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Abstract

Many graph mining tasks can be viewed as classification problems on high
dimensional data. Within this class we consider the issue of discovering
core-periphery structure, which has wide applications in the economic and social
sciences. In contrast to many current approaches, we allow for weighted and
directed edges and we do not assume that the overall network is connected. Our
approach extends recent work on a relevant relaxed nonlinear optimization
problem. In the directed, weighted setting, we derive and analyze a globally
convergent iterative algorithm. We also relate the algorithm to a maximum
likelihood reordering problem on an appropriate core-periphery random graph
model. We illustrate the effectiveness of the new algorithm on a large scale
directed email network.

Keywords: network; nonlinear Perron–Frobenius; power method; relaxation

1 Introduction
Graph theory gives a common framework for formulating and tackling a range

of problems arising in data science. Many such tasks can be viewed in terms of

categorizing nodes or discovering hidden substructures that relate them. Clustering,

or community detection, is perhaps the most widely studied problem, and it forms

the basis of many classification algorithms [1]. In this work we study the different,

but closely related, issue of identifying core–periphery structure; we seek a set of

nodes that are highly connected internally and with the rest of the network, forming

the core, and a set of peripheral nodes that are strongly connected to the core but

have only sparse internal connections. This kind of structure is important for a

number of reasons. For example, identifying core–periphery structures can help in

identifying and categorizing hubs, i.e., well-connected nodes. As noted in [2], such

nodes often occur in real–world networks. This is an issue for some community

detection methods, as hubs tend to be connected to many different communities

and, thus, can be awkward to classify. Moreover, the set of core nodes can be

used to identify internally cohesive subgraphs of highly central nodes. In fact, even

though all core nodes typically have high centrality score, not all nodes with high

centrality measures belong to the core and it is possible to find sparsely connected

subgraphs of central nodes not belonging to the core [3].

The concept of the network core–periphery is closely related to the idea of rich-

clubs, nested networks and onion network structures [4, 5, 6]. In particular, a number
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of core–defining algorithms have been proposed in recent years, e.g., [7, 8, 9], follow-

ing the seminal work by Borgatti and Everett [3]. Core–periphery structure has been

detected and interpreted in many complex systems, including protein–protein inter-

action networks [10], metabolic and gene regulatory networks [11], social networks

[3, 12], engineered networks (such as the Internet, power-grids or transportation

networks) [9], and economic networks [13]. See also the review [14].

From a computational perspective, several recent works provide algorithms that

apply to undirected networks. In particular, we have introduced in [9] a scalable

nonlinear optimization method with global quality guarantees for core–periphery

detection in binary, undirected and connected graphs. This method exploits an

intriguing connection between optimization and nonlinear eigenproblems and allows

for a fast and easily implementable iteration which guarantees to compute the global

maximum of a highly nonconvex core–score quality function.

In this work we consider the core-periphery concept in the more general setting

of directed, weighted and possibly disconnected networks and we extend the results

of [9], both in terms of the algorithms and of the theoretical analysis, to this more

challenging case.

In our directed case, we use the concept that a set of nodes forms a core if

there are many core-to-core, core-to-periphery and periphery-to-core edges, with

few periphery-to-periphery edges. Although the ideal core–periphery subdivision

defines two well distinguished sets of nodes, in practice one often looks for a core–

score vector u ≥ 0 such that a smaller value ui indicates that node i is more

peripheral. Such an assignment may be viewed as a type of node centrality measure

[15]. Indeed the classic cases of degree centrality and eigenvector centrality have been

proposed and tested in this context [3, 8, 9, 16], and, as we explain in Section 4,

the approach we propose here may be viewed as a nonlinear generalization of both

these cases.

The manuscript is organized as follows. Section 2 introduces some relevant no-

tation. In Section 3 we express the core-periphery detection problem in terms of

kernel-based optimization and in Section 4 we connect this idea with classical node

centrality measures. Section 5 shows that another viewpoint is also relevant; the ap-

proach may be viewed as maximum likelhood reordering under a new random graph

model that generates directed core-periphery structure. In Section 6 we study the

nonlinear optimization problem and show that it may be solved via an inexpen-

sive and globally convergent iteration. Section 7 illustrates the performance of the

algorithm on a large scale email dataset and Section 8 gives some conclusions.

