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NON-ADIABATIC TRANSITIONS IN MULTIPLE DIMENSIONS*

V.BETZ T, B.GODDARD?*, AND TIM HURST$

Abstract. We consider non-adiabatic transitions in multiple dimensions, which occur when the
Born-Oppenheimer approximation breaks down. We present a general, multi-dimensional algorithm
which can be used to accurately and efficiently compute the transmitted wavepacket at an avoided
crossing. The algorithm requires only one-level Born-Oppenheimer dynamics and local knowledge
of the potential surfaces. Crucially, in contrast to many standard methods in the literature, we
compute the whole wavepacket, including its phase, rather than simply the transition probability.
We demonstrate the excellent agreement with full quantum dynamics for a a range of examples in
two dimensions. We also demonstrate surprisingly good agreement for a system with a full conical
intersection.

Key words. time-dependent Schrodinger equation, non-adiabatic transitions, superadiabatic
representations.

AMS subject classifications. 35Q40, 81V55

1. Introduction. Many computations in quantum molecular dynamics rely on
the Born-Oppenheimer Approximation (BOA) [13], which utilises the small ratio &2
of electronic and reduced nuclear masses to replace the electronic degrees of freedom
with Born-Oppenheimer potential surfaces. When these surfaces are well separated,
the BOA further reduces computational complexity by decoupling the dynamics to
individual surfaces.

However, there are many physical examples (see e.g. [15],[16],[35] and [40]) where
the Born-Oppenheimer surfaces are not well separated (known as an avoided crossing)
or even have a full intersection. In these regions the BOA breaks down, and the
coupled dynamics must be considered; when a wavepacket travels over a region where
the surfaces are separated by a small but non-vanishing amount, a chemically crucial
portion of the wavepacket can move to a different energy level via a non-adiabatic
transition. The existence of the small parameter € introduces several challenges when
attempting to numerically approximate the dynamics. First, and independently of the
existence of an avoided or full crossing, the wavepacket oscillates with frequency 1/¢
and hence a very fine computational grid is required. Furthermore, in the region of an
avoided crossing, the dynamics produce rapid oscillations and, in turn, cancellations
in the wavepacket; the transmitted wavepacket very close to the crossing is O(g),
but in the scattering regime the transmission is exponentially small. It is therefore
necessary to travel far from the avoided crossing (in position space) with a small time-
step to accurately calculate the phase, size and shape of the transmitted wavepacket.
In order to calculate the exponentially small wavepacket, one must ensure that the
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2 V. BETZ, B. D. GODDARD AND T. HURST

absolute errors in a given numerical scheme are also exponentially small, or they will
swamp the true result. Finally, the number of gridpoints in the domain increases
exponentially as the dimension of the system increases. Thus standard numerical
algorithms quickly become computationally intractable.

Many efforts have been made to avoid computational expense by approximating
the transmitted wavepacket while avoiding the coupled dynamics. Surface hopping
algorithms discussed in [41, 33, 37, 29, 39, 23, 34, 36, 17, 18, 31, 4, 3] approximate
the transition using classical dynamics, where the Landau-Zener transition rate [42],
[30] is sometimes used to determine the size of the transmitted wavepacket. This
method has enjoyed some success, and has been applied to higher dimensional systems
(in particular see [31, 4]). However, the full transmitted quantum wavepacket is not
always calculated; phase information is lost, although surface hopping approaches have
been considered which try to incorporate phase information [21, 32, 14, 27, 24, 26].
Such information is crucial when considering systems with interference effects, e.g.
ones in which the initial wavepacket makes multiple transitions through an avoided
crossing. In contrast, in [10] and [7], a formula is derived to accurately approximate
the full transmitted wavepacket, in one dimension, using only decoupled dynamics.
The formula has been applied to a variety of examples with accurate results, including
the transmitted wavepacket due to photo-dissociation of sodium iodide [9].

In this paper we construct a method to apply the formula derived in [10] and
[7] to higher dimensional problems. We set up the problem, state assumptions, and
the main result and algorithm in Section 2. Our derivation is motivated by the
derivation of the formula in one dimension [10], which we outline in Section 3 and
extend to d dimensions in Section 4. In Section 5 we create a d-dimensional formula
for systems in which near the avoided crossing, when the derivatives of the adiabatic
potential surfaces are slowly varying in all but the direction in which the wavepacket
is travelling. We then extend this result via a simple algorithm to obtain a general
d-dimensional formula. We provide some examples and results in Section 6 and note
conclusions and future work in Section 7.

2. Set-up and Main Results. We consider the evolution of a semiclassical

wavepacket 1 : R? — C? at time ¢, 1) = (i;gg >7 governed by the equation:

(2.1) ieopp(x,t) = Hip(z, t),

where £2 is the ratio between an electron and the reduced nuclear mass of the molecule,
i.e. ¢ < 1 and H is a Hamiltonian operator. This system is derived after a standard
rescaling of a full two level Schrodinger equation involving the kinetic and potential
terms between electrons and nuclei, which for example is given in [20]. We use the
e-scaled Fourier transform to transform the wavepackets 11,19 and operators such as
H into momentum space:

DEFINITION 2.1. In d dimensions the wavepacket f : R* — C in scaled momen-
tum space is given using the e-scaled Fourier transform

(2.2) Fo(k) = W [ @)oo <;k . :c) da.

For any (sufficiently nice) function f : R — C € L2?(RY), the e-scaled Fourier
transform A® of an operator A is given by

(2.3) gsfs(k,t) = ;l\fs(k:,t) = W /Rd Af(x,t) exp (—z_k: . :c> de.
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NON-ADIABATIC TRANSITIONS IN MULTIPLE DIMENSIONS 3

We also define the Weyl quantization [2] in multiple dimensions, which is used
throughout this paper.

