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ABSTRACT: 

 

Purpose:  High-resolution isotropic T2 mapping of the human brain with multi-echo spin-echo 

(MESE) acquisitions is challenging. When using a 2-D sequence, the resolution is limited by 

the slice thickness. If used as a 3-D acquisition, specific absorption rate (SAR) limits are easily 

exceeded due to the high power deposition of non-selective refocusing pulses. A method to 

reconstruct 1-mm3 isotropic T2 maps is proposed based on multiple 2-D MESE acquisitions. 

Data were undersampled (10-fold) to compensate for the prolonged scan time stemming from 

the super-resolution acquisition. 

Method: The proposed method integrates a classical super-resolution with an iterative model-

based approach to reconstruct quantitative maps from a set of undersampled low-resolution 

data. The method was tested on numerical and multipurpose phantoms, and in-vivo data. T2 

values were assessed with a region-of-interest analysis using a single-slice spin-echo and a 

fully sampled MESE acquisition in a phantom, and a MESE acquisition in healthy volunteers.  

Results: Numerical simulations showed that the best trade-off between acceleration and 

number of low-resolution datasets is 10-fold acceleration with four acquisitions (TA=18 mins). 

The proposed approach showed improved resolution over low-resolution images for both 

phantom and brain. Region-of-interest analysis of the phantom compartments revealed that at 

shorter T2, the proposed method was comparable with the fully sampled MESE. For the 

volunteer data, the T2 values found in the brain structures were consistent across subjects (8.5-

13.1ms standard deviation). 

Conclusion: The proposed method addresses the inherent limitations associated with high-

resolution T2 mapping and enables the reconstruction of 1mm3 isotropic relaxation maps with 

a ten times faster acquisition. 

 

 

 

 

 

 



Introduction 

Spin-spin relaxation characterised by its relaxation time T2 is one of the two principal 

relaxation mechanisms in Magnetic Resonance Imaging (MRI). Its quantification, typically 

referred to as T2 mapping, provides important information about the tissue of interest. Previous 

studies have demonstrated the importance of T2 mapping to study various neurological 

conditions such as stroke (1), epilepsy (2) multiple sclerosis (3), and tumour detection (4).  

Conventionally, T2 is measured by sequentially acquiring several spin-echo (SE) images, each 

with a different echo time (TE) and subsequently fitting a mono-exponential decay. This is 

commonly acknowledged as a gold standard despite residual diffusion effects affecting the T2 

quantification. Nonetheless, the long acquisition times of around 50 min for whole-brain 

coverage in 2-D is impractical for clinical applications. As an alternative approach, the 

multiple-echo spin-echo (MESE) sequence in the Carr-Purcell-Meiboom-Gill (CPMG) 

condition (5) uses subsequent refocusing pulses to acquire multiple echoes for each excitation, 

reducing the total acquisition length. However, the quantitative accuracy of the sequence is 

compromised by imperfect refocusing. The imperfect refocusing results in the formation of 

stimulated (secondary) echoes that disrupt the T2 decay of the primary spin echoes (6). The 

effect of the stimulated echoes can be reduced by ignoring the first echo (since this pure spin 

echo biases the fitting of the subsequent stimulated-echo-contaminated data) while fitting the 

relaxation curve (7). However, it has been shown that skipping echo approaches still yield 

highly variable results with errors that depend on flip angle, T2 and echo train length (8). 

Therefore, more complex signal models are required to accurately estimate T2 (6).    

The ability to accurately and precisely map T2 at high resolution (e.g. 1-mm3 isotropic voxel 

size) in large volumes may help to improve the quantification of small focal changes such as 

multiple sclerosis lesions or brain areas causing focal seizure onset in epilepsy. However, using 

thin slices in a 2-D MESE acquisition is challenging due to the reduced signal-to-noise ratio 

(SNR) and increasing difficulties to achieve a good slice profile. Furthermore, radio-frequency 

(RF) pulses with long duration are required to excite thin slices leading to longer echo spacings 

(ΔTE) (9). The increased ΔTEs aggravate and inhibit an accurate quantification of short T2 

values. In addition, true T2-weighting is difficult to obtain in reasonable acquisition times with 

3-D acquisition methods since a long repetition time (TR) is required to fully recover the 

magnetization to equilibrium between excitations. Since all spins in the FOV of a 3-D 

acquisition are excited by every pulse, the recovery time cannot be used for interleaved slice 



sampling, rendering the sequence less efficient (10). Furthermore, a 3D acquisition is also 

limited by specific absorption rate (SAR) safety constraints. A large amount of power is 

deposited if multiple non-selective 180° pulses are used which can easily exceed the SAR limits 

(11). 

A fundamental consideration in any MRI experiment is to optimally balance image resolution, 

SNR, and acquisition time. Various methods have been published to accelerate quantitative 

mapping methods, for example applying model-based reconstructions(7,12-14), low-rank 

approaches (15,16) or sparsity constraints (17,18) to highly undersampled acquisitions. 

