R = Me (79); M = Zn, X = Cl, R = Me 

(80)) formed by reacting 11-THF with the silylamido base, KN(SiMe3)2, in the presence of a 

transition metal dihalide.40 Since the synthesis of complexes 77-80, the mechanism of this reaction 

has been probed and compared to alternative reactions that lead to oxo-group metalation.72 It was 

originally postulated that the Group 1 base was essential to this reaction, and that the oxo-group 

reactivity was enhanced by coordination to a Lewis acidic metal in the bottom N4-pocket of the 

Pacman ligand. When 11-THF is treated with 2 equiv. of KN(SiMe3)2 followed by 2 equiv. of ZnCl2, 

reductive silylation of the uranyl ion is observed, forming [(Me3SiOUVO)(py)(ZnCl)2(L
Me)] (81; 

Scheme 13a). In contrast, treating 11-THF with 2 equiv. of the Group 1 metal bases LiNiPr2 or KH 

followed by the addition of 2 equiv. of ZnX2 (X = Cl, I) results in reductive zincation of the uranyl 

ion, forming [{(py)X2ZnOUVO}(py){Zn(py)}(HLMe)] (X = Cl (82), I (83); Scheme 13b).40 These 

different reaction pathways were explored by deploying various zinc(II) and magnesium(II) reagents. 

Complex 11-py reacts with 2 equiv. of Mg(N'')2 (N'' = N(SiMe3)2) to afford 

[{(py)2(N'')MgOUVO}(py){Mg(py)}(HLMe)] (84), the product of UVI
UV reductive oxo-metalation 

of the uranyl and metalation of one of the two pyrroles in the bottom donor pocket of the ligand 

(Scheme 14a). One-electron reduction of the uranyl ion occurs through Mg–N bond homolysis.72  

Scheme 13. Treatment of [UVIO2(py)(H2L
Me)] (11-py) first with a Group 1 metal base 

followed by a zinc dihalide leads to: (a) UVI
UV reductive silylation, yielding 

[(Me3SiOUVO)(py)(ZnCl)2(L
Me)] (81), or (b) UVI

UV reductive metalation, providing 

[{X2(py)ZnOUVO}(py){Zn(py)}(HLMe)] (X = Cl (82), I (83)).72 
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In contrast, 11-py reacts with only one of 2 equivs. of Zn(N'')2 to afford [UVIO2(py){Zn(py)}(HLMe)] 

(85), in which reduction of the uranyl ion is not observed, and both pyrrole NH groups have been 

metallated (Scheme 14b). Furthermore, 85 does not react with MgN''2. These results indicate that 

coordination of the zinc cation to the endo-oxo group of uranyl is insufficiently activating to enable 

uranyl(VI) reduction by M–N bond homolysis, and it is likely that coordination of a more Lewis 

acidic metal dication (i.e. Mg2+) to the endo-oxo group results in enhanced activation of the uranyl 

ion, thus enabling UVI
UV reduction by M–N bond homolysis. Importantly, it was found that the 

reaction between the mixed-ligand reagent ZnCl(N'') and 11-py formed 81 in 62% yield; the 

remaining 38% was composed of 11-py, 82, and [UVIO2(py)(ZnCl)(HLMe)] (86; Scheme 15a). 

Complex 86 was also prepared from 11-py and 1 equiv. of ZnCl(N'') and was characterized by NMR 

spectroscopy (Scheme 15b).72  

Scheme 14. Treatment of [UVIO2(py)(H2L
Me)] (11-py) with: (a) 2 equiv. of MgN''2 or (b) ZnN''2 to 

provide [{(py)2N''MgOUVO}(py){Mg(py)}(HLMe)] (84) and [UVIO2(py){Zn(py)}(HLMe)] (85), 

respectively.72  

 

Scheme 15. Treatment of [UVIO2(py)(H2L)] (11-py) with: (a) 2 equiv. of ZnCl(N'') provides a mixture 

of 11-py, [UVIO2(py)(ZnCl)(HLMe)] (86), [(Me3SiOUVO)(py)(ZnCl)2(L
Me)] (81) and 

[{Cl2(py)ZnOUVO}(py){Zn(py)}(HLMe)] (82), and with (b) 1 equiv. of ZnCl(N'') provides only 86.72  
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In order for oxo-silylation to be favored over oxo-metalation, N–Si bond homolysis 

must be preferred over M–N bond homolysis (M = Zn, Mg) within an oxo-coordinated M–N–

SiR3 group. Furthermore, the silylation pathway is driven by the formation of a strong Si–O 

bond and is enhanced when the alternative O–M bond is weaker. The zinc compound 

ZnCl(N'') is well suited to both oxo group activation and silyl group delivery, as is highlighted 

by the formation of both 81, 82 and 86 when reacted with complex 11-py. However, its 

reduced Lewis acidity relative to Mg(N'')2 dictates that oxo-silylation is preferred over oxo-

metalation.72  

The uranyl(VI) Pacman complex 11-py reacts with either [Cp2TiCl(CH2)(AlMe2)] at room 

temperature or HAliBu2 at 70 °C to afford [UVO{OAlR2(py)}(H2L
Me)] (R = Me (87), iBu (88); 

Scheme 16), the product of UVI
UV reductive alumination of the uranyl ion. The U–Oexo and U–

Oendo bond lengths in complexes 87 and 88 are 1.962(3)/1.962(2) and 1.856(3)/1.855(3) Å, 

respectively, which are elongated relative to those expected for uranyl(VI) complexes, and the O–U–

O bond angles are 174.3(1) and 175.1(1)° for 87 and 88, respectively. It is likely that the reducing 

electron required in the formation of 87 and 88 is derived from either Al–C or Al–H bond homolysis. 

Subsequent reactions of complexes 87 and 88 with alkyllithium reagents and metal hydrides are 

discussed in Section 4.73  

Scheme 16. Reductive alumination of [UVIO2(py)(H2L
Me)] (11-py) using either 

[Cp2TiCl(CH2)(AlMe2)] or HAliBu2, yielding [UVO{OAlR2(py)}(H2L
Me)] (R = Me (87), iBu (88)).73  
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The reductive functionalization chemistry of 11-THF and [UVIO2(S)(H2L
Et)] (S = THF (89-

THF); H2L
Et = macrocyclic Pacman-shaped Schiff-base ligand with ethyl substituents on the meso-

carbon atoms) with common actinide precursors has also been explored, resulting in the first complex 

formed from reduction of the uranyl ion by a transuranic species (Scheme 17).47  

Scheme 17. Reductive functionalization of uranyl in [UVIO2(THF)(H2L
Me)] (11-THF) and 

[UVIO2(THF)(H2L
Et)] (89-THF) by [UIIICp3] or [NpIIICp3], providing 

[UVO(OUIVCp3)(THF)(H2L
Me)] (90), [UVO(OUIVCp3)(THF)(H2L

Et)] (91), 

[UVIO(ONpIIICp3)(THF)(H2L
Me)] (92) and [UVIO(ONpIIICp3)(THF)(H2L

Et)] (89).47  

 

Complexes 11-THF and 89-THF react with [UIIICp3] to yield oxo-functionalized 

[UVO(OUIVCp3)(THF)(H2L
Me)] (90) and [UVO(OUIVCp3)(THF)(H2L

Et)] (91; Scheme 17). Based on 

X-ray diffraction data (U–Oexo = 1.976(3)/1.986(3) Å, U–Oendo = 1.840(3)/1.844(3) Å, O–U–O = 

178.1(1)/176.9(1)⁰ for 90/91, respectively), paramagnetic shifts in the resulting 1H NMR spectra, IR 

spectra (ν[OUO asym.] = 897 and 893 cm–1, respectively) and SQUID magnetometry measurements, 
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these are best described as UIV/UV complexes formed upon UVI
UV reduction of the uranyl ion. 11-

THF and 89-THF also react with [NpIIICp3], in these cases to form [UVIO(ONpIIICp3)(THF)(H2L
Me)] 

(92) and [UVIO(ONpIIICp3)(THF)(H2L
Et)] (93; Scheme 17) in which the oxidation states are less 

clear-cut. While certain X-ray diffraction metrics for complexes 92 and 93 (U–Oexo = 

1.975(4)/1.975(7) Å, U–Oendo = 1.842(4)/1.826(7) Å, O–U–O = 178.1(2)/176.9(3)⁰ for 92/93, 

respectively), paramagnetic shifts in the 1H NMR spectra, and IR spectra (ν[OUO asym.] = 891 and 

892 cm–1, respectively) suggest UVI
UV reduction of the uranyl ion has occurred, the Np–Oexo bond 

lengths and SQUID magnetometry measurements suggest that complexes 92 and 93 are best 

described as donor-acceptor oxo-bridged NpIII/UVI compounds with only partial electron transfer 

occurring; this assignment is further corroborated by DFT calculations which also suggest an 

explanation for the unexpectedly strong paramagnetically shifted resonances in the solution NMR 

spectra of 93, as they find a anomalously high s-orbital contribution to key Np orbitals. The reactions 

of 11-THF and 89-THF with [PuIIICp3] were also investigated and, in agreement with the expected 

reducing capability of PuIII, no oxo-coordination was observed; the reactions were carried out in THF, 

so there may have been an additional competition for the Pu center by the donor solvent.47  

Uranyl(V) complexes are directly accessible from uranyl(VI) precursors. The Pacman ligand 

H4L
Me reacts with 2.5 equiv. of [Li(py)2][U

VIO2{N(SiMe3)2}3] (94) in boiling pyridine over 12 hours 

to afford the doubly lithiated UV/UV complex, [{(py)3LiOUVO}2(L
Me)] (95; Scheme 18a). Complex 

95 possesses Li-coordinated exo-oxo groups and a central diamond-shaped [UV
2O2] core in which the 

two endo-oxo atoms bridge the uranium centers in axial and equatorial positions, similarly to the 

doubly silylated bis(uranyl(V)) complexes 70 and 71 (vide supra). 95 reacts with two equivalents of 

a chlorostannane, R3SnCl, to afford doubly stannylated [{R3SnOUVO}2(L
Me)] complexes (R = nBu 

(96), Ph (97); Scheme 18b). Complexes 96 and 97 could also be prepared from the dipotassium 

analogue of 95, [{(py)2KOUVO}2(L
Me)] (98), and the respective chlorostannane. Unexpectedly, 

reactions between 95 and [TiIVCl(OiPr)3] did not afford [{(iPrO)3TiOUVO}(LMe)] but instead 

provided [{(py)3LiOUVO}(OUVOiPr)(LMe)] (99), in which one of the Li cations has been replaced by 
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an iso-propyl group (Scheme 18c). While 99 was stable as a solution in pyridine, attempts to isolate 

it on a bulk scale were unsuccessful and provided 0.5 equiv. of dilithiated 95 and the doubly 

alkoxylated complex, [(iPrOUO)2(L
Me)] (100). 100 was also obtained by treating either 95 or 99 with 

excess [TiIVCl(OiPr)3] (Scheme 18d and 18e). Attempts to prepare both 99 and 100 from 95 and iPrCl 

were unsuccessful, providing intractable mixtures, so it is a realistic possibility that exchange of the 

lithiated uranyl oxo group by the Ti-derived OiPr group has occurred.29 

Complex 11-py reacts with [Li(py)2][U
VIO2{N(SiMe3)2}3] (94) to provide the 

lithiated/silylated UV/UV complex, [{(py)3LiOUVO}(Me3SiOUVO)(LMe)] (101; Scheme 18f). 

Similarly to 95, complexes 96-101 possess a diamond-shaped [UV
2O2] core.29   

Scheme 18. (a) Synthesis of [{(py)3LiOUO}2(L
Me)] (95), (b) subsequent reactivity with stannanes to 

provide [{R3SnOUVO}2(L
Me)] (R = nBu (96), Ph (97)), and (c)/(d)/(e) TiIV reagents to yield 

[{(py)3LiOUVO}(OUVOiPr)(LMe)] (99) and [(iPrOUO)2(L
Me)] (100). (f) Synthesis of a mixed 

lithiated/silylated UV/UV bis(uranyl) Pacman complex, [{(py)3LiOUVO}(Me3SiOUVO)(LMe)] 

(101).29  
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Reduced and oxo-functionalized mixed uranyl(V)/lanthanide(III) Pacman complexes can be 

accessed for all of the rare earth cations (except Pm) using a Ln–N bond homolysis route (Scheme 

19). Treatment of 11-py with 1 equiv. of the rare-earth silylamide [LnIII{N(SiMe3)2}3] yields 

[{UVO2LnIII(py)2(L
Me)}2] (Ln = Sc (102), Y (103), Ce (104), Sm (105), Eu (106), Gd (107), Dy (108), 

Er (109), Yb (110) and Lu (111)) in which the pyrrole groups of the bottom N4-donor pocket have 

been deprotonated and coordinated to the LnIII ion (Scheme 19a). Uranyl UVI
UV reduction occurs 

upon Ln–N bond homolysis of the third silylamido ligand, which then abstracts either a proton or 

deuterium from a solvent molecule. Complexes 102-111 exist as dimers with bridging [UV
2O2] 

interactions holding the two uranyl units together, and dimerization is thought to occur subsequent to 

Ln–N bond homolysis and UVI
UV reduction, given the greater Lewis basicity of the UV oxo groups. 

Even so, this dimer is readily split by alkali metal halides which satisfy both the Lewis acid and base 

requirements of the uranyl(V) center. The addition of either LiCl or LiI to [{UVO2LnIII(py)2(L
Me)}2] 

(Ln = Y, La, Sm, Dy) provided the monomeric [(py)3LiOUO(µ-X)Ln(py)(LMe)] complexes (X = Cl, 

Ln = Y (112), La (113), Sm (114), Dy (115); X = I, Ln = Y (116), La (117), Sm (118), Dy (119)), in 
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which the exo-oxo ligand of the uranyl(V) ion is coordinated to a Li+ cation, and a halide is residing 

in a bridging position between the UV and LnIII centers (Scheme 19b).74,75 Single-electron reduction 

of the uranyl(VI) ion should also be possible if a suitable Ln–A (A = co-ligand) bond homolysis route 

is available, and indeed this has been verified through deployment of LnIII aryloxides, [Ln(OAr)3] (Ar 

= C6H2-2,6-tBu2-4-Me). While the variable-temperature SQUID magnetometry and IR, NIR and EPR 

spectroscopies on complexes 102-119 have been studied to obtain a better understanding of the 

electronic structure of these complexes and their f-electron exchange interactions,74 these 

observations are beyond the scope of this review and will not be discussed further. 

Scheme 19. Synthesis of (a) mixed uranyl(V)/lanthanide(III) Pacman complexes 102-111 by 

reduction of [UVIO2]
2+ by Ln–N bond homolysis (Ln = Sc (102),74 Y (103),75 Ce (104),74 Sm (105),75 

Eu (106), Gd (107), Dy (108), Er (109), Yb (110), Lu (111)) and (b), cleavage of the subsequently 

formed dimer with LiCl or LiI, providing complexes 112-119 (X = Cl, Ln = Y (112), Ln = La (113), 

Sm (114), Dy (115); X = I, Ln = Y (116), La (117), Sm (118), Dy (119)).74  

 

The uranyl(VI) complex, [UVIO2(dpaea)] (120), synthesized from [UVIO2(NO3)2(OH2)6] (121) 

and H2dpaea, reacts with 1 equiv. of [CoCp*2] to afford the uranyl(V) complex, 

[Cp*2Co][UVO2(dpaea)] (H2dpaea = bis(pyridyl-6-methyl-2-carboxylate)-ethylamine, 122; Scheme 

20). While this is not an example of reductive functionalization of the uranyl ion, it is a rare example 

of uranyl reduction with an outer-sphere reductant to afford a thermodynamically stable uranyl(V) 

product and is therefore noteworthy for inclusion in this review. Complex 122 possesses an O–U–O 
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bond angle of 177.0(6)° and U–O bond lengths of 1.83(1) and 1.84(1) Å, which are significantly 

elongated relative to the uranyl(VI) starting complex (1.75(3) Å), although as a separated ion pair, it 

does not precisely fit the definition of oxo-functionalised. Furthermore, the asymmetric OUO 

stretching frequency was found at 787 cm–1 in the IR spectrum of 122, which is at significantly lower 

frequency relative to uranyl(VI) 120 (913 cm–1). Remarkably, once isolated uranyl(V) 122 is stable 

with respect to ligand dissociation and disproportionation in D2O.48  

Scheme 20. [UVIO2(dpaea)] (120) reacts with [CoCp*2] to yield [Cp*2Co][UVO2(dpaea)] 

(122). The H2dpaea ligand is depicted at the top of the Scheme.48  

 

 

 Lastly, in an attempt to prepare a uranyl(VI) carbene complex by deprotonation of a 

carbene analogue bound to uranyl(VI), [UVO2Cl(BIPMH)(THF)] (BIPMH = 

HC(PPh2NSiMe3)2, 123), which was originally reported in 2003,76 was treated with sodium 

benzyl, NaCH2C6H5. However, this provided the bimetallic uranyl(VI)/uranyl(V) complex, 

[UVIO2(BIPMH)(µ-Cl)UVO2(BIPMH)] (124), along with NaCl and (C6H5CH2)2 as reaction 

by-products (Scheme 21). The slow elimination of chloride enables trapping of the uranyl(V) 

fragment by unreacted uranyl(VI). Complex 124 is formed irrespective of the number of 

equivalents of NaCH2C6H5 used for the reaction, and attempts to prepare 124 by treating 123 

with other alkali metal alkyls, amides and hydrides resulted in the formation of intractable 

mixtures. The 31P{1H} NMR spectrum of 124 contains one sharp (δ –5.2) and one broadened 

resonance (δ –129), the magnetic moment of 124 measured in benzene at 298 K is 2.59 µB, 

and the IR spectrum contains asymmetric OUO stretching frequencies at 906, 835 and 803 
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cm–1, all of which are indicative of one diamagnetic uranyl(VI) and one paramagnetic 

uranyl(V) ion being present in 124.77 This result contrasts to that reported from deployment 

of the [C(PPh2S)2]
2– dianion, in which deprotonation of CH2(PPh2S)2 with excess LiNEt2 in 

the presence of [UVIO2(OTf)2] (125) was found to be a viable strategy for the synthesis of a 

uranyl(VI) carbene (ylid) complex, [UVIO2(SCS)(py)2] (126; SCS = [C(PPh2S)2]
2–).49 