DEFINITION 2.2. For a symbol H(e,p,q), given a test function 1, we define the
Weyl quantization of H by

R4 OVHO@) = Gag [ I & @+ y)et CE i)

The Hamiltonian in (2.1) is given by [7]

(2.5) H(z) = —?Vﬁ[ +V(z) + d(z)I,
where

Z(x) X(x)
& Ve (36 )

and d(zx) is the part of the potential operator with non-zero trace. In general V (x)
can be given by a Hermitian matrix, but as noted in [5], any Hermitian V(x) can be
transformed into real symmetric form. This is known as the diabatic representation
of the system. We define V; = Z(x) + d(x) and Vo = —Z(x) + d(x) as the two
diabatic potentials, with the diabatic coupling element as the off-diagonal element

Viz = X(x). It is useful to define 6(x) = tan~! (X(w)>, so that we can write the

Z(x)
polar decomposition of (2.5):

Z(z)

VX @)+ Z(x)? X(x)2 + Z(x)?

Then, defining p(z) = /X (x)2 + Z(x)2, gives

_ cos(f(x))  sin(f(x))
(2.8) V(z) = p(x) (sm(e(m)) - cos(ﬁ(w))> ’

(2.7) cos (A(x)) =

Consider the unitary matrix Uy which diagonalises the potential operator V (z):

Cos =) sin (=)
(29) Uolw) = sing2§ cos<(;(w?)

o
&

If we define ¢g(x,t) = (Ztg:g) = Up(x)y(x,t), then we arrive at the adiabatic

Schridinger equation

(2.10) iedeo(x,t) = Hotho(, t).
Here Hy = UOHU(;1 is given by

(2.11)

12

o p(@) + d() 1 2ITLEE _ Tele) (o) _ 2 TE0)
Ho(@) = -5 Vol + | g o) 2 V20(x) 2 [Vab@)? |-
2 25 (eVy) + =~  —p(x) +d(z) + 25—
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4 V. BETZ, B. D. GODDARD AND T. HURST

The adiabatic potential surfaces are given by the diagonal entries of the adiabatic
potential matrix to leading order,

(2.12) Vi(@) = p(@) +d(@), Vi(@) = —p(a) + d(@),

where Vi is the upper adiabatic potential surface, and Vi is the lower adiabatic
potential surface. The off-diagonal entries of (2.12) are coupling terms, which are
negligible when the two adiabatic surfaces are well separated. An avoided crossing
occurs when two adiabatic surfaces become close to one another, and the coupling
terms have a non-negligible effect. Note that, as we are considering semiclassical
wavepackets, derivatives are of order 1/e and hence the leading order off-diagonal
elements are of order e.

For a more precise definition of an avoided crossing, we direct the reader to [22]
(although it should be noted that the precise meaning of avoided crossing does vary
in the literature), but for the purposes of this paper we will work with a definition of
an avoided crossing with respect to the wavepacket. We define the centre of mass of
the wavepacket ¥+ at time t by

g dx x|t (z, 1)
 Jpe A (2, 8)2

and the centre of momentum of ¥+ as

Jan dpPIOE (p, 1))
Sz dplE (p,1)]2

(2.13) TCoOM (t)

(2.14) PcoM (t) =

DEFINITION 2.3. Let Vi and Vi be the adiabatic surfaces defined in (2.12) such
that Vi (x) — Vi(x) = 2p(x). A wavepacket * on the upper/lower level is said to
reach an avoided crossing at time t when p(mCOM(t)) reaches a local minimum of p
along its trajectory. Furthermore, we say that the avoided crossing is tilted when,
near the avoided crossing, the non-symmetric part d(x) of Vi and Vi, can be written
as d(xz) = X -z + O(||z||?), where X is non-zero in the direction pcom(t).

We note that, at an avoided crossing, the derivative couplings in (2.11) are non-
negligible, and it is in such regions that we expect the transitions between the adiabatic
states to occur. In the following we consider only cases in which the avoided crossing
is of dimension zero, either due to the nature of the potential energy surfaces, or the
path of the wavepacket. In cases where the dimension is higher, for example, when
the wavepacket travels along a ‘seam’ of avoided crossings, we expect the method to
break down. For the case of ‘tilted’ crossings in 1D, we refer the reader to [8] and note
that we will soon make the assumption that ||Al| is small in the direction of pcom,
and thus not treat the ‘tilted’ case here.

We will assume that the initial wavepacket is purely on the upper level, °(z) =

(1/’0’;(:”)) and, without loss of generality, that the centre of mass of the wavepacket

in position space reaches an avoided crossing of height 26 at position xg at time ¢,c,
and is moving in the direction of g;. The adiabatic representation approximates the
wavepacket transmitted through an avoided crossing to leading order by the pertur-
bative solution [38]

¢ i - i
(2.15) g (x,t) = —is/ e =) HT @) o () . (e0,)e #5H T @) g0t () ds,

— 00
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NON-ADIABATIC TRANSITIONS IN MULTIPLE DIMENSIONS 5

where

940()

(2.16) H*(x) = févi + p(x) +d(x), ki(z)=+ 5

The perturbative solution in the adiabatic representation does not offer much explana-
tion as to the properties of the transmitted wavepacket. For instance, the constructed
wavepacket at first looks to be O(g). However due to the adiabatic coupling operator
/ﬁ, fast oscillations and cancellations between upper and lower transmissions occur
near the avoided crossing, so that far from in position space the crossing the transmit-
ted wavepacket is much smaller than the transition at the crossing point (Figure 1).
For this reason, the transmitted wavepacket is better approximated using the per-

1073

Jra [0~ (@) Pda

Fig. 1: The total mass of wavepacket ¥~ (x) on the lower potential surface against
time ¢, for the system described in Example 6.1 with parameters in (6.7). The centre
of mass of the wavepacket reaches the avoided crossing at ¢t = 2.

turbative solution from the n'" superadiabatic representation [10], for some optimal
choice of n. The n'" superadiabatic representation is produced by creating and ap-
plying unitary pseudodifferential operators U,, such that the off-diagonal elements of
the potential operator have prefactor e"*!, and the diagonal elements are the same
to leading order as in the adiabatic representation. Existence of such operators is
discussed in [10]. The Hamiltonian H, in the n'" superadiabatic representation is
given by

(2.17)  Hp(x) = _§V31+ (p(a:) + d(z) + O(e?) KT ) |

MK, —p(x) +d(z) + O(?)

for some pseudodifferential coupling operators Kf_H, which are of order one. The
perturbative solution in the n** superadiabatic representation is then given by

t

(218) (@, t) = —ic" / et @K (@)e T @0 () ds,

— 00

Direct computation of the pseudodifferential operators K,,1 and U, is recursive in n
(see Section 4), and leads to very complex operators, so we cannot produce a practical
numerical scheme directly using superadiabatic representations. However we will use

This manuscript is for review purposes only.