However, these methods experience a low SNR and use low spatial resolution to counteract 

this effect. On the other hand, it has been shown that super-resolution (SR) reconstruction 

provides a better trade-off between acquisition time, spatial resolution, and SNR (9,10). The 

earlier SR methods (19,20) focused on the improvement of the in-plane resolution of MR 

images. To achieve this in-plane resolution improvement, several images with a subpixel 

shifted FOV in the in-plane directions were acquired. However, the subpixel shift of the FOV 

in the in-plane directions correspond to a linear phase modulation in the k-space and does not 

acquire new frequency information (21). Thus, the apparent improvement in the in-plane 

resolution in this case is due to an improvement in the SNR. Later, most SR methods focused 

on decreasing the slice thickness and reaching voxel isotropy by exploiting the aliasing as a 

result of downsampling in the slice-select direction (22). The resolution is thereby enhanced 

by acquiring multiple low-resolution images with a shift of the field of view (FOV) in the slice 

direction (10), three orthogonal slice orientations (22) or rotated slice orientations (23), and 

subsequently combining the images by solving a non-linear inverse problem. In quantitative 

MRI, SR reconstruction benefits from combining the parametric model with the SR model. 

This has been shown in T1 mapping (24) where the relaxation model was combined with the 

SR model allowing the direct estimation of a high-resolution T1 map from low-resolution 

images. However, the acquisition of multiple low-resolution images results in long scan times 

(TA>20 mins), hence limiting its use for clinical applications.  

Both the SR and model-based reconstructions are based on solving an inverse problem using 

iterative optimisation methods. The present work investigates the combination of SR and 

model-based reconstruction to exploit the respective advantages (i.e., high-resolution and fast 

acquisition time) in the application of quantitative T2 mapping. The proposed method is based 

on multiple 2-D MESE acquisitions which were highly undersampled to compensate for 

prolonged scan time. The method was tested on a phantom and four healthy volunteers. An 



early version of this framework was presented at the Annual Meeting & Exhibition of the 

ISMRM in 2017 (25). 

Theory 

Super-resolution reconstruction is a method to obtain a high-resolution image from a series of 

low-resolution images, where each low-resolution has a different FOV or orientation. Each 

FOV or orientation can be expressed as a different geometric transform Tj (with j = 1,…,J, and 

J the number of transformations) from the high-resolution  image to the low-resolution image. 

The resolution is enhanced since the different FOVs or orientations contain complementary 

information. The reconstructed high-resolution image on the other hand benefits from the high 

SNR of the low-resolution images, which are typically acquired with a high in-plane resolution 

and a low through-plane resolution, i.e. thick slices.  

Let xn (with n = 1, …, N, and N the number of spin-echoes) represent a high-resolution T2-

weighted series of vectorized images and yj,n,c (with c  = 1,…,C, and C the number of coils) be 

the undersampled low-resolution k-space measurements acquired with a MESE sequence. The 

acquisition of the undersampled low-resolution yj,n,c, can be modelled by:  

𝒚𝒚𝒋𝒋,𝒏𝒏,𝒄𝒄 = 𝑃𝑃𝑃𝑃 {𝑆𝑆𝑗𝑗,𝑐𝑐 ↓ 𝑇𝑇𝑗𝑗𝒙𝒙𝒏𝒏 } +  𝜼𝜼𝒋𝒋,𝒏𝒏,𝒄𝒄,    [1] 

where Tj is the geometric transformation representing a rotation or translation of the FOV 

(Figure 1),  ↓ is a down-sampling operator that maps the high-resolution grid to the low-

resolution grid, Sj,c are the complex coil sensitivities calculated separately for each 

transformation, F  is the forward discrete Fourier operator and P  is a binary under-sampling 

mask. According to (26), the noise 𝜼𝜼𝒋𝒋,𝒏𝒏,𝒄𝒄 in MRI can be assumed to be additive, white and 

Gaussian when the SNR > 3, which is what we assume here. Using pertinent SR techniques, 

the high-resolution image xn can be estimated by solving the inverse problem of Eq. [1]: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑥𝑥𝑛𝑛

∑ ∑ ∥ 𝑃𝑃𝑃𝑃 {𝑆𝑆𝑗𝑗,𝑐𝑐 ↓ 𝑇𝑇𝑗𝑗𝒙𝒙𝒏𝒏 } −  𝒚𝒚𝒋𝒋,𝒏𝒏,𝒄𝒄 ∥2
𝐽𝐽
𝑗𝑗

𝐶𝐶
𝑐𝑐 ,    [2] 

where the choice of the least- squares criterion is motivated by the assumption that the noise 

is Gaussian distributed. The greater the number of acquisitions, J, with complementary 

information of the same object, the better the problem becomes conditioned. However, the 

problem in Eq. [2] is often still ill-posed due to the downsampling operator, since several 

different intensity combinations in the high-resolution image can lead to the same intensity in 

the low-resolution image.  