2 Notation
We consider directed and possibly weighted graphs G = (V,E) with node set V =

{1, . . . , n} and adjacency matrix A = (Aij).

If node i does not point to node j then the entry aij is zero. Otherwise, aij takes

a positive value, accounting for the strength of the directional tie from i to j.

We let 1 denote the column vector in Rn with all values equal to one, and define

the in and out degree vectors as din = A1 and dout = AT1, respectively. Operations

on and between vectors are to be interpreted in a componentwise sense, so that, for

example, xp−1 has ith component given by xp−1i and xp−1y has ith component given
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by xp−1i yi. Inequalities involving vectors and matrices are also to be interpreted

componentwise, so that, for example, A ≥ 0 means Aij ≥ 0 for all i and j.

3 Core–periphery via functional kernel optimization
To search for the presence of a core and periphery we define a core–score vector,

that is, a nonnegative vector u quantifying the coreness of the nodes, where ui > uj

indicates that node i is closer to the core than node j. We define our core–score

vector as the solution to the following nonconvex and constrained core–periphery

quality function maximization problem

max fα(x)

s. t. x ≥ 0 and ‖x‖ = 1
(1)

where, for some fixed real number α ∈ R to be chosen, fα is the core–quality function

fα(x) =

n∑
i,j=1

Aij κα(xi, xj), κα(x, y) =
( |x|α + |y|α

2

)1/α
. (2)

Note that, since only relative values are important, a constraint of the form ‖x‖ =

1 is very natural. However, there is no reason at this stage to prefer a particular

norm over another. Therefore, we assume for now that ‖ · ‖ is any vector norm and

consider the problem (1) in this general setting.

For x, y ∈ R, the kernel κα(x, y) is the generalized (or Binomial) mean of the two

nonnegative numbers |x| and |y|. The case α → ∞ is particularly well-suited for

core-periphery purposes. If x is a nonnegative vector, we have

f∞(x) := lim
α→∞

fα(x) =

n∑
ij=1

Aij max{xi, xj},

and thus any nonnegative vector x for which f∞(x) is large assumes a necessarily

large value on the entries involving the nodes in the core and smaller values within

the periphery. In fact, when ‖ · ‖ denotes a p-norm, any vector x ≥ 0, ‖x‖ = 1 such

that f∞(x) is large assigns to each node a value xi between zero and one so that

each connection between two nodes i, j in the graph or, equivalently, each nonzero

in the weight matrix A, involves at least one node such that xi is large. We note

that the relevance of f∞(x) as a core–periphery quality function is highlighted for

example in [8], and the relaxed version (1) involving α was considered in [9] for

undirected graphs.

4 Connection with degree and eigenvector centralities
In the undirected case, A = AT , it has been argued that both the degree vector

and the eigenvector (or Bonacich) centrality vector carry interesting core–periphery

information and are good candidates for core score vectors [3, 8, 9, 16]. In this

section we show that when α = 1 or α = 0 the problem (1) admits an explicit

solution that, even when the graph is directed, boils down to the degree and the

eigenvector centrality, respectively.
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When α = 1 the function fα(x) is linear, taking the form of the scalar product

f1(x) =

n∑
ij=1

Aij κ1(xi, xj) =
1

2
1T (A+AT )x .

As both the matrix A + AT and the vector x have nonnegative entries, using the

Cauchy–Schwarz inequality, we have

f1(x) =
1

2
|1T (A+AT )x| ≤ 1

2
‖1T (A+AT )‖2‖x‖2

and the inequality is always strict unless x is a multiple of (A+AT )1 = din +dout.

Therefore, if we choose the norm constraint in (1) to be ‖x‖2 = 1, we have that

max
x≥0:‖x‖2=1

f1(x) =
1

2
‖din + dout‖2

with maximizer u given by u = (A + AT )1 = din + dout properly normalized.