 Also formed in the reaction between 123 and NaCH2C6H5, albeit as a minor product 

(~2% yield), is the uranyl(VI)/uranyl(V)/uranyl(V) trimer, [UVIO2(BIPMH)(µ3-

Cl){UVO2(BIPMH)}2] (127; Scheme 21), in which oxo-bridging essentially generates the 

uranyl-functionalized oxo group. The 31P{1H} NMR spectrum of 127 contains a sharp signal 

at –5.2 ppm and a broad quartet at –149 ppm. Furthermore, the magnetic moment of 127 in 

benzene at 298 K is 4.01 µB, which is indicative of one uranyl(VI) and two uranyl(V) ions 

being present in 127.77  

Scheme 21. Synthesis of the mixed-valence complexes [UVIO2(BIPMH)(µ-

Cl)UVO2(BIPMH)] (124) and [UVIO2(BIPMH)(µ3-Cl){UVO2(BIPMH)}2] (127) from 

[UVIO2Cl(BIPMH)(THF)] (123) and 0.5 equiv. of sodium benzyl. The [BIPMH]– ligand is 

depicted in the bottom left hand corner of the Scheme.77  

 

 

 Complex 124 bridges the uranyl(V) oxo group and the UVI center through both oxo and 

chlorido ligands while complex 127 is trinuclear, with two bridging uranyl(V) oxo groups and 
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one bridging UVI oxo group. Furthermore, both 124 and 127 contain a chlorido ligand that is 

bridging the U cations; the chlorido ligand in 124 is bridging two metal centers whereas that 

in 127 is bridging three metal centers. The U–O bond lengths in the uranyl(VI) ion in 124 are 

1.785(4) and 1.776(4) Å, whereas those in the uranyl(V) ion are 1.932(4) and 1.843(5) Å, in 

which the longer U–O bond length corresponds to the uranyl(V) oxo that is participating in 

the CCI. The U–O bond lengths in the uranyl(VI) ion in 127 are 1.776(4) and 1.812(4) Å, 

whereas those in the uranyl(V) ions range from 1.822(4)-1.966(4) Å. Similarly to 124, the 

longer U–O bond length corresponds to the uranyl(V) oxo that is participating in the CCI. The 

O–U–O bond angles remain nearly linear in both compounds, ranging from 171.0(2)-

177.9(2)°. The U···O bond length in the uranyl(V)/uranyl(VI) dimer in 124 is 2.316(4) Å 

whereas those in 127 are 2.544(4), 2.360(4) and 2.239(4) Å, in which the longest U···O 

distance is derived from the uranyl(VI) oxo group and a UV center. This elongated distance 

could be a consequence of the decrease in Lewis basicity of the uranyl oxo ligand moving 

from UV to UVI, as well as a contraction in the U–oxo bond length in the uranyl(VI) ion, which 

combined with the geometric constraints imparted by the fused cubane core would prohibit 

close approach to another metal center. Solutions of 124 and 127 decompose upon standing 

in toluene at room temperature, producing a mixture of unidentified products.77  

 

Table 3. Structural and spectroscopic data for reductively functionalized mixed uranyl(VI)/uranyl(V) 

and uranyl(V) complexes reported since 2010 and discussed in Section 3. With respect to the tabulated 

IR data, sym. refers to the symmetric OUO stretching frequency determined by Raman spectroscopy 

and asym. refers to the asymmetric OUO stretching frequency determined by IR spectroscopy. 

Mixed [UVIO2]2+/[UVO2]+ 

Compound U–O [Å] O–X [Å] O–U–O [°] U–O–X 

[°] 

ν(OUO) 

[cm–1] 

Reference 

[{{UVO(OSiMe3)}(UVO2)(LMe)}UVIO2(

µ-OH)2(THF)2]2 (76) 
[UVIO2]2+: 
1.757(9), 

1.760(8) 

[UVO2]+: 
1.909(7), 

2.052(7), 

2.170(8), 

2.034(7), 

2.045(8), 

2.099(8) 

[UVO2]+: 
1.666(8) (X 

= Si), 

2.312(7) (X 

= UVI) 

[UVIO2]2+: 
173.8(4) 

[UVO2]+: 
174.7(3), 

173.9(3) 

[UVO2]+: 
153.5(5) 

(X = Si), 

168.8(4) 

(X = UVI) 

Unassigned 45 
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[UVIO2(BIPMH)(µ-Cl)UVO2(BIPMH)] 

(124) 
[UVIO2]2+: 

1.785(4), 

1.776(4) 

[UVO2]+: 

1.932(4), 

1.843(5) 

[UVO2]+: 

2.316(4)  
[UVIO2]2+: 

177.4(2) 

[UVO2]+: 

171.0(2) 

[UVO2]+: 

126.4(2) 
[UVIO2]2+: 

906 (asym.) 

[UVO2]+: 

835, 803 

(asym.) 

77 

[UVIO2(BIPMH)(µ3-

Cl){UVO2(BIPMH)}2] (127) 
[UVIO2]2+: 

1.776(4), 

1.812(4) 

[UVO2]+: 

1.825(4), 

1.966(4), 

1.822(4), 

1.903(4) 

[UVIO2]2+: 

2.544(4) 

[UVO2]+: 

2.239(4), 

2.360(4)  

[UVIO2]2+: 

177.9(2) 

[UVO2]+: 

175.5(2), 

173.7(2) 

[UVIO2]2+: 

127.8(2) 

[UVO2]+: 

132.4(2), 

132.5(2) 

900-802 

(asym.; 

multiple 

broad 

stretches) 

77 

[Cp*2Co][{UVIO2(salen)}{UVO2(salen)(

py)}] (143) 
[UVIO2]2+: 
1.79(1), 

1.80(1)  

[UVO2]+: 
1.82(1), 

1.93(1) 

[UVO2]+: 

2.28(1) 
[UVIO2]2+: 
173.6(5) 

[UVO2]+: 
179.0(6) 

[UVO2]+: 
163.0(6) 

Unassigned 78 

[UVO2]+ 

Compound U–O [Å] O–X [Å] O–U–O [°] U–O–X 

[°] 

ν(OUO) 

[cm–1] 

Reference 

{K2[(UVO2)2(LMe)]}n (THF solvate) (19-

THF)a 

1.867(7), 

2.077(5) 

2.598(7), 

2.753(8)  

176.4(3) 143.8(4), 

113.1(3) 

Unassigned 38 

[K(py)3]2[K(py)]2[(UVO2)2(LMe)]2
 (19-

py) a 

1.851(5), 

2.090(5), 

2.101(5), 

1.871(6) 

2.658(6), 

2.748(6), 

2.764(6)  

172.9(2), 

173.7(2)  

118.8(3), 

114.0(2), 

128.5(3) 

Unassigned 38 

[U(OB{C6F5}3)(OSiEt3)(dbm)2(THF)] 

(50) 

2.011(2) 

(U-OSi), 

1.960(2) 

(U-OB) 

1.681(2) (X 

= Si), 

1.503(4) (X 

= B) 

178.43(8) 153.5(1) 

(X = Si), 

165.8(2) 

(X = B) 

Unassigned 69 

[U(OB{C6F5}3)(OSiPh3)(dbm)2(THF)] 

(51) 

2.024(2) 

(U-OSi), 

1.952(2) 

(U-OB) 

1.665(2) (X 

= Si), 

1.525(4) (X 

= B) 

175.06(8) 164.0(1) 

(X = Si), 

172.0(2) 

(X = B) 

Unassigned 69 

[U{κ2-O,F-OB(C6F5)3}(OSiEt3)(dbm)2] 

(52) 

1.981(3) 

(U-OSi), 

1.915(2) 

(U-OB) 

1.720(3) (X 

= Si), 

1.546(5) (X 

= B) 

169.3(1) 148.7(2) 

(X = Si), 

151.6(2) 

(X = B) 

Unassigned 69 

[U(OSiPh3)2(dbm)2(OTf)] (53) 

 

 

2.005(2), 

2.018(2) 

1.669(2), 

1.668(2)  

178.81(8) 169.0(1), 

176.1(1) 

Unassigned 70 

[U(OSiPh3)2(Aracnac)2][OTf] (55) 

  

2.044(2) 1.664(2)  180.0 164.8(1) Unassigned 70 

[U(OSiMe3)2I2(Aracnac)] (56) 1.996(5), 

1.986(5) 

1.687(6), 

1.682(6) 

179.1(2) 154.9(4), 

171.4(4) 

Unassigned 46 

[{UO2(py){Li(py)3}}{(py)LiHLMe}] 

(59-py) 

1.834(4), 

1.879(5) 

1.93(1), 

1.94(2)  

174.8(2) 167.3(4), 

113.6(7) 

Unassigneda 35 

[{UO2{Li(py)3}}{{(py)Li}2LMe}] (60) 1.894(2), 

1.859(2) 

1.914(7), 

1.979(7), 

1.976(7) 

174.2(1) 169.2(3), 

123.8(2), 

123.1(2) 

704 (asym.) 35 

[{UO2{LiN(SiMe3)2(THF)}}{{(THF)Li

}3LMe}] (61) 

1.850(2), 

1.921(2) 

1.876(6), 

2.016(7), 

2.171(6), 

2.027(7) 

175.35(9) 174.0(3), 

111.7(2), 

142.8(2), 

111.8(2) 

Unassigned 35 

[UO(OSiMe3)(py)(H2LMe)] (66) 1.854(4), 

2.034(4) 

1.667(5)  176.0(2) 160.2(3) 860 (asym.) 71 

[{UO(OSiMe3)}2(LMe)] (70)a 2.034(4), 

2.099(4), 

2.085(4), 

2.040(4)  

1.666(4), 

1.665(4) 

173.4(2), 

174.9(2) 

157.7(3), 

155.1(3) 

862, 802 

(asym.) 

45 

[{UO(OSiMe2Ph)}2(LMe)] (71)a 2.030(5), 

2.081(5), 

2.087(5), 

2.039(5) 

1.665(5), 

1.664(5) 

174.4(2), 

176.7(2) 

156.1(3), 

155.5(3) 

890-850 

(asym.) 

45 

[(Me3SiOUO)(THF)(ZnCl)2(LMe)] (81-

THF) 

1.84(1), 

1.99(1) 

1.70(1) (X = 

Si); 1.96(1) 

(X = Zn) 

172.9(5) 160.2(8) 

(X = Si); 

149.6(7) 

(X = Zn) 

Unassigned 72 
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[(py)Cl2ZnOUO(py){Zn(py)}(HLMe)] 

(82) 

1.933(2), 

1.887(3) 

1.962(2), 

1.989(3)  

170.4(1) 119.5(1), 

172.9(2) 

Unassigned 72 

[(py)I2ZnOUO(THF){Zn(py)}(HLMe)] 

(83) 

1.909(3), 

1.879(3) 

1.965(3), 

1.987(3) 

173.0(1) 118.9(2), 

172.3(2) 

Unassigned 72 

[{(py)2{(Me3Si)2N}MgOUO}(py){Mg(

py)}(HLMe)] (84) 

1.85(1), 

1.87(1) 

2.04(1), 

1.97(1)  

172.6(5) 162.1(6), 

172.9(8) 

Unassigned 72 

 [UO{OAlMe2(py)}(py)(H2LMe)] (87) 1.856(3), 

1.962(3) 

1.777(3)  174.3(1) 166.2(2) 893 (asym.) 73 

 [UO{OAliBu2(py)}(THF)(H2LMe) (88) 1.855(3), 

1.962(2) 

1.785(3)  175.1(1) 167.0(2) 892 (asym.; 

py adduct) 

73 

[UO(OUCp3)(THF)(H2LMe)] (90) 1.840(3), 

1.976(3) 

2.262(3) 178.1(1) 170.7(2) 897 (asym.) 47 

[UO(OUCp3)(THF)(H2LEt)] (91) 1.844(3), 

1.986(3) 

2.245(3)  176.9(1) 171.3(1) 893 (asym.) 47 

[UO(ONpCp3)(THF)(H2LMe)] (92) 1.842(4), 

1.975(4) 

2.256(4) 178.1(2) 171.2(2) 891 (asym.) 47 

[UO(ONpCp3)(THF)(H2LEt)] (93) 1.826(7), 

1.975(7) 

2.249(7)  176.9(3) 170.5(4) 892 (asym.) 47 

[{UO{OLi(py)3}}2(LMe)] (95)a 1.877(4), 

2.111(4), 

2.100(4), 

1.883(4) 

1.87(1), 

1.93(1)  

175.1(2), 

172.7(2) 

166.8(5), 

150.2(5) 

Unassigned 29 

[{UO(OSnnBu3)}2(LMe)] (96)a 1.982(9), 

2.073(8), 

2.122(7), 

1.991(9) 

2.015(9), 

2.00(1)  

177.1(3), 

174.5(3) 

154.2(5), 

154.8(5) 

869 (asym.) 29 

[{UO(OSnPh3)}2(LMe)] (97)a 1.987(8), 

2.057(8), 

2.11(1), 

2.00(1) 

1.996(8), 

2.01(1)  

170.2(3), 

176.1(3) 

167.2(5), 

168.0(5)  

Unassigned 29 

[{UO{OLi(py)3}}{UO(OiPr)}(LMe)] 

(99)a 

2.034(2), 

2.111(2), 

2.076(2), 

1.865(2) 

1.438(4) (X 

= C); 

1.922(8) (X 

= Li) 

174.32(9), 

174.34(9) 

163.1(2) 

(X = C); 

175.2(2) 

(X = Li) 

Unassigned 29 

[{UO(OiPr)}2(LMe)] (100)a 2.013(8), 

2.105(6), 

2.081(5), 

2.011(6) 

1.48(3)*, 

1.43(1)  

174.7(3), 

174.4(2) 

155.8(2)*, 

149.5(8) 

841 (asym.) 29 

[{UO{OLi(py)3}}{UO(OSiMe3)}(LMe)] 

(101)a 

2.056(2), 

2.113(2), 

2.077(2), 

1.857(3) 

1.655(3) (X 

= Si); 

1.929(8) (X 

= Li)  

172.3(1), 

175.2(1) 

157.4(2) 

(X = Si); 

171.6(3) 

(X = Li) 

883 (asym.) 29 

[{UO2Sc(py)2(LMe)}2] (102) 1.925(2), 

1.939(2) 

2.048(2)  174.56(8) 171.5(1) Unassigned 74 

[{UO2Y(py)2(LMe)}2] (103) 1.919(4), 

1.965(3) 

2.155(4)  175.3(2) 177.3(3)  722 (asym.) 74,75 

[{UO2Ce(py)2(LMe)}2] (104) 1.895(5), 

1.924(5) 

2.253(5)  175.6(2) 173.3(3) 766 (asym.) 74 

[{UO2Sm(py)2(LMe)}2] (105) 1.890(5), 

1.941(5) 

2.238(5)  174.4(2) 174.5(3) 724 (asym.) 74,75 

[{UO2Eu(py)2(LMe)}2] (106) 1.904(2), 

1.932(2) 

2.200(2)  175.4(1) 177.0(1) 564 (asym.) 74 

[{UO2Dy(py)2(LMe)}2] (108) 1.901(4), 

1.942(4) 

2.179(4)  175.2(2) 177.5(3) 765 (asym.) 74 

[{UO2Er(py)2(LMe)}2] (109) 1.911(4), 

1.939(3) 

2.159(4)  175.6(2) 177.3(2) 770 (asym.) 74 

[{UO2Yb(py)2(LMe)}2] (110) 1.905(6), 

1.947(6) 

2.143(6)  174.3(3) 170.9(4) Unassigned 74 

[{UO2Lu(py)2(LMe)}2] (111) 1.909(3), 

1.941(3) 

2.141(3)  173.3(1) 172.7(2) Unassigned 74 

[(py)3LiOUO(µ-Cl)Sm(py)LMe] (114) 1.916(8), 

1.855(9) 

2.286(8) (X 

= Sm); 

1.90(3) (X = 

Li) 

174.9(4) 119.3(4) 

(X = Sm); 

172(1) (X 

= Li) 

Unassigned 74 

[Cp*2Co][UO2(dpaea)] (122) 1.83(1), 

1.84(1) 

– 177.0(6) – 787 (asym.) 48 

[{UO2Sm(THF)2(LMe)}2] 1.903(8), 

1.942(7) 

2.238(8) 174.2(3) 174.9(5) 771 (asym.) 74 

[{UO2Sm(py)2(LEt)}2] 1.900(2), 

1.939(2) 

2.234(2)  174.4(1) 171.4(1) Unassigned 74 
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Table Footnotes: a = U–O bond lengths are provided for the trans-uranyl oxo ligands because they possess multiple bond character, whereas the U–O 

bond lengths corresponding to the uranyl oxo groups bound in a cis-arrangment within the bridging-oxo butterfly motif are not provided because they 

do not possess any multiple bond character and as a result are not representative of the uranium oxidation state; b reassigned or reclassified as unassigned 
in the light of more recent information on this and related complexes since the original publication appeared; * averaged value due to two site disorder 

of the isopropyl carbon atoms. The compounds are numbered within Table 3 according to how they appear in the text, and any lattice solvent molecules 

are not included in the chemical formulae. 

 

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X 

= oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic 

spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman 

spectroscopies for the reductively functionalized mixed uranyl(V)/uranyl(VI) and uranyl(VI) 

complexes reported since 2010 and discussed in Section 3 (vide supra) are provided in Table 

3, and their trends are discussed in more detail in Section 7 (vide infra). 

 

 

 4. FURTHER FUNCTIONALIZATION OF URANYL(V) COMPLEXES THAT 

RETAIN THE U(V) OXIDATION STATE 

 

This section highlights reactions that further functionalize the oxo ligands of isolated 

uranyl(V) complexes, therefore retaining the U(V) oxidation state and do not involve 

reduction of uranyl(VI). In our experience, the majority of reactions of uranyl(V) complexes 

designed to further functionalize the oxo groups, for example by replacement of an alkali 

metal cation with a p-, d- or f-block cation, result in either spontaneous re-oxidation and 

isolation of the original uranyl(VI) complex, or in rare cases, to disproportionation to UIVO2 

and [UVIO2]
2+. The success and diversity of the reactions outlined below is notable evidence 

of the maturity of this area, and it is now becoming possible to manipulate uranyl(V) 

complexes, despite their well-known kinetic instability, through the judicious choice of ligand 

design and selection of reaction conditions. 