To further improve the conditioning of the problem, we can incorporate a signal model into the 

cost function. Given the task of T2 quantification, it is natural to use the physical constraints 



imposed across the sequence of images, xn to further regularize the optimization. The signal 

model in its simplest form is typically described with a mono-exponential decay depending on 

the relaxation time map T2 and proton density map M0:  

𝒙𝒙𝒏𝒏 =  𝑴𝑴𝟎𝟎. 𝑒𝑒𝑒𝑒𝑒𝑒(− 𝑡𝑡𝑛𝑛./𝑻𝑻𝟐𝟐),                                                           [3] 

where the above equation represents the pixel-wise scalar non-linear function for M0 and T2 

and tn being the echo time. In this work, the first echo is ignored to alleviate the effect of 

stimulated echoes(27). However, even with ignoring the first echo, the standard exponential 

fitting will result in an overestimation of T2 (8). A more complex model that includes effects 

such as B1+, slice profiles, multiple T2 compartments, diffusion and magnetization transfer is 

required to accurately fit the data. Since the present work aims at a proof of concept for super-

resolution for T2 mapping, the common approach of ignoring the first echo is used due to its 

simplicity and easy implementation.  

In the next step of the algorithm, the most intuitive step might be to substitute the high-

resolution image xn in Eq. [2] with the signal-model (Eq. [3]) and solving directly for M0 and 

T2, resulting in the following cost-function: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑇𝑇2,𝑀𝑀0

∑ ∑ ∑ ∥ 𝑃𝑃𝑃𝑃 {𝑆𝑆𝑗𝑗,𝑐𝑐 ↓ 𝑇𝑇𝑗𝑗  (𝑴𝑴𝟎𝟎. 𝑒𝑒𝑒𝑒𝑒𝑒(− 𝑡𝑡𝑛𝑛./𝑻𝑻𝟐𝟐)) } −  𝒚𝒚𝒋𝒋,𝒏𝒏,𝒄𝒄 ∥2𝐶𝐶
𝑐𝑐

𝑁𝑁
𝑛𝑛

𝐽𝐽
𝑗𝑗 .   [4] 

However, minimizing Eq. 4 often requires special techniques such as gradient scaling and 

repeated restarts of the optimization algorithm to achieve a fast convergence (7,27). Therefore, 

in this work, we rather formulate the minimization problem as: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑇𝑇2,𝑀𝑀0,{𝑥𝑥𝑛𝑛𝑛𝑛=1

𝑁𝑁
� � � ∥ 𝑃𝑃𝑃𝑃{𝑆𝑆𝑗𝑗,𝑐𝑐 ↓ 𝑇𝑇𝑗𝑗𝒙𝒙𝒏𝒏} − 𝒚𝒚𝒋𝒋,𝒏𝒏,𝒄𝒄 ∥2

𝐽𝐽

𝑗𝑗

𝐶𝐶

𝑐𝑐

𝑁𝑁

𝑛𝑛
+  𝜆𝜆 ∥ 𝒙𝒙𝒏𝒏 −  𝑴𝑴𝟎𝟎. 𝑒𝑒𝑒𝑒𝑒𝑒(− 𝑡𝑡𝑛𝑛./𝑻𝑻𝟐𝟐) ∥2 ,             [5] 

where the first term ensures data-consistency of the high-resolution image with the acquired 

data as in Eq. [1] and an additional term ensures model-consistency, i.e. forces the signal 

intensities to decay exponentially across the different echoes N. In order to balance between 

the data- and model-consistency, a regularization parameter λ is introduced. 

The above cost function in Eq. [5] can be minimized using a split algorithm that estimates 

quantitative T2 by minimizing data- and model- consistency terms alternately (20).  By fixing 

T2 and M0, solving Eq. [5] with respect to xn amounts to a standard linear least-squares problem 

with a closed form solution. On the other hand, for solving Eq. [5] fixing variable xn 

corresponds to fitting a mono-exponential decay onto xn, intrinsically estimating T2 and M0.  

 

 

 



Methods 

Numerical Simulation 

Numerical noiseless T2 and PD maps were generated from a segmentation of grey matter (GM), 

white matter (WM) and cerebrospinal fluid (CSF) in a single axial slice (1x1 mm2 resolution) 

of a numerical phantom (28). For the three main tissues, the following T2 values were used: 0.1 

s for grey matter, 0.06 s for white matter, and 2 s for CSF (29). From these maps, T2-weighted 

high-resolution images xn were simulated, each with equidistant TEs [TE=10…,160 ms]. The 

T2-weighted images were down-sampled to the desired low-resolution using eq. [1] and 

different transformations Tj. These different shifted images were then down sampled to low-

resolution. Complex coil sensitivities for each of these transformations were simulated using 

the Parallel MRI Noisy Phantom Simulator (30). These simulations exploit the fact that the 

reconstruction is separated into multiple 2-D problems along the read-out direction (i.e. head-

feet direction in this case). Therefore, for the phantom, a sagittal acquisition with phase-

encoding in anterior-posterior and slice-encoding in left-right directions can be simulated. For 

the number of repetitions, the low-resolution single slice of the numerical phantom was shifted 

in the slice encoding direction (left-right). For the rotation, the FOV was rotated around the 

read-out (i.e. head-feet) axis for each repetition. Therefore, the applied transformations were 

not in-plane since the slice plane is sagittal/coronal but the numerical phantom is axial. Three 

different types of transformations were tested: linear (where the images were shifted along the 

slice direction (25)), orthogonal (images were rotated to two orthogonal positions 0 and 90 

degrees) and diagonal (two orthogonal rotations plus two rotations at 45 and -45 degrees). An 

illustration of the different transformations is shown in Figure 1. The images were transformed 

to k-space and then ten-fold undersampled with a mixed parallel imaging and block 

undersampling pattern described in (31). The high-resolution images were reconstructed with 

the proposed SR model-based reconstruction. Root mean square error (RMSE) was calculated 

between ground truth and reconstructed T2 maps for all the orientations.  