This shows that the solution of (1) reduces to the degree vector when the graph is

undirected and coincides with the sum of the incoming and outgoing degree vectors

in the general case.

It is well-known that when α → 0, κα(x, y) converges to the geometric mean of

|x| and |y|. Thus, when α = 0 and x ≥ 0, we have

f0(x) := lim
α→0

fα(x) =

n∑
ij=1

Aij
√
xixj .

As x 7→
√
x is bijective on the set of vectors with nonnegative entries, we can change

variable y =
√
x in (1) and recast the problem (1) as

max
y≥0

∑
ij

Aij yiyj = yTAy, subject to ‖y2‖ = 1.

Again, if we consider the 1-norm, we can write the constraint ‖y2‖1 = 1 as ‖y2‖1 =

yTy = 1 and problem (1) becomes

max
x≥0

f0(x) = max
y≥0

f0(y2) = max
y≥0

yTAy

yTy
.

By the Perron–Frobenius theorem [17], the Rayleigh quotient yTAy/yTy has a

unique nonnegative maximizer c, which coincides with the Perron eigenvector of

the nonnegative matrix A+AT . In other words, the core score that maximizes f0 is

the vector u = c2, where c is the eigenvector centrality of the symmetrized network

with weight matrix A+AT .

In Section 6 we show that both these two cases are actually a special case of a

more general setting. We prove that for any α ≥ 0 the solution of (1) is the Perron

eigenvector of a nonlinear core–periphery operator. In particular, this implies that

the solution u to (1) is unique for any α ≥ 0, with an appropriate normalization.

Moreover, using nonlinear Perron–Frobenius theory, this further allows us to intro-

duce an iterative algorithm that computes u, with global convergence guarantees.
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5 Logistic core-periphery random model for directed graphs
We introduced in [9] a random graph model for undirected and unweighted graphs

that can be used to artificially generate networks with a planted core–periphery

structure. This model, unlike more classical block-based versions, is based on the

logistic sigmoid function 1/(1 + e−x) rather than a Heaviside step function and

allows a smooth transition between the set of core nodes and the set of peripheral

ones. We refer to it as the logistic core–periphery random model. We notice that

similar logistic function based random models have been considered in [18, 19, 20].

Here we extend the model to the case of directed graphs and we prove that

the method of maximum likelihood applied to this random model coincides with

the core–periphery quality function maximization problem (1), which provides the

core–periphery analogue of a known phenomenon for stochastic block models in the

community detection case [21].

Consider a core–ranking assignment, that is, a nonnegative permutation vector π

that assigns a distinct integer πi between 1 and n to each vertex i. The closer πi is

to 1, the higher the rank of i as a member of the core. For convenience, we shift-

and-scale the core–ranking vectors via the affine transform u 7→ 1 − π/n. Hence,

we consider the set

CR(n) =
{
u ∈ Rn : ui = 1− πi/n, π is a permutation of {1, . . . , n}

}
,

so that, similarly to a core–score assignment, u ∈ CR(n) has values in [0, 1] and

larger values of u correspond to higher positions in the core ranking.

Now, given u ∈ CR(n), the logistic core–periphery random model generates an

edge from node i to node j with independent probability given by

Pr(i→ j) =
1

1 + e−κα(ui,uj)
= pij(u) . (3)

Note that for α2 ≥ α1 ≥ 0 we have

√
|xy| = κ0(x, y) ≥ κα1

(x, y) ≥ κα2
(x, y) ≥ κ∞(x, y) = max{|x|, |y|} .

Thus, for any α ≥ 0, the probability pij(u) tends to be large if at least one of the

nodes i and j has a high core rank and this effect increases as α grows, as shown

by Figure 1.

Suppose we are given a network with the nodes in arbitrary order and wish to find

the best core ranking assignment based on the logistic random model (3). From a

maximum likelihood perspective, this corresponds to maximizing the log-likelihood

Lα(u) =
∑
ij∈E

log pij(u) +
∑
ij /∈E

log(1− pij(u)) (4)

among all possible u ∈ CR(n). In other words, assuming that the given network is

a sample from the logistic core–periphery random model (3) with the node labels

shuffled arbitrarily, this is most likely to be the correct reordering.
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Figure 1 Probability pij(u) for different values of the core scores uj , ui and of the parameter α.
Upper panel: pij(u) as a function of ui, for different values of uj and α. Lower panel: contour
plots of pij(u) as a function of ui and uj , for different fixed values of α.