 The readily available uranyl(V) starting complex, [{UVO2(py)5}{KI2(py)2}]n (128), 

which was first reported in 2006,79,80 reacts with the K2salan-tBu2 ligand (H2salan-tBu2 = N,N'-

bis(2-hydroxybenzyl-3,5-di-tert-butyl)-1,2-dimethylaminomethane) in pyridine to provide 
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polymeric {K[UVO2(salan-tBu2)(py)]}n (129; Scheme 23) in which the uranyl(V) oxo groups 

are coordinated to K+ cations. Treatment of 128 or 129 with 18-c-6 in pyridine provides 

monomeric [UVO2(py)5]I (130) and [K(18-c-6)][UVO2(salan-tBu2)(py)] (131), respectively 

(Scheme 22). The stability of 130 is remarkable considering the absence of coordinating 

cations and demonstrates the ability of pyridine to stabilize uranyl(V). 131 contains one 

potassium cation bound to 1 equiv. of 18-c-6 and one of the uranyl(V) oxo ligands.81 

 

Scheme 22. Synthesis of {K[UVO2(salan-tBu2)(py)]}n (129) from [{UVO2(py)5}{KI2(py)2}]n 

(128) and K2salan-tBu2. 128 and 129 react with 18-c-6 to afford [UVO2(py)5]I (130) and [K(18-

c-6)][UVO2(salan-tBu2)(py)] (131), respectively. The K2salan-tBu2 ligand is depicted at the 

bottom of the Scheme.81  

   

 

 Adding KI to a solution of [Cp*2Co][UVO2(salan-tBu2)(py)] (132) in pyridine, which 

is prepared from [UVIO2(salan-tBu2)(py)] (133) and excess decamethylcobaltocene, also 
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affords polymeric 129. All three uranyl(V)-salan-tBu2 complexes, 129, 131 and 132 exhibit 

the same stability with respect to disproportionation in pyridine and DMSO, up to 30 days. 

However, polymeric 129 exhibits lower stability with respect to disproportionation compared 

to monomeric 131 in THF. Only 33 % of U(V) 129 remains after 14 days in THF whereas 

there is no loss of 131 after 30 days in THF, but 33% loss after 14 days in toluene solution.81  

 When 128 was treated with the Schiff-base ligand, K2salophen (H2salophen = N,N'-

phenylene-bis(salicylideneimine)), in pyridine, a mixture of disproportionation products was 

obtained. However, when a bulkier Schiff base ligand, K2salophen-tBu2 (H2salophen-tBu2 = 

N,N'-phenylene-bis(3,5-di-tert-butylsalicylideneimine)), was deployed, polymeric 

{K[UVO2(salophen-tBu2)(py)]}n (134-py) was obtained (Scheme 23), which is stable towards 

disproportionation for up to 30 days in pyridine, DMSO and toluene. This highlights the 

important effect that increasing the steric protection of the salophen ligand framework 

increases the stability of uranyl(V). If 134-py is dissolved in THF, the pyridine co-ligand 

bound to U is displaced by THF, forming {K[UVO2(salophen-tBu2)(THF)]}n (134-THF; 

Scheme 23).81  

 

Scheme 23. Synthesis of {K[UVO2(salophen-tBu2)(py)]}n (134-py) from 

[{UVO2(py)5}{KI2(py)2}]n (128) and K2salophen-tBu2 in pyridine. Dissolving 134-py in THF 

provides {K[UVO2(salophen-tBu2)(THF)]}n (134-THF). The K2salophen-tBu2 ligand is 

depicted in the bottom left corner of the Scheme.81  
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The reactivity of 129 and 134-py with stoichiometric amounts of H2O was also 

investigated, where 129 reacts slowly with 1 equiv. of H2O to release free H2salan-tBu2; the 

reaction proceeds much quicker in the presence of 10 equiv. of H2O, resulting in complete 

disappearance of uranyl(V) after 24 hours. Conversely, under similar conditions, ligand 

protonation and uranyl(V) oxidation is not observed in 134-py, indicating the salophen-tBu2 

ligand provides greater stability for uranyl(V) than the salan-tBu2 ligand. The electronic 

structure, electronic spectroscopy, electrochemistry and magnetic properties of complexes 

129-131, 133 and 134-py were studied in detail but are beyond the scope of this review.81  

Complexes 129-132 and 134-THF possess U–O bond lengths that range from 

1.846(9)-1.868(2) Å, which are in the expected range for uranyl(V) compounds, and maintain 

near linear O–U–O bond angles, which range from 177.14(8)-178.7(2)°.81  

[{UVO2(py)5}{KI2(py)2}]n (128) reacts with K2salen (H2salen = N,N'-ethylene-

bis(salicylideneimine), Scheme 24) in the presence of 18-c-6 to afford tetrameric [K(18-c-

6)]2[K2{UVO2(salen)}4] (135), or with K2acacen (H2acacen = N,N'-ethylene-

bis(acetylacetoneimine), Scheme 24) in the presence of either 18-c-6 or 2.2.2-cryptand to 

afford tetrameric [K(R)]2[K2{UVO2(acecen)}4] (R = 18-c-6 (136), 2.2.2-cryptand (137); 
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Scheme 24). While both reactions were successful with respect to retaining the UV oxidation 

state within the final product (i.e. stable with respect to disproportionation) the final products 

evaded isolation in the absence of 18-c-6 or 2.2.2-cryptand due to the formation of either 

polymeric or highly soluble species. Each UV center possesses pentagonal bipyramidal 

geometry, coordinated by the N2O2 ligand donor set in the equatorial plane with the fifth 

coordination site occupied by an oxo group of a neighboring uranyl(V) ion, forming a T-

shaped coordination geometry through oxo-bridging. The formation of the uranyl(V) 

tetramers 135-137 demonstrates the propensity for uranyl(V) to participate in oxo-bridging, 

the strength of which was highlighted by Pulsed-Field Gradient Stimulated Echo (PFGSTE) 

diffusion NMR spectroscopy in pyridine, in which calculating the Stokes radius of 135 and 

137 relative to [UVIO2(salophen)(py)] (138, used as an external reference) indicated that the 

tetrametallic motif was maintained in pyridine solution. In addition, complexes 135-137 are 

stable with respect to disproportionation.78  

Scheme 24. Synthesis of [K(18-c-6)]2[K2{UVO2(salen)}4] (135) and 

[K(R)]2[K2{UVO2(acecen)}4] (R = 18-c-6 (136), 2.2.2-cryptand (137)) from 

[{UVO2(py)5}{KI2(py)2}]n (128) and K2salen/2 equiv. of 18-c-6 or K2acacen/2 equiv. of 18-

c-6/2.2.2-cryptand, respectively. The K2salen and K2acecen ligands are depicted in the bottom 

left corner of the Scheme.78  
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 While 128 reacts cleanly with K2salophen (H2salophen = N,N'-phenylene-

bis(salicylideneimine), Scheme 25) that has been pre-treated with 18-c-6 to afford [K(18-c-

6)]2[K2(KI)2{UVO2(salophen)}4] (138), it undergoes rapid disproportionation when reacted 

with K2salophen in the absence of 18-c-6 (Scheme 25). This reactivity is remarkable given 

the similarities between the K2salophen, K2salen, and K2acacen ligands. That said, once 

isolated, complex 138 is stable towards disproportionation for up to 30 days when re-dissolved 

in pyridine but undergoes complete disproportionation in 2 days in the presence of an excess 

of KI with respect to 18-crown-6 (0.1 equiv.) in pyridine. 138 was recrystallized as [K(18-c-

6)(THF)2][{UVO2(salophen)}4(µ8-K)2(µ5-KI)2]I2 from THF and exists as a tetrameric 

structure with T-shaped coordination with respect to the uranyl(V) dimer similarly to 

complexes 135-137. However, conversely to complexes 135-137, PGFSTE diffusion NMR 

spectroscopy indicated that 138 exists as a monomer in pyridine. Complex 138 may also be 

prepared from [Cp*2Co][UVO2(salophen)(py)] (139; synthesized from [CoCp*2] and 

[UVIO2(salophen)(py)]) and K(18-c-6)I; adding KI to a pyridine solution of 139 results in rapid 

disproportionation.78 

Scheme 25. Synthesis of [K(18-c-6)]2[K2(KI)2{UVO2(salophen)}4] (138) from 

[{UVO2(py)5}{KI2(py)2}]n (128) and K2salophen/18-c-6. The K2salophen ligand is depicted at 

the bottom of the Scheme.78  
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 Complexes 136-138 possess uranyl(V) U–O bond lengths that range from 1.77(1)-

1.973(9) Å, with the non-bridging U–oxo bond that is pointing away from the center of the 

tetramer significantly contracted relative to the bridging U–oxo bond (1.77(1)-1.871(4) Å vs. 

1.91(1)-1.973(9) Å, respectively). In addition, the bridging U–O bond lengths within the 

[UVO2]
+···[UVO2]

+ units range from 2.344(9)-2.404(3) Å. In addition, 2 K+ ions reside in the 

center of each tetramer and are coordinated to each of the endo-oxygen atoms, and remain 

bound to the uranyl oxo groups even in the presence of excess 18-c-6 or 2.2.2-cryptand. It is 

therefore clear that potassium plays a key role in the formation of complexes 136-138 and 

their resulting structural integrity. The presence of coordinating K+ cations also has an 

electronic effect in which the uranyl(V) center is stabilized against oxidation by decreasing 

the amount of negative charge on the uranyl oxygen atoms. To gain further insight into the 

importance of K+ coordination with respect to other alkali metal cations, 

[Cp*2Co][UVO2(salen)(py)] (140) was reacted with LiI, KI and RbI in the presence of 18-c-6 

(Scheme 27). 140 reacts with KI/18-c-6 and RbI/18-c-6 to afford tetrameric 135 and [Rb(18-

c-6)]2[Rb2{UVO2(salen)}4] (141), respectively, which do not display any differences with 
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respect to their reactivity/stability; both complexes are stable in pyridine with respect to 

disproportionation. However, 140 reacts with LiI/18-c-6 to afford a mixture of 

disproportionation products (Scheme 26). The difference in reactivity between Li+, K+ and 

Rb+ may be attributed to the smaller size of Li+, as well as its higher ratio of charge/ionic 

radius compared to K+ and Rb+.78 

 140 also reacts with 1 equiv. of [UVIO2(salen)(py)] (142) to yield the mixed-valence 

[UVO2]
+/[UVIO2]

2+ complex, [Cp*2Co][{UVIO2(salen)}{UVO2(salen)(py)}] (143). The U–O 

bond lengths for the UVI center in 143 (1.79(1), 1.80(1) Å) are shorter than those for the UV 

center (1.82(1), 1.93(1) Å) indicating that the valence of each U center is localized. Each U 

center is pentagonal bipyramidal, with the axial coordination sites occupied by the U–oxo 

groups and 4 of the equatorial coordination sites occupied by the salen ligand. In terms of the 

UV center, the fifth equatorial coordination site is occupied by pyridine, whereas for the UVI 

center it is occupied by a uranyl(V) oxo group; the uranyl(VI) and uranyl(V) ions in 143 

participate in a T-shaped CCI similarly to complexes 135-138.78  

Scheme 26. Synthesis of [Cp*2Co][{UVIO2(salen)}{UVO2(salen)(py)}] (143), [Rb(18-c-

6)]2[Rb2{UVO2(salen)}4] (141) and [K(18-c-6)]2[K2{UVO2(salen)}4] (135) from 

[Cp*2Co][UVO2(salen)(py)] (140). 140 also reacts with LiI in pyridine to give a mixture of 

disproportionation products.78  
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DFT studies on the mechanism of disproportionation of uranyl(V) in 135 in aqueous 

solution suggests that the protonation of a cation-cation intermediate is followed by electron 

transfer occurs to yield uranyl(VI), UIV aqua complexes, and water.5 This was supported 

experimentally, in which 135 was reacted with 1 equiv. of [HPy]Cl per uranium to 

immediately afford the disproportionation products [UVIO2(salen)(py)] (142), [UIV(salen)2] 

(144) and [UIVCl2(salen)] (145) in a ratio of 6:2:3 (Scheme 27; H2O was also detected by 1H 

NMR spectroscopy). The important role played by protons in this mechanism is highlighted 

and confirms that protonation of one uranyl oxygen atom to form a better leaving group is a 

key step, given that the UIV disproportionation products no longer contain oxo ligands.78 

Scheme 27. [K(18-c-6)]2[K2{UVO2(salen)}4] (135) reacts with [HPy]Cl to afford a mixture of 

disproportionation products.78  
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The tetranuclear complexes 135-137 give rise to well-resolved bands at 960 nm (ε ~ 

200 L mol–1 cm–1) in their respective UV-Vis-NIR spectra in pyridine. In contrast, 129 and 

138 (vide supra) give rise to large, poorly resolved bands in the region of 800-1000 nm (ε ~ 

200 L mol–1 cm–1). These spectral differences could arise from the differences in symmetry 

between the two types of structures and could prove useful for detecting the presence of oxo-

clusters in solution.78  

The reactivity of [Cp*2Co][UVO2(salen)(py)] (140) with [CaCl2(dme)] and Mn(NO3)2 

has also been investigated. Complex 140 reacts with [CaCl2(dme)] in a 2:1 ratio to provide 

tetrameric [Ca2{UVO2(salen)}4] (146) and [Cp*2Co]Cl as a reaction by-product. Complex 146 

is structurally analogous to complexes 135-137 and 141, albeit with Ca2+ cations in the center 

of the tetramer and no cations on the periphery (Scheme 28). The U–O bond lengths in 146 

range from 1.79(1)-1.96(1) Å, in which the bridging UV–O bond is elongated relative to the 

terminal oxo. The O–U–O bond angles are 174.6(5) and 177.1(7)° and the U···O bond 

distances between the bridging uranyl(V) oxo groups and UV centers are 2.32(1) and 2.37(1) 

Å.82  

Compound 140 also reacts with Mn(NO3)2 in a 2:1 ratio, in this case to form the 

molecular wheel-shaped [{MnII(py)3}6{UVO2(salen)}12] (147), along with [Cp*2Co][NO3] as 

a reaction by-product (Scheme 28). Complex 147 is held together by CCIs between the 

uranyl(V) oxo groups and the MnII ions, as opposed to the UV center of a neighboring 

uranyl(V) ion, as is the case in complexes 135-137, 141 and 146 (vide supra). Six of the 

uranyl(V) ions in 147 form Mn-oxo-bridges through both uranyl oxo atoms, whereas the other 
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six form bridges through just one oxo ligand. The U–O bond lengths range from 1.79(2)-

1.90(2) Å, the O–U–O bond angles range from 169.9(6)-176.5(9)° and the Mn···Obridging 

distances range from 2.12(2)-2.18(2) Å. The structural motif seen in 147 is likely a 

consequence of the 2:1 [UVO2]
+:[MnII]2+ ratio, the 2+ charge of the MnII ion and the preference 

of MnII to adopt an octahedral coordination geometry. As a result, the [UVO2]
+···MnII 

interactions in 147 play a structure-directing role. The magnetic properties of complexes 146 

and 147 have also been studied.82  

 

Scheme 28. Synthesis of [Ca2{UVO2(salen)}4] (146) and [{MnII(py)3}6{UVO2(salen)}12] 

(147) from [Cp*2Co][UVO2(salen)(py)] (140) and [CaCl2(dme)] and Mn(NO3)2, 

respectively.82  
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Polymeric [UVO2(Mesaldien)K]n (Mesaldien = N,N'-(2-

aminomethyl)diethylenebis(salicylideneimine); 148) can be obtained from the K2Mesaldien 

and 128 and possesses U–O bond lengths ranging from 1.79(2)-1.86(2) Å, indicating that the 

UV oxidation state is maintained. Complex 148 (6 equiv.) reacts with [UIVI4(OEt2)2] (3 equiv.) 

in the presence of K2Mesaldien (3 equiv.) in pyridine to afford tetrameric 

{[{UVO2(Mesaldien)}{UIV(Mesaldien)}]2(µ-O)} (149) along with uranyl(VI), 

[UVIO2(Mesaldien)] (150), from partial disproportionation (Scheme 29). Complex 149 is 

made up of two uranyl(V)-Mesaldien/UIV-Mesaldien units connected by a bridging oxo 

ligand. The U–O bond lengths in the uranyl(V) fragment are 1.82(1) and 2.00(1) Å, and the 

O–U–O unit retains its linearity (176.5(6)°).50  

Scheme 29. Synthesis of {[{UVO2(Mesaldien)}{UIV(Mesaldien)}]2(µ-O)} (149) and 

[UVIO2(Mesaldien)] (150) from [UVO2(Mesaldien)K]n (148), K2Mesaldien and 

[UIVI4(OEt2)2]. The K2Mesaldien ligand is depicted in the bottom left corner of the Scheme.50  

 

 

 Complex 128 also reacts with the KLnacnac ligand (KLnacnac = 2-(4-tolyl)-1,3-

bis(quinolyl)malondiiminate) in pyridine to afford the uranyl(V) trimer, [UVO2(L
nacnac)]3 (151; 

Scheme 30). Each UV center possesses pentagonal bipyramidal geometry, coordinated by one 

equivalent of the tetradentate β-diketiminate ligand in the equatorial plane with the fifth 

coordination site occupied by an oxo group of a neighboring uranyl(V) ion. PFGSTE diffusion 

NMR spectroscopy in pyridine indicated that the trimetallic motif is maintained in solution. 