In principle, we assume that adding more rotations (e.g. orthogonal with two rotations versus 

diagonal with four rotations) will increase the accuracy of the SR reconstruction but at the 

expense of increased acquisition time. To that end, various numbers of rotations (two, four, 

and five) were tested in combination with different acceleration factors (6-fold, 10-fold, 14-

fold) to determine a trade-off between accuracy and acquisition time. Approximate acquisition 

times were calculated for all the simulations with the following parameters: 1 x 1 mm2 

resolution, matrix size 210 x 53 and TR= 5 sec, two concatenations. The root mean square error 



(RMSE) between the ground truth and the estimated T2 map was calculated to quantify the 

reconstruction quality.  

 

Image Acquisition 
The proposed approach was tested on a standardized multipurpose phantom (E 38 19 195 

K2130, Siemens) with five compartments of different concentration of MnCl2·4H2O in 

distilled water and four healthy subjects. Permission from the Institutional Review Board was 

obtained for all the in-vivo imaging studies and written informed consent for the study and its 

publication was obtained from all participants prior to the experiments. The datasets were 

acquired with a standard 20-channel head/neck coil using a ten-fold undersampled 

GRAPPATINI (31) prototype sequence at 3T (MAGNETOM Skyra, Siemens Healthcare, 

Erlangen, Germany). The sequence implements a block undersampling pattern (7) which 

samples the k-space in blocks (or segments) which are shifted across the echoes. A classic 

parallel imaging scheme with two-fold acceleration is used additionally where only every other 

(phase-encoding) line inside each block is acquired.  For the first dataset, 50 sagittal slices with 

4 mm thickness and 1x1 mm2 in-plane resolution were acquired. The FOV was moved by 1 

mm in the slice-encoding direction with four shifts implementing the linear transformation. 

The total time of acquisition for this dataset was 16 minutes. For the second dataset, 60 slices 

each in two orthogonal orientations (sagittal and coronal) and two diagonal orientations 

(sagittal > coronal 45◦ and -45◦) with the same slice thickness and in-plane resolution were 

acquired. The acquisition time for this dataset was 18 minutes. Additional data was acquired 

in the same setup (i.e. orthogonal and diagonal) with 14-fold acceleration which reduced the 

acquisition time to eleven minutes. Of note, the dataset with orthogonal orientation was not 

acquired separately, but rather the two diagonal orientations were removed during 

reconstruction to create a third dataset. Spectral fat suppression was enabled, and other relevant 

acquisition parameters were: TR=5.4 s, 16 echoes, ΔTE=10 ms. For reference T2 values, a fully 

sampled MESE dataset with 16 echoes and 29 slices and a resolution of 1.1 x 1.1 x 4 mm3 was 

acquired. In addition, for the phantom, a conventional single-slice single-echo SE sequence 

with 16 TEs (10, 20, …, 160 ms) was acquired as reference. It should be noted that the single-

echo SE sequence is not a gold standard since it is still affected by diffusion, but is commonly 

used as a reference acquisition (32,33). Detailed overview of the acquisition parameters of 

these datasets can be found in Table 1. 

 
Image Reconstruction 



The reconstruction was implemented using Matlab (MATLAB2017a, The Mathworks Inc., 

Natick, USA). First, GRAPPA (34) was used to fill the missing lines in each block of the 

acquired k-space according to (31). Using the k-space samples available at different echo times, 

composite fully sampled images were reconstructed and up-sampled to the high-resolution 

grid. Subsequently, an initial guess of a T2 and M0 map was estimated by non-linear least-

square fitting of these magnitude high-resolution images. This estimate of the maps was then 

used in the algorithm for SR T2 estimation by alternately solving Eq. [5] fixing T2 and M0 first 

as described in the theory section. Complex coil sensitivities were approximated for each of 

the transformations by summing k-spaces across echoes. The k-space is then transformed into 

coil images by inverse Fourier transform and then divided by the sum of squares to obtain coil 

sensitivities (35) . The regularization parameter was heuristically set to λ = 1, establishing equal 

contributions from model- and data-consistency in the cost function. The reconstruction was 

performed iteratively until no improvement was achieved in the previous two consecutive 

iterations: 
∥𝑋𝑋(𝑖𝑖)− 𝑋𝑋(𝑖𝑖−1)∥

∥𝑋𝑋(𝑖𝑖)∥
 <  𝜀𝜀     [6] 

 
where 𝑋𝑋(𝑖𝑖) was the reconstructed signal series at ith iteration and 𝜀𝜀 = 1e-04. In addition, the 

maximum number of iterations was fixed to 30 after it was experimentally tested at what 

iteration the algorithm typically convergences (results not shown). The reconstruction scheme 

is illustrated in Figure 2. 