A key observation here is that, for ranking vectors u ∈ CR(n), this maximum

likelihood approach is equivalent to assigning a core–score to the nodes which max-

imizes a logistic core quality function fα. In fact, the following extension of Theorem

3.1 in [9] holds.

Theorem 1 Let G be a directed unweighted graph. For any α ≥ 0, a vector u? ∈
CR(n) is solution of

max
u∈CR(n)

Lα(u)

if and only if it is solution of

max
u∈CR(n)

fα(u).

This equivalence provides further justification for the kernel optimization ap-

proach. It also suggests that the logistic core–periphery random model (3) is a useful

resource for testing core–periphery detection algorithms in this directed setting.

We also note that a closely related generative random graph model for core–

periphery networks was proposed in [20]. That work focused on the undirected case

and aimed to incorporate additionally available spatial information.

6 Core-periphery nonlinear operator
A study of the Hessian of fα reveals that fα is neither convex nor concave in general.

This makes the solution of (1) particularly challenging. However, here we show

that this optimization problem can be re-cast in terms of the Perron eigenvector

of a nonlinear operator. We then show how its solution is always achievable via a

generalization of the classical power method from numerical linear algebra.
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Given α ≥ 1, consider the nonlinear core-periphery operator Φα : Rn → Rn,

entrywise defined as follows

x 7→ Φα(x)i = |xi|α−2xi
n∑
j=1

Aij +Aji
κα(xi, xj)α−1

i = 1, . . . , n.

Given p > 1, we consider the following nonlinear eigenvalue problem for Φα

Φα(x) = λxp−1 . (5)

One easily realizes that Φα is linear if and only if α = 1 in which case that

operator degenerates into the map such that Φ1(x) = din+dout, for any nonnegative

vector x ≥ 0. In this setting it is easily seen that the only nonnegative solution of

(5) is x = din + dout with λ = 1 and p = 2. Combined with the discussion of

Section 4, this shows that for the case α = 1 the unique nonnegative solution of

the eigenvalue problem (5) coincides with the maximizer of (1). We can retrieve

the same analogy for α → 0 and p = 1. In that case we have limα→0 Φα(x)i =

Φ0(x)i = 1√
xi

∑n
j=1(Aij + Aji)

√
xj whereas (5) becomes Φ0(x) = λ1. Arguing as

in Section 4, again, we deduce that for α = 0 and p = 1 a nonnegative solution of

the eigenvalue problem (5) coincides with a maximizer of (1).

When α 6= 0, 1 the question of existence and uniqueness of a solution to (5) is

less trivial. The following theorem gives a full answer and shows that the same

one-to-one correspondence between (5) and (1) holds.

Theorem 2 Let α ≥ 0 and p > max{1, α}. Then the eigenvalue equation (5) has

a unique nonnegative solution u ≥ 0 such that ‖u‖p := (|u1|p + · · ·+ |un|p)1/p = 1

which is also the unique solution of (1), provided that ‖ · ‖ = ‖ · ‖p. Moreover u is

positive if and only if the network has no isolated nodes, i.e., all nodes have at least

one outgoing or one incoming edge.

Note that, as no assumption on the connectedness of the graph is made, the

eigenvector centrality, i.e., the nonnegative solution of (5) for α = 0 and p = 1, is

not uniquely defined. Instead, Theorem 2 shows that the core–score assignment is

always unique when p > max{1, α} and α ≥ 0. The relevance of Theorem 2 is not

only theoretical. In fact, it comes together with the following corollary which shows

the global convergence to u of a simple iterative scheme.

Corollary 3 Given an initial guess u0 > 0 and parameters α ≥ 0, p > max{1, α}
and q = p/(p− 1), consider the following iterative methodvk+1 = Φα(uk)

uk+1 = ‖vk+1‖1−qq |vk+1|q−2vk+1

, k = 0, 1, 2, 3, . . .