6 V. BETZ, B. D. GODDARD AND T. HURST

superadiabatic representations to construct a simple and accurate algorithm.
In [7], where a formula approximating the transmitted wavepacket in one dimension
is constructed, five assumptions are made:

(A1) The avoided crossing is ‘flat’; i.e. ||| in Definition 2.3 is small (in the direction
of pcom(tac)) compared to the energy gap, 26. This approximation can be
removed in 1D [8], but the resulting algorithm is more complicated; we will
pursue the multidimensional version of this in future work.

(A2) The momentum of the wavepacket near the avoided crossing is sufficiently
large. Furthermore, by a coordinate rotation we can assume without loss of
generality that the momentum is concentrated in the first dimension. This
allows the quantum symbol of the coupling operator K, 11 to be approximated
by its highest order polynomial term, as discussed in Section 4.

(A3) The first order Taylor approximation of the adiabatic (Born-Oppenheimer)
energy surfaces near xq leads to a dynamics that is a good approximation of
the true dynamics near xq, i.e. we can write the adiabatic propagators near
the avoided crossing as

2
(2.19) H* %7%V316+>\~w,

(A4) The width of the wavepacket is O(g). For the 1D case, it has been shown[9]
that, by the linearity of the Schrodinger equation, we can consider wider
wavepackets through a slicing method. We expect this to also hold in higher
dimensions.

(A5) The functions p and 6 are analytic in a strip containing the real axis.

In the multidimensional derivation we will make one additional assumption:

(A6) The adiabatic potential surfaces near the avoided crossing point vary slowly
in all but the direction of pcom (tac)-

We are now ready to state the main result of this paper. Under the assumptions
(A2) to (A6), we approximate the transmitted wavepacket at the avoided crossing
point using the formula:

(220) = (kot) = e_;tfr—fWe—;‘wl—u(km(wwgg)e—ﬁkl-ucm
Vv(k1

—~E
X Xp25as0T (V(k1), k2, ... Ka),

where &, v, 7. and 7, are the d-dimensional analogues of those quantities defined in
one dimension in (D1) to (D4), and are discussed in Section 4 and Section 5. Here, as
described precisely in Algorithm 2.4 below, ¢ is the wavepacket on the upper level
at the avoided crossing.

We outline the method through which (2.20) may be used to compute the trans-
mitted wavepacket using only one-level dynamics via the following algorithm and 2D
diagrams available in Figure SM1:

ALGORITHM 2.4.

(B1) Begin with an initial wave packet Y%+ (x) on the upper adiabatic energy
surface, far from the crossing in position space, with momentum such that
p(zcom(t)) will attain a minimum value (Figure SMla).

(B2) Evolve ¥°% on the upper level, i.e. under the BOA, until its centre of mass
reaches a local minimum at time t,.. Define

(221) ¢+(m) = eil;tacH-F(w)/l)[)Of‘r(w).

This manuscript is for review purposes only.
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NON-ADIABATIC TRANSITIONS IN MULTIPLE DIMENSIONS 7

(B3) Divide up the full d-dimensional space into d-dimensional strips parallel to
pcoM (tac). The width of the strips in all directions perpendicular to pcom (tac )l
should be of the order of the width of the transition region (along pcom (tac))
in the optimal superadiabatic basis. In practice we restrict these strips to the
region of space where the wavepacket has significant mass.

(B4) On each strip, replace the true potential energy matrixz by an approximation
that is flat perpendicular to the direction of pcom(tac). In practice, we take
the potential along pcom(tac) in the middle of the strip and replicate it in
the directions perpendicular to pcom(tac). Note in particular that the new
potential may be different for each strip.

(B5) Compute the transmitted wavepacket on the lower level for each strip by ap-
plying the formula (2.20) along pcom (Figure SMlc) and sum them together:

—~ n 78
1/)7 (katac) = Zj:l % (katac)-
(B6) Evolve the transmitted wavepacket away from the avoided crossing on the
—~ €
lower level, say to time t,. + s, using the BOA (Figure SMle): ¥~ (k,tac +

s) :e‘%sg:sqzze(k:,tac).

To summarise, we have derived an algorithm for approximating the transmitted
wavepacket for an avoided crossing in any dimension, which only requires one-level
dynamics, and local information about the adiabatic electronic surfaces, i.e. § and
7. The dependence on the n'" superadiabatic representation is also removed due to
cancellations in the derivation. This seems peculiar to the case where (Al) applies
and is not expected to be true in general. A similar method can be used to determine
transmitted wavepackets from lower to upper levels. While we note that when the
dimension of the system is large, we still require a high dimensional discretization for
simulation of the one-level dynamics. However, methods (e.g. [28]) which improve
performance of one-level dynamics can be applied to significantly reduce computa-
tional cost. In the following section, we derive Algorithm 2.4 and provide numerical
examples. We note that for a particular asymptotic limit in one dimension, error
bounds have been constructed for this approximation [10], but for general pcowm,e
only empirical estimates are available.

3. Motivation: Approximating the transmitted wavepacket in one di-
mension. The formula is derived in one dimension using the superadiabatic pertur-
bative solution (2.18) by

(C1) Finding algebraic recursive differential equations to calculate the quantum
symbol K= 11, Where Kiﬂrl is the Weyl quantisation of £ 1
(C2) Introducing by a change of variables #*(7(q)) = Iif.‘b:_i_l(q), where

(3.1) r(q) =2 / "oy dr.