 
Validation 

To evaluate the performance of the proposed SR model-based method, T2 maps were 

qualitatively compared to T2 maps from two other methods using the numerical phantom and 

one in-vivo dataset. The two approaches were as follows: 

• Low-resolution model-based + SR reconstruction: It is pertinent to assess whether 

minimizing the cost function jointly contributes to the better reconstruction. For this 

purpose, both the data consistency and model consistency were enforced one after the 

other rather in a joint cost function. Firstly, low-resolution T2 maps were reconstructed 

from individual low-resolution orientations using model-based reconstruction, 

followed by a SR algorithm to up-sample to a high-resolution T2 map.  

• SR reconstruction only: As described in the theory section, the signal model is used as 

a regularizer to better condition the minimization problem. To assess the significance 

of the signal model, the cost function was minimized without the model consistency 



term, which is equivalent to classical SR approach.  

 

To ascertain the accuracy of the calculated T2 values, a ROI analysis was performed on the 

phantom and in-vivo T2 maps for both accelerated and fully sampled datasets. T2 values from 

different compartments of the phantom were compared with the T2 values obtained from the 

conventional non-linear least-squares fitting of the fully sampled MESE and gold standard SE 

data. The same comparison was made for the healthy brain where ROIs were drawn in the 

frontal white matter, deep grey matter (putamen and caudate nucleus), and corpus callosum. 

ROI labelling and segmentation was conducted using ITK-SNAP (36) (www.itksnap.org). The 

segmentation was performed in the native space of the fully sampled T2w images. 

Subsequently, the fully sampled T2w image was pairwise registered rigidly onto the T2 maps 

of the  other datasets using Elastix (37). The resulting transformation was then applied to the 

label map of the ROIs to provide a similar segmentation among datasets. The datasets of the 

four healthy volunteers who were scanned with both a 10- and 14-fold accelerated acquisition 

with diagonal orientations and a fully sampled MESE were used in a ROI analysis as well. The 

T2 values from four ROIs were compared across all the volunteers to ascertain the consistency 

of T2 values across subjects.  

 
 
Results 

Numerical Phantom 

T2 maps and images obtained from the SR model-based reconstruction in the numerical 

phantom using different orientations (linear, orthogonal, and diagonal) are shown in Figure 3 

in comparison to the ground truth. The diagonal rotations were better able to resolve the brain 

structures as compared to the linear and orthogonal datasets.  This can be better appreciated in 

the zoomed images of the same area that demonstrates the diagonal rotation results in better 

delineation of the small structures in brain (Figure 3, bottom). The comparison between the 

three orientations in reconstructed T2-weighted images also shows sharper edges in the high-

resolution images when using the diagonal orientation.  

 
The trade-off between the number of rotations and the acceleration is demonstrated in Figure 

4. The numerical simulation demonstrated that adding more rotations results in reduced error 

around the edges for all the acceleration factors (from left to right). At the same time, an 

increased acceleration factor influences the T2 accuracy i.e. an increased difference from the 

http://www.itksnap.org/


ground truth (top to bottom). Considering the prolonged acquisition time with the number of 

rotations, the best trade-off is a 10-fold accelerated scan with four rotations (RMSE=7.8 ms, 

TA=14mins). Five rotations and 6-fold acceleration showed the least error (RMSE=3.2 ms) but 

required an acquisition time of 29 minutes. 14-fold acceleration with five rotations had an 

acquisition time of 10 minutes but an RMSE of 12.5 ms.  The details of the RMSE for all the 

accelerations and rotations are provided in Supporting Table S1. 

 
Phantom and In-vivo Data 

Figure 5 shows the reconstructed T2 maps and T2-weighted images from one low-resolution 

acquisition, and the SR model-based reconstructed maps for linear, orthogonal, and diagonal 

orientations. The low-resolution T2 maps and weighted images (Figure 5a) show partial-

volume effects within the compartments of the phantom and blurring of the fine structures in 

the brain. Estimating T2 maps with SR model-based reconstruction enhances the spatial 

resolution, reducing the partial-volume effect. However, with linear shifting, there is still 

blurring of the edges around the compartments of the phantom and brain structures (Figure 5b). 

For orthogonal rotations, the compartment edges in the phantoms appear sharper in both 

orthogonal directions (Figure 5c, white arrows) whereas the diagonal orientation improves the 

sharpness further, especially in the diagonal direction (Figure 5d, black arrows). The same can 

be observed for the human brain where diagonal rotation improved the spatial resolution and 

delineation of the brain structures. 

 

Figure 6 shows the axial and coronal views of the reconstructed T2-weighted images from a 

10-fold accelerated low-resolution dataset with diagonal orientations and the fully sampled 

MESE data. It is evident that the SR-T2 mapping allows satisfactory 3D visualization due to 

isotropic resolution as compared to conventional MESE which inherently has low through-

plane resolution. This can be appreciated even more from the zooms shown in Figure 6. A 

transversal zoom on the caudate nucleus head and the putamen is shown where the interface 

between different structures is well delineated in both SR-T2-weighted and MESE-T2-weighted 

images. However, for the coronal zoom, the interface between grey and white matter is better 

defined for SR-T2-weighted image. 