However, dissolution of 151 into DMSO does result in partial dissociation of the trimer.51  
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 The U–O bond lengths in 151 range from 1.84(1)-1.940(8) Å, and the O–U–O bond 

angles range from 176.4(3)-176.7(4)°. Complex 151 reacts with oxidizing agents, forming 

uranyl(VI) [UVIO2Cl(Lnacnac)] (152) when dissolved in CH2Cl2 through chloride abstraction 

from the solvent, or [{UVIO2(L
nacnac)}2(µ-O)] (153) when treated with dry O2 in acetonitrile 

(Scheme 30). The U–O bond lengths range from 1.757(9)-1.82(1) Å in 152 and 153, the 

shorter of these in agreement with UV
UVI oxidation, although those around 1.8 Å are 

remarkably long for a formal UVI oxidation state and the oxo-group reactions of these 

complexes may warrant further study.51  

Scheme 30. Synthesis of [UVO2(L
nacnac)]3 (151) from KLnacnac and [{UVO2(py)5}{KI2(py)2}]n 

(128). 151 reacts further with CH2Cl2 or dry O2 to afford [UVIO2Cl(Lnacnac)] (152) and 

[{UVIO2(L
nacnac)}2(µ-O)] (153), respectively.51  

  

A series of trimetallic 3d-5f and 4d-5f complexes featuring the uranyl(V) ion, [UVO2]
+ have 

also been prepared to target single molecule magnetism in uranyl(V)-containing complexes, given its 

highly anisotropic nature and potential for magnetic exchange through metal–O–UV linkages.83-85  
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Scheme 31. Synthesis of MII-OUVO-MII and CoII-OUVO complexes, 

[{UVO2(Mesaldien)}{MIIX(TPA)}2]X (M = Fe, X = Cl (154); M = Mn, X = I (155); M = Cd, X = I 

(156)) and [{UVO2(Mesaldien)}{CoII(TPA)}]I (157), featuring uranyl(V).83-85   

 

 [UVO2(Mesaldien)K]n (148) reacts with 2 equiv. of a 3d- or 4d-metal complex of the 

tetradentate tris(pyridyl)amine ligand, TPA (TPA = tris(2-pyridylmethyl)amine), to afford the 

trimetallic MII-OUVO-MII complexes, [{UVO2(Mesaldien)}{MIIX(TPA)}2]X (M = Fe, X = Cl (154); 

M = Mn, X = I (155); M = Cd, X = I (156); Scheme 32). Treatment of 148 with 1 equiv. of 

[CoIII2(TPA)] affords bimetallic [{UVO2(Mesaldien)}{CoII(TPA)}]I (157, Scheme 31).83-85   

Scheme 32. Synthesis of MII-OUVO-MII complexes, 

[{MII(BPPA)(L)}{UVO2(Mesaldien)}{MII(BPPA)(py)}]I (M = Ni, L = py (158); M = Fe, L = py 

(159); M = Co, L = vacant coordination site (160)), featuring uranyl(V).83,85   
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Trimetallic MII-OUVO-MII complexes may also be obtained from polymeric 

[UVO2(Mesaldien)K]n and 2 equiv. of [MIII(BPPA)] (BPPA = bis(2-picolyl)(2-oxybenzyl)amine), 

affording [{MII(BPPA)(L)}{UVO2(Mesaldien)}{MII(BPPA)(py)}]X (M = Ni, L = py (158); M = Fe, 

L = py (159); M = Co, L = vacant coordination site (160); Scheme 32).83,85   

Scheme 33. Synthesis of polymeric MII-OUVO complexes, [{UVO2(salen)(py)}{MII(py)4}(NO3)]n (M 

= Cd (161); M = Mn (162)), of uranyl(V).86  

 

Alternatively, the uranyl(V) complex [Cp*2Co][UVO2(salen)(py)] (140) reacts with the simple 

3d or 4d metal precursors [MII(NO3)2] to yield polymeric [{UVO2(salen)(py)}{MII(py)4}(NO3)]n (M 

= Cd (161); M = Mn (162); Scheme 33),86 while [Cp*2Co][UVO2(Mesaldien)] (163) reacts with 

[MnII(NO3)2(py)2] to afford polymeric {[UVO2(Mesaldien)][MnII(NO3)(py)2]}n (164).87 Complexes 

154-161 and 164 all contain the uranyl(V) ion with U–O bond lengths and O–U–O bond angles 

ranging from 1.837(3)-1.934(3) Å and 171.6(2)-178.7(5)⁰, respectively, and possess bridging MII–

O–UV–O–MII interactions between cationic MII and anionic UV fragments.83-87 
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It has also been shown that the dipotassium salt of a ferrocene-based tetradentate Schiff-base 

ligand, K2salfen-tBu2, reacts with [{UVO2(py)5}{KI2(py)2}]n (128) to afford [{K(18-c-

6)}UVO2(salfen-tBu2)] (165, Scheme 34), which possesses U–O and U–OK bond lengths of 

1.831(4)/1.838(4) and 1.853(4)/1.860(4) Å, respectively, and O–U–O bond angle of 

176.8(2)/177.5(2)⁰ for two crystallographically independent molecules within the unit cell. K2salfen-

tBu2 also reacts with [UVIO2I2(py)3)] (166-py) to yield [UVIO2(salfen-tBu2)] (167). If the less bulky 

K2salfen (in which the tert-butyl groups are replaced with hydrogen atoms) is used a mixture of U(IV) 

and [UVIO2]
2+ species are formed over 12 hours through disproportionation of a transiently formed 

uranyl(V) species.52  

Scheme 34. Synthesis of [{K(18-c-6)}UVO2(salfen-tBu2)] (165) from [{UVO2(py)5}{KI2(py)2}]n 

(128) and K2salfen-tBu2.
52   

 

 [{UVO2(py)5}{KI2(py)2}]n (128) also reacts with K2dpaea in the presence of 2.2.2-cryptand 

in pyridine to yield the uranyl(V) complex, [K(2.2.2-crypt)][UVO2(dpaea)] (168; Scheme 35). 

Uranyl(V) 168 possesses a O–U–O bond angle 176.06(8)°, U–O bond lengths of 1.837(2) and 

1.847(2) Å and an asymmetric stretching frequency of 794 cm–1. Complex 168 is stable in aprotic 

solvents for up to 4 months, or until the addition of 1 equiv. of [HPy]OTf (in DMSO), which results 

in disproportionation; X-ray quality crystals of the UIV species, [UIV(dpaea)2] (169), were isolated 

from this reaction. Analogously to [Cp*2Co][UVO2(dpaea)] (122), introduced in Section 3, once 

isolated 168 is stable against disproportionation when dissolved in D2O. Complex 168 (7-15 mM, pH 

= 9.2-10) is in fact stable in D2O for up to 2 weeks, but slowly begins to precipitate from solution 
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after this point. Small amounts of the disproportionation products begin to appear after 5 days in D2O 

(16 mM of 168, pH = 7), and more than 80 % of 168 has undergone disproportionation after 2 days 

in 20 mM D2O solutions at pH = 6. These results indicate that 168 is stable in aqueous solutions with 

a pH between 7 and 10, and that acid-induced disproportionation of 168 occurs rapidly in organic 

solutions in the presence of stoichiometric amounts of a proton source. CV studies on 168 indicate 

that the UVI/UV redox couple (E1/2 = –1.25 V vs. Fc/Fc+) is reversible in pyridine but irreversible in 

aqueous solution (0.02 M HEPES buffered water solution, pH = 7; UV/UVI oxidation occurs at E = –

0.16 to 0.00 V vs. Ag/AgCl, UVI/UV reduction occurs at E = –1.56 to –1.65 V vs. Ag/AgCl); the 

UV/UIV redox couple is not observed in aqueous solution. The different electrochemical behavior of 

168 in pyridine versus aqueous solution has been attributed to U–OH2 binding and/or the potential 

for proton exchange reactions to occur.48      

Scheme 35. Synthesis of [K(2.2.2-crypt)][UVO2(dpaea)] (168) from [{UVO2(py)5}{KI2(py)2}]n (128), 

K2dpaea and 2.2.2-cryptand (see Scheme 20 in Section 3 for a depiction of H2dpaea).48  

 

 [{UVO2(py)5}{KI2(py)2}]n (128) also reacts with K3trensal (H3trensal = 2,2',2''-

tris(salicylideneimino)triethylamine), to afford K[UVO2(trensal)K] (170, Scheme 36a). Treating 170 

with 2.2.2-cryptand allows for isolation of [K(2.2.2-crypt)]2[U
VO2(trensal)] (171), in which one of 

the U–oxo groups is coordinated to a K+ cation (Scheme 36b; U–O = 1.82(2) Å, U–OK = 1.87(2) Å). 

Alternatively, 170 reacts with 1 or 1.5 equiv. of FeI2 in pyridine to substitute the K+ cation for a 

coordinated FeII fragment to afford [UVO2(trensal)FeII(py)3] (172; U–O = 1.837(3) Å, U–OFe = 

1.930(2) Å) and 0.5 equiv. of [{UVO2(trensal)FeII(py)3}2FeII(py)3]I2 (173; U–O = 1.920(4)-1.935(4) 

Å), respectively (Scheme 36c and 36d). Both complexes 172 and 173 possess contracted U–O bond 

lengths at the unfunctionalized oxo group compared with the functionalized oxo group. Complex 170 
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also reacts with [UIV(trensal)]I to afford [UVO2(trensal)FeII(py)3U
IV(trensal)]I (174; Scheme 36e), 

which possesses a contracted FeII-functionalized U–O bond length (1.922(6) Å) relative to the UIV-

functionalized U–O group (1.960(6) Å). Complexes 171-174 possess O–U–O bond angles that range 

from 173.7(6)-177.2(2)⁰. Remarkably, complexes 172-174, which exhibit FeII functionalization of a 

uranyl-oxo group, demonstrate increased stability with respect to proton-induced disproportionation. 

Complex 172 reacts with 2 equiv. of pyridinium chloride ([HPy]Cl) to afford 174, a product of partial 

disproportionation which possesses a FeII-[OUVO]+-UIV core, whereas complexes 170 and 171 react 

with 2 equiv. of [HPy]Cl to yield UIV and [UVIO2]
2+ complexes via complete disproportionation. 

Furthermore, redox reactivity and CV experiments display an increased range of stability for the 

uranyl(V) species functionalized by FeII with respect to both oxidation and reduction reactions. As 

FeII-containing minerals are known to participate in [UVIO2]
2+ reduction and stabilization of uranyl(V) 

species with its exact role remaining ambiguous, these results shed light on the function of iron in the 

environmental mineral-mediated reduction of UVI.66 

Scheme 36. Synthesis of (a) K[UVO2(trensal)K] (170) from [{UVO2(py)5}{KI2(py)2}]n (128) and 

K3trensal, followed by conversion into (b) [K(2.2.2-crypt)]2[U
VO2(trensal)] (171), (c) 

[UVO2(trensal)FeII(py)3] (172), (d) [{UVO2(trensal)FeII(py)3}2FeII(py)3]I2 (173) and (e) 

[UVO2(trensal)FeII(py)3U
IV(trensal)]I (174) by treatment with 2.2.2-cryptand, 1 and 1.5 equiv. of FeI2 

and 1 equiv. of [UIV(trensal)], respectively.66  



58 
 

 

While [{UVO2(py)5}{KI2(py)2}]n (128) has been used as an effective starting uranyl(V) 

complex for further oxo-functionalization while maintaining the uranyl(V) oxidation state, it has been 

demonstrated to undergo immediate disproportionation in the presence of benzoic acid in pyridine, 

forming the hexanuclear UIV-benzoate cluster, [UIV
6O4(OH)4(PhCOO)12(py)3] (175), and the 

uranyl(VI) complex, [UVIO2(PhCOO)2(py)2] (176). Water, pyridinium iodide and KI are formed as 

by-products during this reaction.53  

The synthesis of [UVO{OAlR2(py)}(H2L
Me)] (R = Me (87), iBu (88); Scheme 16 in Section 

3) from the uranyl(VI) Pacman complex 11-py and [Cp2TiCl(CH2)(AlMe2)] and HAliBu2, 

respectively, was discussed previously in Section 3. The oxo-coordinated -AlR2 group in 87 or 88 is 
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readily replaced by Group 1 metal cations by treatment with alkyl lithium reagents (MeLi, 

(Me3Si)2CHLi, Me3SiCH2Li) in C6D6 to provide [{(OUVO)Li(py)(H2L
Me)}2] (177; Scheme 37a). 

Alternatively, 87 and 88 react with LiH in pyridine to afford a trilithiated complex, 

[UVO{OLi(py)3}(py){{Li(py)}2L
Me}] (60-py; Scheme 37b and Scheme 9 in Section 3), or with NaH 

or KH in pyridine to provide [UVO{OM(py)3}(py)(H2L
Me)] (M = Na (178), K (179); Scheme 37c). 

Furthermore, 177 may be converted into [UVO{OLi(py)3}(py)(H2L
Me)] (180) through the addition of 

pyridine (Scheme 37d).73 This reactivity contrasts that of the uranyl(VI) complex 11-py, in which 

deprotonation of the acidic pyrrole NH groups35 occurs instead of transmetalation of the oxo-

coordinated functional group, suggesting that hydrogen-bonding between the uranyl endo-oxo group 

and the pyrrole protons is significant enough to negate deprotonation.73   

Scheme 37. Transmetalation of the oxo-coordinated -AlR2 group with Group 1 metal cations 

using either alkyl lithium reagents affording (a) [{(OUVO)Li(py)(H2L
Me)}2] (177), or Group 1 metal 

hydrides providing (b) [UVO{OLi(py)3}(py){{Li(py)}2L
Me}] (60-py) and (c) 

[UVO{OM(py)3}(py)(H2L
Me)] (M = Na (178), K (179)). The addition of pyridine to 177 provides (d) 

[UVO{OLi(py)3}(py)(H2L
Me)] (180).73 

 

Interestingly, this clean substitution of the AlR2 group has enabled the development of a one-pot, 

DIBAL-catalyzed reduction of the U(VI) uranyl complexes to all three mono-alkali metal 
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uranyl(V) complexes 178-180 (Scheme 38). This DIBAL-catalyzed route could also have 

applications in d-block metal oxo chemistry.73  

Scheme 38. Complexes 178-180 may be prepared catalytically from HAl(iBu)2 (10 mol %) and 

excess MH (M = Li, Na, K) in toluene (70 ⁰C, 3-4 days).73  
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Table 4. Structural and spectroscopic data for functionalized uranyl(V) complexes reported since 

2010 and discussed in Section 4. With respect to the tabulated IR data, sym. refers to the symmetric 

OUO stretching frequency determined by Raman spectroscopy and asym. refers to the asymmetric 

OUO stretching frequency determined by IR spectroscopy. 

Compound U–O [Å] O–X [Å] O–U–O [°] U–O–X 

[°] 

ν(OUO) 

[cm–1] 

Reference 

[K(18-c-6)][UO2(salan-tBu2)(py)] (131) 1.853(2), 

1.868(2) 

2.651(3)  177.4(1) 138.0(1) Unassigneda 81 

[Cp*2Co][UO2(salan-tBu2)(py)] (132) 1.846(9), 

1.866(9) 

– 178.7(4) – Unassigned 81 

{[K(THF)2][UO2(salophen-tBu2)(THF)]}n 

(134-THF) 

1.853(2), 

1.850(2) 

2.630(2), 

2.685(2)  

177.14(8) 144.55(9)

, 

115.75(9) 

Unassigned 81 

[K(18-c-6)]2[K2{UO2(acacen)}4] (136) 1.85(1), 

1.94(1), 

1.86(1), 

1.973(9) 

X = K: 

2.65(1), 

2.89(1), 

3.06(1), 

2.88(1), 

2.93(1) 

X = UV: 

2.40(1), 

2.344(9)  

177.4(5), 

179.3(5) 
X = K: 

137.7(5), 

96.4(5), 

88.2(3), 

94.1(4), 

84.1(4), 

97.1(4), 

96.2(3), 

89.4(3) 

X = UV: 

175.0(7), 

172.2(6) 

Unassigned 78 

[K(2.2.2-crypt)]2[K2{UO2(acacen)}4] 

(137) 

1.77(1), 

1.91(1), 

1.799(9), 

1.91(1) 

X = K: 

2.907(8), 

3.05(1), 

2.885(9), 

3.118(9) 

X = UV: 

2.40(1), 

2.40(1)  

179.3(4), 

179.2(4) 
X = K: 

97.4(3), 

89.2(3), 

95.5(3), 

84.1(3), 

98.6(3), 

87.7(3), 

93.2(3), 

84.7(3) 

X = UV: 

173.4(5), 

173.4(4) 

Unassigned 78 

[K(18-c-

6)(THF)2][{UVO2(salophen)}4(µ8-K)2(µ5-

KI)2]I2 (138) 

1.871(4), 

1.942(3), 

1.818(3), 

1.954(3) 

X = K: 

2.372(3), 

2.816(3), 

2.856(3), 

3.121(3), 

2.815(3) 

X = UV: 

2.404(3), 

2.374(3)  

175.4(1), 

174.7(2) 
X = K: 

90.3(1), 

99.5(1), 

94.1(1), 

136.2(2), 

90.4(1), 

83.30(9) 

X = UV: 

154.4(2), 

155.3(2) 

Unassigned 78 

[Rb(18-c-6)]2[Rb2{UO2(salen)}4] (141) 1.84(1), 

1.928(9), 

1.882(8), 

1.909(9) 

X = Rb: 

3.065(8), 

3.154(9), 

3.04(1), 

3.41(1), 

2.742(9) 

X = UV: 

2.414(9), 

2.419(9)  

175.3(3), 

177.1(5) 
X = Rb: 

100.3(3), 

86.9(3), 

95.0(3), 

88.7(3), 

97.6(4), 

88.6(3), 

91.0(4), 

82.3(3), 

148.1(6) 

X = UV: 

171.2(4), 

171.2(6) 

Unassigned 78 

[Ca2{UO2(salen)}4] (146) 1.80(1), 

1.96(1), 

1.79(1), 

1.93(1) 

X = Ca: 

2.553(1), 

2.81(1), 

2.56(1), 

2.83(2) 

174.6(5), 

177.1(7) 
X = Ca: 

102.0(5), 

92.0(4), 

102.2(5), 

91.9(5), 

756 (asym.) 82 
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X = UV: 

2.32(1), 

2.37(1) 

94.9(5), 

86.5(4), 

94.2(6), 

86.2(4) 

X = UV: 

159.4(7), 

178.5(8) 

[{Mn(py)3}6{UO2(salen)}12] (147) 1.85(1), 

1.88(1), 

1.87(1), 

1.88(2), 

1.89(1), 

1.89(1), 

1.84(2), 

1.89(2), 

1.90(1), 

1.90(2), 

1.79(2), 

1.90(2)    

2.15(1), 

2.18(2), 

2.17(2), 

2.18(2), 

2.18(2), 

2.12(2), 

2.17(1), 

2.12(2), 

2.18(2), 

2.12(2)  

176.1(6), 

169.9(6), 

171.4(7), 

176.5(9), 

172.4(6), 

175.2(8) 

155.6(8), 

145.9(7), 

167.8(9), 

169.1(9), 

148.0(8), 

154.2(8), 

169.8(8), 

147.4(8), 

155.6(8) 

752 (asym.) 82 

[UO2(Mesaldien)K]n (148) 1.79(2), 

1.86(2), 

1.79(2), 

1.83(2) 

2.63(2), 

2.80(2), 

2.72(2), 

2.82(2)  

174.1(9), 

177.4(9) 

151(1), 

108.9(7), 

154(1), 

103.3(7) 