(which is the natural scale discussed in [5]) then approximating Fif L1 in an
analogous way to the time-adiabatic case in [11].
(C3) Applying the Avron-Herbst formula [1] to H* ~ %8% £+ Az by using (A3).
(C4) Applying a stationary phase argument (with small \) to evaluate the remain-
ing integral.

This manuscript is for review purposes only.



279
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

8 V. BETZ, B. D. GODDARD AND T. HURST

Following this derivation leads to an approximation of the transmitted wavepacket in
scaled momentum space, far from the avoided crossing in momentum space:

(3.2)

—~€ _agocv(k)+k _a v zo+Ir) T |k_y nd

v (k) = e 2(|)<k>| O (o 55) o= vy GF (1(R)),
where

(D1) The indicator function 245 (which is one when k? > 46 and zero otherwise)
relates to (classical) energy conservation: kinetic energy from the potential
energy difference between two levels must be gained by the wavepacket.

(D2) The dependence on the n'* superadiabatic representation is removed during
the formula derivation.

(D3) v(k) = sgn(k)(vVk? —46), the initial momentum a classical particle would
need to have momentum k after falling down a potential energy difference of
24, i.e. the distance between the potential surfaces at the avoided crossing,
which shifts the wavepacket in momentum space. This arises naturally; it is
often enforced in surface hopping algorithms.

(D4) 7% =1 4+ i1, = 2 foqﬁz p(q) dg, where ¢°* € C is the closest value to the local
minimum of p such that p(¢®*) = 0, when p is extended to the complex plane.
The prefactor e~ 2= [V (F) =kl determines the size of the transmitted wavepacket.
In [20], we show that under appropriate approximations of the momentum and
potential surfaces, this prefactor is comparable to the Landau-Zener transition
prefactor used in surface hopping algorithms such as in [4]. An additional
change in phase occurs due to 7,., which is present when the potential is not
symmetric about the avoided crossing.
The constructed formula (3.2) allows us to approximate the size and shape of the
transmitted wave packet due to an avoided crossing, and avoid computing expensive
coupled dynamics. The method for applying the algorithm is as follows:

ALGORITHM 3.1 (1D version of Algorithm 2.4).

(E1) Begin with an initial wave packet 1/18' on the upper adiabatic energy surface,
far from the crossing in position space, with momentum such that the wave
packet will cross the minimum of p (Figure 2a).

(E2) Ewvolve ¢6r according to the BOA on the upper adiabatic level until the centre
of mass is at the avoided crossing, at time t,. (Figure 2b),

(33) 9 (@) = e e Dyt (),

(E3) Apply the one dimensional formula to the e-Fourier transform of the wave
packet at the crossing (Figure 2c):

(3.4)
5 tae) = ZELEE v (w0t 35) o e hv ST (),

2| (k)|

(E4) Evolve the transmitted wave packet far away enough from the crossing in
—~c
position space, say to time to. + s, using the BOA (Figure 2d): ¥~ (z,tac +
i Iy = €

s)=e =107 = (2, ta).
Applications of the one dimensional formula have been widely successful on a
variety of examples. In addition to the sodium iodide example [9] already mentioned,

This manuscript is for review purposes only.
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1F 1F
0.5 0.5
N g | ¢+ ()]
0 08 [ 1 0 1+ -
0.4 : 051 |
0L : oL ]
0.5} / \ 05| / \
iy [ S— | | | | [y I S— | | | |
—-20 —10 0 10 20 -20 —-10 0 10 20
T x
(2) (b)
1F 1-
0.5 0.5 -
[~ (z,1)] [~ (z,t + 5)|
0.04 1
0.02 - 1
0 I N 0r
0.02 0011 |
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Fig. 2: Application of the 1D formula for a particular system discussed in [7]. The
centre of mass of the associated wavepacket (inset) is represented by a black point on
either the upper (blue) and lower (red) adiabatic potential surfaces.

tilted avoided crossings have been examined, and a formula developed which in con-
trast is dependent on n. The formula has also been successfully applied to model
interference effects in multiple transitions [20].

Finally, the above derivation can also be modified for reverse transitions (from
lower to upper surface). If we consider an initial wavepacket ¢, far from the avoided
crossing in position space on the lower energy level, the above algorithm can be
applied analogously, where to approximate the wavepacket transmitted to the upper
level, (3.4) is replaced by
v(k)+k

'(Z-T_E(ka tac) = 76—5(19—17(@)(;50-{-%)6—%\k—D(k)\(;:E(D(k)’ tac)a

(3:5) 21505

where (k) = sgn(k)vk? + 40 contributes a loss of momentum due to the potential
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10 V. BETZ, B. D. GODDARD AND T. HURST

energy difference between the two surfaces.

4. Coupling operators in higher dimensions. The first step in deriving

(3.2) in [10] was to approximate the superadiabatic coupling operators Kn 11 We

now consider these operators in higher dimensions. We restrict the calculations here
to two dimensions for clarity, but they can easily be adapted to d dimensions.

LEMMA 4.1. In two dimensions, /@fﬂ is given by

(4.1) ki1 (p, @) = —2p(0)(Tn11(P, @) £ Ynt1 (P, ).

where Tn41(P, q), Yn+1(D, q@) are given by the following algebraic recursive differential

equations (where we omit the arguments of symbols to ease notation):
i
(4.2) Tr1 =21 =W = O, Y1 = —Zp(p . VqG)
and
(4.3) Yn =0, n even, x, =2z, =w, =0, n odd,
where p = p(q). For n odd, we have
11 -
(44) Tn+1 = —27 ;(p qun QZ J 3 Z 6 azn+1 —j — QaTn41— ])
P PG
and for n even
11
(45) yn41=—5-|=((P- Vgzn) — 2n(p- Vgb))
2p |1
22 3 Z (9 aayn+1_j + bawn+l—j)] 9
J:1 Vit lee|=3
1 n
(46) (P Vaz) = aup- Vo)) = 30 Gy 3 05 bty + ot —))
J=1 loe|=4
1 - o
(47) ;(p . qun = 2 Z ]j' ap (aazn+1_j =+ bamn+1_j),
J'Zl lee]=j

where o = (a1, 2), Opf = 80‘18;‘22, and aq = 0a(q),ba = ba(q) depend only on q,
and are given by the recursions

ap = p(q), bo =0,
A(ai+1,a2) = 8‘11a(a1,042) + (8(119>b(041,a2)’ b(Oé1+1,042) = afh b(al,az) - (ath a)a(a1’02)7