Then uk ≥ 0 for all k ≥ 0 and ‖uk − u‖ = O
(
(α−1p−1 )k

)
, i.e., uk converges to the

unique solution u ≥ 0 of (1) and (5).
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Note that on sparse networks the method scales linearly with the number of nodes.

In fact, each iteration requires O(|E|) floating point operations, where |E| is the

number of edges in the graph. Moreover, the free parameter p allows us to tune the

overall number of iterations k? = O(ln ε/ ln α−1
p−1 ) required to achieve the precision

‖uk? − u‖ = O(ε). We will refer to the iteration in Corollary 3 as the Nonlinear

Spectral Method (NSM).

From Corollary 3 the choice p � α appears to be attractive, since it leads an

extremely rapid (linear) convergence rate. However, in choosing values for p and α,

we must take account of two further issues.

1. As we argued in Section 3, a larger value of α gives a kernel that more closely

matches the ideal of max{xi, xj}.
2. A larger value of p produces a relaxed problem that is less likely to distinguish

between the nodes. (Note that in the extreme case of p = ∞, the constraint

‖x‖∞ = 1 allows for the obvious solution x = 1, which assigns the same score

to all nodes.)

Combining points 1 and 2 with Corollary 3, we must compromise between a large

parameter α in the kernel and a not-too-large value p for the vector norm, while

keeping p > α to maintain convergence. In practice, we found that changing the

value of p did not significantly affect the core–periphery structure output of the al-

gorithm, which was instead governed by the value of α. In our experiments we chose

p = 2α and α = 10, as this produced good results with guaranteed fast convergence.

Moreover, we observed that larger values of α did not produce a noticeable change

in the core–periphery structure identified.

7 Enron dataset
The Enron email network consists of 1,148,072 emails sent between 87,273 employees

of Enron between 1999 and 2003. Nodes in the network are individual employees and

weighted directed edges, with weights ranging from 1 to 3,904, count the number of

emails sent from one employee to another. It is possible to send an email to oneself,

and thus this network contains self–loops. Note that this network is not strongly

(or even weakly) connected. The data has been collected from [22].

Three plots in Figure 2 display the network by means of colored adjacency sparsity

plots. Here, each nonzero entry in the adjacency matrix is shown with an intensity

that corresponds to the edge weight (the darker the dot the larger the weight on

the corresponding edge). These plots correspond to three different node labelings:

the first one (top–left corner) is the original node labeling; the second plot (top–

right corner) is the labeling, somewhat corresponding to a rich–club paradigm,

obtained by re-ordering the nodes according to decreasing values of the overall

degree din + dout; the third one (bottom–left corner) is the labeling corresponding

to decreasing values of the core–score computed with the NSM using parameters

α = 10 and p = 20. This latter figure clearly shows that the Enron email dataset

contains a strong core–periphery structure, which was less prevalent initially. This

is further confirmed by the core–periphery profile in the bottom–right plot, which

shows the behavior of

γ(Sk) =

∑
i,j∈Sk Aij∑

i∈Sk d
in
i + douti
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Figure 2 Adjacency sparsity plots and core–periphery profile of the Enron email dataset. The two
panels in the top and the panel in the bottom-left corner show the nonzero entries of the
adjacency matrix of the network, with different color intensities for different edge weights, when
the nodes are re-labeled in three different ways: the top-left panel corresponds to the original node
labeling; the top-right panel is the labeling obtained by re–ordering the nodes according to
decreasing values of the overall degree din + dout; the bottom-left is the labeling corresponding to
decreasing values of the core–score computed with the proposed NSM. Finally, the bottom-right
panel shows the persistence probability γ(Sk) as a function of k, when Sk is the set of the k most
peripheral nodes according to the degree vector (orange line) or the NSM (blue line).

against k, where Sk is the set of k most peripheral nodes corresponding to a core–

score assignment. As k varies from 1 to n = 87, 273, γ(Sk) varies from 0 to 1 and

measures the ratio of periphery–periphery links to periphery–all links, if Sk were

to be chosen to be the periphery set. Thus a network has a strong core–periphery

structure revealed by a core–score vector if the corresponding profile γ(Sk) takes

small values as k increases from zero and then grows dramatically as k crosses some

threshold value.