Unassigned 50 

{[{UVO2(Mesaldien)}{UIV(Mesaldien)}]2

(µ-O)} (149) 

1.82(1), 

2.00(1) 

2.20(1)  176.5(6) 162.8(7) Unassigned 50 

[UO2(Lnacnac)]3 (151) 1.84(1), 

1.91(1), 

1.844(9), 

1.940(8), 

1.820(8), 

1.906(8) 

2.374(8), 

2.371(9), 

2.356(9)  

176.7(4), 

176.4(3), 

176.7(4) 

157.1(5), 

156.4(4), 

154.9(5) 

Unassigned 51 

[{UO2(Mesaldien)}{FeCl(TPA)}2]I (154) 1.917(4), 

1.877(4) 

1.998(4), 

2.132(4) 

174.8(2) 163.8(2), 

175.4(2) 

Unassigned 83 

[{UO2(Mesaldien)}{MnI(TPA)}2]I (155) 1.91(1), 

1.90(1)  

2.05(1), 

2.06(1)  

175.7(4) 168.1(8), 

171.4(7) 

Unassigned 83 

[{UO2(Mesaldien)}{CdI(TPA)}2]I (156) 1.89(2) 2.20(2)  172.7(8) 168.7(8) Unassigned 84 

[{UO2(Mesaldien)}{Co(TPA)}]I (157) 1.837(3), 

1.934(3) 

1.924(3)  175.0(2) 151.5(2) Unassigned 85 

[{UO2(Mesaldien)}{Ni(BPPA)(py)}2]I 

(158) 

1.896(5), 

1.891(5) 

2.068(5), 

2.026(5) 

175.0(2) 174.4(3), 

168.5(3) 

Unassigned 83 

[{UO2(Mesaldien)}{Fe(BPPA)(py)}2]I 

(159) 

 

 

1.917(4), 

1.895(4) 

2.006(4), 

2.049(4)  

174.1(2) 167.9(3), 

168.9(3) 

Unassigned 83 

[{UO2(Mesaldien)}{Co(BPPA)}2]I (160) 1.913(6), 

1.897(6) 

1.983(6), 

2.037(7)  

173.8(3) 175.2(4), 

170.9(4) 

Unassigned 85 

[{UO2(salen)(py)}{Cd(NO3)(py)4}]n 

(161) 

 

1.87(1), 

1.88(1), 

1.88(1), 

1.88(1), 

1.87(1), 

1.89(1) 

2.30(1), 

2.28(1), 

2.30(1), 

2.34(1), 

2.34(1), 

2.32(1), 

2.30(1)  

178.7(5), 

177.5(5), 

178.7(5) 

173.5(6), 

161.8(7), 

166.0(7), 

170.0(6), 

175.1(7), 

162.8(7) 

Unassigned 86 

[CoCp*2][UO2(Mesaldien)] (163) 

 

1.845(8), 

1.846(8) 

– 171.5(4) – Unassigned 87 

{[UO2(Mesaldien)][Mn(NO3)(py)2]}n 

(164) 

1.900(3), 

1.910(3) 

2.066(3), 

2.090(4)  

171.6(2) 164.4(2), 

177.2(2) 

Unassigned 87 

[{K(18-c-6)}UO2(salfen-tBu2)] (165) 

 

 

1.831(4), 

1.853(4), 

1.838(4), 

1.860(4) 

2.568(4), 

2.791(4)  

176.8(2), 

177.5(2) 

150.7(2), 

110.2(2) 

Unassigned 52 

[K(2.2.2-crypt)][UO2(dpaea)] (168) 1.837(2), 

1.847(2) 

– 176.06(8) – 794 (asym.) 48 

[K(2.2.2-crypt)]2[UO2(trensal)] (171) 1.87(2), 

1.82(2) 

2.83(2)  173.7(6) 160.0(7) Unassigned 66 

[UO2(trensal)Fe(py)3] (172) 1.837(3), 

1.930(2) 

2.018(3) 177.1(1) 173.5(2) Unassigned 66 

[{UO2(trensal)Fe(py)3}2Fe(py)3]I2 (173) 1.920(4), 

1.935(4), 

1.927(4), 

1.927(5) 

2.067(4), 

1.984(4), 

1.992(5), 

2.055(5)  

175.5(2), 

175.3(2) 

173.2(2), 

166.6(3), 

153.1(3), 

171.1(3) 

Unassigned 66 
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Table Footnotes: a reassigned or reclassified as unassigned in the light of more recent information on this and related complexes since the original 
publication appeared; * two values are provided due to two site disorder of the Na cation. The compounds are numbered within Table 4 according to 

how they appear in the text, and any lattice solvent molecules are not included in the chemical formulae. 

 

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X 

= oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic 

spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman 

spectroscopies for the functionalized uranyl(V) complexes reported since 2010 and discussed 

in Section 4 (vide supra) are provided in Table 4, and their trends are discussed in more detail 

in Section 7 (vide infra). 

  

[UO2(trensal)Fe(py)3U(trensal)]I (174) 1.960(6), 

1.922(6) 

2.317(6) (X = 

U), 2.144(6) 

(X = Fe) 

177.2(2) 171.2(3) 

(X = U), 

170.3(3) 

(X = Fe) 

Unassigned 66 

[{(UO2)Li(py)(H2LMe)}2] (177) 1.908(2), 

1.891(2) 

1.901(7)  177.7(1) 147.2(2) 894 (asym.) 73 

[UO{ONa(py)3}(py)(H2LMe)] (178) 1.844(5), 

1.856(7) 

2.15(2), 

2.28(2)* 

174.2(3) 167.7(6), 

170.3(8)* 

891 (asym.) 73 

[UO{OK(py)3}(py)(H2LMe)] (179) 1.871(2), 

1.837(2) 

2.707(3) 176.1(1) 116.0(1) 894 (asym.) 73 

[UO{OLi(py)3}(py)(H2LMe)] (180) 1.853(6), 

1.884(7) 

1.94(2)  173.8(3) 166.7(8) 891 (asym.) 73 
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5. UVI
UIV REDUCTIVE FUNCTIONALIZATION 

The treatment of the trianionic pyridine(diamine) uranium(IV) complexes 

[Cp*UIV(MesPDIMe)(L)] (MesPDIMe = 2,6-((Mes)N=CMe)2C5H3N; L = THF or (Me2N)3PO) and 

[Cp*UIV(tBu-MesPDIMe)(THF)] (tBu-MesPDIMe = 2,6-((Mes)N=CMe)2-p-C(CH3)3C5H3N) with N-

methylmorpholine-N-oxide affords the uranyl(VI) complexes, [Cp*UVIO2(
MesPDIMe)] (181) and 

[Cp*UVIO2(
tBu-MesPDIMe)] (182), which are best described as containing uranyl(VI) supported by a 

singly reduced pyridine(diamine) ligand. Treatment of 181 or 182 with 2 equiv. of Me3SiI results in 

UVI
UIV reduction and silylation of both oxo ligands, forming [UIVI2(OSiMe3)2(

MesPDIMe)] (183) 

and [UIVI2(OSiMe3)2(
tBu-MesPDIMe)] (184), respectively (Scheme 39).54 

Scheme 39. UVI
UIV reductive silylation of [Cp*UVIO2(

MesPDIMe)] (181) with Me3SiI, affording 

[UIVI2(OSiMe3)2(
MesPDIMe)] (183) via intermediate [UVOI(OSiMe3)(

MesPDIMe)] (185).54  

 

Only complex 183 was crystallographically characterized and in the solid-state the UIV center 

possesses pentagonal bipyramidal geometry with the trans-trimethylsiloxy ligands occupying the 

axial coordination sites. The formation of 183 was thought to progress from 181 via a UV 

intermediate, which was identified as [UVOI(OSiMe3)(
MesPDIMe)] (185) by 1H NMR and IR 

spectroscopy. Intermediate 185 is the product of homolytic cleavage of the U–Cp* bond with 

concomitant Me3Si–I addition across one of the U=O bonds; its presence during the formation of 179 

was verified by electronic absorption spectroscopy of the reaction solution. The formation of 184 is 

thought to proceed via an analogous intermediate.54  
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Scheme 40. UVI
UIV reductive silylation of [Cp*UVIO2(

MesPDIMe)] (181), providing 

[(R3SiO)2U
IVX2(OPPh3)2] (R = Ph, X = Cl (186); R = Me, X = SPh (187); R = Me, X = Cl (188); R 

= Me, X = I (189); R = Me, X = OTf (190)).88  

 

The scope of the reductive silylation of 181 using Me3SiI was expanded to other silanes via a 

reductive functionalization strategy that entailed the addition of a Lewis base to generate the silylium 

ion, [base-SiR3][X]. It was envisaged that the more electrophilic silylium ion would facilitate uranyl 

functionalization, and while previously the addition of Ph3Si-Cl or Me3Si-SPh to 181 did not result 

in a reaction, and the addition of Me3Si-Cl or Me3Si-OTf yielded intractable mixtures, the 

introduction of two equiv. of Ph3P=O into the reaction mixtures resulted in complete conversion into 

[(R3SiO)2U
IVX2(OPPh3)2] (R = Ph, X = Cl (186); R = Me, X = SPh (187); R = Me, X = Cl (188); R 

= Me, X = I (189); R = Me, X = OTf (190); Scheme 40). The more sterically encumbered iPr3Si-Cl 

remained unreactive with 181, which was attributed to the inability of O=PPh3 to undertake 

nucleophilic attack at Si.88,89 The reducing electrons for the two electron reduction of the UVI center 

in 181 originate from the redox-active pyridine(diamine) ligand and from homolytic cleavage of the 

U–Cp* bond, forming [MesPDIMe]0 and Cp*2 as by-products.54  

Scheme 41. UVI
UIV reductive silylation of [UVIO2X2(OPPh3)2] (191, 197, 198) and 

[UVIO2(OTf)2(2,2'-bipy)2] (199): by (1) alkylation followed by (2) bis(alkyl) reductive elimination 

and U–O silylation, forming [{R3SiO)UIVX2(OPPh3)] (186-189, 192-196, 200) and 

[{Me3SiO)UIV(OTf)2(2,2'-bipy)2)] (201).89 
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The reductive functionalization of the simple uranyl(VI) compound [UVIO2Cl2(OPPh3)2] 

(191) has also been explored. Salt metathesis using M-R alkylating reagents (M-R = KCH2Ph, nBuLi, 

MCH2SiMe3; M = Li, Na, K), forms the corresponding UVI (dialkyl) complexes which undergo 

reductive elimination of the alkyl co-ligands upon addition of R3Si–X halosilanes across the U=O 

bond. The reductive elimination of alkane provides the two reducing electrons requisite for UVI
UIV 

reduction. Alkylation of 191 with two equiv. of NaCH2SiMe3, followed by the addition of R3Si-Cl 

provided [(R3SiO)2U
IVCl2(OPPh3)2] (R = Ph (186), Me (188), Et (192) or H (193); Scheme 41) in 

high yields. The use of this protocol with Me2PhSi-Cl, MePh2Si-Cl, Ph2HSi-Cl and Me3Si-SPh also 

provided the desired UIV bis(siloxide) products, [(Me3SiO)2U
IV(SPh)2(OPPh3)2] (187) and 

[(R3SiO)2U
IVCl2(OPPh3)2] (R3Si = Me2PhSi (194), MePh2Si (195) and Ph2HSi (196); Scheme 41). 

The same method was also applied to different uranyl and silyl starting materials, in particular, 

[UVIO2X2(OPPh3)2] (X = Br (197), I (198)) and [UVIO2(OTf)2(2,2'-bipy)2] (199), and Me3Si-X (X = 

Br, I, OTf) which successfully generated the corresponding UIV bis(siloxide) products, 

[(Me3SiO)UIVBr2(OPPh3)] (200), [(Me3SiO)UIVI2(OPPh3)] (189) and [(Me3SiO)UIV(OTf)2(2,2'-

bipy)2] (201), respectively (Scheme 41); the halide co-ligands incorporated with the uranyl starting 

materials were matched with the R3Si-X halide to avoid halide scrambling.89  

Scheme 42. UVI
UIV reductive silylation of cationic [UVIO2(OTf)(dppmo)][OTf] (202) resulting in 

oxo-group silylation and abstraction, yielding [UIV(OSiPh3)(OTf)2(dppmo)2][OTf] (204).90 



67 
 

 

 

Cationic uranyl(VI) complexes have been studied in reductive silylation chemistry as they 

should be susceptible to reduction at more positive reduction potentials. However, treatment of the 

cationic uranyl(VI) complex [UVIO2(dppmo)2(OTf)][OTf] (202; dppmo = Ph2P(O)CH2P(O)PPh2) 

with 2 equiv. of Ph3SiOTf did not result in a reaction, which is likely due to the decrease in 

nucleophilicity of the uranyl oxo-ligands. In contrast, the addition of 2 equiv. of [CoCp2] and 4 equiv. 

of Ph3SiOTf to 202 afforded [UIV(OTf)4(dppmo)] (203), likely through initial UVI
UV reduction to 

render the uranyl oxo-groups more nucleophilic and susceptible to silylation. The formation of 203 

proceeds through a UIV bis(siloxide) intermediate, detected by 1H NMR spectroscopy, and 

[UIV(OSiPh3)(OTf)2(dppmo)2][OTf] (204), which was characterized crystallographically. 204 is the 

product of UVI
UIV reduction and oxo-group silylation followed by oxo-group abstraction; 2 equiv 

of [Cp2Co][OTf] and Ph3SiOSiPh3 were detected as by-products during the formation of 204 (Scheme 

42).90  

Scheme 43. Synthesis of a dipyrrin-coordinated uranyl(VI) complex, [UVIO2Cl(L')] (205).55  
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It was recently demonstrated that the mono-anionic, tetradentate dipyrrin ligand, L' (Scheme 

43) acts as a ligand for uranyl(VI), and that treatment with either inner- or outer-sphere reductants 

leads to different, and reagent-dependent, degrees of reduction of the complex. Treatment of 

[UVIO2{N(SiMe3)2}2(THF)2] (2-THF) with HL' followed by [HPy]Cl provided [UVIO2Cl(L')] (205; 

Scheme 43). Alternatively, 205 may be obtained by treating HL' with 0.5 equiv. of 2-THF and 0.5 

equiv. of [UVIO2Cl2(THF)2] (4-THF; Scheme 43). Complex 205 reacts with the inner-sphere 

reductant, [Cp2TiCl]2, to yield the uranium(IV) complex [UIV(OTiClCp2)2(Cl)(L')] (206) which is the 

product of UVI
UIV reduction and titanation of each of the uranyl oxo groups (Scheme 44a). 

Attempts to react 205 with 0.5 equiv. of [Cp2TiCl]2 to cleanly isolate the UV analogue of 206, 

[UVO(OTiClCp2)(Cl)(L')] (207), were unsuccessful, as 207 slowly disproportionates into 205 and 

206 over time. 205 reacts with a sub-stoichiometric amount (0.95 equiv.) of the outer-sphere 

reductant, [CoCp2], to provide [CoCp2][U
VIO2Cl(L')] (208) which, based on EPR and NMR 

spectroscopy and X-ray crystallography, is best described as a ligand-centered radical of the 

uranyl(VI) ion (Scheme 44b). Despite CV data suggesting that [CoCp2] is reducing enough to access 

the reduced uranyl complex, [CoCp2]2[U
VO2(Cl)(L')], only the ligand-centered radical was 

observed.55  

Scheme 44. (a) UVI
UIV reduction observed upon treating [UVIO2Cl(L')] (205) with the inner-sphere 

reductant, [Cp2TiCl]2, to provide [UIV(OTiClCp2)2(Cl)(L')] (206), and (b) ligand-based reduction 

observed when treating 205 with the outer-sphere reductant, [CoCp2], to provide 

[CoCp2][U
VIO2Cl(L')] (208).55  

 



69 
 

It is interesting to note that while [Cp2TiCl]2 and [CoCp2] possess similar reduction potentials, 

UVI
UIV reduction is seen when 205 reacts with the former (inner-sphere) reductant whereas ligand-

based reduction is observed when 205 reacts with the latter (outer-sphere) reductant. It was 

determined by DFT calculations that in the case of the inner-sphere reductant, while the first reduction 

is ligand-based, coordination of the Lewis acidic TiIV ion to one of the uranyl oxo groups promotes 

electron transfer from the ligand to the UVI center, resulting in UVI
UV reduction. The subsequent 

electron transfer and oxo group titanation step then occurs at the U center, resulting in UV
UIV 

reduction.55  

When two uranyl(VI) ions are installed into the same ligand, facile reductive functionalization 

to uranium(IV) complexes is achieved using mild reducing agents such as boranes or silanes. 

[{UVIO2(py)}2(L
A)] (209), which is prepared from H4L

A and 2.5 equiv. of 2-THF (H4L
A = a Pacman-

shaped macrocyclic Schiff-base ligand with ethyl substituents on the meso-carbon atoms and an 

anthracenyl hinge linking the N4-donor pockets, Scheme 45), reacts with 2 equiv. of B2pin2 or B2cat2 

at 80 °C in pyridine to afford [(py)(pinBO)UIVOUIV(OBpin)(py)(LA)] (210) and 

[(py){cat(py)BO}UIVOUIV(OBcat)(py)(LA)] (211), respectively (Scheme 45a). While complex 210 

is isolated in 47 % yield, 211 is only generated in situ or in small quantities (ca. 10 mg) and of reduced 

purity (ca. 90 %) because it reacts with a third equiv. of B2cat2 to ultimately yield [(py)UIVOUIV(µ-

O2C6H4)(L
A)] (212). Complex 209 also reacts with 10 equiv. of HBpin or HBcat at 125 °C in pyridine 

to afford 210 and 211/212, respectively. Alternatively, 209 reacts with excess Ph2SiH2 (15 equiv.) in 

the presence of 0.25 equiv. of MX salts (M = K, X = N(SiMe3)2 or OtBu; M = Li, X = N(SiMe3)2) at 

125 °C in pyridine to afford the reductively silylated uranium(IV) complex 

[(py)(HPh2SiO)UIVOUIV(OSiPh2H)(py)(LA)] (213; Scheme 45b). Complexes 210, 211 and 213 are 

the products of UVI
UIV reductive borylation or silylation, oxo-atom abstraction and fusion of the 

former uranyl(VI) ions. Initial functionalization is thought to proceed through a UV/UV intermediate 

upon B–B or Si–H bond homolysis and borylation/silylation of the exo-oxo ligands. The ultimate 

UV
UIV reduction is anticipated to proceed through a second B–B or Si–H bond homolysis and 
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attack at one of the endo-oxo-groups, resulting in loss of one of the endo-oxo-ligands and formation 

of (R2B)2O/(HPh2Si)2O.91  

Scheme 45. (a) UVI
UIV reductive borylation of a bis(uranyl(VI)) complex [{UVIO2(py)}2(L

A)] 

(209) through reaction with B2pin2 and B2cat2, yielding and [(py)(pinBO)UIVOUIV(OBpin)(py)(LA)] 

(210) and [(py){cat(py)BO}UIVOUIV(OBcat)(py)(LA)] (211), and (b) UVI
UIV reductive silylation 

of 209 through reaction with Ph2SiH2, providing [(py)(HPh2SiO)UIVOUIV(OSiPh2H)(py)(LA)] (213). 