 

Validation 

A comparison between the SR model-based reconstruction and the SR-only and low-



resolution model-based + SR reconstruction is shown in Figure 7.  For numerical phantom, 

nRMSEs showed that the proposed approach outperforms the SR-only and model-based + SR 

reconstruction. The nRMSE for SR only reconstruction was 0.50, for model-based + SR 

reconstruction was 0.23 and for proposed reconstruction was 0.12. The SR-only 

reconstruction showed visible artefacts due to the undersampling as no prior information from 

the signal model (mono-exponential decay) was incorporated in the reconstruction. The low-

resolution model-based + SR reconstruction showed improvement in the reconstruction; 

however, blurring around the edges is evident in both numerical phantom and in-vivo data. In 

comparison, SR model-based reconstruction demonstrated that combining SR and model 

knowledge jointly in one cost function improves the reconstruction. 

 
 
ROI Analysis 

The ROI analysis of the phantom compartments revealed that at shorter T2, 10-fold accelerated 

data was comparable with the fully sampled MESE (Figure 8a). For compartment 1, the mean 

T2 value for 10-fold accelerated data was 31.1.0 ± 1.6 ms, for 14-fold it was 29.25 ± 1.7 ms, 

whereas the T2 value for the MESE was 25.41 ± 1.5 ms and for SE was 18.22 ± 0.5 ms. For 

compartment 2, the mean T2 value for 10-fold, 14-fold, MESE and the SE was 29.19 ±0.8 ms, 

31.00 ± 0.9 ms, 30.57 ± 0.7 ms and 25.58 ± 1.1 ms respectively.  However, the error increased 

with higher T2 values, with compartments 3 and 4 showing a relative difference of 10-12%. 

For compartment 3, the mean T2 values for 10-fold was 47.70 ± 2 ms, for 14-fold was 43.0 ± 

1.5 ms, for MESE was 51.50 ± 0.5 and for SE was 41.0 ± 0.3 ms. The mean T2 values for 

compartment 4 for 10-fold, 14-fold, MESE and SE were 89.00 ± 2.3, 94.42 ± 2.1, 96.98 ± 2.7 

and 79.96 ± 3.6 ms respectively.  For compartment 5, a greater difference (> 15%) was 

observed with mean T2 values of 161.7 ± 2.5 ms, 147.5± 2.6 ms, 184.3 ± 2.3 ms and 155 ± 23.4 

ms for 10-fold, 14-fold, MESE and SE respectively. All values derived with a MESE sequence 

were overestimated in comparison to T2 values derived from a SE sequence. This 

overestimation is well known and caused by the stimulated echoes formed in the MESE 

sequence (6). 

 

For the in-vivo data, the T2 values in different regions of the brain showed good agreement 

with the fully sampled MESE acquisition (Figure 9b). For frontal white matter, the mean T2 

value for the 10-fold acceleration was 80.0 ± 1.3 ms, for 14-fold it was 76.5 ± 5.1, and for 

MESE fully sampled it was 83.0 ± 2.1 ms. For putamen, the mean T2 value for 10-fold, 14-



fold, and MESE fully sampled was 69.8 ± 1.2, 66.2 ± 1.3 and 73.0 ± 3.1 ms, respectively. In 

the corpus callosum (MESE T2 = 94 ± 2 ms), the 14-fold acceleration showed increased 

difference (80 ± 2.4 ms) as compared to 10-fold (87 ± 1.8 ms). The T2 value for the caudate 

nucleus with the 10-fold acceleration (74.8 ± 2.0 ms) was closest to the MESE acquisition (75 

±1.8), whereas the T2 at 14-fold acceleration was 67 ± 2.8 ms. Comparing the mean T2 values 

for 10-fold accelerated data from all the four ROIs across volunteers demonstrated consistent 

values with some natural variation (Figure 9c). The average T2 value across all volunteers were 

70.8 ± 8.5 ms for the frontal white matter, 81.3 ± 10.5 ms for the putamen, 79.8 ± 9.5 ms for 

the corpus callosum, and 79.66 ± 13.6 ms for the caudate nucleus.  

 
Discussion 
The proposed work aims to address the challenges associated with high-resolution T2 mapping 

with the widely used MESE sequence. The method combines SR and model-based 

reconstruction for T2 estimation into one integrated approach, enabling the direct estimation of 

an isotropic high-resolution T2 map from a set of anisotropic, undersampled, low-resolution k-

spaces. 

 

Numerical simulations demonstrated that rotating the slice orientations around the phase-

encoding results in better image quality of the SR reconstruction than linear sub-pixel shifts in 

the slice-encoding direction. These results were confirmed by the phantom and the in-vivo 

acquisitions where the rotation resulted in much sharper images. Low-resolution images with 

different slice orientations appear to better sample different spatial information than shifting 

the low-resolution images by subpixel distances along the slice selection direction (9). This is 

because acquiring low-frequency information in the slice-selective direction limits the 

additional information available in the subpixel shift.  In contrast, the different orientations 

populate the 3D k-space much better (similar to PROPELLER (38) sequences).  The optimal 

number of slice orientations ensures that the low-resolution images contain enough spatial 

information to reconstruct the high-resolution image without extensively prolonging the 

acquisition time. The comparison between number of rotations and acceleration factors showed 

that four slice orientations (0°,90°,45°, -45°) with a 10-fold acceleration was the optimum in 

this application with an acquisition time of 18 minutes.  