Aoy, 00+1) = 3q2a(a1,a2) + (8!129)13(0417042)7 b(a17a2+1) = afhb(al,az) - (aqze)a(al,a'z)'
Proof. The method is a straightforward extension of [10, Sections 2 and 3], in
particular we direct the reader to Proposition 3.3 (page 3654). O
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The result of Lemma 4.1 shows that x,,yn, zn, w, can be written as polynomials in
p of order n, as the recursive definitions involve finite products, derivatives and sums
of the initial xzq, yo, 20, wo, which are polynomials in p. We therefore write

(4.8) r(pq) = > pipy bR (g),

m=0 k=0

for some ;>
for each a < j.
Consider for example

k:m=k(q), and similarly for y,, z,,, w,. For a given j, we write a; = (c, j— )

n+l—j3j m
k\ k,m—k
O aoniry = D D (00105 Py )T (@),

m=0 k=0
where by a direct calculation

k! (m—k)! k—a_m—k—j+a .

= py e vy R 24 , k>aand m > j,
4.9 9% m—k (m—Kk)! (m—k—j+a)!
(4.9) P p1p2 {0, otherwise.
Therefore

n+l—j7jm—a+j (m k)'
o —K) k— —k—j+a_km—k
Op ns1—j = Z Z Nm—h—jrap? P i (@),
=) —

so that

n
(4.10) A(p.q) = 0500 “wni1 (P, q)

]:1
can be rewritten as

n+l—j3jm+a—j (m k’)

— |
k—a, _m—k—j+a_ km—k
I ST S S =T

We now want to extract p; and po from the final two summations, so that we can
compare coefficients on either side of the results of Lemma 4.1 to construct recursive

equations for xﬁ’B for A+ B < n. Consider terms where j > ”TH By the limits

of the third summand, we find that m > "TH, and that m < ”T'H, a contradiction.

Therefore we restrict the limits of first summand. Defining b = k — «, and ¢ = m — 7,
we find

a; (b+a)((c+j) = (b+ a))! :

—b _b+a, (C+j) (b+a)
(20)7j10!(c — b)! (a).

c
2 n+1—j

We now want to switch the order of summation. We note that, for an arbitrary B,

(2435 ) nt1-25 n+1 5]

2 2 By 22 Bunies,

c=0 j=1

This manuscript is for review purposes only.
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101 which can be shown directly (note that the terms where ¢ = 0, ¢ = 1 are zero). Using
402 this, we finally have that

403

n+ln+l—c
104 (411) A= Z Z pipy et

c=0 b=0

5] 4 ;
. b+ ) (n+1—-c+j—b—a)! o (bl — et ) — (bt

I 3y danlbralk bR bt )
1 i (20)75!(n+1—c—10)! J
06 =la=

407 Importantly, p; and ps have been extracted from two of the summations. Note that
408 (4.11) reduces to the 1D result in [10] for pe and p;, by taking b = 0 and o = 0, or
109 j—a=0and n+1—c—b=0 respectively. We then obtain the following result.

410 PROPOSITION 4.2. The coefficients 2B (q) to w/»B(q) are determined by the
11 following algebraic-differential recursive equations. We have (omitting arguments of
412 symbols for ease of notation):

113 (4.12) g B = B — B = 0, A+Be {0,1},
14 (4.13) y00 = ybl =, b0 = aqle W= — Lo, 0.
115 4p

416 Further, when n is odd,
417
Ln+1 (A+B)J

1 (1
ns (414) 2B = [(aqu;;‘ BB 9,y P 2 Z Z

2
(A + a) (B + ] - a) A+a,B+j—« A+a,B+j—«

419 Al B! (baj n+l—j ’ T Qo Ty -y . ) ’
420

421 When n is even, we have

422

1)1
3 (415) ylf = % [i((c’)ql A-LB | g GAB-1y _ (A-LBy g4 AB-1y g))
Ln+1 (A+B)J j ) ( )

, 1 (A —|— a)l(B+j—«a

2 —2 Z Z 2i) 4! Bl

425 X ( o, Ypi ot —i—ba].wfifx,’?ﬂ_a) ],
426

427
428

1 - A, A A,B—
120 (416) 0= 2((8q1z1€1 BB + 007 B + (2, 17Baq19"'33n’B 194,9))
Ln+1 (A+B)J j

' 1 (A + a) (B+j—a)
430 -2 Z Z i izl

A+a,B+j—a A4+a,B+j—«
x (bajyn+1—j + Goy; Wy 1 ;
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(4.17) 0= %((5 wAfl,B+6q2wA,B,1)

q1 %n n

e (A+0)! (B4~ a)
2 1 A+ ) (B+j—a)
2 ; ; (2i)75! Al B!

A4+a,B+j—a A+4+a,B+j—«
X (aaj “nt1—j + baj Tnr1—j :

Proof. We substitute (4.8) into the results of Lemma 4.1 and compare coefficients
in powers of p1, p2 on either side, using (4.11). 0

As with the coefficients x,, and y, in (4.1), nfﬂ has polynomial form:
N Cm—i (i)t
(4.18) Fr(P@) = D D piny kT ).