The anthracenyl-Pacman ligand, H4L
A, is depicted at the top of the Scheme.91  
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Table 5. Structural and spectroscopic data for reductively functionalized uranium(IV) dioxo 

complexes reported since 2010 and discussed in Section 5. With respect to the tabulated IR data, sym. 

refers to the symmetric OUO stretching frequency determined by Raman spectroscopy and asym. 

refers to the asymmetric OUO stretching frequency determined by IR spectroscopy. 
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Table Footnotes: * Structure contains positional disorder. The compounds are numbered within Table 5 according to how they appear in the text, and 
any lattice solvent molecules are not included in the chemical formulae. 

 

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X 

= oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic 

spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman 

spectroscopies for the reductively functionalized uranium(IV) dioxo complexes reported since 

2010 and discussed in Section 5 (vide supra) are provided in Table 5, and their trends are 

discussed in more detail in Section 7 (vide infra). 

 

6. UVI
UIV REDUCTIVE FUNCTIONALIZATION VIA CHARACTERIZED U(V) 

INTERMEDIATES 

As discussed in Section 3, treating a uranyl(VI)-Aracnac complex (Aracnac = 

ArNC(Ph)CHC(Ph)O; Ar = 3,5-tBu2C6H3) with either 2 equiv. of Ph3SiOTf or excess Me3SiI 

Compound U–O [Å] O–X [Å] O–U–O [°] U–O–X 

[°] 

ν(OUO) 

[cm–1] 

Reference 

[UI2(OSiMe3)2(MesPDIMe)] (183) 2.09(1), 

2.10(1) 

1.63(1), 

1.64(1)  

172.3(4) 173.6(7), 

156.5(7) 

Unassigned 54 

[U(OSiPh3)2Cl2(OPPh3)2] (186) 2.112(5) 1.638(5) 178.9(2) 171.0(3) Unassigned 88 

[U(OSiMe3)2(SPh)2(OPPh3)2] (187) 2.113(5) 1.640(6) 174.2(3) 162.8(4) Unassigned 88 

[U(OSiMe3)2Cl2(OPPh3)2] (188) 2.127(2), 

2.104(2) 

1.620(2), 

1.639(8)  

173.56(7) 169.6(1), 

158.9(4) 

Unassigned 89 

[U(OSiMe3)2I2(OPPh3)2] (189) 2.082(6) 1.607(7) 180.0 167.4(5) Unassigned 88 

[U(OSiMe3)2(OTf)2(OPPh3)2] (190) 2.053(6), 

2.066(6) 

1.667(6), 

1.675(6) 

176.9(2) 178.1(3), 

173.9(3) 

Unassigned 88 

[U(OSiEt3)2Cl2(OPPh3)2] (192) 2.107(2), 

2.108(2) 

1.70(1), 

1.650(7), 

1.601(8), 

1.632(2) * 

174.56(9) 163.9(3), 

173.3(3), 

166.7(2), 

145.4(5) 

Unassigned 89 

[U(OSiHPh2)2Cl2(OPPh3)2] (196) 2.120(5), 

2.138(5) 

1.608(5), 

1.600(5)  

177.4(2) 174.0(3), 

174.2(3) 

Unassigned 89 

[U(OSiMe3)2(OTf)2(2,2'-bipy)2] (201) 2.12(1), 

2.16(1) 

1.62(1), 

1.61(1)  

155.5(5) 162.8(9), 

154.4(8) 

Unassigned 89 

[U(OTiClCp2)2(Cl)(L')] (206) 2.066(7), 

2.061(6) 

1.843(7), 

1.841(7) 

177.0(2) 170.9(4), 

169.1(3) 

630 (asym.) 55 

[(py)(pinBO)UOU(OBpin)(py)(LA)] (210) 

 

2.161(2), 

2.139(2), 

2.112(2), 

2.172(2) 

1.334(4), 

1.341(4)  

169.05(8), 

96.51(7) 

145.7(2), 

166.9(2) 

566 (asym.) 91 

[(py){cat(py)BO}UOU(OBcat)(py)(LA)] 

(211) 

 

2.092(2), 

2.219(2), 

2.176(2), 

2.068(2) 

1.400(5), 

1.315(5)  

170.7(1), 

99.2(1) 

158.8(3), 

171.1(3) 

580, 531 

(asym., 

tentative) 

91 

[(py)(HPh2SiO)UOU(OSiPh2H)(py)(LA)] 

(213) 

2.142(2), 

2.1486(3)  

1.623(3)  172.09(9) 146.9(2) Unassigned 91 

[(THF)(HPh2SiO)UOU(OSiPh2H)(THF)(

LA)] 

2.135(2), 

2.1425(3) 

2.160(2) 169.23(9) 154.0(2) Unassigned 91 

[U(OSiMe3)2BrI(OPPh3)2]*  2.078(3) 1.631(8), 

1.63(1)  

180.0 166.1(5), 

170.2(8) 

Unassigned 89 

[U(OSiMePh2)2Cl0.25I1.75(OPPh3)2]*  2.116(2), 

2.104(4), 

2.100(2), 

2.119(4) 

1.632(2)  176.73(8), 

172.5(1) 

168.7(1), 

163.4(1), 

157.4(1), 

153.2(1) 

Unassigned 89 
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results in UVI
UV reduction and silylation of the oxo groups. Attempts have been made to 

react the same uranyl(VI) starting complex, [UVIO2(
Aracnac)2] (54), with Ph3SiH, but no 

reaction occurs until B(C6F5)3 is added to the reaction mixture, in which case 

[UV{OB(C6F5)3}(OSiPh3)(
Aracnac)2] (214; Scheme 46a) was formed. The addition of borane 

is thought to result in Ph3SiHB(C6F5)3 adduct formation, thus activating the silane and 

rendering it susceptible to nucleophilic attack by a uranyl oxo group. This hypothesis was 

verified by repeating the same reaction but with iPr3SiH, in which the sterically bulky iso-

propyl substituents are known to disfavor B(C6F5)3 coordination and activation, resulting in 

no reaction. Upon Ph3Si+ and B(C6F5)3 coordination to the uranyl oxo ligands, UVI
UV 

reduction is facilitated by H–, resulting in the formation of H2. The CV indicated that an 

irreversible reduction feature was located at E1/2 = –0.72 (vs. Fc/Fc+), which is shifted 0.49 V 

to a more positive reduction potential relative to [Cp*2Co][UV{OB(C6F5)3}2(
Aracnac)2] (E1/2 

= –1.21 V vs. Fc/Fc+),92 and is attributed to coordination of the more Lewis acidic Ph3Si+ 

cation to one of the uranyl(V) oxo groups. Treating 214 with CoCp2 resulted in the formation 

of [Cp2Co][UIV{OB(C6F5)3}(OSiPh3)(
Aracnac)2] (215; Scheme 46a). The U–O bond lengths 

in 215 (U–OB = 2.056(8) Å, U–OSi = 2.173(8) Å) are elongated relative to those in 214 (U–

OB = 1.941(8) Å, U–OSi = 2.034(9) Å), as expected for [UIVO2] versus [UVO2]
+, and the O–

U–O bond angles remain linear in both (175.3(3)⁰ and 174.6(3)⁰ in 215 and 214, respectively). 

Attempts were made to oxidize 215 back to 54 using either I2 or AgOTf, but were 

unsuccessful.93  

Scheme 46. (a) Monosilylation of an oxo group in [UVIO2(
Aracnac)2] (54) by treatment with 

Ph3SiH/B(C6F5)3, providing [UV{OB(C6F5)3}(OSiPh3)(
Aracnac)2] (214), and subsequent reduction to 

afford [CoCp2][U
IV{OB(C6F5)3}(OSiPh3)(

Aracnac)2] (215). (b) Disilylation of 54 using 2 equiv. of 

Et3SiH and 1 equiv. of B(C6F5)3, providing [UV(OSiEt3)2(
Aracnac)2][HB(C6F5)3] (216) and 

[UV{OB(C6F5)3}(OSiEt3)(
Aracnac)2] (217; minor component); 216 may be converted into 217 by 
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heating in toluene at 85 ⁰C for 24 hours. 217 reacts with CoCp2 to provide [UIV(OSiEt3)2(
Aracnac)2] 

(219).93,94 

 

 Alternatively, treating 54 with 2 equiv. of Et3SiH and 1 equiv. of B(C6F5)3 results in double 

silylation of the uranyl oxo groups, providing [UV(OSiEt3)2(
Aracnac)2][HB(C6F5)3] (216) following 

UVI
UV reduction. During this reaction, [UV{OB(C6F5)3}(OSiEt3)(

Aracnac)2] (217) is formed as a 

minor product (216:217 = 4:1), but can be isolated on a preparative scale either by heating 54 with 

equimolar quantities of Et3SiH and B(C6F5)3, or by heating 216 to 85 ⁰C for 24 hours in toluene 

(Scheme 46b). However, several unidentified decomposition products are observed when using the 

latter method. Complex 54 also reacts with 1 equiv. of Et3SiH/B(C6F5)3 at room temperature to 

provide 216 and unreacted 54. The formation of complexes 216 and 217 indicates that a [UVO2]
+-

silylated intermediate, [UVO(OSiR3)(
Aracnac)2] (R = Et, Ph), must be formed during the reaction. 

Furthermore, the silyl cation in Et3SiHB(C6F5)3 must be more prone to nucleophilic attack by the 

silylated-uranyl(V) oxo group, and therefore reacts faster than uranylborane adduct formation 

compared to Ph3SiHB(C6F5)3, given that a doubly silylated product is isolated in the reaction 
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involving the former reactive species while only a singly silylated product is isolated in the latter 

case.94 A quasi-reversible redox couple was observed at –0.37 V (vs. Fc/Fc+) in the CV of 216, which 

is shifted 0.35 V and 0.84 V to a more positive reduction potential relative to 214 and 

[Cp*2Co][UV{OB(C6F5)3}2(
Aracnac)2] (218), respectively, consistent with the positive charge on 216 

versus the neutral and anionic charges on 214 and 218, respectively. Complex 216 reacts with CoCp2 

to provide [UIV(OSiEt3)(
Aracnac)2] (219), which possesses U–O bond lengths (2.129(2) Å) that are 

elongated relative to 216 (2.011(4), 2.013(4) Å) and 217 (2.017(6), 1.957(6) Å), and representative 

of a [UIV(OSiR3)2]
2+ complex (Scheme 46b).92,94 

Scheme 47. Treatment of [UVIO2(
tBuacnac)2] (220) with excess Me3SiI/PPh3 provides 

[Ph3PI][UV(OSiMe3)2I4] (221). The addition of 2 equiv. of either 4,4'-bipyridine (bipy) or 1,10-

phenanthroline (phen) to a toluene solution of 221 affords [UIV(OSiMe3)2I2(bipy)2] (222) or 

[UIV(OSiMe3)2I2(phen)2] (223), respectively, and the addition of excess THF yields 

[UIV(OSiMe3)2I(THF)4][I3] (224).57  

 

The reductive silylation chemistry of uranyl(VI) of a β-ketoiminate ligand (i.e. acnac ligand) 

that possesses an N-bound tert-butyl substituent instead of an aryl substituent, [UVIO2(
tBuacnac)2] 
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(220; tBuacnac = tBuNC(Ph)CHC(Ph)O), has also been explored. In this case, treating 220 with excess 

Me3SiI (10 equiv.) in the presence of PPh3 affords [Ph3PI][UV(OSiMe3)2I4] (221), in which both oxo 

groups of uranyl have been silylated, the UVI center has undergone a one-electron reduction, and both 

tBuacnac ligands have been substituted for iodo ligands and converted into their silylated analogue, 

tBuacnacSiMe3 (Scheme 47). The loss of both equivalents of tBuacnac ligand when treating 220 with 

excess Me3SiI compared to only one equivalent when Aracnac is used (see Section 3, vide supra) has 

been attributed to the extra steric bulk imparted by the tert-butyl substituents, making ligand 

abstraction more facile. The formation of 221 is thought to proceed through the UV intermediate, 

[UV(OSiMe3)2I3], which is formed via UVI
UV reduction by I– following Me3Si+ coordination to the 

uranyl oxo groups. The resulting I2 reaction by-product (0.5 equiv.) then reacts with Ph3P to provide 

[Ph3PI]I, which is trapped by the proposed UV intermediate. Due to fact that only 0.5 equiv. of I2 is 

produced during this reaction, the maximum yield of 221 is 50 %. When 2 equiv. of either 4,4'-

bipyridine (bipy) or 1,10-phenanthroline (phen) are added to a toluene solution of 221, 

[UIV(OSiMe3)2I2(bipy)2] (222) or [UIV(OSiMe3)2I2(phen)2] (223) are obtained, respectively (Scheme 

47). Alternatively, the addition of excess THF to a toluene solution of 221 provides 

[UIV(OSiMe3)2I(THF)4][I3] (224; Scheme 47). Compounds 222-224 are the product of UV
UIV 

reduction, which is thought to occur by I– dissociation and oxidation to I2. Complex 221 possesses 

U–O bond lengths of 1.990(6) and 1.976(8) Å and complexes 222 and 224 possess U–O bond lengths 

that range from 2.065(6)-2.084(4) Å, which are representative of UV and UIV dioxo complexes, 

respectively. Complexes 221-224 are thermally unstable in solution, decomposing slowly to provide 

(Me3Si)2O as a decomposition product.57  

 As was highlighted in Section 3, the macrocyclic Pacman ligand, H4L
Me, or the mono(uranyl) 

Pacman complex 11-py react with 2.5 equiv. or 1.5 equiv. of [UVIO2{N(SiMe3)2}2(py)2] (2-py), 

respectively, to afford the doubly oxo-silylated bis(uranyl(V)) complex, [{UVO(OSiMe3)}2(L
Me)] 

(70). Complex 70 may be further reduced with 2 equiv. of K metal to afford 

K2[{UIVO(OSiMe3)}2(L
Me)] (225; Scheme 48), which was characterized by 1H NMR, IR and UV/VIS 
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spectroscopies, and elemental analysis. Complex 70 may be regenerated from 225 and I2, producing 

KI as a reaction by-product. Alternatively, 225 undergoes a double desilylation reaction with 

pyridine-N-oxide to afford [K(py)3]2[K(py)]2[(U
VO2)2(L

Me)]2 (19-py) in pyridine or 

{K2[(U
VO2)2(L

Me)]}n (19-THF) in THF. Treating 19 with 2 equiv. of Cl-SiMe3 results in regeneration 

of 70 (Scheme 48). Complexes 19-py and 19-THF possess significantly more contracted U–Oexo 

bond lengths (1.851(5)-1.871(6) Å) relative to the U–Oendo bond lengths (2.077(5)-2.101(5) Å), 

indicating that they retain greater multiple bond character and display appreciable air-sensitivity 

compared with the silyl-protected 70.38   

Scheme 48. Doubly oxo-silylated [{UVO(OSiMe3)}2(L
Me)] (70), which may be obtained by treating 

H4L
Me with 2.5 equiv. of [UVIO2{N(SiMe3)2}2(py)2] (2-py), reacts with 2 equiv. of potassium to 

provide K2[{UIVO(OSiMe3)2}2(L
Me)] (225). 225 reacts with either C5H5NO or 0.5 equiv. of O2 to 

yield [K(py)3]2[K(py)]2[(U
VO2)2(L

Me)]2 (19-py; see Section 2), and 70 may be regenerated by treating 

225 or 19 with I2 or 2 equiv. of Cl-SiMe3, respectively.38  

 



78 
 

In addition to UVI
UIV reduction upon treating [UVIO2Cl(L')] (205) with the inner-sphere 

reductant, [Cp2TiCl]2, as was highlighted in Section 5 (vide supra) complex 205 has been exploited 

to demonstrate the effects of axial and equatorial ligand manipulation on the reductive 

functionalization chemistry of the uranyl(VI) ion. Complex 205 reacts with 1 equiv. of KNHAr (Ar 

= 2,6-iPr2C6H3) to yield the UV/UV dimer [UVO2(L')]2 (226; Scheme 49). The formation of 226 

presumably proceeds through the unisolated anilido complex, [UVIO2(NHAr)(L')], which then 

undergoes U–N bond homolysis. Complex 226 reacts with either 1 or 2 equiv. of B(C6F5)3 to afford 

singly or doubly oxo-functionalized [UVO{OB(C6F5)3}(L')] (227) and [UV{OB(C6F5)3}2(L')] (228), 

respectively (Scheme 49). Complex 228 is also formed from the reaction of 205 with 2 equiv. of 

B(C6F5)3, resulting in loss of Cl•, but this reaction does not reach completion (even with heating in 

the presence of 8 equiv. of B(C6F5)3) unless elemental mercury is added, which enables the removal 

of the Cl• by-product in the form of solid Hg2Cl2 via reduction to Cl– (Scheme 49). Complex 205 also 

reacts with Na[B{C6H3-3,5-(CF3)2}4] to yield the cationic uranyl(VI) complex, [UVIO2(L')][B{C6H3-

3,5-(CF3)2}4] (229), and with AgOTf to form [UVIO2(OTf)(L')] (230).58  

Scheme 49. UVI
UV reduction of [UVIO2Cl(L')] (205) using either KNHAr (Ar = 2,6-iPr2C6H3) or 

2B(C6F5)3/Hg to provide [UVO2(L')]2 (226) and [UV{OB(C6F5)3}2(L')] (228), respectively. 226 also 

reacts with 1 equiv. of B(C6F5)3 to afford [UVO{OB(C6F5)3}(L')] (227).58  
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In this system, the sequential addition of borane to coordinate to the uranyl(V) ion shifts the 