For undirected networks, the profile γ(Sk) was proposed in [23] as a means to

visualize core-periphery structure. In this case, γ(Sk) coincides with the persistence

probability of the set Sk, i.e., the probability that a random walker who is cur-

rently in any of the nodes of Sk remains in Sk at the next time step. For directed

strongly connected networks, the persistence probability of Sk would instead be

given by
∑
ij∈Sk yiPij/

∑
j∈Sk yj , where y is the stationary distribution of the ran-

dom walk with transition matrix Pij = Aij/d
out
i . However, as the Enron dataset we
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Figure 3 Adjacency matrix sparsity plots and core–periphery profiles corresponding to the
relabeling obtained with the NSM and different values of α.

are considering is not connected, y is not well defined, and we compute γ(Sk) in its

place.

Finally, in order to show how the parameter α affects the core–periphery as-

signment obtained with NSM on this dataset, we show in Figure 3 the core–

periphery structure and core-periphery profile using three different values of α,

namely α ∈ {1.5, 3, 10}. While changing the value of p does not effect the core–

periphery structure output of the algorithm, small values of α show a weaker core–

periphery structure, which is consistent with the fact that our model ideally works

best when α → ∞. However, in practice α = 10 performs well and have observed

that larger values of α do not result in any significant change.

Since the network is not strongly connected, we do not show plots corresponding

to the eigenvector centrality—this is not uniquely defined and, in our tests, different

runs of Julia’s Arpack.eigs gave rise to very different reorderings.

For this network the NSM with parameters α = 10 and p = 20 computed the

solution to 9 digits of precision in less than 5 seconds on a standard i7 single core

laptop, using Julia 1.0. Our code in both Matlab and Julia is available online at the

address https://github.com/ftudisco/nonlinear-core-periphery.

8 Conclusion
Our main aim in this work was to show that the attractive properties of the non-

linear spectral method proposed in [9] can almost completely be transferred to the

directed, weighted and unconnected setting. In particular we show that for the core–

periphery kernel quality function (1), proposed for example in [8, 9], there is always

a unique solution for α ≥ 0 and p > max{1, α}, and this solution can be computed

via a nonlinear spectral method whenever it is feasible to form matrix-vector prod-

ucts based on the network weight matrix. The proposed method, which exploits an

intriguing connection between optimization and eigenproblems, generalizes the clas-

sical power method in order to compute the global maximum of a highly nonconvex

function; thus it may also be of interest in other machine learning contexts.

Appendix. Theorem proofs
Proof of Theorem 1. First note that, by adding and removing

∑
ij∈E log(1−pij(u)),

the log likelihood (4) can be equivalently written as

Lα(u) =
∑
ij∈E

log

(
pij(u)

1− pij(u)

)
+

n∑
i,j=1

log(1− pij(u)) =: S1(u) + S2(u) .
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Let us analyze the two terms S1 and S2 individually. If a = 1
1+e−b

, we have

a

1− a
=

(
1

1 + e−b

)(
e−b

1 + e−b

)−1
= eb

which, from (3), implies that

S1(u) =
∑
ij∈E

log

(
pij(u)

1− pij(u)

)
=
∑
ij∈E

κα(ui, uj) =

n∑
i,j=1

Aijκα(ui, uj) ,

i.e., S1(u) = fα(u). Now note that, if u,v ∈ CR(n) then there exists a permutation

σ of {1, . . . , n} such that ui = vσ(i) for all i. Therefore,

S2(u) =
n∑

i,j=1

log

(
1

1 + e−κα(ui,uj)

)
=

n∑
i,j=1

log

(
1

1 + e−κα(vσ(i),vσ(j))

)
= S2(v),

which implies that S2 is constant on CR(n). Thus u maximizes Lα(u) if and only

if it maximizes S1(u) and the proof is complete.