Here we apply assumption (A2): & N p?ﬁgﬁ)i(q). In the one dimensional case

this has been shown to be accurate for sufficiently large p, but in practice holds for
much smaller values. By directly constructing the Weyl quantisation of p’f/ﬁf{l’?)i(q)
as in [10, pg. 3570], we see that the effect of the coupling operator is negligible
outside a small region near the avoided crossing, determined by the small parameter
¢ which shows that it is reasonable to take the leading term in £ 11- The 2D algebraic

differential recursive equations then reduce to the one dimensional case in [10]:

10 ¢
an 1~ —(0q,un°),

n+1 2p
Z‘ n n n n
(4.19) yZIi’O ~ %((8,11 xn’o)’ — (Bqlﬁ)zn’o), 0~ 8q1zn’0 + (8q10)xn*°.
n+1,0

To ease notation, redefine x,41 = x, ", and similar for y,41,2p41. It is unclear
what the analogue of (3.1), introduced initially in [6] for the time-adiabatic case,
would be for multidimensional systems. We introduce the natural scaling in the first
dimension

(4.20) r(q)=2 / " o 2) dr.

Defining f(7(q)) = f(q) the recursive relations (4.19) then become

(4.21) o1 = ingrs G = (@) +0E), 0=(2) +07,
where 6/ = mé. These recursive equations also occur in [11], where they are

solved in one dimension, under the assumption that

(4.22) Corye 0 g,

dr T —T T —7TC

where 7¢% is a first order complex singularity of 8, and 6, has no singularities closer
to the real axis than 7¢*. If the avoided crossing occurs at 0, we can write p?(q) =
82 + g(q)?, for some analytic function g such that g(0) ~ 0, and g? is quadratic in the
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14 V. BETZ, B. D. GODDARD AND T. HURST

neighbourhood of ¢ = 0. Therefore a Stokes line (i.e. a curve with Im(p) = 0) crosses
the real axis perpendicularly [25], and following this line leads to a pair of complex
conjugate points ¢, ¢%* which are complex zeros of p. Defining 7¢* = 7(¢%%), it is
shown in [6] that first order complex singularities of the adiabatic coupling function
arise at these complex zeros. This derivation is still valid in our case, for each ¢s.
The recursive algebraic differential equations solved in [11] then give us &, to leading
order:

(4.23)

K (@) % i 0(q) = —p(g)(n = 1)! (mq) —Fe(q))"  (r(q) — TCZ((D))") '

It is clear that the results of this section can be extended to higher dimensions, by
assuming the direction of travel of the wavepacket is in the first dimension. We will
now use this observation to design an algorithm for multi-dimensional transitions
using only the 1D transition formula.

5. Multi-dimensional formula derivation. The derivation of a multidimen-
sional formula, under the assumptions above, follows similarly to the one dimensional
case. We want to approximate the pseudodifferential operator K,,, which is given by
the Weyl quantisation of k,. The polynomial form of x,, allows us to simplify the
Weyl quantisation as follows.

PROPOSITION 5.1. Let k(p,q) = g(q) H?Zl piA’", for A; € N. Then

€ d . . Ai,\
1) Vo) )= i [ G- m [ (55%) Fman

Proof. The proof is a multi-dimensional extension of [7, Lemma 4.1]. Firstly,
using that ¢(y) = (2me)~ Y2 [, dn®(n) exp(i(n - y)/e),

W) = [ dedy <H£ ) (E5Y) eteemygy),
S S R ——

i=1

~—

Now define g; = (x; + y;)/2, i = 1,...,d. Then

(ngb)(:c)zi d¢ dgdn <H§ ) g)et €=t Co—2) (=6) (),

(27r5)% R3d
d
- (272T>d /R dgdn <H€ ) S (8 ()7 (2(€ — m))-

We perform a second change of variables g}- = 2¢; and find

1 . “ENTY L -
W.k)(x) = W/RM dédn H <2Z> ot(@ (€~ M) y) ()3 (€ — 2m).

i=1

This manuscript is for review purposes only.



NON-ADIABATIC TRANSITIONS IN MULTIPLE DIMENSIONS 15

We apply the scaled Fourier transform to both sides of this equation:
1 AN
— £ -~ I3 i N7 ~ N ~
Werp) (k) = 7@/ dédndz (] ( > e= @&k (n)g° (€ — 21m).
(27T€) 2 JR3d pate} 2

Using that (27e)~¢ [dzexp(i(a - x)/e) = §(a) allows us to directly compute the =
integral, giving (5.1). d

Next we linearise the dynamics near the avoided crossing. By (A3), to leading order
the uncoupled propagators in (2.16) can be approximated by

2
(5.2) Hf:—%viiaw\-w.
Then, by the fundamental theorem of calculus,

) ettt et Lot [ g i ap ot
0

Since Hf — H* is quadratic near zero, the integrand in (5.3) is of order 1 in an
ve-neighbourhood of zero. Outside of this region the coupling function provides a
negligible result, as seen in the one dimensional case [10]. We also use the d dimen-
sional Avron-Herbst formula [1], which shows that

(5.4) omtsHEe _ — I (00) - g ((1]2£26)s—(Ak)s?)

Then

€

— i [T MRS (0 o (k]2 —26)5— (k)5 e
Vn (k,t) = —ic"e” = e 6 e e 2 K, .,
(5.5) X e—ii"ks”fss es(xak)e—i((Hk\|2+25)s—(xk)s2)$:r5(k) ds.

Using Proposition 5.1 for the coupling function shows that

€ g™ R i a]2s3 i 2 2
et i St [ e B ) £ (IR 20O
(2me)d/2 o
n+1 _—c d A;
= ki +n;
A, i i
X/ dn E Rnt1 (kn)<||(2) )
R4 Ai=1,i=1,...d i=1

o~ A 5(10,) o= o (Il +28)s—(Am)s) T ()

where A = (A;...A4). The operator e**% is a shift operator, so e3*% f(k) = f(k +
As). Instead of applying the shift operator to the right, we use the fact that the
integral is invariant under the transform 1 — 1 — As to apply it to the left: in
this case f(n)e **% = f(n — As). The following transformations take place in the
integrand:

nf_;__l (k—m) Hmf_;_l (k—m), k+n—k+mn—2XAs,

o 3= (IR £28)s—(Ak)s?) |y 3= ((lk—Xs]|?£26)s—(X-(k—Xs))s?)
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16 V. BETZ, B. D. GODDARD AND T. HURST

Rearranging gives
(5.6) vn (K1)~ fiWe*é“fF
x/t dsdn ni_:l ’%E(k—n) <ﬁ (ki+ni2_ 2/\i8>Ai>
<5 mesp { o [(KI? = [ = 49)s — - (= )" |