UV
UIV reduction potential step-wise from –1.14 V vs. Fc/Fc+ for 226 to –0.78 V for 227, then –

0.49 V for 228, enabling the use of very mild reducing agents to achieve UV
UIV reduction. As such, 

228 is reduced by [FeCp*2] (Ered = –0.56 V vs. Fc/Fc+) to yield the anionic uranium(IV) complex 

[FeCp*2][U
IV{OB(C6F5)3}2(L')] (231), and also by H2 (Ered = –0.54 V vs. Fc/Fc+) to provide 

[UIV{OB(C6F5)3}{OB(C6F5)2}(L')] (232). In this latter case, one of the B–C bonds of one of the oxo-

coordinated B(C6F5)3 groups is cleaved, producing C6F5H as a by-product and converting the oxo-

coordinated B-ligand from a neutral borane to an anionic boroxy ligand (Scheme 50); at a bond angle 

of 162.8(1)⁰, the O–U–O group is now significantly more bent than other bis(silyloxide) complexes 

derived from uranyl reduction, indicating the loss of 'yl' character.58  

Scheme 50. UV
UIV enabled by uranyl(V) oxo groupborane coordination. [UV{OB(C6F5)3}2(L')] 

(228) reacts with [FeCp*2] and H2 to afford [FeCp*2][U
IV{OB(C6F5)3}2(L')] (231) and  

[UIV{OB(C6F5)3}{OB(C6F5)2}(L')] (232), respectively.58  

 

The reductive functionalization of uranyl(VI) may also be achieved through deployment of a 

suitable donor solvent in the absence of intricately designed and strictly equatorially coordinating 

ligands. As such, a new class of highly symmetrical, linear oxo-bridged mixed actinide/lanthanide 

complexes (Scheme 51) are accessible from uranyl reduction by low oxidation-state lanthanide and 

actinide halides.95  

Scheme 51. Reductive functionalization of [UVIO2{N(SiMe3)2}2(THF)2] (2-THF) or 

[UVIO2Cl2(THF)2] (4-THF) with LnII (Ln = Sm, Dy) or UIII salts in donor solvents (pyridine or 



80 
 

acetonitrile). (a) 1.25[LnIII2(THF)2] (Ln = Sm, Dy), (b) 2[SmIII2(THF)2], (c) 2[UIIII3(dioxane)1.5, (d) 

3DyIII2.
95 

 

The reactions between [UVIO2Cl2(THF)2] (4-THF) and 1.25 equiv. of either [SmIII2(THF)2] 

or DyIII2 provide the mixed Ln/An complexes [{UVO2(py)5}2(LnIIII4)]I (Ln = Sm (233), Dy (234)), 

which display linear, oxo-bridged units made up of a [LnIIII4]
– anion sandwiched between two 

[UVO2]
+ cations (Scheme 51a). Alternatively, 4-THF reacts with 2 equiv. of [SmIII2(THF)2] in 

acetonitrile to provide the one-dimensional coordination polymer [(UVO2I4){SmIII(NCMe)6}]n (235; 

Scheme 51b), and with 2 equiv. of [UIIII3(diox)1.5] to yield the trimetallic UIV/UIV/UIV complex 

[(UIVO2I4){UIVICl(py)4}2] (236; Scheme 51c). Complex 235 is composed of alternating anionic 

[UVO2]
– and cationic SmIII units and 236 comprises a central [UIVO2]

2– dianion bridged by two [UIV]+ 

cations. While treating 4-THF with excess DyIII2 only yielded 234, treatment of 

[UVIO2{N(SiMe3)2}2(THF)2] (2-THF) with 3 equiv. of DyIII2 provided access to 

[(UIVO2I4){DyIIII(py)5}2] (237), which similarly to 236, possesses an anionic [UIVO2I4]
2– unit 

sandwiched between two DyIII cations and is the product of [UVIO2]
2+
[UIVO2] reduction (Scheme 

51d).95 
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Table 6. Structural and spectroscopic data for reductively functionalized uranyl(V) and uranium(IV) 

dioxo complexes reported since 2010 and discussed in Section 6. With respect to the tabulated IR 

data, sym. refers to the symmetric OUO stretching frequency determined by Raman spectroscopy and 

asym. refers to the asymmetric OUO stretching frequency determined by IR spectroscopy. 

Table Footnotes: The compounds are numbered within Table 6 according to how they appear in the text, and any lattice solvent molecules are not 

included in the chemical formulae. 

 

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X 

= oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic 

spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman 

spectroscopies for the reductively functionalized uranyl(V) and uranium(IV) dioxo complexes 

[UVO2]+ 

Compound U–O [Å] O–X [Å] O–U–O [°] U–O–X 

[°] 

ν(OUO) 

[cm–1] 

Reference 

[U{OB(C6F5)3}(OSiPh3)(Aracnac)2] (214) 1.941(8) (U–

OB), 2.034(9) 

(U–OSi) 

1.666(9) (X = 

Si), 1.52(2) 

(X = B) 

174.6(3) 173.2(5) 

(X = Si), 

170.2(7) 

(X = B) 

Unassigned 93 

[U(OSiEt3)2(Aracnac)2][HB(C6F5)3] (216)  2.011(4), 

2.013(4) 

1.678(4), 

1.684(4) 

180.0 161.5(3), 

159.4(3) 

Unassigned 94 

[U{OB(C6F5)3}(OSiEt3)(Aracnac)2] (217) 2.017(6) (U–

OSi), 

1.957(6) (U–

OB) 

1.664(7) (X = 

Si), 1.53(1) 

(X = B) 

175.0(3) 168.0(4) 

(X = Si), 

166.6(6) 

(X = B) 

Unassigned 94 

[Ph3PI][U(OSiMe3)2I4] (221) 1.976(8), 

1.990(6) 

1.688(8), 

1.674(7) 

180.0 176.9(5), 

177.8(4) 

Unassigned 57 

[UO2(L')]2 (226) 1.928(2), 

1.829(3) 

3.5351(2) 174.5(1) 109.97(9) 783 (asym.) 58 

[UO{OB(C6F5)3}(L')] (227) 1.914(7), 

1.785(7) 

1.53(1)  178.7(3) 167.4(6) 837 (asym.) 58 

[U{OB(C6F5)3}2(L')] (228) 1.922(3), 

1.917(3) 

1.578(5), 

1.554(5)  

176.4(1) 174.6(2), 

172.9(2) 

Unassigned 58 

[{UO2(py)5}2(SmI4)]I (233) 1.802(6), 

1.915(6) 

2.331(6)  177.8(3) 176.1(3) 818 (asym.) 95 

[{UO2(py)5}2(DyI4)]I (234) 1.808(5), 

1.919(5) 

2.270(5)  177.6(2) 176.9(3) 825 (asym.) 95 

[(UO2I4){Sm(NCMe)6}]n (235) 1.868(5), 

1.883(4) 

2.351(5), 

2.318(4) 

179.3(2) 179.2(3), 

169.5(3) 

722 (asym.) 95 

[UIVO2] 

Compound U–O [Å] O–X [Å] O–U–O [°] U–O–X 

[°] 

ν(OUO) 

[cm–1] 

Reference 

[CoCp2][U{OB(C6F5)3}(OSiPh3)(Aracnac)

2] (215) 

2.173(8) (U–

OSi), 

2.056(8) (U–

OB) 

1.610(9) (X = 

Si), 1.44(2) 

(X = B) 

175.3(3) 170.3(6) 

(X = Si), 

176.9(8) 

(X = B) 

Unassigned 93 

[U(OSiEt3)2(Aracnac)2] (219) 2.129(2) 1.628(2) 180.0 159.0(2) Unassigned 94 

[U(OSiMe3)2I2(bipy)2] (222) 2.084(4) 1.639(4) 115.5(2) 165.4(3) Unassigned 57 

[U(OSiMe3)2I(THF)4][I3] (224) 2.065(6), 

2.080(6) 

1.670(6), 

1.659(6) 

173.8(3) 170.0(4), 

172.8(4) 

Unassigned 57 

[Cp*2Fe][U{OB(C6F5)3}2(L')] (231) 2.030(5), 

2.022(5) 

1.51(1), 

1.475(9)  

170.6(2) 163.1(5), 

170.0(5) 

631 (asym.) 58 

[U{OB(C6F5)3}{OB(C6F5)2}(L')] (232) 2.196(4), 

1.990(3) 

1.323(6), 

1.490(6) 

162.8(1) 152.0(3), 

166.8(3) 

Unassigned 58 

[(UO2I4){UICl(py)4}2] (236) 2.166(5) 2.042(5)  180.0 173.8(3) Unassigned 95 

[(UO2I4){DyI(py)5}2] (237) 2.058(3), 

2.068(3) 

2.126(3), 

2.119(3)  

177.7(1) 170.5(2), 

173.6(2) 

Unassigned 95 
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reported since 2010 and discussed in Section 6 (vide supra) are provided in Table 6, and their 

trends are discussed in more detail in Section 7 (vide infra). 

 

 

7. STRUCTURAL AND SPECTROSCOPIC CHARACTERISTICS OF [UVIO2]2+, [UVO2]+ 

AND [UIVO2] COMPLEXES 

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X = oxo-

functionalizing unit) determined by single crystal X-ray diffraction, and characteristic spectroscopic 

data (OUO vibrational stretching frequency) determined by FTIR or Raman spectroscopies for 

uranyl(VI) and reductively functionalized uranyl(V) and U(IV) dioxo complexes reported since 2010 

are provided in Tables 1-6. The U-O bond lengths in Tables 1-6 are also represented pictorially in 

Chart 1.  

a)  

b)  
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c)  

d)  
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Chart 1 U–O bond length versus uranium oxidation state for unfunctionalized and functionalized uranyl(VI), 
uranyl(V) and uranium(IV) dioxo complexes reported in Tables 1-6. (a) mean values; (b)-(e) ranges for the 
different formal oxidation states from U(VI) to U(IV). 

 

While for the most part there is a distinct difference in U–O bond lengths depending on the oxidation 

state of the uranium center, there is some overlap amongst the bond lengths, particularly with respect to 

uranyl(V) compounds. We have found that uranyl(V) compounds that possess particularly elongated U–OR 

bonds (R = functionalizing unit of the former oxo ligand) also possess particularly short U=O bonds to the 

other oxo ligand, resulting in overlap in the ranges of U–O bond lengths of U(IV) dioxo and uranyl(VI) 

compounds, respectively. The mean U–O bond length for each uranium oxidation state is plotted below in 

Chart 2. The mean U–O bond lengths for unfunctionalized and functionalized uranyl(VI) complexes, uranyl(V) 

and U(IV) dioxo complexes are 1.777, 1.800, 1.922 and 2.108 Å, respectively. However, we recognize that 

the mean values for the different U oxidation states is only a crude measure given that the compounds bear 

significantly different equatorially coordinating ligands and oxo ligand functionalizing units. 

The U–Oyl bond lengths and asymmetric OUO stretching frequency (when observable) are 

important aids in assignment of the formal oxidation state of the uranium center. The U–Oyl bond 

lengths of uranyl(VI) complexes reported since 2010 range from 1.746(6)-1.82(1) Å for 

unfunctionalized uranyl(VI) complexes and 1.759(5)-1.885(4) Å for functionalized uranyl(VI) 

complexes. The U–Oyl bond lengths of uranyl(V) and U(IV) dioxo complexes range from 1.77(1)-

2.122(7) Å and 1.990(3)-2.219(2) Å, respectively. When one of the oxo ligands is functionalized, 

uranyl(V) complexes will tend to contain one short and one long U–Oyl bond, resulting in some 

overlap of the bond length range with the range observed for U–Oyl bond lengths in uranyl(VI) 

compounds. Furthermore, the asymmetric OUO stretching frequencies for uranyl(VI) complexes 

range from 860-964 cm–1 in the solid-state with stretching frequencies being reported as high as 973 

cm–1 in solution, whereas those for uranyl(V) and U(IV) dioxo complexes range from 704-907 cm–1 

(with one exception being [{UVO2Eu(py)2(L
Me)}2] (106), located at 564 cm–1; see section 3) and 531-

631 cm–1, respectively. The latter range derives from only four examples in the literature, and 

tentative assignments are provided for one of those complexes. The O–U–O bond angle remains 

nearly linear for uranyl(VI) and reductively functionalized uranyl(V) and U(IV) dioxo complexes, 
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ranging from 180-161.7(5)⁰, 180-169.3(1)⁰ and 180-155.5(5)⁰ for the +6, +5 and +4 oxidation states, 

respectively; three outliers exist for the U(IV) dioxo complexes, which are 

[(py)(pinBO)UIVOUIV(OBpin)(py)(LA)] (210), [(py){cat(py)BO}UIVOUIV(OBcat)(py)(LA)] (211) 

and [UIV(OSiMe3)2I2(bipy)2] (222), which possess O–U–O angles of 96.51(7), 99.2(1) and 115.5(2)⁰, 

respectively (see Sections 5 and 6 for discussion). In addition, the O–X bond lengths and U–O–X 

bond angles are dependent on the oxo-functionalizing unit, rendering these two structural parameters 

less useful for uranium oxidation state determination. 

While Raman spectroscopy is an excellent technique to measure the symmetric OUO 

stretching frequency, many of the more complicated ligands now being used in molecular uranyl(V) 

and U(IV) dioxo complexes fluoresce or burn in the laser beam, so few data are available for isolated 

uranyl(V) complexes. Furthermore, data collection with air and moisture sensitive compounds while 

avoiding sample decomposition is difficult to achieve with these compounds. However, an outline 

for successful Raman data collection with respect to excitation wavelength and 

fluorescence/decomposition while maximizing signal intensity for the identification and relative 

abundance evaluation of uranyl(VI) species in solution was recently published.96
 This method takes 

into account approximate vibrational band locations and band widths using second derivative spectral 

analysis and could perhaps be extended to uranyl(V) and U(IV) dioxo complexes. 

Authors tend to report the observed stretching frequencies obtained by IR and Raman 

spectroscopy for uranyl compounds rather than the associated calculated force constants within the 

OUO unit. We encourage the reporting of calculated force contants since this can provide additional 

information regarding the bonding within the uranyl ion.42,97,98 

8. [UVIO2]2+ PHOTOCHEMICAL REACTIVITY 

Similarly to thermal pathways, photochemical reactivity studies of the uranyl(VI) ion invoke 

uranyl(V) intermediates, and when applied to photochemical transformations, including C–H bond 

activation, the resulting [O=UV-OH]2+ motif is H-functionalized. We therefore also discuss recent 

advances in the photochemistry of the uranyl(VI) ion. 
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In a transformation key to medicinal and agrochemical industries, the first photochemical, 

uranyl-mediated fluorination of sp3 C–H bonds was recently reported.99 Combining uranyl nitrate, 

[UVIO2(NO3)2(OH2)2]·4H2O (238) and a source of electrophilic fluorine (i.e. “F+”) with a visible light 

source (λmax > 400 nm) in an optically transparent solvent (CH3CN) under an argon atmosphere, it 

was demonstrated that the uranyl ion can catalyze the fluorination of saturated, unactivated C–H 

bonds in good yields (Scheme 52). It is notable that (i) visible light is sufficient to drive the 

photocatalytic reaction, thus avoiding specialized UV sources, and (ii) catalyst turnover does not 

require dioxygen to regenerate U(VI), suggesting a greater scope of photoreactions with uranyl may 

be possible.99  

Scheme 52. C–H bond fluorination using “F+” source. R = cyclooctyl, C8H15 (yield > 95 %); R = 

cyclohexyl, C6H11 (yield = 42 %); R = cyclopentyl, C5H9 (yield = 32 %); R = tolyl, C6H5CH2 (yield 

= trace).99  

 

The reaction proceeds through H-Atom Abstraction, HAA, and while no mechanism was 

directly discussed, it is clear that conversion is influenced through choice of uranyl co-ligand; using 

a blue LED strip, the nitrate (complex 238) gives 52% conversion for the monofluorination of 

cyclooctane (i.e. fluorocyclooctane) whereas the acetate, [UO2(OAc)2]·2H2O (235), has ca. 8% 

conversion. Conversion increased to 95% with 238 using a high-intensity lamp.99 Recent studies on 

conversion rates for a series of NiIII–X HAT (hydrogen atom transfer) complexes with X = AcO– or 

NO3
– uncovered a 15× rate enhancement with X = NO3

– over AcO–, attributed to different electron 

deficiency on the O-ligand(s).100  

Following this report, the chiral uranyl salen complex, [UVIO2(HOEt)(Lsalen)] (240; Lsalen = 

2,2'-((1E,1'E)-((1R,2R)-cyclohexane-1,2-diylbis(azanylylidene))bis(methanylylidene))diphenol), as 
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used to probe the α-cyanation of anilines with NaCN, CH3COOH and an oxidant, and determined that 

relative to conversion with uranyl acetate (< 1%), conversion is greatly enhanced (> 80 %, in-situ; 

Scheme 53).59 Though a mechanism is proposed (HAA followed by nucleophilic cyanide attack), the 

authors did not hypothesize why conversion is higher for the salen complex. It is likely that blocking 

four of the five normal equatorial uranyl binding sites reduces the deactivation (quenching) of the 

photoexcited state *[UVIO2]
2+ through non-radiative vibrational mechanisms that would be facilitated 

by water binding and dynamic exchange.59 

Scheme 53. α-Cyanation of anilines with [UVIO2(HOEt)(Lsalen)] (240); R = H, CH3, OCH3, Cl, Br; R' 

= H, CH3.
59  

 

Exposure of an anoxic pyridine solution of 238 to sunlight generated 

[UVIO2(py)2(NO3)2]2O2·py (241) in 48% yield (based on [U]), which incorporates a bridging peroxide 

ligand, and suggests that uranyl peroxides are formed from water and not dioxygen.101 Larger uranyl-

oxo clusters were obtained on exposure of 238 to light with in the presence of C6H5COOK and 

pyridine, so forming the mixed U(V)/U(VI) cluster [UV(UVIO2)5(µ-O)5(C6H5COO)5(py)]7 (242; 

Scheme 54).60 By treating 0.5 equiv. of the preformed UVO2
+ polymer {[UVO2(py)5][KI2(py2)]}n 

(128) with C6H5COOK, the larger mixed U(IV)/U(V) UIV
12U

V
4O24 cluster 

{[K(py)2]2[K(py)]2[U16O24(C6H5COO)24(py)2]} (243) was crystallized, along with 

{[UVIO2(C6H5COO)3][K(py)2)]}n (244; Scheme 54) and other unidentified products.60 Functionalized 

uranyl peroxides have been suggested as precursors for nuclear fuel fabrication,102 while larger 

mixed-valence actinide oxo-clusters are postulated as relevant intermediates in environmental 

actinide speciation.60  
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Scheme 54. Reactivity of potassium benzoate to probe likely intermediates with UV (top) (244) and 

with light and UVIO2
2+ to isolate a mixed U(VI)/U(V) cluster (bottom) (242).60  

 

A practical example of how uranyl may behave in the environment is exemplified in the 

degradation of the dye Rhodamine B, RhB, which is often used as a “model” organic pollutant.103 

Recent work has shown that when supported by salen or derivatised catecholate ligands, uranyl ions 

may assist in the photodegradation of herbicidal viologen-type pollutants (Scheme 53). The 

complexes tested as photocatalysts for RhB destruction were a mixture of species, suggested to be 

geometric isomers by the authors, formed from the reaction between two asymmetric catecholamides 

and uranyl nitrate ([UO2(L
x)(solv)] (solv = THF (245) or C2H5OH (246)) and “[UO2(L

x-y)]·2H2O” 

(247)).104,105 The extent of photocatalytic decomposition of RhB in aqueous solution by 245 and 246 

over three hours is found to be 90 % and 70 % vs. 65-75% for 247, respectively, with a first-order 

rate constant for the latter measured as approximately –0.4 s–1. Both reports invoke de-ethylation of 

RhB by a *UO2
2+ electron transfer mechanism, with further oxidative degradation by superoxyl 

anions, O2
•–, peroxide radicals, or anion radicals, formed from water or dissolved O2.