 

The advantage of combining SR with model-based reconstruction has already been 

demonstrated  for T1 mapping (24). This work was performed in the image domain without k-



space undersampling, whereas the proposed approach addresses a more complex problem by 

reconstructing quantitative maps from undersampled k-space data. It is important to ascertain 

whether model-based SR-T2 mapping performs better than the sequential application of model-

based and SR reconstructions. The comparison of the proposed approach to the SR 

reconstruction without prior model and to the low-resolution model-based reconstruction 

followed by SR reconstruction demonstrated that incorporating the model information in the 

reconstruction yields improved results.  

 

Comparing a T2 map estimated with model-based SR to a T2 map estimated with a conventional 

non-linear least-square fitting on a fully sampled MESE dataset proved that T2 values are 

comparable between the two methods. For the phantom, the compartments with longer T2 had 

a higher bias as compared to shorter T2 compartments, which may be attributed to an imperfect 

signal model. One contributing factor, as already reported in the literature (6) is that theT2 

values derived from MESE-type acquisitions are overestimated in comparison to single-echo 

SE acquisitions due to stimulated-echo signal contributions which mostly stem from an 

imperfect slice profile of the refocusing pulses. This can be addressed by using a different 

signal model which accounts for slice profile shape and B1 inhomogeneity, e.g. by using an 

analytical (6,27) or numerical (33,39,40) signal model. The current model of the proposed 

method does not account for the slice profile. It is assumed that incorporating it in the 

reconstruction will not only allow addressing stimulated-echo issues but also lead to a more 

realistic downsampling/upsampling operator between high-resolution and low-resolution 

images. Since this more accurate model will potentially further improve the spatial resolution, 

the slice profile is subject of future investigation. 

 

An alternative formulation of the reconstruction problem proposed here can be as follows: the 

signal in a low-resolution voxel may consist of different tissue types, e.g. at a WM/GM 

boundary. Neglecting microstructural T2 components, this partial volume effect yields a multi-

exponential signal decay. The fitting of a mono-exponential decay in a high-resolution voxel 

corresponds to a multi-exponential fitting in the low-resolution image space due to the 

downsampling operator. The resulting ill-posed problem becomes better conditioned because 

the different orientations provide selective high-resolution information which allows us to 

separate out the multi-exponential components within a voxel.   

 



Currently, the optimal-quality 10-fold accelerated acquisition lasts 18 minutes. Despite the 

high acceleration, the acquisition time is too long to be acceptable for clinical routine or clinical 

studies. A higher acceleration factor (14-fold) was tested which reduced the acquisition time 

to 11 minutes but decreased the sharpness of brain structures. Nevertheless, this long 

acquisition time is still too long for clinical applications where a typical sequence requires 3 

minutes. Various other techniques can be applied to further accelerate the acquisition time, 

such as simultaneous multi-slice (41,42). Moreover, the same sampling pattern was used in 

each slice and orientation. Varying the sampling across slices and orientations may improve 

the reconstructed T2 maps and will be further investigated.  

SR approaches require several acquisitions with different orientations, and the reconstruction 

method assumes that each voxel corresponds to the same anatomical location in all the 

orientations. Subject motion and image distortions (e.g. due to imperfect gradient performance) 

violate this assumption and may not perfectly align the multiple orientations for model fitting. 

This model violation will lead to image artefacts and wrong T2 values which is a limitation of 

the proposed method. In the frame of this study, motion correction schemes were not explored, 

but could be used to facilitate a better alignment of different orientations and improve the 

reconstruction. The area of motion correction and compensation has been well studied 

specifically for SR reconstruction in foetal imaging (43,44). Future work will aim to 

incorporate these strategies to further improve the robustness of the SR-T2 mapping. In 

addition, incorporating a spatial regularization of the T2 maps will potentially further improve 

the reconstruction.  

 

Conclusion 
We propose a technique that uses four 10-fold undersampled low-resolution MESE 2-D 

acquisitions to iteratively reconstruct a high-resolution T2 map. The proposed technique 

enables high-resolution 1 mm3 isotropic whole-brain T2 mapping in 18 min. The proposed 

technique may allow the assessment of T2 values in small brain structures valuable for the 

search of imaging biomarkers in the future. 
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Tables and Figures 

 

 
Table 1: Overview of the relevant protocol parameters of acquired datasets. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset In-plane 

resolution 

(mm2) 

Slice 

thickness 

(mm) 

Acquisition 

Matrix 

 

Slices Bandwidth 

(Hz) 

TR 

(ms) 

TE 

(ms) 

No. of shifts/ 
rotations 

Acceleration 
Factor 

No. of 
echoes 

 

Scan 
time 

(mins) 