We approximate r,, ; with (4.23), then calculate the scaled Fourier transform:

—(i/e)k- —

—E 1

kn (k) =

~ (n -1t i B i —(i/e)k-q
(2me)/2 /]Rd o) {(T(Q) =7 (g ) (7(q) - Tcz(qdl))"} a4

where ¢~ = (g2, ..., qa). Using (A6) p(q) ~ p(q1) and consequently 7(q) = 7(q1),
7¢%(q?1) = 7¢*. Therefore the Fourier transform in all other dimensions produces
a Dirac function, \/2175 [7% e da = v2red(k). As 7(q) ~ 7(q1), we only need to
consider the one dimensional case. This is discussed in [10]. A simple extension to d
dimensions therefore shows that

—c i ki N\ e i —(d-1)
(57) /Qn,o (k) = \/T% (2(55) € T25c e Te 2= \/2E 5(]62, ,I{ )

We insert (5.7) into (5.6), and rearrange to find

£ 1 iyg=c [ k2 —n?\" 2218\
;kt:—*z“"/d/d LB 1-
d} ( ’ ) 47766 0 5 R n 46 k'l +'I71

X e

_irtp(ki=m) _ melk1—mD)
26e e 26e

) {/ dny... dijag™ (e IR —lnlP)s=XGemm®l e, oy kg — nd)} '
Rd—1

By the identity f(z) = ffooo 0(z —a) f(a) da, the integral in the dimensions 2, ..., d can
be evaluated to find

—~c s k¥ —n 2215 "™
_ b _am- 1
v (ko) = / ds/dn ( 46 ) ( k1+771)

7’”’1‘("71 n1) 7"c(\k1 1)
e 26e

X GF (11, kzy ooy kg)ee (B =ImlP=48)o= 2 (ks =)o)

y (A1), Ay is small and so can be neglected, so that

— 2 ity (ky — T -
din (et) =g e H / ds/dn (k 46”1> T

(5.8) X GF (1, kay ooy kg)ee (FalP=Iml*=10)s
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NON-ADIABATIC TRANSITIONS IN MULTIPLE DIMENSIONS 17

From here we can follow the derivation in [10] and obtain an extension of its main
result to d dimensions, given by (2.20). In this derivation, cancellations in the integral
remove all dependence on n. Therefore for implementation of (2.20) we do not need
to calculate the pseudodifferential operators K f_H, or in fact find the optimal choice
for n, but have utilised superadiabatic representations in its construction.

As justification for the proposed algorithm we note that we evolve the wavepacket
on the new potential energy surface, restricted to each strip. As such, we discard
any part of the wavepacket that leaves the strip and ignore any additional parts
entering from other strips. Since the Schrodinger equation is linear, this introduces
two types of error, due to: (i) the modification of the potential in each strip, and
(ii) the wavepacket broadening out of the selected strip, or into it from the outside.
Both errors are small, the first because the strip is quite narrow (so the potential is
approximately constant), the second because the time that we actually evolve for is
small (of the order of the crossing region in the optimal superadiabatic basis).

In practice, for the examples in Section 6, we compute the BOA dynamics on a uniform
2-dimensional grid. Once the centre of mass of the wavepacket reaches the avoided
crossing, we interpolate the wavepacket onto a grid with the new p; direction parallel
to that of pcom. Instead of treating strips of the appropriate width, we simply apply
the formula (2.20) along each of the 1D lines parallel to p; (or pcom); this reduces to
applying the 1D formula. For small e, this is essentially equivalent to the algorithm
above as the approximate potentials of neighbouring lines are very similar and the
evolution time in the optimal superadiabatic basis is very short.

6. Numerical results. We perform the algorithm on a selection of examples,
and compare it to the two level ‘exact’ computation, where the Strang splitting method
is used. For all examples we consider two wavepackets given in momentum space by:

(6.1) %E(p) = Niw exp <_|P—250|2) exp (—iW)
(6.2) % (p) = ]\1% exp <—|pzfo|6> exp <—z’w€°)'m°)7

where N, are normalisation constants. To ensure that the wavepacket has sufficient
momentum to travel through the avoided crossing, we choose to define the wavepackets
at the avoided crossing point, then evolve backwards in time away from the avoided
crossing using one level dynamics, before evolving forwards and applying the formula.
In practice the initial wavepacket can be given in any initial location, provided it is
far enough from the avoided crossing to be unaffected by coupling effects.

To compare the formula results to exact calculations we use the L3-relative error:

+ +
(6.3) Ereat(t1, 1) = max <|¢1 Yal| [l wzn) |
[|91]] |12 ]]
Where || - || is the standard L?-norm. For comparison to other algorithms which do

not calculate phase, it is also beneficial to consider the relative absolute error

1] — [l |||¢1|_1/J2|||>
6.4 Eraps(¢1, = ) .
A rastin ) = ma (1 [l
or the relative mass error
|1 | |w2||>
6.5 E mass 5 = ) -1
(65 o011 = (2 2
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18 V. BETZ, B. D. GODDARD AND T. HURST

Ezample 6.1. Consider the diabatic potential matrix

(6.6) V(x) = (tan}:;(xl) - tarfh(fm)) '

This is a direct extension of a one dimensional problem, and as there is no dependence
in w9, the assumptions made in the derivation in Section 5 are exactly valid, if the
direction of the wavepacket is independent of ps. The lower surface is given by Vi =
—Vy. The upper adiabatic surface is shown in Figure 3a. We take parameters

10 0.7 30 30
20 - b 25
51 i
0.65 10 [y | 20
g of | g ol (o) 1 s
0.6 —10 | A 10
—5F -
—20 - b =
9
—10 L L L . — L L L
—20 —10 0 10 20 055 3930 —-20 -10 0 10 20 30
x1 1
(a) (b)

Fig. 3: Contour plot of the upper adiabatic potential surfaces for Example 6.1 (left)
and Example 6.2 (right). In these examples, Viy = V..