106 An analogous 

mechanism is postulated in the degradation of the antibiotic tetracycline hydrochloride using [H2-

bpp][UVIO2(p-nba)3]2 (248) and [H2-bipy][(UVIO2)4(µ3-O)2(p-nba)6] (249) (bpp = 1,3-di(4-pyridyl)-

propane, p-Hnba = p-nitrobenzoic acid, bipy = 4,4'-bipyridine) as photocatalysts with H-atom 
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abstraction from the phenol group followed by oxidative degradation by reactive oxygen species 

(ROS) occurring.107 Optimized UV-Vis spectroscopic measurements on the aqueous suspensions 

show degradation of 70 % (for 248) and 75 % (for 249) over 5 h, with rate constants of –0.2412 s–1 

and –0.291 s–1, respectively, illustrating that photoactive uranyl compounds may be viable routes to 

the sunlight-induced photodegradation of environmental organic pollutants, particularly in uranyl-

contaminated water. Indeed, uranyl carbonates, which occur naturally in many uranium-bearing ores, 

i.e. rutherfordine, [UVIO2(CO3)] (250),108 have very recently been shown to be photoactive; the anion 

[UVIO2(CO3)3]
4– (251) photooxidizes borohydrides to boric acid.109 

A second developing application for uranyl photoreactivity is the in vitro study of 

biomolecules, for titrimetric metal detection from environmental samples, and to elucidate structure-

property relationships in bio-oligomers. Oligomeric, metal-sensing ‘DNAzymes’ (deoxyribozymes) 

are nucleotide sequences capable of metal-sensing, often possessing selectivity at the ppb level for 

metal ions. The extraction of uranium from seawater (ca. 3 ppb)110 has been proposed using 

DNAzymes, and in a proof-of-concept study secondary protein structure vital to [UVIO2]
2+ selectivity 

in a uranyl-selective DNAzyme was identified through combining controlled, [UVIO2]
2+-mediated 

photocleavage and DNA footprinting.111 Detection limits of 0.08 µg uranium per liter of seawater 

have recently been reported using a similar system.112 The synthetic utility of [UVIO2]
2+-mediated 

photocleavage for protein purification and C-terminus peptide amidation (i.e. –CONH2) has been 

demonstrated,113,114 and a HAA mechanism invoked. In accordance with pharmaceutically-relevant 

amide formation being identified as a key challenge by the American Chemical Society,115 the 

controlled cleavage of a peptide backbone with photo-activated uranyl represents a noteworthy 

alternative to traditional enzymatic or synthetic approaches. 

During the course of writing this review several new reports on uranyl photocatalysis have 

emerged.  We reported the new uranyl-phenanthroline complex [UVIO2(NO3)2(Ph2phen)] (Ph2phen = 

4,7-diphenyl-1,10-phenanthroline, 251) as a selective catalyst for the oxidation of benzylic C–H 

bonds and also C–C bond cleavage in a model of a lignin component; a large substrate scope study 
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was reported, alongside comparisons of activity with the parent nitrate complex 238 

([UVIO2(NO3)2(OH2)2]·4H2O).116 Analogous H-atom abstraction from cyclohexane and the 

subsequent radical addition to electrophilic alkenes was also demonstrated for 238,117 while the 

oxidation of cyclohexene with [UVIO2(OPCyPh2)4][ClO4]2·2EtOH (252) to a range of products has 

been studied.118 These reactions are illustrated in Scheme 55.  

Scheme 55. Reactions of recently reported uranyl(VI) photocatalysts under visible light irradiation 

with selected hydrocarbon substrates: A) the oxidation of substrates with benzylic C-H bonds with 

238 or 251; B) formation of new C-C bonds using cyclohexane and 238; C) oxidation of cyclohexene 

using complex 252, characterized by GC-MS (R is hydrocarbyl).116-118 

 

While demonstrating further the potential scope of uranyl photocatalysts in selective C–H 

bond activation, these reports also highlight that visible light is sufficient in a variety of cases to 

access the *[UVIO2]
2+ ion. 

 

9. CONCLUSIONS AND OUTLOOK 

The decade since the first formal reductive silylation of [UVIO2]
2+ was reported40 has seen a 

rapid growth in uranyl oxo-group functionalization chemistry that now includes alumination, 

borylation, silylation, stannylation, alkylation, and metalation of the oxo groups by elements from all 
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areas of periodic table, from a proton to pertinently, the transuranic neptunium. Such functionalization 

enables not only a controlled study of uranyl-oxo interactions with environmentally-relevant cations, 

but also a fundamental exploration of the chronically underexplored actinide-oxo motif. 

Indeed, one of the academic, curiosity-driven research targets in uranyl chemistry is 

the synthesis of a cis-uranyl(VI) ion.31,62,119 We envision that a potentially more effective route 

to cis-uranyl complexes may be through reductive functionalization to U(V) or U(IV) dioxo 

complexes followed by re-oxidation; a decrease in U–O bond order upon reduction would 

enable the manipulation of the O–U–O bond angle.119 It is expected that such compounds 

could provide information on the mechanisms of yl-oxo exchange processes that occur at high 

pH,120 and could also be more susceptible to new transformative reactivity pathways.  

Ligand design has a profound effect on the reductive functionalization chemistry of the 

uranyl ion. For example, using a Pacman-shaped ligand that possesses a phenylene hinge 

between the top and bottom N4-donor pockets enables access to one electron UVI
UV 

reductive functionalization, whereas two electron UVI
UIV is not observed. Alternatively, 

when a redox-active dipyrrin ligand or a Pacman ligand that possesses an anthracenyl-hinge 

and can incorporate two uranyl(VI) ions are used in uranyl chemistry, UVI
UIV reductive 

functionalization is observed, as opposed to a one electron UVI
UV process. While a wide 

variety of ligand designs that differ in both electron donor ability and steric properties have 

been used in uranyl chemistry to-date, a continued effort towards new ligand designs and their 

effects on the reactivity of the uranyl ion should be pursued. For example, redox-active ligands 

have only recently been used to support uranyl oxo chemistry, and so far with great effect. For 

the most part, N- and O-donor ligands have been targeted for coordination to the U center; a 

progression towards both neutral and anionic P- and S-donor ligands to stabilize lower 

oxidation state complexes, or a combination of N/O- and P/S-donor groups within the same 

ligand to stabilize both high and low oxidation states may give rise to marked changes in the 

overall reactivity of the uranyl ion. Alternatively, the use of ambiphilic ligands that possess 

both Lewis acid and base functionality appears to be unexplored territory in uranyl chemistry, 
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and may provide an avenue for expanding on the functionalization chemistry accessed through 

coordination of the uranyl ion to unsupported Lewis acids such as 

tris(pentafluorophenyl)borane.58,69,92,93,121 Finally, the DIBAL-catalyzed route to selective 

mono-Group 1-metalated uranyl ions73 could provide opportunities for other catalyzed uranyl 

functionalization reactions with d- and f-group metal cations. It could also offer a general low-

cost, one-pot route to the selective Group-1 cation metalation of d-block metal oxo complexes.  

CV experiments have provided the reduction potentials for a number of the complexes 

described, confirming that while the uranyl(VI) ion is not particularly difficult to reduce, the 

resulting products can often be difficult to isolate as kinetically inert complexes. Increased 

reporting of the reduction potentials for both UVIUV and UVUIV couples would be very useful 

for the community and would accelerate both the understanding and exploitation of these 

reduced states. 

Raman spectroscopic monitoring of the change in the symmetric OUO stretching 

frequency upon reduction of uranyl complexes should be clearer than IR spectroscopic 

methods since Raman spectra are less cluttered by ligand-derived absorptions. Modern 

spectrometers give excellent data and solution analyses are generally recommended to avoid 

excessive sample heating, so suitable containment methods will undoubtedly need further 

development.  

The utility of photochemical routes to new compounds and applications for uranyl-

containing materials is also becoming more recognized, with reports of targeted C–H bond 

photo-activation catalyzed by uranyl in organic solvents, and the use of ligand design to impart 

unique reactivity not seen in the prototypical uranyl compounds such as 

[UO2(NO3)2(OH2)2]·4H2O and [UO2(OAc)2]·2H2O in wholly- or semi-aqueous systems. 

Multidentate salen- or salen-type ligands that block equatorial uranyl coordination sites are 

excellent candidates for controlling or enhancing the photochemical reactivity of uranyl, and 

recent work demonstrates that calix[4]pyrroles may have potential for small molecule 

activation, via molecular photo-switching and activation of dioxygen.122 Through the use of 
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photochemically-robust groups, it is conceptually possible to improve both the quantum yield 

and conversion efficiency of photocatalytic reactions involving the uranyl(VI) ion. As visible 

light induced C–H bond cleavage and functionalization reactions are rapidly becoming 

commonplace in organic chemistry, further examples of uranyl-mediated, visible-light 

induced C–H bond cleavage reactions will undoubtedly be forthcoming over the next several 

years. Practically, we note also that photochemical reduction of [UVIO2(NO3)2(OH2)2]·4H2O 

to hydrated [UIVO2] has previously been examined, and while not historically considered 

viable for industrial implementation in nuclear waste remediation,123 recent applications, 

particularly environmental (uranium detection), biochemical (peptide photocleavage) and 

geologic ([UO2(CO3)3]
4– photoreactivity), continue to be explored and, we hope, applied.  

As a final point, we also note that previously almost all uranyl chemistry has been studied 

with the aim of understanding the fundamental electronic structure and reactivity of the cation, and 

its behavior in the environment. Now, as a wide variety of new oxo chemistry is developed, there 

should be opportunities for these reactions, both stoichiometric and catalytic, to inform metal oxo 

chemistry being carried out in other areas of the periodic table. 
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ABBREVIATIONS 

py = pyridine 

 

Opy = pyridine-N-oxide 

 

http://www.homepages.ed.ac.uk/parnold
http://www.chemicalimbalance.ed.ac.uk/
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dme = 1,2-dimethoxyethane 

 

THF = tetrahydrofuran 

 

DMSO = dimethylsulfoxide 

 

OEt2 = diethyl ether 

 

OTf = OS(O)2CF3 

 

TMEDA = Me2N(CH2)2NMe2 

 

2,2'-bipy = 2,2'-bipyridine 

 

4,4'-bipy = 4,4'-bipyridine  

 

Cp = cyclopentadienyl 

 

Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl 

 

Mes/mesityl = 2,4,6-trimethylphenyl 

 

Me = methyl 

 

Et = ethyl 

 
iPr = iso-propyl 

 
tBu = tert-butyl 

 
iBu = iso-butyl 

 

Ph = phenyl 

 

DMAP = 4-(dimethylamino)pyridine 

 

[CoCp*2] = decamethylcobaltocene 

 

pin = pinacolato 

 

cat = catecholato 

 

tolyl = p-C6H4Me 

 

ferrocenyl = [Fe(η5-C5H5)(η
5-C5H4)] 

 

Fc = ferrocene, [Fe(η5-C5H4)2] 

 

Fc+ = ferrocenium, [Fe(η5-C5H4)2
]+ 

 

NO3
– = nitrate  

 

AcO– = acetate 
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CO3
2– = carbonate 

 

2.2.2-crypt = 2.2.2-cryptand 

 

-c- = crown, a crown ether 

 

µ- = a bridging ligand between two or more metals 

 

ε = molar absorptivity 

 

mol = moles 

 

L = litres 

 

cm = centimetres 

 

µg = micrograms 

 

mM = millimolar  

 

M = molar 

 

Å = angstroms 

 

° = degrees 

 

ppb = parts per billion 

 

N'' = N(SiMe3)2 

 

[HPy]+ = pyridinium 

 

uranyl(VI) = [UVIO2]
2+ 

 

uranyl(V) = [UVO2]
+ 

 

Oexo = Exogenous oxo atom bound to the uranyl ion  

 

Oendo = Endogenous oxo atom bound to the uranyl ion 

 

CCI = cation-cation interaction 

 

ROS = reactive oxygen species 

 

LMe = a macrocyclic “Pacman” ligand; dimethylphenylene hinge between N4-donor pockets, methyl 

substituents on meso-carbon atom of each N4-donor pocket 

 

LEt = a macrocyclic “Pacman” ligand; dimethylphenylene hinge between N4-donor pockets, ethyl 

substituents on meso-carbon atom of each N4-donor pocket 

 

LA = a macrocyclic “Pacman” ligand; anthracenylene hinge between N4-donor pockets, ethyl 

substituents on meso-carbon atom of each N4-donor pocket 

 

Lm = meso-Bis(pentafluorophenyl)dipyriamethyrin 



98 
 

 

L' = a mono-anionic, tetradentate dipyrrin ligand 

 

L'' = a radical anion of L' 

 
Aracnac = ArNC(Ph)CHC(Ph)O (Ar = 3,5-tBu2C6H3) 

 
tBuacnac = tBuNC(Ph)CHC(Ph)O 

 

Ar2nacnac = ArNC(Me)CHC(Me)NAr (Ar = 2,6-iPr2C6H3) 
 

AracnacSiMe3 = ArNC(Ph)CHC(Ph)OSiMe3 (Ar = 3,5-tBu2C6H3) 

 

NPhF = -N(C6F5)2 

 

NPhFPh = -N(C6F5)(C6H5) 

 

NPhFpy = -N(C6F5)(C5H4N) 

 

NArFPh = -N(3,5-{CF3}2-C6H3)(C6H5) 

 

DOPOq = 2,4,6,8-tetra-tert-butyl-1-oxo-1H-phenoxazin-9-olate (q = monoanionic quinone form) 

 
dippIQ = 4,6-di-tert-butyl-2-{(2,6-diisopropylphenyl)imino}quinone 

 
dippISQ = 4,6-di-tert-butyl-2-{(2,6-diisopropylphenyl)imino}semiquinone 

 
dippAP = 4,6-di-tert-butyl-2-{(2,6-diisopropylphenyl)amido}phenolate 

 
MesPDIMe = 2,6-((Mes)N=CMe)2C5H3N 

 
tBu-MesPDIMe = 2,6-((Mes)N=CMe)2-p-C(CH3)3-C5H2N 

 
HN4 = 2,11-diaza[3,3](2,6)pyridinophane 

 
MeN4 = N,N'-dimethyl-2,11-diaza[3,3](2,6)pyridinophane 

 

tmtaa = dibenzotetramethyl-tetraaz[14]annulene 

 

LtBu = 2,6-bis[1-[(2-hydroxy-3,5-di-tert-butylphenyl)imino]ethyl]pyridine 

 

Lnap = 2,6-bis[1-[(2-hydroxynaphthyl)imino]ethyl]pyridine 

 

BPPA = bis(2-picolyl)(2-oxybenzyl)amine 

 

Mesaldien = N,N'-(2-aminomethyl)diethylenebis(salicylidene-imine) 

 

H2salan-tBu2 = N,N'-bis(2-hydroxybenzyl-3,5-di-tert-butyl)-1,2-dimethylaminomethane 

 

salen = (2--O-C6H4-CH=NCH2)2 

 

salfen = (2--O-3,5-(tBu)2-CH=N)2-(FeCp2) 

 

TPA = tris(2-pyridylmethyl)amine 
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H2dpaea = bis(pyridyl-6-methyl-2-carboxylate)-ethylamine 

 

H2salophen = N,N'-phenylene-bis(salicylideneimine) 

 

H2salophen-tBu2 = N,N'-phenylene-bis(3,5-di-tert-butylsalicylideneimine) 

 

H2acacen = N,N'-ethylene-bis(acetylacetoneimine) 

 

BIPMH = HC(PPh2NSiMe3)2 

 

Lsalen = 2,2'-((1E,1'E)-((1R,2R)-cyclohexane-1,2-

diylbis(azanylylidene))bis(methanylylidene))diphenol 

 

KLnacnac = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate 

 

H3trensal = 2,2',2''-tris(salicylideneimino)triethylamine 

 

SCHS = [HC(PPh2S)2]
– 

 

SCS = [C(PPh2S)2]
2– 

 

DPPFO2 = [Fe{η5-C5H4(Ph2PO)}2] 

 

dipyR = RC(C4H2NH)2 (R = tolyl, mesityl, ferrocenyl, p-C6H4OMe) 

 

MeIm = 1-methylimidazole 

 

dbm = OC(Ph)CHC(Ph)O 

 

dppmo = Ph2P(O)CH2P(O)PPh2 

 

TEMPO = (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl 

 

bpp = 1,3-di(4-pyridyl)-propane 

 

p-Hnba = p-nitrobenzoic acid 

 

phen = 1,10-phenanthroline  

 

DIBAL = diisobutylaluminum hydride 

 

HEPES = 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

 

NMR = nuclear magnetic resonance 

 

IR = infrared 

 

PFGSTE = Pulsed-Field Gradient Stimulated Echo 

 

DFT = density functional theory 

 

UV-Vis-NIR = ultra violet-visible-near infrared 
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CV = cyclic voltammetry 
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