Linear 1x1 4.0 240 x 256 50 227  4490 10 4 10 16 16 

Orthogonal 1x1 4.0 240 x 256 60 227 5390 10 2 10 16 9 

Diagonal 1x1 4.0 240 x 256 60 227 5390 10 4 10 16 18 

Diagonal 
Fast 

1x1 4.0 224 x 240 56 227 4750 10 4 14 15 11 

MESE- 
Fully 

Sampled 

1.1x1.1 4.0 192 x 160 29 221 5000 10 - - 16 14 

 

SE- Fully 
Sampled 

0.9x0.9 4.0 224 x 256 1 164 2500 10, 20, 
…, 
160 

- - 16 113 



 

Figure 1: Illustration of the linear shifting (Left) and rotation (Right) experiment. The dashed 

lines within the boxes indicates the slice encoding direction, the frequency encoding direction 

is from head to toe. For the linear shifting each low-resolution scan (colours) is shifted by a 

known subpixel distance along the slice encoding direction (which in this case is sagittal). For 

illustration purposes, the shifting of the FOV (coloured boxes) has been exaggerated. For 

rotation, each of the low-resolution scans are rotated (45◦) across the common encoding 

direction. The red box represents sagittal section, green box represents coronal section, the blue 

and yellow box represents diagonal sections. 

 

 

Figure 2: The schematic flowchart for the model-based SR reconstruction: a) k-space data with 

block undersampling; b) Zero-filled image using the inverse FFT in the phase-encoding 

direction; c) Sensitivity maps estimation; d) Composite images are formed and up-sampled to 

high-resolution grid; f) Data consistency is imposed as a first step of alternating minimization; 

g) T2 maps estimated by imposing model consistency in the second step. With the new estimate 

of T2, step 1 and step 2 are repeated iteratively. SR – super-resolution, FFT – Fast Fourier 

Transform, HR – high resolution. 

 

 

Figure 3: Super-resolution T2 maps (upper row), reconstructed T2-weighted images (middle 
row) and the zoomed-in T2 maps (bottom row) for three different orientations and 10-fold 
undersampling. a) Ground Truth, (b) linear shifting, (c) orthogonal rotation, (d) diagonal 
rotation.  

 

 

Figure 4: The gain in the quality of super-resolution (SR) -T2 reconstruction as a function of 

number of rotations and acquisition time in a numerical phantom. The corresponding 

acquisition times are mentioned with the T2 maps. Adding more rotations results in reduced 

error around the edges for all acceleration factors (from left to right). At the same time, the 

acceleration factor affects the quality of the reconstruction (top to bottom), especially for high 

T2 values in the cerebral spinal fluid. Considering the increase in acquisition time with the 



number of rotations, it can be deduced that the optimal configuration is 10-fold with four 

rotations. 

 

Figure 5: Reconstructed T2 maps and M0 for phantom and human brain from (a) low-resolution, 

(b) interpolated to HR grid, (c) linear, (d) orthogonal, and (e) diagonal datasets with respective 

acquisition times. For the phantom, orthogonal rotation improved the resolution as can be seen 

in around the edges of the compartments in two directions (white arrows) whereas diagonal 

orientation improved the resolution in four directions (black arrows). This can be observed in 

the in-vivo data as well where the diagonal orientation demonstrated better resolution in brain 

structures as compared to orthogonal rotation and linear shift.  

 

Figure 6: Axial and coronal views of T2-weighted images reconstructed with super-resolution 

(SR)-T2 mapping (1x1x1 mm3) (left) and T2-weighted image from fully sampled MESE (1x1x4 

mm3) for TE = 80 ms. The zoomed regions show the improved resolution in both planes for 

SR compared to the conventional sequence. MESE – Multi-Echo Spin-Echo. 

 

 

Figure 7: Reconstructed T2w images (TE = 80 ms) from the numerical phantom and in-vivo 

data using the diagonal orientations (TA = 18 mins). The images are shown from (a) a low-

resolution dataset, (b) SR reconstruction only, (c) low-resolution model-based followed by 

SR reconstruction, and (d) proposed SR model-based reconstruction. The SR only 

reconstruction showed visible artifacts due to the undersampling as no prior information from 

the signal model (mono-exponential decay) was incorporated in the reconstruction. The low-

resolution model-based + SR reconstruction showed improvement in the reconstruction; 

however, blurring around the edges is evident in both numerical phantom and in vivo data.  

 

  



 

Figure 8:  ROI Analysis for the accuracy of T2 estimation for different dataset in different 

compartments of the phantom. a) T2 map of the phantom with different compartments labels. 

b) The bar chart represents the mean of the T2 values of the ROI, and the error represents the 

standard deviation for 10-fold, 14-fold and fully sampled MESE and SE T2 values.  

 

Figure 9: a) Different ROIs drawn in axial, coronal and sagittal sections of a model-based SR 

T2w (TE=80 ms) image. b) The bar chart represents the mean T2 values and standard deviation 

for accelerated and fully sampled dataset in four different regions of brain. c) The mean and 

standard deviation T2 values from model-based SR reconstruction (diagonal orientations, 10-

fold acceleration) found in all subjects grouped by brain structures, each bar representing a 

subject. 
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