(6.7) (.6, po, w0} = {310,;,(6,1),(0,0)}.

Using a mesh of 23 x 213 points on the domain [—20,20]2, starting at time 0, we
evolve the wavepacket back to time -2 with time-step 1/(50]|po||), then evolve forwards
to time 2, applying the algorithm, and compare to the exact calculation. For the
Gaussian wavepacket 1, Er.q = 0.0151, Erans = 0.0151, and Erpass = 0.0016. For
non-Gaussian ¢ Erye = 0.0389, Eras = 0.0387, and Eryass = 0.0023. The result of
the formula and corresponding error are shown in Figures 4 and 5.

FEzample 6.2. We consider the diabatic potential matrix described in [14]

(6 v = (s V)

which is a modified Jahn-Teller diabatic potential, where the conical intersection is
replaced with an avoided crossing with gap 2§. The upper adiabatic surface is shown
in Figure 3b. We use parameters

(6.9) (¢, 6, po, w0} = {310,0.5, (5,2), (0,0)} ,

a mesh of 213 x 213 points on the domain [—40,40]?, we start at time 0, and evolve
backwards with time-step 1/(50]|pol|) to time —20/|po||?, then forwards to 20/||po||?,

This manuscript is for review purposes only.
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1072

1.4

1.2

0.8

0.6

19

1074

OVAA
Nti)

5.8 6 6.2 6.4
P

(b)

6.6

Fig. 4: Results for Example 6.1, when using parameters in (6.7) with initial
wavepacket of form (6.1). Left: exact calculation (solid line) versus formula result
(dashed line). Contours for the formula result are at the same values as the neigh-
bouring exact contours. Right: relative error.

) | 1072 ) | 1073
~ 4 2
L5} ] L5
! 3 15
g af b S :
B 2 1
0.5F /o 0.5}
- 1 0.5
0755 6 6.5 7 055 6 65 7
p1 p1

(a) (b)

Fig. 5: As in Figure 4, but with initial wavepacket (6.2).

we find Er. = 0.0351, Eraps = 0.0304, and Erpass = 0.0029 using Gaussian initial
wavepacket g, and Er.q = 0.0679, Er,ps = 0.0616, and Ery.ss = 0.0033 for non-
Gaussian initial wavepacket ¢. Figures 6 and 7 display the result of the formula
compared to the exact calculation. We now use the parameters

1
(610) {5,5,].70,:130} = {%7

0, (5,0), (0, 0.5)} .

In addition, we included the sign of x5 in the off-diagonal elements of V(x),
which then gives the standard Jahn-Teller Hamiltonian. However, let us stress that
non-adiabatic transitions must be exactly the same for the Hamiltonian with and
without the sign included. The reason is that by that choice, we have just chosen a
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1072

: 1073
T 2.5
4.5 N 5 451 i
41 8 4 4l i 2
3 g 2 L il
3 1
2.5 : 1 95l |
1 1 1 1 1 1 1 L | 1 1 1 1 1 0 5
78 8 82 84 86 88 9 92 78 8 82 84 86 88 9 92 '
P p1
(a) (b)

Fig. 6: Results for Example 6.2, when using parameters in (6.9) with initial wavepack-
ets of form (6.1). Results are presented as in Figure 4.

1073

10-2
5 5 6
5
6
4 4 |
4
& 4 &
| | q i
: 2
20 y 2 B
| | | | | | 1
7.5 8 8.5 9 7.5 8 8.5 9
p1 D1
(a) (b)

Fig. 7: As in Figure 6, but with initial wavepacket (6.2).

different diabatic representation, but the (unique) adiabatic representation remains
the same. It is an advantage of our method, which only uses the adiabatic energy
surfaces, that it is insensitive to such a change. The Jahn-Teller Hamiltonian has
a conical intersection. We have chosen momentum such that the centre of mass of
the wavepacket does not cross the intersection. We evolve back to —25/||po||? with
a time-step of 1/(50||pol|), then evolve forwards to 25/|po||* using the algorithm,
and compare with the exact calculation. Then Er. = 0.0638, Er,ps = 0.0550, and
Erpass = 0.0309 for initial wavepacket of form g and Er.e = 0.1511, Er,a,s = 0.0850,
and Erp,ss = 0.0604 for ¢, the transmitted wavepacket and error is given in Figure 6.
Although the relative error is large in this final calculation, the absolute error and
mass error shows that the algorithm has performed well, given that it is not designed
for systems where ¢ is small or vanishing. Figure 9 also shows that the shape of the
wavepacket is still well approximated qualitatively.
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We note that the relative and absolute error in Example 6.2 differ, while in Ex-
ample 6.1 they are the same. We believe this is due to a change in phase when p is
not flat in g9, so the error due to the modification of the potential surface for each

1073

but with parameters (6.10).

10

1072

1.5

0.5

Fig. 9: As in Figure 8, but with initial wavepacket (6.2).
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7. Conclusions and Future Work. In this paper we have constructed an
algorithm which can be used to approximate the transmitted wavepacket in non-
adiabatic transitions in multiple dimensions, by constructing a formula based on the
one dimensional result in [7], and appealing to the linearity of the Schrédinger equation
to decompose the dynamics onto strips with potentials that are constant in all but
one direction. Presented examples in two dimensions show similar accuracy to one
dimensional analogues, and are accurate in the phase, which is beyond the capability
of standard surface hopping models.

Correctly approximating the phase of the wavepacket becomes important when
more than one transition takes place. In [20] various one dimensional examples of
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multiple transitions are explored using the formula, with accurate results. In future
work we will consider multiple transitions in two dimensions using the algorithm.
This will involve taking into account the effect of geometric phase [12] due to multiple
avoided crossings, as well as constructing an approximation of the wavepacket which
remains on the upper level after a transition has taken place. We also will compare
the results of the algorithm considered in this paper with other algorithms designed
to approximate non-adiabatic transitions, e.g. [19].

Acknowledgements. We wish to thank the anonymous referees for their care-
ful reading of the manuscript and suggestions which have helped to improve the
manuscript.
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