Proof of Theorem 2 and Corollary 3. This proof is based on the proof of Theo-

rem 4.5 in [9] and the lemmas therein proved. For convenience, let us denote by Rn+
the cone of vectors with nonnegative entries. Since we are interested in a nonneg-

ative maximizer of fα(x) constrained on the sphere ‖x‖p = 1, we can equivalently

look for a maximizer of fα(x/‖x‖p) on the whole cone of nonnegative vectors Rn+.

Now, notice that fα is positively 1-homogeneous, that is fα(ax) = afα(x) holds

for any real number a ≥ 0. Therefore we can further change our problem into the

global maximum on Rn+ of g(x) = fα(x)/‖x‖p, without losing any generality. The

critical point condition for g implies the equivalence with the eigenvalue problem

(5), i.e., x is a stationary point for g if and only if it is such that Φα(x) = λxp−1. As

p > 1, we can equivalently write Φ̃(x) = µx, with µ = λ
1
p−1 and Φ̃(x) = Φα(x)

1
p−1 .

We now show that there can only be one nonnegative x such that ‖x‖p = 1 and

Φ̃(x) = µx.

To this end, note that Φ̃(x) ≥ 0 for any x ≥ 0. Thus if x ≥ 0 and ‖x‖p = 1, then

µ > 0 and we have

µ = ‖µx‖p = ‖Φ̃(x)‖p = ‖Φα(x)‖q−1q ,

where q is such that 1/p+ 1/q = 1. Therefore any x ≥ 0, ‖x‖p = 1 solution of (5)

is a fixed point of the map

Ψ : Rn+ → Rn+, Ψ(x) =
Φ̃(x)

‖Φ̃(x)‖p
=

Φα(x)q−1

‖Φα(x)‖q−1q

.

Let τ(x,y) = ‖ lnx− lny‖∞. Lemma 4.4 of [9] implies that

τ
(
Ψ(x),Ψ(y)

)
τ(x,y)

≤ |α− 1|
p− 1

,
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for any x,y ∈ Rn+. As τ is a complete metric on the cone Rn+ (see, for example,

[24]), this shows that Ψ is a contraction and thus it has a unique fixed point.

We conclude that, when α > 0 and p > max{1, α}, the eigenvalue equation (5)

has a unique nonnegative solution u ≥ 0 such that ‖u‖p = 1, which is also the

unique solution of (1) when we choose ‖ · ‖ = ‖ · ‖p. Note moreover that if we start

with a positive u0 > 0 and apply Ψ iteratively to give uk+1 = Ψ(uk) we obtain

τ(uk+1,uk) ≤ ( |α−1|p−1 )kτ(u1,u0). This, together with the inequality τ(u1,u0) ≤ γ,

proved for example in Corollary 4.6 of [9], completes the proof of Corollary 3.

Next we prove that u has a zero component i if and only if i is an isolated node,

i.e., it has no incoming nor outgoing links. To this end, let Ω+
A ⊆ Rn+ be the set of

vectors

Ω+
A = {x ≥ 0 : xi = 0 if and only if i is isolated} .

Note that, equivalently, xi = 0 for x ∈ Ω+
A if and only if Aij + Aji = 0 for all

j = 1, . . . , n. Now note that if x ∈ Ω+
A then Φα(x) ∈ Ω+

A. In fact, from its definition

Φα(x)i = xα−1i

n∑
j=1

Aij +Aji
κα(xi, xj)α−1

we see that, if i is isolated, xi = 0 and thus Φα(x)i = 0, whereas if xi > 0, then

Φα(x)i > 0 as κα(xi, xj) ≥ xi > 0 and there exists at least one j∗ such that

Ai,j∗ + Aj∗,i > 0, which implies Φα(x)i ≥ xα−1i (Ai,j∗ + Aj∗,i)κα(xi, xj∗)1−α > 0.

Note that the same conclusion holds for any initial positive vector; that is, x > 0

implies Φα(x) ∈ Ω+
A. Therefore the iterative method of Corollary 3 converges to a

vector in Ω+
A for any starting point, or, equivalently, any nonnegative solution of (5)

must be in Ω+
A. Since there exists only one such solution, the proof is complete.
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